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Abstract

Dose-response prediction in cancer is a critical step to assessing the efficacy of
drug combinations on cancer cell-lines. The efficacy of a pair of drugs can be
expressively modelled through a dose-response surface which outputs the viability
score across a spectrum of drug concentrations for each pair of drugs in the training
data. Using large in-vitro drug sensitivity screens, the goal is to develop accurate
predictive models that can be used to inform treatment decisions by predicting the
efficacy of given drug combination on new cancer cell lines as well as predict the
effect of unseen drugs. Previous work [15] proposed a framework for modelling
dose response surfaces with multi-output GPs, however, the model relied on the
exact GP marginal likelihood and prohibited scalable inference. Further, the only
inputs were drug concentrations per pair while the triplet of cell-lines and drug pair
corresponded to different outputs . We make two important innovations in this work,
we propose a framework for stochastic multi-output GPs for scalable inference;
and, use a deep generative model (DGM) to embed the drugs in a continuous
chemical space - enabling viability predictions for unseen drugs. We demonstrate
the performance of our model in a simple setting using a high-throughput dataset
and show that the model is able to efficiently borrow information across outputs.

1 Introduction

In recent years, much work has gone in to developing predictive models for cancer treatments. Using
data from high-throughput in-vitro experiments on multiple drugs and cell lines, large models are
trained with the goal of predicting the sensitivity of a drug on a certain cell line. In the context of
drug combinations, interest has frequently been on predicting a summary measure of drug interaction,
e.g. a synergy score [11], computed from fitted dose-response surfaces, and an assumption of how
non-interacting drugs should behave. Synergy scores are inherently quite crude measurements of
drug interaction, and fundamentally hinge on the choice of non-interaction assumption. For this
reason, several authors [7, 18, 15, 5] have proposed algorithms that instead aim to predict the entire
dose-response surface. Since dose-response experiments are naturally invariant to the ordering of the
drugs in a combination, we further augment the model by directly encoding this invariance into the
prior.

In this paper, we build on previous work on permutation invariant multi-output Gaussian Processes
(PIMOGPs) by [15]; the permutation invariance arises naturally in the context of dose-response
functions as these are invariant to the ordering of the drugs in a combination. The original PIMOGPs
framework relied on using exact GPs and thus incurred cubic complexity. Further, it did not encode

Workshop on Bayesian Decision-making and Uncertainty, 38th Conference on Neural Information Processing
Systems (NeurIPS 2024).



the drug pairs i.e. each drug combination experiment (cell line, drug A, drug B) triplet was considered
an output, and only the concentrations (cA, cB) were given as inputs. In this work we instead take
only the cell line as output, and regard the drugs as inputs alongside the drug concentrations. In order
to encode the drug information as inputs we make use of a deep generative model that takes as input
a string representation of the molecule, and outputs a low-dimensional representation of the drug (see
A).

The main contribution of this work is deriving the stochastic variational bound for the permutation
invariant linear model of coregionalisation (LMC). This method naturally handles missing data and
provides uncertainty quantification.

2 Background

2.1 Linear Model of Coregionalisation for MOGPs

Multi-output GPs (MOGPs) are the extension of GP regression to the setting where the regression
outputs are multidimensional, i.e. for any input x, the resulting mapping f(x) ∈ Rm for some
m > 1. There are many ways of constructing MOGPs (see [2] for a review), but our focus here will
be on the linear model of coregionalisation (LMC).

In LMC the outputs are modelled as linear combinations of a set of independent latent functions, that
are themselves modelled as GPs. That is, considering a set of m outputs {fj(x)}mj=1 for an input
x ∈ Rp, the j-th output is modelled as,

fj(x) = aj1u1(x) + aj2u2(x) + · · ·+ ajRuR(x), (1)

where ur ∼ GP(0, kr(·, ·)) for r = 1, . . . , R independently, and aj1, . . . , ajR are scalar weights.
Note that each latent function is given its own covariance function kr, but these are free to have
the same covariance, while maintaining independence. Latent functions that share their covariance
functions can be grouped into G groups with Rg latent functions in each group, and the equation
rewritten as:

fj(x) =

G∑
g=1

Rg∑
r=1

a
(r)
jg u

(r)
g (x).

Since GPs are closed under addition, this construction induces a GP over all outputs. The cross-
covariance between two evaluations fj(x) and fj′(x

′) can be written as

Cov [fj(x), fj′(x′)] =

G∑
g=1

Rg∑
r=1

a
(r)
jg a

(r)
j′gkg(x,x

′) =

G∑
g=1

b
(g)
jj′kg(x,x

′),

where b
(g)
jj′ =

∑Rg

r=1 a
(r)
jg a

(r)
j′g . The full cross-covariance over all m outputs can be written as

K(x,x′) =

G∑
g=1

Bgkg(x,x
′), (2)

where the matrix Bg is known as a coregionalisation matrix, with entries {Bg}ij = b
(g)
ij . In the case

of a complete dataset where every input is observed at every output, the above expression can be
written using Kronecker products:

K(X,X) =

G∑
g=1

Bg ⊗Kg, (3)

where Kg has entries {Kg}ij = kg(xi,xj). In the simplest setting, where all latent functions share
the same covariance function (i.e. G = 1), this model is known as the intrinsic coregionalisation
model (ICM) and the Kronecker structure can be exploited to obtain large computational gains.

For the LMC, the matrices are even larger due to the covariance across outputs, resulting in a cubic
complexity in both inputs and outputs – O(n3m3). In the special case of the IMC, i.e. where G = 1
in equation (3), using various Kronecker tricks can bring this down to O(n3 +m3) – see e.g. [16].
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3 Stochastic Variational Linear model of Coregionalisation for Multi-output
GPs

In this section we desribe our main insight of leveraging SVI in the setting of the LMC in order to
speed up the necessary computations.

Instead of having a single set of inducing inputs, we allow different inducing locations per latent
function Z = {Zr}Rr=1, where Zr = {z1r, . . . , zqr}, with corresponding inducing variables for each
latent function U = [uT

1 , . . . ,u
T
R]

T , where ur = [ur(z1r), . . . , ur(zqr)]
T . In order to not overload

the notation, we assume the same number of inducing variables, q, per latent function, and that the
dataset is complete, i.e. that every input x is observed at every output. We denote by Y and F
vectors of observations and latent evaluations, stacked for each output, i.e. Y = [yT

1 , . . . ,ym]T

where yj = [y1j , . . . , ynj ]
T , where yij = fj(xi) + ϵij , and similarly for F.

The variational lower bound in the LMC case takes the same form as the stochastic variational bound
for single output regression (see A.1), factorising over observations and outputs, but the matrices
involved are more structured:

log p(y|θ) ≥
n∑

i=1

m∑
j=1

{
logN (yij |αT

ijµ̃, σ
2)− 1

2σ2
αT

ijΣ̃αij −
1

2σ2
Q̃ij

}
− KL(p(U)∥q(U)), (4)

where αT
ij = AjK

(i)
fu K−1

uu , A is the matrix with LMC coefficients, i.e. {A}ij = aij , where Aj

denotes the j-th row of A. The matrix K
(i)
fu is an R × Rq block-diagonal matrix with entries

{kr(xi, Zr)}Rr=1, i.e. formed by evaluating the input point xi against all the inducing points Zr in
the r-th latent function. Q̃ij is formed by Aj [K

(i)
ff −K

(i)
fu K−1

uu K
(i)
uf ], where the matrix K

(i)
ff is an

R×R block-diagonal matrix with entries {kr(xi,xi)}Rr=1, K(i)
uf = (K

(i)
fu )T and Kuu is an Rq×Rq

block-diagonal matrix with entries {kr(Zr, Zr)}Rr=1. Finally, µ̃ and Σ̃ come from the variational
distribution q(U) – which we assume factorise over the r latent functions q(U) =

∏R
r=1 qr(ur)

where qr(ur) = N (µr,Σr), yielding a block-diagonal Σ̃, and a decomposition of the KL-divergence
term as KL(p(U)∥q(U)) =

∑R
r=1 KL(pr(ur)∥qr(ur)).

3.1 Permutation Invariance

For the problem of dose-response prediction, interest is on encoding an invariance on the ordering of
the drugs — a permutation invariance of the inputs. In the context of multi-output GPs, we want
to encode a permutation invariance for every output, fj . Looking at the construction of the LMC in
equation (1), it suffices to ensure that each latent function ur has the required invariance. Letting
x̃ denote a permuted version of the input x, with the desired invariance to encode ur(x) = ur(x̃),
this can be achieved by introducing another function ũr(x) and constructing ur(x) via a summation
argument:

ur(x) = ũr(x) + ũr(x̃), (5)

from which we see that the mapping x → x̃ leaves the function unchanged. Placing a zero-mean GP
prior on ũr with kernel k̃r(·, ·) induces a zero-mean GP prior on ur with kernel,

kr(x,x
′) = k̃r(x,x

′) + k̃r(x, x̃
′) + k̃r(x̃,x

′) + k̃r(x̃, x̃
′). (6)

In order to enable SVI in the context of permutation invariant MOGPs, a slight modification needs to
be made regarding the inducing variables ur. Specifically, instead of regarding ur as observations
from the latent function ur, they are assumed as observations from the underlying ũr. The structure
of the bound in equation (4) remains unchanged. Only, the entries of matrices K(i)

ff , K(i)
fu and Kuu

need to be computed according to the following equations:

K
(i)
ff : kr,ff(xi,xi) = k̃r(xi,xi) + k̃r(xi, x̃i) + k̃r(x̃i,xi) + k̃r(x̃i, x̃i)

K
(i)
fu : kr,fu(xi, Zr) = k̃r(xi, Zr) + k̃r(x̃i, Zr) (7)

Kuu : kr,uu(Zr, Zr) = k̃r(Zr, Zr).
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Figure 1: (Left): Training loss over 12 epochs, (Middle): Observed vs. Predicted using the
permutation-invariant model, (Right): Coregionalisation matrix B normalised as a correlation matrix
showing the learned correlation structure across the 39 cell lines.

That is, the entries of these block diagonal matrices are computed according to updated covariance
functions kr,ff(·, ·), kr,fu(·, ·) and kr,uu(·, ·) that are themselves functions of different evaluations of
the underlying kernel function k̃r(·, ·) of ũr. This model is implemented within the GPyTorch [3]
framework for GP regression.

4 Dataset and results

4.1 Dose-response data

We use the data from [12], and follow the same pre-processing procedure as in [15]. This dataset
consist of 583 unique combinations of 38 drugs, screened on 39 cell lines across 6 different tissues –
totalling over 1.2 million viability measurements. The pre-processing procedure (see A.3) further
standardises and upsamples the data to a common 10 × 10 grid of concentrations — individually
scaled to the unit box [0, 1]× [0, 1] – yielding a dataset of 1,883,700 observations on a shared grid of
concentrations. The viability measurements are also standardised to the [0, 1] interval.

4.2 Results

We test the performance of our model in the leave-triplet-out (LTO) setting, using the nomenclature of
[1]. That is, we consider prediction of a specific (cell line, drug A, drug B)-triplet that does not appear
in the training dataset – however, the training dataset may contain other examples using the same cell
line, or the same drugs. We split the 18,837 experiments 80/20 into a training and test set – keeping
15,069 experiments for training and 3768 for testing. For 39 cell line outputs, we set the number
of latent functions R = 10 in the LMC all sharing the same kernel function (i.e. G=1 in equation
(3)), and use q = 200 inducing points for each latent function. For the variational distribution, each
component is modelled using a mean-field approximation, pr(µr,Σr), where Σr is a diagonal matrix.
For the covariance function k̃(x,x′) we use an RBF kernel over the drug concentrations, and a
RBF kernel with automatic relevance determination (ARD) over the drug features. These are then
multiplied together to form the final covariance function over the inputs.

We used a batch size of 256, and trained for 12 epochs using the Adam optimizer [8] with an initial
learning rate of 1e-2 decreasing to 1e-3 after 6 epochs, and to 1e-4 after 9 epochs. We plot the training
loss over the epochs in Figure 1 (Left). As performance metrics, we compute the root mean squared
error (RMSE) and Pearson’s correlation coefficient of our predictions against the observed viability
measurements.

The results are visualised in Figure 1 (middle), where the model predictions are plotted against
observed in the LTO setting. The model performs well, obtaining a RMSE of 0.1015 and a Pearson’s
r of 0.945. The pre-processing leaves us with observations strictly in the interval [0, 1], while the
predictions have not been bounded in any way. This could be alleviated by e.g. considering a different
likelihood function. Finally, we also plot the coregionalisation matrix B from equation 3 having
normalised it to a correlation matrix. We note that in contrast to the model of [15], our implementation
is able to borrow strength across cell lines in its predictions.
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A Appendix

A.1 Stochastic Variational Gaussian Process regression

Gaussian Processes (GPs) provide a flexible non-parametric [13] paradigm for probabilistic regression
and classification. They serve as versatile priors over functions fully characterised by their mean
m(·) and covariance functions kθ; the latter typically parameterised by hyperparameters θ which are
learned from the data. When evaluated at fixed inputs we get a finite dimensional Gaussian prior over
for finite values of the process f = (f(xn))

N
n=1,

f(x) ∼ GP(m(x), k(x,x′)) p(f) = N (m,Kff) (8)
where Kff is the N ×N matrix resulting from the evaluation of the kernel function kθ on all pairs
of inputs in the training dataset and similarly m characterises the mean vector resulting from the
application of the mean function m on each input. In the canonical regression setting we are given
observations, typically a dataset D in the form of input-output pairs (X,y) = {xn, yn}Nn=1 where yn
are noisy realizations of some latent function values corrupted with Gaussian noise, yn = f(xn)+ϵn,
ϵn ∼ N (0, σ2). The vector θ includes both kernel hyperparameters and a scalar noise variance σ2.
Exact inference entails maximisation of the GP marginal likelihood to obtain point estimates for θ. A
Gaussian noise setting facilitates an analytically tractable marginal likelihood,

p(y|θ) =
∫

p(y|f ,θ)p(f |θ)df =

∫
N (y|f ,θ)N (f |0,Kff)df = N (y|0,Kff + σ2I), (9)

however, computing the exact marginal likelihood p(y|θ) is prohibitive for larger N as it incurs
a O(N3) computational cost dominated by the need to invert the Gram matrix Kff. The seminal
work of [17] and later [4] proposed the inducing variable framework to side-step this cubic scaling.
Inducing variables u = {f(zm)}Mm=1 ⊆ R contain values of the function at inducing inputs
Z = {zm}Mm=1, zm ∈ Rd, critically M ≪ N . Further, the posterior over function values p(f |y)
is not closed form and requires variational treatment. The joint probability model in the inducing
variable framework is given as,

p(y,f ,u|θ) = p(y|f ,θ)p(f |u,θ)p(u|θ). (10)
and both frameworks [17, 4] use variational inference to approximate the true posterior over unknowns,
p(f ,u|y) ≈ q(f ,u) = p(f |u)q(u). The generative model following standard Gaussian process
identities consists of the likelihood p(y|f) =

∏N
n=1 N (yn|fn, σ2), the conditional prior over the

latent observations p(f |u) = N (f |KfuK
−1
uuu,Kff −KfuK

−1
uu Kuf), and the prior over the inducing

variables p(u) = N (u|0,Kuu).

In the [4] scheme parameters of q(u) = N (u|m, S) are chosen to minimise the KL divergence
between the variational approximation and thr true posterior; this is tantamount to maximising the
evidence lower bound (ELBO):

log p(y|θ) ≥ =

N∑
n=1

{
logN (yn|kT

nK
−1
uu m, σ2)− 1

2σ2
Tr(SK−1

uu knk
T
nK

−1
uu )− 1

2σ2
Tr(k̃nn)

}
,

(11)
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where kT
n is the nth row of Kfu and k̃nn is the nth element on the diagonal of the matrix Kff −

KfuK
−1
uu Kuf; both these terms are only dependent on their respective data-point xn. One of the main

advantages of the this bound is that it can be optimized in a stochastic fashion by taking mini-batches
of data making them applicable to large scale datasets.

A.1.1 Derivation of the SVGP bound

Simplifying the KL between the variational and true posterior - KL(q(f ,u)||p(f ,u|y)) yields the
following lower bound.

log p(y|θ) ≥ Eq(f ,u)[log p(y|f)]︸ ︷︷ ︸
L1

−KL(q(u|θ)||p(u|θ)). (12)

If the first term above entails a factorisable likelihood, then the expectation w.r.t the variational
distribution q(f ,u) = p(f |u,θ)q(u|θ) is analytically tractable yielding,

L1 =

∫
q(u|θ)

∫
p(f |u,θ) log

N∏
n=1

p(yn|fn)dfdu

=

∫
q(u|θ)[logN (y|KfuK

−1
uu u, σ2I)− 1

2σ2
Tr(Kff −KfuK

−1
uu Kuf)]du

=

N∑
n=1

{
logN (yn|kT

nK
−1
uu m, σ2)− 1

2σ2
Tr(SK−1

uu knk
T
nK

−1
uu )− 1

2σ2
Tr(k̃nn)

}
, (13)

where kT
n is the nth row of Kfu and k̃nn is the nth element on the diagonal of the matrix Kff −

KfuK
−1
uu Kuf; both these terms are only dependent on their respective data-point xn.

A.2 Continuous representation of drugs

In the PIICM, each drug combination experiment (cell line, drug A, drug B) triplet was considered
an output, and only the concentrations (cA, cB) was given as inputs. In this manuscript we instead
take only the cell line as output, and regard the drugs as inputs alongside the drug concentrations. In
order to encode the drug information as inputs, we could one-hot encode them, but instead make use
of a deep generative model that takes as input a string representation of the molecule, and outputs a
low-dimensional representation of the drug.

A.2.1 SMILES v. SELFIES

Most of the literature on machine learning based chemical design for the string representation of
molecules uses SMILES strings [19] — a line notation method which encodes molecular structure
using short ASCII strings. However, the SMILES representation has two critical limitations.
First, they are not designed to capture molecular similarity, hence molecules with almost identical
structure can have markedly different SMILES [6]. Second, they are not robust on their own, which
means that generative models are likely to produce strings that do not represent valid molecules.
Hence, the latent space of DGMs trained on SMILES strings can potentially have large dead
zones where none of the points sampled in the region decode to valid molecules. To overcome
these issues, we train our model on an alternative string representation for molecules introduced
in 2020 [10] that guarantees that guarantees 100% robustness — SELF-referencing embedded
string (SELFIES). We do not deep dive into technical construction aspects of the SELFIE syntax
in this work, at a high-level one of the difficulties of working with SMILES is the nested bracket
closures which appear frequently in the SMILES notation, for instance, consider the smiles string
CCCc1cc(NC(=O)CN2C(=O)NC3(CCC(C)CC3)C2=O)n(C)n1, the SELFIE translation uses a formal
Chomsky type-2 grammar or a context-free grammar and gets rid of the non-local characteristics.
The molecule above is translated to [C][C][C][C][C][=C][Branch2][Ring1][=C][N][C]
[=Branch1][C][=O][C][N][C][=Branch1][C][=O][N][C][Branch1][O][C][C][C]
[Branch1][C][C][C][C][Ring1][#Branch1][C][Ring1][N][=O][N][Branch1][C][C][N]
[=Ring2][Ring1][#Branch1]. We tokenize the SELFIE syntax to represent molecules in our
generative model.
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The deep generative model used in this context is trained for autoencoding and features an open-
ended chemical latent space learnt by embedding discrete molecules in a continuous vector space
(encoder). For generation, an inverse step (decoder) converts a continuous vector in latent space
to a valid molecule. This is the classical encoder-decoder set-up as in a standard VAE [9]. We
use a recurrent VAE architecture with an RNN encoder and a decoder to sequentially process the
SELFIE representation of the drugs token by token. We embed the cancer drugs in the latent space
of the generative model by representing them as SELFIEs and encoding them using the trained
encoder. This yields a 50-dimensional latent vector for each drug, i.e. xA ∈ R50 for drug A,
for example. Combined with the concentrations, the vector of inputs for each data point becomes
x = (cA, cB ,x

T
A,x

T
B) ∈ R102, with the corresponding permuted version x̃ = (cA, cB ,x

T
B ,x

T
A) that

the model is invariant to. Due to the string representation of 4 cancer drugs being too long for the
generative model only 34 of the 38 drugs were successfully given coordinates in the latent space.
Removing experiments for which xA or xB is missing leaves 483 unique combinations, and a total
of 18,837 unique experiments.

A.3 Data pre-processing

Each experiment is processed using the bayesynergy [14] software, which fits a semi-parametrics
dose-response function to the data, and provides samples from the posterior predictive dose-response
function on a 10 × 10 grid of concentrations — individually scaled to the unit box [0, 1] × [0, 1]
– yielding a dataset of 2,273,700 observations on a shared grid of concentrations. As a notable
difference from the pre-processing procedure in [15], is that instead of training our model on targets
derived from the latent GP in the bayesynergy software, we instead take as our targets the fitted
values of the dose-response function, which takes values between 0 and 1. Removing combinations
containing drugs that we could not embed in our latent space the final dataset consists of 1,883,700
unique viability measurements stemming from 18,837 unique (cell line, drug A, drug B) triplets.
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