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Abstract

Machine unlearning aims to selectively remove specific knowledge from a model.
Current methods, such as task arithmetic, rely on fine-tuning models on the forget
set, generating a task vector, and subtracting it from the original model. However,
we argue the effectiveness of this approach is highly sensitive to hyperparameter
selection, necessitating careful validation to identify the best model among many
fine-tuned candidates. In this paper, we propose a novel method that leverages all
given fine-tuned models rather than selecting a single one. By constructing task
vectors from models trained with varied hyperparameters and merging only the
components of the task vectors with consistent signs, we perform unlearning by
negating the merged task vector from the original model. Given that existing meth-
ods also utilize multiple fine-tuned models, our approach delivers more effective
unlearning without incurring additional computational costs. We demonstrate the
effectiveness of our method on both vision-language models and standard image
classification models, showing improved unlearning performance with minimal
degradation on the retain set, outperforming state-of-the-art techniques.

1 Introduction

Recent advances in pre-training [8, 9, 27, 25, 1, 23] have achieved remarkable performance, primarily
driven by the use of large-scale datasets. However, the datasets often include underfiltered, unwanted,
or sensitive private information, which raises critical concerns about privacy protection. The Right to
be Forgotten regulation [14] allows individuals to request the deletion of their personal data. However,
applying this concept to machine learning models is challenging because the training process deeply
embeds the data into the model’s parameters, making it difficult to remove its influence. The most
straightforward solution is to remove the data from the training set and retrain the model from scratch,
which requires enormous computational resources. As a result, ensuring that models forget learned
patterns becomes a challenging task. Machine unlearning [30, 11, 29, 19, 17, 4, 10] offers a solution
by enabling models to erase specific knowledge without the need for full retraining.

Despite promising results, many existing methods struggle to remove only the target knowledge
while preserving the rest. This challenge arises because fine-tuning often disrupts knowledge in the
retain set (i.e., remaining data) during attempts to erase knowledge from the forget set (i.e., data
to be forgotten) [4, 10]. A known method robust to this issue is task arithmetic [15], where direct
fine-tuning of the model is avoided. Instead, this method calculates a task vector – the parameter-wise
difference between the original model and a model fine-tuned on the forget set. The task vector is
then subtracted from the original model through a negation operation. This process, referred to as
forgetting by negation, has demonstrated strong unlearning performance while preserving the model’s
knowledge, similar to continual learning researches [18, 2] addressing catastrophic forgetting [18].
However, we argue that task arithmetic has limitations; not all fine-tuned models are suitable for
task vectors, and thus, unlearning performance is highly sensitive to hyperparameter setups used for
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fine-tuning. As a result, searching for an optimal hyperparameter set for effective unlearning can be
both time-consuming and computationally costly.

To address these limitations, we propose a novel method, NegMerge, that improves the process of
forgetting by negation. We argue that relying on a single optimal model, as current methods [15, 26]
do, is not truly optimal. Hyperparameter tuning generates multiple fine-tuned models, and instead of
selecting just one, we suggest leveraging all of them. Specifically, we compute the final task vector by
merging multiple task vectors derived from the fine-tuned models. This approach draws inspiration
from model merging techniques [31, 34, 16], which similarly utilize multiple fine-tuned models to
enhance performance. By extending this concept to machine unlearning, we provide a more effective
solution. Specifically, unlike these existing techniques, we only combine elements with consistent
signs across the task vectors while masking elements with inconsistent signs to zero.

We demonstrate the effectiveness of our approach in two experimental settings. The first involves
unlearning specific knowledge from a vision-language model like CLIP [27]. The second focuses
on unlearning knowledge from specific data points in a general image classification network [4, 10].
We validate our method using the ViT [9] and ResNet [12] architectures across nine datasets. In
both settings, our approach achieves new state-of-the-art performance while using similar or fewer
computational resources than existing methods.

2 Method

2.1 Background

Task Arithmetic. Task arithmetic [15] defines a task vector τt = θtft − θpre. Specifically, the vectors
are the result of subtracting (negating) the weights of a pre-trained model θpre from those of a model
θtft fine-tuned on a target task t. We can adjust the model in the desired direction by adding or
subtracting the sum of these task vectors τ =

∑
t τt from the original model’s weights, according to

the formula θnew = θpre+λτ . This approach is more computationally efficient than fine-tuning, as it
leverages pre-trained models from public repositories and eliminates the need for additional training.

Our Unlearning scenarios. In our study, we explore two distinct unlearning scenarios. The first
scenario is the one described above, where a vision-language model like CLIP [27] is made to forget
the knowledge of a specific class. For this scenario, we adopt the evaluation protocol for unlearning
proposed in the original paper [15]. The other scenario involves a standard image classification
network like ResNet [12] trained using cross-entropy loss on images and class labels. In this case, the
model is made to forget the knowledge of specific training data. Here, we calculate the task vectors
by fine-tuning the model only using the forget set: θunlearn = θori − λ(θforgetft − θori) for both
scenarios.

2.2 NegMerge: Improved Task Arithmetic For Machine Unlearning

Given multiple models fine-tuned on the forget set, which applied various training configurations to
ensure diversity among the fine-tuned models, we propose a method that neatly aggregates the model
for effective unlearning. Our proposed method, NegMerge, consists of the following steps: 1) We
calculate the task vectors using all the fine-tuned models, 2) We identify the elements corresponding
to the forget set in each vector. 3) Finally, we compute final task vector by using the identified
elements, and perform machine unlearning by subtracting this final task vector from the original
model. We provide a detailed description of each step below, and Figure 1 illustrates the overview of
our method.

Preparaing Diverse Fine-Tuned Models. There are numerous methods for preparing diverse fine-
tuned models on the forget set. A simple yet effective approach is just altering hyperparameters such
as learning rate and the number of epochs or employing data augmentation techniques like RandAug-
ment [7] and CutMix [35]. In this work, we focus on making minimal adjustments to the existing
training setup, either by modifying RandAugment parameters or adjusting training configurations
like the number of epochs. Further details on these adjustments can be found in Section 3.1. While
additional techniques could further enhance model diversity and improve unlearning performance,
these are left for future exploration.
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Figure 1: Illustration of the proposed method. Our NegMerge enhances task arithmetic by computing an
improved task vector. Specifically, 1) multiple task vectors derived from fine-tuned models trained with different
hyperparameters are utilized. 2) we compute the improved task vector by merging (⊕) only the elements that
retain a consistent sign across task vectors, while masking elements with differing signs to 0. 3) this refined task
vector is used for negation from the original weights. The color intensity in the cells reflects the magnitude of
the task vector elements; darker blue represents larger positive values, lighter blue indicates smaller positives,
while darker red represents larger negative values, and lighter red indicates smaller negatives.

Identifying Elements in the Task Vector Corresponding to the Forget Set. We derive task vectors
from the fine-tuned models and analyze them to determine which elements (in weights) correspond to
the forget set. We conjecture that elements that consistently show the same sign across task vectors are
attributed to the forget set, as each model is trained specifically to align with this set, regardless of the
training configurations. On the other hand, components that exhibit differing signs are considered less
related to the forget set, as their variations are more likely a result of different training configurations
rather than supervision from the forget set.

Final Task Vector for Negation. We compute the final task vector using the following formulation:

τmerged =

(
1

n

n∑
k=1

τk

)
⊙ 1signs are equal, (1)

where n is the number of task vectors, ⊙ denotes the Hadamard product (element-wise multiplica-
tion), and the vector 1signs are equal acts like a filter, containing 1 for elements where the signs of the
corresponding components across all task vectors τk are the same and 0 where the signs differ2. As a
result, only the components with consistent signs across all task vectors contribute to the final task
vector, while those with differing signs are excluded by being set to zero. We then perform machine
unlearning by negating this final task vector to the original model [15].

3 Experiment

3.1 Experimental Setups

Datasets and Backbones. In the CLIP scenario (referred to as the scenario using a vision-language
model), we follow the training and evaluation protocols of [15]. We assess unlearning performance
on eight datasets: SUN397 [32], Cars [20], RESISC45 [5], EuroSAT [13], SVHN [36], GTSRB [28],
MNIST [22], and DTD [6]. We use the pre-trained CLIP ViT-B/32, B/16, L/14 models [27] for

2This operation is based on sign unanimity and could be adjusted with additional hyperparameters to allow
partial consensus, we opt for a simpler approach.
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Table 1: Unlearning Performance on CLIP ViT Models. Results are shown for CLIP ViT-{B/32, B/16, L/14},
reporting average accuracy (%) on the eight target tasks we wish to forget (Cars, DTD, EuroSAT, GTSRB,
MNIST, RESISC45, SUN397, and SVHN), and the control task to remain (ImageNet). We compare our
method with Task Arithmetic [15], Linear Task Arithmetic [26], Uniform Merge [31], Greedy Merge [31],
TIES-Merging [33], and MagMax [24]. ∗ indicates that the numbers are borrowed from the original papers. †

denotes the best results achieved through hyperparameter search. ‡ combines models in descending order of
losses. Time denotes the merging time, measured in seconds, taken to merge 30 models on the Cars dataset using
CLIP ViT-B/32, which is averaged over three runs.

Method ViT-B/32 ViT-B/16 ViT-L/14 Time (sec)

Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑) Acc Df (↓) Acc Dr(↑)

Pre-trained 48.13 63.33 55.49 68.32 65.19 75.54 -

Task Arithmetic
Paper number∗ 24.00 60.90 21.30 65.40 19.00 72.90 -
Single Best Model† 23.63 60.60 20.64 64.04 19.17 72.09 -
Uniform Merge 22.50 60.55 21.51 64.60 18.10 71.91 12±0.1

Greedy Merge‡ 23.31 60.75 21.34 64.54 17.71 71.99 607±2.6

TIES-Merging 26.21 61.08 23.78 64.72 22.70 72.41 128±10.1

MagMax 25.24 60.95 24.45 64.78 21.71 72.55 24±1.8

NegMerge (Ours) 20.76 60.36 19.24 64.54 17.32 72.08 37±1.2

Linear Task Arithmetic
Paper number∗ 10.90 60.80 11.30 64.80 - - -
Single Best Model† 8.88 60.16 6.92 64.62 - - -
Uniform Merge 9.12 60.47 6.84 65.26 - - 19±2.3

Greedy Merge‡ 8.73 60.27 6.80 64.72 - - 1696±35.3

TIES-Merging 10.66 60.38 8.44 65.12 - - 378±8.0

MagMax 11.33 60.67 8.65 65.17 - - 164±2.4

NegMerge (Ours) 8.03 60.58 6.60 65.40 - - 194±1.6

these experiments. In the standard classifier scenario, we evaluate unlearning performance on
CIFAR-10 [21] using a ResNet-18 [12] model.

Baselines and Metrics. For the CLIP scenario, we compare our method with five existing methods:
Task Arithmetic [15], Uniform Merge [31], Greedy Merge [31], TIES-Merging [33], and Mag-
Max [24]. For the Greedy Merge, we rank models by their loss on the retain set and merge them in a
direction that minimizes this loss. We evaluate performance by measuring accuracy on the forget set
Df and the retain set Dr.

In the standard classifier scenario, we follow [10] to compare our method against eight unlearning
techniques: Fine-tuning [30], Random Labeling [11], Gradient Ascent [29], Influence Unlearn-
ing [19], ℓ1-sparse [17], Boundary Shrink and Expand [4], and SalUn [10]. We also compare against
Task Arithmetic [15] and Uniform Merge [31]. The objective is to match the unlearned model’s
performance to that of a fully retrained model. We use the accuracies of the retain set Dr, forget
set Df , and test set Dtest to evaluate performance. To assess privacy protection, we employ the
Membership Inference Attack (MIA) metric [3], aiming to achieve similar results to the fully retrained
model.

Implementation Details. In the CLIP scenario, for fine-tuning, we set the batch size to 128 and use
a learning rate of 1e-5 with a cosine annealing schedule. We utilize the AdamW optimizer, applying
a weight decay of 0.1. During fine-tuning, the output of CLIP’s text encoder, specifically the final
classification layer, remains frozen. We enhance the diversity of the fine-tuned models by adjusting
the configurations of RandAugment.

In the standard image classifier unlearning scenario, for the CIFAR-10 dataset, we set the batch size
to 256 and the learning rate to 0.05. Since CIFAR-10 has relatively lower image quality, we do not
apply data augmentation. Instead, we vary the training hyperparameters.
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Table 2: Unlearning Performance for 10% Random Data Forgetting on CIFAR-10 using ResNet-18. The
results are expressed as a±b, representing the mean (a) and standard deviation (b) across three independent trials.
The Avg. Gap is computed as the average of the performance differences observed in various accuracy-related
metrics, including Acc Dr , Acc Df , Acc Dtest, and MIA. These metrics are favorable when they are close to
the performance of the Retrain model (≃). ∗ indicates that the numbers are borrowed from [10]. † denotes the
best results achieved through hyperparameter search.

Methods Used Splits Acc Dr(≃) Acc Df (≃) Acc Dtest(≃) MIA(≃) Avg. Gap(↓)

Retrain * retain 100.00±0.00 94.76±0.69 94.26±0.02 12.88±0.09 0.00

Random Labeling *
all

99.67±0.14 92.39±0.31 92.83±0.38 37.36±0.06 7.15
Influence * 99.20±0.22 98.93±0.28 93.20±1.03 2.67±0.01 4.06
SalUn * 99.62±0.12 97.15±0.43 93.93±0.29 14.39±0.82 1.15

Finetune * retain 99.88±0.08 99.37±0.55 94.06±0.27 2.70±0.01 3.78
ℓ1-sparse * 97.74±0.33 95.81±0.62 91.59±0.57 9.84±0.00 2.26

Gradient Ascent *

forget

99.50±0.38 99.31±0.54 94.01±0.47 1.70±0.01 4.12
Boundary Shrink * 98.29±2.50 98.22±2.52 92.69±2.99 8.96±0.13 2.67
Boundary Expanding * 99.42±0.33 99.41±0.30 93.85±1.02 7.47±1.15 2.76
Random Labeling 99.99±0.00 99.98±0.02 95.04±0.11 2.15±1.94 4.19
SalUn 99.88±0.04 99.89±0.04 94.42±0.05 9.51±2.07 2.20

Task Arithmetic

forget

Single Best Model† 98.36±0.51 94.85±0.16 91.49±0.80 10.91±0.72 1.62
Uniform Merge 98.70±0.91 95.83±2.17 92.36±1.16 10.14±2.93 1.75
TIES-Merging 98.38±0.17 95.45±0.32 92.23±0.14 9.36±0.31 1.96
MagMax 98.38±0.12 97.97±0.77 91.53±0.00 8.45±2.60 3.00
NegMerge (Ours) 99.15±0.24 96.63±0.59 92.71±0.39 12.87±1.29 1.07

3.2 Experimental Results

CLIP Unlearning Scenario. Table 1 presents the evaluation results across three variants of the CLIP
model (ViT-B/32, ViT-B/16, and ViT-L/14), demonstrating strong generalizability. In the ViT-B/32
model, our method reduces the accuracy on the forget set Df to 20.76%. This outperforms Task
Arithmetic (23.63%), Uniform Merge (22.50%), and Greedy Merge (23.31%). In the ViT-B/16 and
ViT-L/14 models, our method continues to outperform competitors, achieving the lowest accuracies
on Df at 19.24% and 17.32%, respectively.

Standard Classifier Unlearning Scenario. Table 2 compares unlearning techniques on CIFAR-10
using ResNet-18, where random 10% of the training set is targeted for forgetting. The fully retrained
model is the benchmark, evaluating performance on retain set Dr, forget set Df , test set Dtest, and
MIA score. Our method achieves the lowest average gap at 1.07, closely mimicking the retrained
model’s performance across all metrics and proving effective in both unlearning and preserving
generalization without relying on the retain set.

4 Conclusion

In this paper, we propose a novel machine unlearning technique, NegMerge, based on task arithmetic
and model merging. We hypothesize that multiple fine-tuned models are necessary for effective
unlearning, based on the observation of a trade-off between accuracy on the forget set and the retain
set. Building on the fact that existing techniques generate numerous fine-tuned models through
validation using various hyperparameters, we propose a method that utilizes all derived fine-tuned
models. Assuming that elements with consistent signs across task vectors obtained from the fine-tuned
models are related to the forget set, we merge only those elements. This approach enables us to
compute task vectors that fit the forget set more effectively while preserving the knowledge in the
retain set, thus overcoming the trade-off. We then perform forgetting by negation with the merged
task vector. Our NegMerge is tested on the CLIP ViT models and the standard ResNet18 classifier,
achieving new state-of-the-art performance across nine datasets.
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