
RMLStreamer supported by RML-view-to-CSV in the
performance track of the KGCW Challenge 2024
Els de Vleeschauwer1, Ben De Meester1

1IDLab, Dept. Electronics & Information Systems, Ghent University – imec, Belgium

Abstract
This paper presents the results of the performance track of the Knowledge Graph Construction
Workshop 2024 Challenge with RMLStreamer, an RML mapping engine that processes all
data in a streaming fashion. On mappings without joins, RMLStreamer scales well regarding
execution time and CPU usage, while maintaining a constant memory usage. To optimize
the processing of the joins, we added RML-view-to-CSV as a first step to our knowledge
graph construction pipeline. RML-view-to-CSV is a proof-of-concept implementation for RML
Logical Views, i.e. flattened, source format-agnostic views over one or more existing data
sources. RML-view-to-CSV can additionally rewrite referencing object maps as logical views,
before it materializes the logical views as CSV files. The combination of RML-view-to-CSV and
RMLStreamer emerges as an efficient approach, showcasing the potential of modular mapping
engines that delegate each task to the most suitable framework.

Keywords
RMLStreamer, RML-view-to-CSV, challenge, knowledge graph construction

1. Introduction

The Knowledge Graph Construction Workshop (KGCW) 2024 Challenge1 consists of two
tracks: (i) a conformance track, that aims to spark development of implementations for
the new RML specifications and improve the test-cases, and (2) a performance track, that
wants to encourage the implementation of optimizations not only for execution time but
also for CPU and memory usage. The conformance track covers the same experiments as
the KGCW 2023 Challenge2, consisting of two parts: (i) knowledge graph construction
(KGC) parameters to evaluate individual parameters, e.g. joins and duplicates, with
artificial data, and (ii) GTFS-Madrid-Bench [1] to focus on real-life use cases based on
public transport data from Madrid. In contrast to the previous edition, all participants
now conduct the experiments on identical virtual machines provided by Orange3. This
ensures that the results from all participants can be directly compared.

KGCW’24: 5th International Workshop on Knowledge Graph Construction, May 26-27, 2024, Crete,
GRE
Envelope-Open els.devleeschauwer@ugent.be (E. de Vleeschauwer); ben.demeester@ugent.be (B. De Meester)
GLOBE https://ben.de-meester.org/#me (B. De Meester)
Orcid 0000-0002-8630-3947 (E. de Vleeschauwer); 0000-0003-0248-0987 (B. De Meester)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://doi.org/10.5281/zenodo.10721875
2https://doi.org/10.5281/zenodo.7689310
3https://hellofuture.orange.com/en/

1

mailto:els.devleeschauwer@ugent.be
mailto:ben.demeester@ugent.be
https://ben.de-meester.org/#me
https://orcid.org/0000-0002-8630-3947
https://orcid.org/0000-0003-0248-0987
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://doi.org/10.5281/zenodo.10721875
https://doi.org/10.5281/zenodo.7689310
https://hellofuture.orange.com/en/

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

RML- view- to- csv RMLStreamer

CHALLENGE INPUT;
source data

CHALLENGE INPUT:
RML mapping

OUTPUT KGC pipeline:
RDF knowledge graph

materialized joins
(CSV files)

RML mapping
without joins

Figure 1: Knowledge graph construction pipeline: joins are resolved by RML-view-to-CSV to reduce
the knowledge graph construction execution time and the size of the resulting RDF knowledge graph.

In this paper, we present the results of the performance track for RMLStreamer [2], an
RML mapping engine which processes all data in a streaming fashion, in combination
with RML-view-to-CSV4, a proof-of-concept implementation for RML Logical Views [3].

Section 2 describes the components of our knowledge graph construction pipeline.
Section 3 discusses the setup used to execute the challenge’s experiments. We present
our results in Section 4 and our conclusion in Section 5.

2. Knowledge Graph Construction Pipeline

Our knowledge graph construction pipeline (Figure 1) consists of two components: (i)
RMLStreamer executes the RML mapping rules in a streaming fashion [2], and (ii)
RML-view-to-CSV is a proof-of-concept implementation for RML Logical Views, that
can resolve joins between data sources [3].

2.1. RMLStreamer

RMLStreamer executes RML mapping rules to generate high quality Linked Data from
multiple originally (semi-)structured data sources in a streaming way. It handles big input
files and continuous data streams like sensor data without consuming more memory when
the input data size increases. RMLStreamer leverages Apache Flink to scale vertically
across multiple CPU cores and horizontally across multiple machines. In the challenge we
use RMLStreamer version v2.5.0 with an embedded Flink version in a Docker container5.

The challenge results of 2023 show that, on mapping tasks without joins, RMLStreamer
scales well regarding execution time and CPU usage, while maintaining a constant memory
usage [4].

However, joins can significantly hinder the performance of RMLStreamer, as RML-
Streamer does not eliminate self-joins or duplicates. As a result, RMLStreamer needs
more than three hours to execute the first scale of the GTFS-Madrid-Bench, generating
an output of 105 GB. Therefore, we delegate the execution of joins to RML-view-to-CSV.

4https://github.com/RMLio/rml-view-to-csv/
5https://zenodo.org/records/7998156

2

https://github.com/RMLio/rml-view-to-csv/
https://zenodo.org/records/7998156

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

2.2. RML-view-to-CSV

RML-view-to CSV is a proof-of-concept implementation for RML Logical Views [3], a
new RML module that is still under development. RML Logical Views6 allow specifying
a logical view: a flattened, source format-agnostic view over one or more existing data
sources. A view over multiple data sources can be created by joining a logical view with
other logical views.

First, RML-view-to-CSVĺidentifies and optimizes redundant self-joins, and eliminates
the remaining referencing object maps from the mapping, replacing them by equivalent
logical views. Afterwards, it materializes the logical views as CSV files. During this proces
RML-view-to-CSV also takes the related triples maps into account, eliminating redundant
fields and duplicate logical iterations. Finally, it rewrites the mapping accordingly
replacing the logical views as logical sources over the materialized logical views.

At this moment RML-view-to-CSV supports one nested source format (JSON) and one
tabular source format (CSV). Slight adaptations to the experiment setup were needed to
overcome this limitation.

3. Experiment setup

The KGCW 2024 Challenge provides CSV files as source data, mapping files, queries,
baseline results (i.e. the expected set of triples and query results), an example pipeline
based on the MySQL, RMLMapper, and Virtuoso for reaching those results, and a tool
for executing the example pipeline.

We made the following adaptations to the provided experiments to enable execution
with our KGC pipeline. (i) In the provided end-to-end pipelines, the CSV files are loaded
into a relational database. As RML-view-to-CSV does not support SQL (yet), we used
the CSV files directly to construct the knowledge graphs and adapted the mapping files
accordingly. (iii) As RML-view-to-CSV does not support XML (yet), we replaced the
XML files in the GTFS-Madrid-Bench heterogeneity experiments by JSON files. We
conducted two heterogeneity experiments: one experiment with only JSON source data
and one experiment with 50 % CSV and 50 % JSON source data, both on scale 100.
(ii) We added a condition to the mapping files to recognize the string NULL in the provided
CSV files as an empty value. The GTFS experiments were executed with our KGC
pipeline as shown in Figure 1. For the KGC parameters experiments without joins, we
skipped the preprocessing step with RML-view-to-CSV, as it is a redundant step for
these experiments. For the KGC parameter experiments with joins, we tested both the
pipeline with and without RML-view-to-CSV as preprocessor, to measure also the impact
of RML-view-to-CSV for those experiments.

We compared our experiments’ results to ensure that our output is correct with
respect to the baseline results of the challenge. For the first part of the challenge (KGC
parameters), where the output of RMLStreamer is not loaded into a triples store, we
deduplicated the output results as RMLStreamer cannot eliminate duplicates by itself.

6https://github.com/kg-construct/rml-lv

3

https://github.com/kg-construct/rml-lv

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

After deduplication, we compared the number of triples to the baseline results of the
challenge. For the second part of the challenge (GTFS-Madrid-Bench) we compared the
number of query results to the baseline.

We executed all experiments on the virtual machine provided by Orange, with following
specifications: 4 vCPUs, 16 GB RAM and 140GiB SSD storage running on Ubuntu
22.04.3 LTS. The challenge execution tool configures the Java heap space to 50 % of the
available memory. All experiments were performed 5 times, and the experiment with the
median of the measurements is reported. All files needed to reproduce the conducted
experiments are available on Zenodo7.

4. Results

In Figure 2 and Table 1 we included the measured execution time, CPU time, and maximal
memory usage of the knowledge graph construction pipeline for selected experiments.
The complete overview of the results, as it was submitted to the KGCW 2024 Challenge,
is available on Zenodo8.

First, we verify how RMLStreamer behaves when the size of the expected output in-
creases. This is best illustrated by the GTFS-Madrid-Bench scale experiments. Figure 2a
and Figure 2b show that both RML-view-to-CSV and RMLStreamer scale towards a linear
trend. Note that the reported metrics include the startup time of RML-view-to-CSV
and RMLStreamer (no separate measurements in the challenge execution tool), that is
independent of data size and has a higher impact on the lower scales. The execution
time and CPU time increases with the same factor as the data size for higher scales. The
peak RAM memory (fig. 2c) measured is similar for all scales when using RMLStreamer.
RMLStreamer has a constant memory usage independent of the data size, because it
processes everything in a streaming way. This ensures a stable performance independent
of the data size. As long as there is space to store the output, RMLStreamer can continue
its knowledge graph construction process. For RML-view-to-CSV we note an increasing
use of memory for the higher GTFS scales. Nevertheless, it was still able to handle scale
1000 without reaching the memory limitations of the provided hardware.

The measurements for the KGC parameter experiments confirm these observations
(Table 1 section 1). RMLStreamer shows linear scaling of execution time and CPU usage,
proportional to the size of the input data, in combination with a constant memory usage.

Second, we evaluate the impact of the format of the data input. Replacing the
CSV source data by JSON data increases the execution time of RMLStreamer with a
factor of two. The difference in execution time for RMLStreamer is the consequence of
RMLStreamer chunking CSV files and processing the chunks in parallel. This is not the
case for the JSON formats yet. The performance impact of nested data is higher for
RML-view-to-CSV. The execution time and CPU usage of RML-view-to-CSV increases
with a factor of ten, and its memory consumption with a factor of three (fig. 2d).

7https://doi.org/10.5281/zenodo.11100801
8https://doi.org/10.5281/zenodo.11100801

4

https://doi.org/10.5281/zenodo.11100801
https://doi.org/10.5281/zenodo.11100801

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

5.956

584

86

34

5.766

565

79

29

190

19

7

5

1 10 100 1.000 10.000

1.000

100

10

1

Execution time (s)

G
TF

S-
M

ad
ri

d
-B

e
n

ch
 s

ca
le

 (
C

SV
)

RML-view-to-CSV

RMLStreamer

Total KGC pipeline

(a) Linear trend: the execution time of both
RML-view-to-CSV and RMLStreamer
increases with the same factor as the
data size for higher scales.

23.103

2.213

279

82

22.918

2.194

272

76

185

18

7

6

1 10 100 1.000 10.000 100.000

1000

100

10

1

CPU time (s)

G
TF

S-
M

ad
ri

d
-B

e
n

ch
 s

ca
le

 (
C

SV
)

RML-view-to-CSV

RMLStreamer

Total KGC pipeline

(b) Linear trend: the CPU usage of both
RML-view-to-CSV and RMLStreamer
increases with the same factor as the
data size for higher scales.

0,5 0,5 0,7

2,6

4,0

6,3 6,4 6,3

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

1 10 100 1.000

P
e

ak
 R

A
M

 m
e

m
o

ry
 (

G
B

)

GTFS-Madrid-Bench scale (CSV)

RML-view-to-CSV RMLStreamer

(c) The memory consumption of RML-view-
to-CSV increases with RMLStreamer
has a constant memory usage indepen-
dent of data size.

2.180

1.500

6,3

2.003

1.325

7,5

178

175

1 10 100 1.000 10.000

Peak RAM
memory (GB)

CPU
time (s)

Execution
time (s)

GTFS-Madrid-Bench scale 100 (JSON)

RML-view-to-CSV

RMLStreamer

Total KGC pipeline

(d) When using JSON data as source instead
of CSV data, the performance impact
is higher on RML-view-to-CSV than on
RMLStreamer.

Figure 2: Metrics of the knowledge graph construction pipeline for the GTFS-Madrid-Bench experi-
ments.

Third, we investigate the impact of duplicates and empty values in the input data. As
RMLStreamer does not eliminate duplicates and the duplicate tests all start with the
same amount of input data, there is no noticeable difference in performance between
the experiments with and without duplicates, whilst a duplication elimination could
result in a much better performance for tests with duplicates (Table 1 section 2). In the
source data of the experiments with empty values (Table 1 section 3), this string NULL is
representing an empty value in a CSV file. We had to add a condition to the mappings
of those experiments to recognise this string as an empty values. The execution of this
condition increased the execution time and CPU usage with 50% when all rows contain
empty values.

Last, we comment on the KGC parameter experiments including joins (Table 1 section
4). We executed these experiments without and with RML-view-to-CSV as preprocessor

5

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

Execution (s) CPU (s) Peak RAM (GB) Output (triples)
1. Records
10K rows 20 columns 22 49 1,8 200.000
100K rows 20 columns 41 120 6,1 2.000.000
1M rows 20 columns 187 694 6,1 20.000.000
10M rows 20 columns 1.769 6.918 6,2 200.000.000
2. Duplicates
100 percent 43 128 6,1 20
0 percent 44 130 6,1 2.000.000
3. Empty values
100 percent 66 223 6,1 0
0 percent 46 147 6,1 2.000.000
4a. Joins (without support of RML-view-to-CSV)
1-1 0 percent 41 120 6.3 0
5-5 100 percent 110 396 6.4 2.500.000
4b. Joins (with support of RML-view-to-CSV)
1-1 0 percent 37 88 6,1 0
5-5 100 percent 88 242 6,1 2.500.000

Table 1
Metrics of the knowledge graph construction step for selected KGC parameter experiments

and noticed that RML-view-to-CSV reduced the total execution time and CPU usage
with respectively 20% and 39% for the experiments containing most joins.

5. Conclusion

The KGCW 2024 Challenge results confirms the observations of the KGCW 2023 Chal-
lenge: RMLStreamer has a linear scaling of execution time and CPU usage, proportional
to the size of the input data, while maintaining a constant memory usage. Scalability is
the main strength of RMLStreamer.

The main weakness of RMLStreamer is its inefficient implementation of join opera-
tions (e.g. GTFS-Madrid-Bench experiments with joins cannot be handled properly by
RMLStreamer). When delegating this task to RML-view-to-CSV as a preprocessor, we
resolve this weakness and build a reliable and performing knowledge graph construction
pipeline.

The challenge results reveal of slower performance of RML-view-to-CSV when handling
nested data. Boosting performance was not the aim of this proof-of-concept implementa-
tion. As RML Logical Views enable the flattening of nested data, the implementation of
RML-view-to-CSV is processing all JSON fields separately. A more efficient implementa-
tion for nested data sources is a challenge for future implementations, after the RML
Logical View specification is finalized.

Comparing to the results of KGCW Challenge 2023 [4], we see a direct relation between
the performance of RMLStreamer, and the available CPU cores and RAM memory of the
virtual machines used for the experiments. RMLStreamer is now up to a factor of three

6

Els de Vleeschauwer et al. CEUR Workshop Proceedings 1–7

slower and uses 30% less memory. The virtual machine used for the KGCW Challenge
2023 had 12 CPU cores and 24 GB RAM; for the KGCW Challenge 2024, all experiments
were conducted on a virtual machine with 4 CPU cores and 16 GB RAM. We concluded
that RMLStreamer takes full advantage of the number of available CPU cores and of the
available memory.

At the moment of writing, we have no insight in the results of the other engines
participating in the performance track of the KGCW Challenge 2024. We are looking
forward to the comparison of the challenge results.

Acknowledgments

The described research activities were supported by SolidLab Vlaanderen (Flemish
Government, EWI and RRF project VV023/10), and the European Unions Horizon
Europe research and innovation program under grant agreement no. 101058682 (Onto-
DESIDE).

References

[1] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho,
Gtfs-madrid-bench: A benchmark for virtual knowledge graph access in the transport
domain, Journal of Web Semantics 65 (2020) 100596. doi:10.1016/j.websem.2020.
100596.

[2] Sitt Min Oo, G. Haesendonck, B. De Meester, A. Dimou, RMLStreamer-SISO: An
RDF Stream Generator from Streaming Heterogeneous Data, in: U. Sattler, A. Hogan,
M. Keet, V. Presutti, J. P. A. Almeida, H. Takeda, P. Monnin, G. Pirrò, C. d’Amato
(Eds.), The Semantic Web – ISWC 2022, Springer, Springer International Publishing,
Cham, 2022, pp. 697–713. doi:10.1007/978-3-031-19433-7_40.

[3] E. de Vleeschauwer, B. De Meester, P. Colpaert, RML-view-to-CSV: A Proof-
of-Concept Implementation for RML Logical Views, in: Proceedings of the 5th

International Workshop on Knowledge Graph Construction (KGCW 2024) co-located
with 20th Extended Semantic Web Conference (ESWC 2024), 2024.

[4] E. de Vleeschauwer, G. Haesendonck, D. Van Assche, B. D. Meester, B. De Meester,
RMLStreamer with Reference Conditions in the KGCW Challenge 2023, in: Proceed-
ings of the 4rd International Workshop on Knowledge Graph Construction (KGCW
2023) co-located with 20th Extended Semantic Web Conference (ESWC 2023), 2023.

7

http://dx.doi.org/10.1016/j.websem.2020.100596
http://dx.doi.org/10.1016/j.websem.2020.100596
http://dx.doi.org/10.1007/978-3-031-19433-7_40

	1 Introduction
	2 Knowledge Graph Construction Pipeline
	2.1 RMLStreamer
	2.2 RML-view-to-CSV

	3 Experiment setup
	4 Results
	5 Conclusion

