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ABSTRACT

In autonomous driving, accurate motion prediction is essential for safe and effi-
cient motion planning. To ensure safety, planners must rely on reliable uncertainty
information about the predicted future behavior of surrounding agents, yet this
aspect has received limited attention. This paper addresses the so-far neglected
problem of uncertainty modeling in trajectory prediction. We adopt a holistic
approach that focuses on uncertainty quantification, decomposition, and the in-
fluence of model composition. Our method is based on a theoretically grounded
information-theoretic approach to measure uncertainty, allowing us to decompose
total uncertainty into its aleatoric and epistemic components. We conduct ex-
tensive experiments on the nuScenes dataset to assess how different model ar-
chitectures and configurations affect uncertainty quantification and model robust-
ness. Our analysis thoroughly explores the uncertainty quantification capabilities
of several state-of-the-art prediction models, examining the relationship between
uncertainty and prediction error in both in- and out-of-distribution scenarios, as
well as robustness in out-of-distribution.

1 INTRODUCTION

In a machine learning driven Autonomous Driving (AD) stack, motion prediction connects the up-
stream task of environment perception with the downstream task of ego-motion planning (Hu et al.,
2023). The role of a motion predictor is to infer the future motion of traffic agents relevant to the ego,
ensuring safe and efficient progress toward a goal (Hagedorn et al., 2024). To achieve this, a predic-
tor must tackle several challenges such as imperfect perception, complex interactions between traffic
agents, as well as the multitude of distinct potential actions each agent might undertake, motivated
by different goals. Such challenges drive the need to consider the problem in a probabilistic manner
and incorporate uncertainty into prediction outputs. Accurately quantifying prediction uncertainty
is essential for ensuring interpretability and building trust in the overall system.

In the AD community, the future motion of surrounding traffic agents is often modeled in the form
of trajectories. Thus, probabilistic trajectory prediction involves capturing a distribution p(y|x,D)
of future trajectories y conditioned on contextual data x and a dataset D. Contextual data x usually
contains past trajectories of surrounding agents and map information. There are different strategies
for capturing this highly multi-modal distribution owing to the distinct actions or goals. Some meth-
ods attempt to directly predict the modes of the distribution along with their associated weights (Gao
et al., 2020; Kim et al., 2021; Deo et al., 2022). Others use a parametric mixture distribution, such as
a Gaussian Mixture Model (GMM), where the modes correspond to the predicted trajectories (Tol-
staya et al., 2021; Varadarajan et al., 2022; Liu et al., 2024; Look et al., 2023). Alternatively, gener-
ative trajectory prediction models use well-known autoencoder or diffusion architectures to model
latent variables and draw trajectory samples (Salzmann et al., 2020; Seff et al., 2023; Janjoš et al.,
2023a; Jiang et al., 2023).

The majority of approaches for modeling the distribution of future trajectories, p(y|x,D), in AD
rely on neural networks. They are often underspecified by the available data, meaning that no single
parameter configuration is favored. When considering uncertainty in the model parameters, the
predictive distribution (Kapoor et al., 2022; MacKay, 1992) over future trajectories is computed as

p(y|x,D) =
∫

p(y|x,W)p(W|D)dW ≈
∫

p(y|x,W)q(W)dW , (1)
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whereW represents the neural network weights, and p(W|D) represents the posterior distribution.
The predictive distribution represents a Bayesian model average, meaning that instead of relying
on a single hypothesis with a specific set of parameters, it considers all possible parameter config-
urations, weighted by their posterior p(W|D). This marginalization process removes the reliance
on a single weight configuration in the predictive distribution, resulting in better calibration and
accuracy compared to traditional training methods (Wilson & Izmailov, 2020). Since the exact pos-
terior is often intractable, various approximations q(W) have been developed, such as variational
inference (Graves, 2011), Dropout (Gal & Ghahramani, 2016), Laplace approximation (Ritter et al.,
2018), deep ensembles (Lakshminarayanan et al., 2017), or Markov Chain Monte Carlo (MCMC)
methods (Welling & Teh, 2011).

Despite many successful approaches of approximating the posterior distribution, the AD prediction
community has not yet tried to quantify or to decompose the uncertainty of trajectory prediction
models in a theoretically principled manner (Wilson, 2020). This gap is notable, especially consid-
ering the potential benefits of decomposing the uncertainty. The total uncertainty can be decom-
posed into two types: aleatoric and epistemic uncertainty (Wimmer et al., 2023; Hüllermeier, 2021).
Aleatoric uncertainty represents the inherent variability within the data, such as the equal likelihood
of a vehicle turning left or right at a T-junction. This type of uncertainty cannot be reduced, even
with more data. In contrast, epistemic uncertainty arises from the lack of knowledge or information
and can be reduced by collecting more data (Wimmer et al., 2023). Knowledge of epistemic uncer-
tainty is helpful in various contexts, e.g. risk-sensitive reinforcement learning (Depeweg et al., 2018)
and Out-of-Distribution (OOD) detection (Amini et al., 2020). By understanding the sources of un-
certainty, one can confirm that an autonomous vehicle finds itself in an OOD scenario by observing
a higher epistemic uncertainty. This can be an important signal for a planner that uses predictions in
its decision-making. By incorporating this information, planners can make more informed decisions
and potentially take preventative actions in situations of high uncertainty.
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Figure 1: The predictive distribution p(y|x,D) of future trajectories for three example scenarios.
The first row shows in-distribution scenarios, while the second row presents OOD cases: in 1⃝ and
3⃝, segments of the input history have been removed, while in 2⃝, parts of lane information have

been removed. Both alterations mimic perception malfunctions. Naturally, prediction error is higher
in the second row, indicated by the higher Minimum Average Displacement Error (minADE) metric,
see Sec. 3 for details. Generally, we observe a correlation between minADE and total uncertainty.
In these examples, epistemic uncertainty serves as a useful indicator for detecting OOD scenarios.
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In this paper, we address the challenge of modeling the uncertainty of trajectory prediction models
within the autonomous driving (AD) domain from a holistic perspective. We focus on the quantifi-
cation and decomposition of uncertainty, as well as the influence of modeling choices related to the
approximate posterior q(W). Our method employs an information-theoretic approach (Hüllermeier,
2021), which quantifies aleatoric uncertainty through conditional entropy and epistemic uncertainty
using mutual information. Fig. 1 shows the predictive distribution p(y|x,D) and its accompany-
ing uncertainty values obtained by our proposed method for different scenarios of the nuScenes
dataset (Caesar et al., 2020). We summarize our contributions as below:

1. We propose a novel method to quantify and decompose the uncertainty of trajectory predic-
tion models, utilizing conditional entropy and mutual information to measure aleatoric and
epistemic uncertainty. Both terms are approximated through Monte-Carlo (MC) sampling.

2. We analyze the relationship between uncertainty and prediction error in both in-distribution
and out-of-distribution scenarios. Additionally, we evaluate robustness in handling out-of-
distribution scenarios.

3. We study how modeling choices of the approximate posterior affect uncertainty calibration
and model robustness, considering different configurations of deep ensembles and Dropout.

2 MEASURING THE UNCERTAINTY FOR TRAJECTORY PREDICTION

This section details our method for decomposing uncertainty into aleatoric and epistemic compo-
nents. We start by defining the problem of uncertainty decomposition in trajectory prediction in
Sec. 2.1. Then, in Sec. 2.2, we describe our approach for calculating these uncertainties using an
MC approximation. We provide pseudo-code in App. A. Finally, we discuss the limitations of our
approach with possible avenues to address these limitations in Sec. 2.3.

2.1 PROBLEM STATEMENT

Our method focuses on uncertainty quantification in trajectory prediction tasks. The problem is
defined as predicting the future trajectory of a target agent in a driving scene based on current
observations. Formally, let x ∈ RTin×Fin represent the past features of an agent, where Tin is the
number of observed timesteps and Fin denotes the number of input features, such as coordinates,
velocities, accelerations, and other relevant data. In line with recent trajectory prediction literature
(Deo et al., 2022; Liu et al., 2024; Kim et al., 2021), we also incorporate additional contexts, such
as static map information and the past trajectories of surrounding agents, into the model input. A
trajectory prediction model f(x) = y, parameterized by W , uses this input to estimate a future
trajectory y ∈ RTout×Fout . Here, Tout represents the prediction horizon, and Fout is the number of
output features to predict, such as coordinates. Given the multi-modal nature of an agent’s future
behavior, an extended version of this model predicts multiple future trajectories. The distribution
over potential future outcomes, p(y|x,W), can take various forms, such as a categorical distribution
Deo et al. (2022), a mixture of Laplacians (Liu et al., 2024), a GMM (Nayakanti et al., 2023), or
a non-parametric form (Jiang et al., 2023). Finally, we define an ensemble (Zhou, 2012) as a set
of M trajectory prediction models. These models may have different parameterizations and could
belong to different model families. The ensemble can be constructed using various techniques, such
as Dropout (Gal & Ghahramani, 2016), Stochastic Gradient Langevin Dynamics (SGLD) (Welling
& Teh, 2011), or deep ensembles (Lakshminarayanan et al., 2017). This ensemble introduces a
distribution q(W) over neural network parameters, which is an approximation to the true posterior
p(W|D) (Wilson & Izmailov, 2020).

Our objective is to develop a method for uncertainty quantification to assess a model’s trustworthi-
ness. However, the type of uncertainty to address is not always clear. On one hand, high uncertainty
may stem from novel, previously unseen traffic scenarios. On the other hand, randomness arising
from unpredictable driver behavior can lead to multiple plausible predictions. While previous works,
such as Gilles et al. (2022) and Janjoš et al. (2023b), do not distinguish between uncertainty types,
we argue that decomposing uncertainty is crucial for understanding the sources of a model’s predic-
tions. Therefore, following concurrent literature (Der Kiureghian & Ditlevsen, 2009; Hüllermeier,
2021), we decompose uncertainty into epistemic and aleatoric components.
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2.2 MONTE CARLO APPROXIMATION OF THE CONDITIONAL ENTROPY AND MUTUAL
INFORMATION AS A MEASURE OF ALEATORIC AND EPISTEMIC UNCERTAINTY

To quantify uncertainty, we use entropy as a measure of total uncertainty. This allows us to frame our
decomposition in terms of entropy subcomponents. Following Mobiny et al. (2021); Depeweg et al.
(2018), we compute epistemic uncertainty as the difference between total and aleatoric uncertainty

I(y,W|x,D)︸ ︷︷ ︸
epistemic uncertainty

= H(y|x,D)︸ ︷︷ ︸
total uncertainty

−Ep(W|D)[H(y|x,W)]︸ ︷︷ ︸
aleatoric uncertainty

. (2)

Above, I(y,W|x,D) represents the mutual information between the model’s predictions and its pa-
rameters, while H(y|x,D) denotes the total entropy of the predictive distribution. The entropy of
a distribution can be computed in closed form for simple cases, such as categorical distributions or
univariate Gaussians. However, in trajectory prediction, the predictive distribution can take complex
forms, such as a GMM (Nayakanti et al., 2023), making closed-form solutions to Eq. 2 unavail-
able. To address this, we use a Monte Carlo approximation. For a given input x, the entropy is
approximated via set of N samples from the predictive distribution, yn ∼ p(y|x,D), as below

H(y|x,D) = Ey [− log p(y|x,D)] ≈ − 1

N

N∑
n=1

log p(yn|x,D) = Ĥ(Y |x,D). (3)

Next, we replace the true posterior over neural network parameters p(W|D) with the approximate
posterior q(W). The approximate posterior is a discrete distribution over a set of M neural network
parameter valuesWm, allowing us to approximate the predictive distribution as

p(y|x,D) = Ep(W|D)[p(y|x,W)] ≈ Eq(W)[p(y|x,W)] =
1

M

M∑
m=1

p(y|x,Wm). (4)

The choice of the model composition q(W) significantly impacts the results, as different models
may produce varied predictions, which will be explored further in Sec. 3. We then continue by
inserting both Eq. 3 and 4 into the original problem as defined in Eq. 2

I(y,W|x,D)≈ Ĥ(y|x,D)− Eq(W)[Ĥ(y|x,W)],

Eq. 3
= − 1

N

N∑
n=1

log p(yn|x,D)− Eq(W)

[
− 1

N

N∑
n=1

log p(yn|x,W)

]
,

Eq. 4
= − 1

N

N∑
n=1

log

(
1

M

M∑
m=1

p(yn|x,Wm)

)
+

1

M

M∑
m=1

1

N

N∑
n=1

log p(ymn |x,Wm). (5)

Above, ymn represents the n-th sample from the m-th model, i.e., ymn ∼ p(y|x,Wm). In contrast,
yn represents the n-th sample from the predictive distribution after integrating out the weights, i.e.,
yn ∼ p(y|x,D). We visualize the sampling of yn in Fig. 2. In essence, we first collect equally-sized
sets of N ′ samples from each distribution p(y|x,Wm), such that N = N ′ ·M . Concatenating them
generates N samples from the distribution p(y|x,D), as the weightsWm are equally weighted.

Our proposed approach formalized in Eq. 2- 5 assumes a generic form of the distribution
p(y|x,Wm). In practice, we use a continuous GMM that is ubiquitous in trajectory prediction
for AD, see Sec. 4.1. Thus, we fit samples from a trajectory prediction model to a GMM, or directly
use the GMM if the predictor provides one. Details around the GMM design choice can be found in
App. B. In Fig. 2, we visualize GMMs fitted to the predictions from M=3 ensemble components,
as well as samples from each GMM over a two-dimensional grid.

2.3 DISCUSSION

The approach presented above effectively quantifies uncertainty in trajectory prediction. Yet, it is
important to acknowledge some current limitations and potential solutions. One notable concern is
the increased memory and computational burden, which may be prohibitive for a real-time appli-
cation such as trajectory prediction. A possible avenue to address this limitation is through the use
of ensemble distillation. Studies have shown that it is possible to distill an ensemble into a single
model, thereby significantly reducing computational overhead while maintaining comparable accu-
racy Malinin et al. (2019). These technique offers a promising direction for future work, ensuring
that our approach remains both efficient and performant.
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Concatenate 
Samples

Figure 2: Generating samples for Monte Carlo approximation. We fit a GMM to the final posi-
tions of trajectories predicted by every member of our ensemble. Then, we sample from each GMM
to obtain per-model samples ymn for calculating the term of aleatoric uncertainty. Finally, samples
originating from all GMMs are aggregated as yn for calculating the term of total uncertainty.

3 EXPERIMENTS

In this paper, we introduce a novel information-theoretic approach to measure and decompose the
uncertainty of the predictive distribution of trajectory prediction models in the AD domain. We
model the approximate posterior q(W) over neural network weights via sampling-based methods,
such as dropout (Gal & Ghahramani, 2016) and deep ensembles Lakshminarayanan et al. (2017).
For simplicity, we refer to any collection of neural networks as an ensemble. Our experimental
analysis is divided into four parts, where we explore both the uncertainty quantification capabilities
of our method and the impact of different ensemble compositions. First, in Sec. 3.1, we benchmark
our method against an alternative approach to quantify the uncertainty on the original nuScenes
dataset (Caesar et al., 2020), which is a commonly used real-world trajectory prediction dataset for
AD. We measure the correlation between the uncertainty and the prediction error and explore how
epistemic and aleatoric uncertainties complement each other. In the subsequent parts, we create
artificial OOD scenarios by manipulating the nuScenes dataset in various ways. Specifically, we
propose four different methods for manipulating the original nuScenes dataset, such as removing
lane information or omitting parts of the past trajectories of various agents. A detailed explanation
of our nuScenes manipulations is provided in App. D. In the second experimental part in Sec. 3.2,
we examine the robustness of various models and ensembles across different OOD scenarios. We
observe an overall increase in prediction error, indicating that our artificial OOD scenarios are more
challenging than the original dataset. In the third part in Sec. 3.3, we investigate how the correlation
between uncertainty and prediction error is affected in these OOD scenarios. Lastly, in Sec. 3.4, we
study whether we can detect OOD scenarios by analyzing the different types of uncertainty.

Throughout our experiments, we use our novel method to measure the total uncertainty and decom-
pose it into aleatoric and epistemic components to understand their relative importance. We generate
trajectory predictions from the ensemble using the approach described in Distelzweig et al. (2024),
which involves Model-Based Risk Minimization (MBRM) to draw trajectories from an ensemble
of prediction models. For single models, we generate trajectories via Topk sampling, which selects
the most likely trajectories (Liu et al., 2024). We rely on LAformer Liu et al. (2024), PGP Deo
et al. (2022), and LaPred Kim et al. (2021) to construct different ensembles of trajectory prediction
models. These three models are among the best-performing models with available open-source im-
plementations. In our experiments, we evaluate different ensemble configurations, including deep
ensembles, dropout ensembles, and single models. We use an ensemble size of three in all experi-
ments; for deep ensembles, we sample three different models, and for dropout ensembles, we sample
three different masks. Prediction performance is assessed in terms of minADE and Minimum Final
Displacement Error (minFDE) over k proposals. The minADEk measures the average point-wise L2
distances between the predicted trajectories and the ground truth, returning the minimum over the k
proposals (Caesar et al., 2020). In contrast, minFDEk considers only the final predicted point. De-
tailed prediction results for different models and ensemble configurations on the original nuScenes
dataset are provided in App. C.
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3.1 CORRELATION BETWEEN PREDICTION ERROR AND DIFFERENT UNCERTAINTY TYPES

Identifying scenarios with high prediction error is critical for safety, as it helps determine when to
trust the system or when the driver needs to take control. In this experiment, we study the correla-
tion between different types of uncertainty and prediction error using the original nuScenes dataset.
More concretely, we compute the Pearson correlation coefficient ρ between each type of uncer-
tainty and the minADEk. We benchmark our proposed method against Filos et al. (2020), which
is an uncertainty quantification approach for planning. Prediction and planning are closely related
tasks in AD (Hagedorn et al., 2024), and to the best of our knowledge, Filos et al. (2020) is the
only other method with an architecture-agnostic approach that addresses uncertainty quantification
in these domains. Filos et al. (2020) estimates the uncertainty by calculating the variance of the log-
likelihood of future trajectories with respect to the parameters, i.e., Varq(W)[log p(y|x,W)]. Unlike
our method, this approach requires access to the future trajectory y. We report the correlation co-
efficient between different uncertainty types and the minADE5 in Tab. 1. Additionally, results for
minADE1 and minADE10 are provided in App. E.

Table 1: Pearson correlation between minADE5 and different uncertainty types on the original
nuScenes dataset. We use sampling via MBRM for ensembles and Topk for single models. LP
= LaPred (Kim et al., 2021), LF = LAformer (Liu et al., 2024), PGP (Deo et al., 2022), RIP= Robust
Imitative Planning (Filos et al., 2020), Dropout (Gal & Ghahramani, 2016).

Deep Ensembles Dropout Ensembles Single Models

1× 3× 3× 3× 3× 3× 3× 1× 1× 1×
LP, LF, PGP PGP LF LP PGP LF LP PGP LF LP

O
ur

s ρtotal 0.38 0.35 0.39 0.27 0.31 0.37 0.21 0.27 0.26 0.15
ρaleatoric 0.36 0.34 0.38 0.19 0.31 0.36 0.15 0.27 0.26 0.15
ρepistemic 0.28 0.23 0.25 0.28 0.21 0.28 0.23 - - -

RIP ρepistemic 0.06 0.14 0.10 0.11 0.04 0.17 0.17 - - -

We first compare the correlation between the minADE5 and different uncertainty types estimated
by our method. We observe that for all ensembles except 3× LP, the total uncertainty has an equal
or higher correlation with the prediction error than its individual components, i.e. the aleatoric
and epistemic uncertainty. This suggests that both uncertainty sources are complementary. When
comparing ensembles against single models, we observe that all ensembles outperform the single
models, as these models do not account for epistemic uncertainty. More specifically, when compar-
ing deep ensembles against dropout ensembles, we observe that the former offers a higher correla-
tion with prediction error. This indicates that deep ensembles quantify uncertainty more accurately
than dropout, which is in line with the literature on uncertainty quantification with deep ensem-
bles (Lakshminarayanan et al., 2017; Durasov et al., 2021). Lastly, we compare our method against
the uncertainty quantification method proposed in Filos et al. (2020), i.e., Robust Imitative Plan-
ning (RIP). We observe that our uncertainty quantification method outperforms this approach for all
model configurations. This is likely because RIP is based on a heuristic, whereas our method takes
a more comprehensive approach. Overall, we observe that the uncertainty estimates obtained by our
method provide a useful indication of whether we can trust our model’s predictions or not.

3.2 ROBUSTNESS OF PREDICTIONS IN OOD SCENARIOS

In the previous experiment, we analyzed the correlation between uncertainty and prediction error
in in-distribution scenarios. We now shift our focus to examining whether prediction performance
degrades in OOD scenarios and to what extent. We report the changes in the minADE5 metric with
respect to the original dataset in Fig. 3. App. I and App. J provide additional visualizations for
minADE1 and minADE10 as well as numerical values.

Overall, we observe that prediction error increases across all datasets in OOD scenarios. How-
ever, model ensembles consistently outperform individual models as in all model configurations,
more than 50% of the data points fall within the upper green triangle on Fig. 3. This suggests that
ensembles offer greater robustness and resilience in OOD scenarios. When comparing deep ensem-
bles composed of the same model to their dropout-based alternatives, the performance is similar

6
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when considering the fraction of data points in the green triangle. For instance, the dropout ensem-
ble performs better for PGP, while for LaPred, both the dropout and deep ensemble configurations
show equal performance. In contrast, LAformer shows better performance with deep ensembles.
However, when examining the mixed deep ensemble that combines different models, we observe a
significant increase in performance with all data points lying within the green triangle.
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Figure 3: Differences (∆) in MinADE5 between the original dataset and the corresponding out-of-
distribution dataset for baseline models (y-axis) and ensembles (x-axis). Different colors correspond
to various baseline models, while different markers denote distinct datasets. Markers positioned in
the red area (lower triangle) of each plot indicate that the ensemble exhibits a larger ∆MinADE5

compared to the baseline. Conversely, markers in the green area signify a smaller ∆MinADE5 for
the ensemble. Percentages indicate how often the ensemble outperforms the baseline.

3.3 QUANTIFYING THE UNCERTAINTY IN OOD SCENARIOS

In Sec. 3.1, we investigated whether the uncertainty estimates from our method offer indications
of the reliability of our model’s predictions. However, it remains unclear if these findings are also
applicable to OOD scenarios. In this experiment, we analyze the correlation between uncertainty
and prediction error in OOD scenarios across different ensembles, and we compare these correlation
coefficients with those obtained from the original dataset. We report the correlation coefficient
between the total uncertainty and the minADE5 in Fig. 4. App. G and App. H provide additional
visualizations for minADE1 and minADE10 as well as numerical results.

We first compare the correlation values from the original dataset represented by the circle marker
in Fig. 4 with those from the OOD datasets represented by all other markers. The results present
a mixed picture – in some OOD scenarios, the correlation coefficient decreases while in others, it
increases. Nevertheless, there is a general trend toward a decrease in the correlation coefficient in
most OOD cases. Interesting observations can be made when focusing on a specific model ensem-
ble, e.g. the mixed ensemble consisting of LAformer, PGP, and LaPred. Despite being applied to
OOD scenarios, this ensemble maintains a higher correlation coefficient than that achieved by the
alternative uncertainty quantification method proposed by Filos et al. (2020) on the in-distribution
scenarios of the original dataset. This suggests that our proposed method and selected ensemble
models offer more robust uncertainty quantification even under challenging conditions.

Next, we investigate whether using an ensemble of models is more advantageous than relying on
a single model in OOD scenarios. To assess this, we compare the correlation between uncertainty
and prediction error for ensembles versus individual models. Our findings reveal that the ensemble
configurations consistently outperform the single model baselines. This conclusion is supported by
the fact that in every configuration, more than 50% of the data points lie within the green triangle.
This suggests that ensembles provide a more reliable measure of uncertainty in OOD scenarios com-
pared to single models. Lastly, we compare different model ensembles. Specifically, we compare

7
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deep ensembles composed of the same model versus their dropout-based alternatives. In two out of
three cases, dropout ensembles outperform deep ensembles in terms of the number of data points
within the green triangle. However, when we consider a mixed deep ensemble, which combines
different models rather than ensembling multiple instances of the same model, we observe a notable
improvement in performance. The number of data points within the green triangle increases, sig-
nifying that the mixed ensemble achieves a higher correlation between uncertainty and prediction
error. This suggests that mixed ensembles, which benefit from a high model diversity, provide better
uncertainty quantification than deep ensembles composed of a single model type. This conclusion
aligns with our earlier findings, where mixed ensembles consistently performed the best or matched
other ensemble configurations in terms of robustness in OOD scenarios. Therefore, we conclude
that mixed deep ensembles are the most effective choice for handling OOD scenarios.
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Figure 4: Pearson correlation coefficient ρ between total uncertainty and MinADE5 for baseline
models (y-axis) and ensembles (x-axis) over the validation set. Different colors represent various
baseline models, while different markers indicate distinct datasets. Markers located in the red area
(upper triangle) of each plot signify that the ensemble shows a lower correlation ρtotal compared to
the baseline. Conversely, markers in the green area (lower triangle) indicate a higher correlation for
the ensemble. The numerical value in the bottom right corner of each plot represents the fraction of
data points that fall within the green area.

3.4 DETECTING OOD SCENARIOS

In this experiment, our objective is to determine whether we can identify OOD scenarios in the
first place. Recognizing such scenarios is critical for improving the performance and robustness
of an AD system over time, as it facilitates the collection of challenging cases for re-training and
evaluation. We present the uncertainty values for different types of uncertainty in Fig. 5 for both the
original nuScenes dataset and various OOD scenarios. For this analysis, we restrict our focus to a
mixed deep ensemble consisting of LAformer, PGP, and LaPred, as this ensemble demonstrated the
best correlation between uncertainty and prediction error in previous experiments. Additionally, we
include OOD detection results for other model ensembles in App. F.

When analyzing epistemic uncertainty, we observe that OOD scenarios exhibit a higher median
value than the upper quartile of the original dataset, with the exception of the blackout scenario,
where only the median of the original dataset is exceeded. In terms of aleatoric uncertainty, the
median for OOD scenarios consistently exceeds the median observed in the original dataset. The
total uncertainty follows a similar pattern to aleatoric uncertainty but exhibits a more pronounced
difference between OOD and in-distribution cases. These trends indicate that OOD scenarios can be
identified with the highest confidence by assessing epistemic uncertainty, a finding that aligns with
existing research in uncertainty quantification (Hüllermeier, 2021).
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Figure 5: Total, aleatoric, and epistemic uncertainties for a mixed ensemble (1 × LP, LF, PGP) for
the original dataset as well as all out-of-distribution datasets.

4 RELATED WORK

Anticipating the future motion of traffic participants is a critical component of autonomous driving
systems (Hu et al., 2023). Due to the safety-critical nature of these systems, it’s essential to ac-
count for and propagate uncertainties across the entire prediction stack (McAllister et al., 2017). For
instance, planners need to factor in motion prediction uncertainty to accurately assess the risks asso-
ciated with various driving maneuvers (Filos et al., 2020). In the following subsections, we review
related work on both motion prediction as well as quantification and decomposition of uncertainty.

4.1 MOTION PREDICTION FOR AUTONOMOUS DRIVING

The future motion of other traffic participants is influenced by a multitude of observable and un-
observable factors, rendering it a challenging modeling task. These factors include, among others,
the latent goals and preferences of traffic participants, social norms and traffic rules, complex inter-
actions with surrounding traffic, as well as constraints induced by the static environment (Rudenko
et al., 2020). The shortcomings of the perception system, which provides noisy and partial obser-
vations, pose an additional challenge. These challenges necessitate a probabilistic formulation of
the prediction task to adequately model the uncertain and multi-modal nature of future motion. In
general, prediction models consist of two components: a behavior backbone, which encodes the
traffic scene, and a decoder, which models the predictive distribution. We will highlight various
implementations of the two components below.

Early prediction approaches (Casas et al., 2018; Chai et al., 2020; Phan-Minh et al., 2020) propose
encoding the past trajectory of observed traffic participants and the elements of the static environ-
ment (e.g., lane boundaries, crosswalks, traffic signs) by rendering the scene in a semantic bird’s
eye view image and applying well-established convolutional neural networks (He et al., 2016). Such
image-based representations of the scene have largely been replaced by vectorized representations
due to their inefficiency (Gao et al., 2020; Zhao et al., 2021; Kim et al., 2021; Deo et al., 2022;
Nayakanti et al., 2023). In a vectorized representation, all entities of the static and dynamic envi-
ronment are approximated by a sequence of vectors. Models for sequential data, such as temporal
convolutional networks (van den Oord et al., 2016) or recurrent neural networks (Hochreiter &
Schmidhuber, 1997; Chung et al., 2014) are used to encode the sequences and interactions between
entities are modeled using pooling operations (Alahi et al., 2016), graph neural networks (Hamilton,
2020), or Transformers (Vaswani et al., 2017).

The future motion of traffic participants is typically characterized by a sequence of states over multi-
ple time steps, known as trajectories (Ngiam et al., 2022; Varadarajan et al., 2022). Several strategies
are employed to capture the highly multi-modal distribution over trajectories conditioned on the en-
coded scene. Many approaches represent the distribution by a set of trajectories with associated
mode probabilities. The trajectories are either regressed by the model (Cui et al., 2019; Liang et al.,
2020; Kim et al., 2021; Deo et al., 2022) or fixed a priori (Phan-Minh et al., 2020). Other approaches
use parametric mixture distributions, such as GMMs (Khandelwal et al., 2020; Tolstaya et al., 2021;
Varadarajan et al., 2022) or mixtures of Laplacians (Liu et al., 2024). Alternatively, generative
models such as conditional variational autoencoders (Lee et al., 2017; Bhattacharyya et al., 2019;
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Salzmann et al., 2020; Janjoš et al., 2023a), generative adversarial networks (Gupta et al., 2018;
Huang et al., 2020; Gómez-Huélamo et al., 2022), normalizing flows (Schöller & Knoll, 2021), or
diffusion models (Jiang et al., 2023) model the trajectory distribution via latent variables.

4.2 UNCERTAINTY MODELING, DECOMPOSITION AND QUANTIFICATION

The majority of current trajectory prediction models solely account for aleatoric uncertainty by
modeling a probability distribution on the output space (Varadarajan et al., 2022). To incorporate
epistemic uncertainty in a theoretically sound manner, one can adopt a Bayesian framework (Kendall
& Gal, 2017; Depeweg et al., 2018; Wilson & Izmailov, 2020; Wilson, 2020). A Bayesian neural
network assumes a distribution over the network weights instead of a point estimate to account for
the lack of knowledge about the data-generating process (Hüllermeier, 2021; Jospin et al., 2022).
Since analytically evaluating the posterior distribution over the weights is intractable for modern
neural networks, approximate inference techniques such as Variational Inference (VI) or forms of
MCMC must be considered (Jospin et al., 2022). Due to its simplicity, MC Dropout, which can
be interpreted as an approximate VI method (Gal & Ghahramani, 2016), is used by many percep-
tion approaches in AD (Kendall & Gal, 2017; Abdar et al., 2021) and is also employed by Janjoš
et al. (2023b) for modeling epistemic uncertainty of a trajectory predictor. Another well-established
approach to account for epistemic uncertainty is deep ensembles (Lakshminarayanan et al., 2017;
Jospin et al., 2022; Wilson & Izmailov, 2020). Prior work (Filos et al., 2020) uses deep ensembles
to approximate the posterior distribution in their epistemic uncertainty-aware planning method. We
apply MC Dropout as well as deep ensembles to approximate the uncertainty over network weights
and systematically assess their performance in the context of trajectory prediction.

A common information-theoretical measure for the uncertainty is the entropy of the predictive distri-
bution as a measure of the total uncertainty, which can be additively decomposed into the conditional
entropy and mutual information, representing a measure of aleatoric and epistemic uncertainty (De-
peweg et al., 2018; Smith & Gal, 2018; Hüllermeier, 2021; Wimmer et al., 2023). Alternative
measures based on the variance were proposed by Depeweg et al. (2018). While variance-based
measures are suitable in cases where the predictive distribution is a uni-modal Gaussian, it is less
suitable for multi-modal outputs, such as trajectories. Our approach thus relies on entropy-based
measures to quantify the uncertainties of trajectory prediction models. However, variance can be
useful in other contexts; e.g., Gilles et al. (2022) uses the variance of the predicted heat map over
future positions as an uncertainty measure. Another variance-based uncertainty heuristic is pro-
posed by Filos et al. (2020) in the related field of motion planning for AD. This approach, however,
only quantifies the epistemic uncertainty and requires access to the future trajectory. Some methods
train separate models (Pustynnikov & Eremeev, 2021) or include additional heads with auxiliary
tasks (Wiederer et al., 2023; Janjoš et al., 2023b) to learn a proxy measure of the uncertainty of a
trajectory prediction model without a proper decomposition.

To the best of our knowledge, we are the first to thoroughly investigate the theoretically sound
modeling, decomposition, and quantification of uncertainties for trajectory prediction models. All
other published trajectory prediction approaches either do not holistically consider all three aspects
or resort to heuristics.

5 CONCLUSION

Understanding and addressing uncertainty in probabilistic motion prediction for AD remains a key
challenge. This paper addresses this gap by proposing a general approach to quantify and decom-
pose uncertainty using an information-theoretic framework. We demonstrate that our estimates of
aleatoric and epistemic uncertainty provide meaningful indicators of prediction error, making them
reliable for assessing prediction performance. Through an extensive evaluation, we examine both
in-distribution and out-of-distribution scenarios under various posterior assumptions. Overall, our
approach advances principled uncertainty modeling in motion prediction for AD.

A promising future direction is to integrate our uncertainty quantification framework in the planning
system of an autonomous vehicle (Teng et al., 2023; Hagedorn et al., 2024). This opens the possibil-
ity of combining autonomous driving planning research with risk-sensitive reinforcement learning
(Depeweg et al., 2018), enabling the system to make informed decisions in uncertain situations.
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A PSEUDO CODE

The below pseudo code outlines the method of computing and decomposing uncertainties. Here, Gm
refers to the Gaussian Mixture Model (GMM) from which we draw and score samples. We use the
functions Sample and Score that implement the standard procedures for sampling and computing
the probability of a sample given the distribution (Dempster et al., 1977). The Sample function
takes a probability distribution as input and returns a sample. The Score function takes both the
probability distribution and a sample as inputs and returns the likelihood (or score) of the sample.

Algorithm 1 Monte-Carlo approximation of Uncertainty Types

Input: {f1, ..., fM} ▷ Set of models
x ▷ Input

Output: Î(y,W|x,D) ▷ Epistemic uncertainty
Eq(W)[Ĥ(y|x,W)] ▷ Aleatoric uncertainty
Ĥ[y|x,D] ▷ Total uncertainty

1: for m← 1 to M do
2: Gm ← GMM(fm(x)) ▷ Fit a GMM to fm
3: end for

# Aleatoric uncertainty
4: for m← 1 to M do
5: for n← 1 to N do
6: ymn ← Sample(Gm)
7: p(ymn |x,Wm)← Score(Gm, ymn )
8: end for
9: Ĥ(y|x,Wm)← − 1

N

∑N
n=1 log p(y

m
n |x,Wm) ▷ Eq. 3

10: end for
11: Eq(W)[Ĥ(y|x,W)]← 1

M

∑M
m=1 Ĥ(y|x,Wm) ▷ Eq. 4

# Total uncertainty
12: for m← 1 to M do ▷ Generate N ′ sample from each model
13: for n← (m− 1)N ′ to mN ′ do
14: yn ← Sample(Gm)
15: end for
16: end for
17: for n← 1 to N do
18: for m← 1 to M do
19: p(yn|x,Wm)← Score(Gm, yn)
20: end for
21: p(yn|x,D)← 1

M

∑M
m=1 p(yn|x,Wm) ▷ Eq. 4

22: end for
23: Ĥ(y|x,D)← − 1

N

∑N
n=1 log p(yn|x,D) ▷ Eq. 3

# Epistemic uncertainty
24: Î(y,W|x,D)← Ĥ(y|x,D)− Eq(W)[Ĥ(y|x,W)] ▷ Eq. 2

B DISTRIBUTION ASSUMPTIONS

In this section, we briefly cover the choice of a GMM for the distribution p(y|x,Wm) assumed in
Eq. 5. Note that p(y|x,Wm) can initially take either categorical or continuous forms, depending
on the model. However, we transform p(y|x,Wm) into a GMM, a continuous distribution, for two
reasons. First, for a categorical distribution, the probability p(y|x,Wm) is zero for any sample not
generated by the model with parameters Wm. This is because categorical distributions only as-
sign non-zero probabilities to discrete outcomes they were trained on, making them unsuitable for
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continuous trajectory prediction tasks. A GMM, on the other hand, smooths out the discrete distri-
bution, which aligns better with the continuous nature of the regression task. Second, handling a
mixture of categorical and continuous distributions introduces numerical issues. When p(y|x,Wm)
is continuous, we model the logarithm of the density. However, when it is discrete, we model the
probability directly. This discrepancy leads to numerical challenges during the log-sum-exp opera-
tion when calculating Ĥ(y|x,D). The resulting predictive distribution p(y|x,D) is then represented
as a mixture of M GMMs, where each GMM corresponds to one of the models in the ensemble.
For computational convenience, we perform these calculations only for the final predicted timestep,
i.e., the endpoint. Fig. 2 shows the GMM fitted to the final positions of the predictions from each
model, which represents the distribution of the final coordinates of the predicted trajectories over a
two-dimensional continuous grid.

C PERFORMANCE ON THE ORIGINAL NUSCENES DATASET

In the below table, we report the performance of different ensembles and base models on the orig-
inal nuScenes dataset. We generate trajectory predictions from the ensemble using the approach
described in Distelzweig et al. (2024), which involves MBRM to draw trajectories from an ensem-
ble of prediction models. For single models, we generate trajectories via Topk sampling, which
selects the most likely trajectories (Liu et al., 2024).

Table 2: minADE and minFDE for different k values and ensembling strategies. LP = LaPred (Kim
et al., 2021), LF = LAformer (Liu et al., 2024), PGP (Deo et al., 2022).

Model(s) minADE (↓) minFDE (↓)
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

1×{LP, LF, PGP} 2.89 1.22 0.93 6.70 2.37 1.54
3×LP 3.08 1.34 1.08 7.16 2.66 1.88
3×LF 2.82 1.20 0.92 6.52 2.34 1.54
3×PGP 2.97 1.22 0.94 6.87 2.37 1.55
Dropout + LP 3.15 1.39 1.14 7.31 2.78 2.01
Dropout + LF 2.94 1.28 1.00 6.86 2.53 1.72
Dropout + PGP 3.07 1.26 0.97 7.09 2.46 1.64
LP 3.56 1.53 1.17 8.48 3.13 2.18
LF 3.07 1.51 0.95 7.12 3.06 1.61
PGP 3.17 1.28 0.96 7.38 2.49 1.57

In MBRM, the below equation is optimized during inference with respect to the trajectories ỹ

ŷ ≈ argmin
ỹ

M∑
m=1

N∑
n=1

wm
n

M
minADEk(y

m
n , ỹ). (6)

Above ymn ∈ RT×2 represents the n-th proposal trajectory of the m-th model and wm
n ∈ R+

represents the corresponding weight. The number of total models is M . For more details, we refer
to Distelzweig et al. (2024).

D GENERATION OF OOD SCENARIOS

We create artificial OOD scenarios by manipulating the original nuScenes dataset. Below we de-
scribe our manipulation techniques.

• RevertEGO: We revert the history of the ego/target vehicle.
• ScrambleEGO: We randomly shuffle the history of the ego/target vehicle.
• Blackout: We set 1/2 of the history to zero for the ego/target and all surrounding vehicles.
• LaneDeletion: We randomly delete 3/4 of all lanes considered by the model.

Beyond that, we consider combinations of manipulations.
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E ADDITIONAL RESULTS ON THE ORIGINAL NUSCENES DATASET

Table 3: Pearson correlation between minADE1 and different uncertainty types on the original
nuScenes dataset. We use sampling via MBRM for ensembles and Topk for single models. LP
= LaPred (Kim et al., 2021), LF = LAformer (Liu et al., 2024), PGP (Deo et al., 2022), RIP= Robust
Imitative Planning (Filos et al., 2020), Dropout (Gal & Ghahramani, 2016).

Deep Ensembles Dropout Ensembles Single Models

1× 3× 3× 3× 3× 3× 3× 1× 1× 1×
LP, LF, PGP PGP LF LP PGP LF LP PGP LF LP

O
ur

s ρtotal 0.28 0.29 0.25 0.22 0.26 0.24 0.17 0.17 0.22 0.16
ρaleatoric 0.28 0.27 0.24 0.17 0.26 0.24 0.14 0.17 0.22 0.16
ρepistemic 0.17 0.19 0.18 0.18 0.16 0.18 0.09 - - -

RIP ρepistemic 0.06 0.06 0.05 0.08 0.05 0.05 0.05 - - -

Table 4: Pearson correlation between minADE10 and different uncertainty types on the original
nuScenes dataset. We use sampling via MBRM for ensembles and Topk for single models. LP =
LaPred (Kim et al., 2021), LF = LAformer (Liu et al., 2024), PGP (Deo et al., 2022), RIP= Robust
Imitative Planning (Filos et al., 2020), Dropout (Gal & Ghahramani, 2016).

Deep Ensembles Dropout Ensembles Single Models

1× 3× 3× 3× 3× 3× 3× 1× 1× 1×
LP, LF, PGP PGP LF LP PGP LF LP PGP LF LP

O
ur

s ρtotal 0.38 0.33 0.39 0.25 0.30 0.37 0.19 0.29 0.39 0.12
ρaleatoric 0.36 0.31 0.38 0.16 0.30 0.36 0.12 0.29 0.39 0.12
ρepistemic 0.28 0.24 0.24 0.30 0.20 0.29 0.25 - - -

RIP ρepistemic 0.08 0.17 0.11 0.12 0.06 0.21 0.19 - - -

F ADDITIONAL PLOTS FOR OOD DETECTION
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Figure 6: Total, aleatoric, and epistemic uncertainties for a PGP ensemble (3 × PGP) for the original
dataset as well as all out-of-distribution datasets.
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Figure 7: Total, aleatoric, and epistemic uncertainties for a LAformer ensemble (3 × LF) for the
original dataset as well as all out-of-distribution datasets.
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Figure 8: Total, aleatoric, and epistemic uncertainties for a LaPred ensemble (3 × LP) for the original
dataset as well as all out-of-distribution datasets.
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Figure 9: Total, aleatoric, and epistemic uncertainties for Dropout + PGP for the original dataset as
well as all out-of-distribution datasets.
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Figure 10: Total, aleatoric, and epistemic uncertainties for Dropout + LAformer for the original
dataset as well as all out-of-distribution datasets.
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Figure 11: Total, aleatoric, and epistemic uncertainties for Dropout + LaPred for the original dataset
as well as all out-of-distribution datasets.
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Figure 12: Total and aleatoric uncertainties for PGP for the original dataset as well as all out-of-
distribution datasets.

Datasets

1

2

3

4

5

6

Un
ce

rta
in

ty
 V

al
ue

Total Uncertainty

Datasets

1

2

3

4

5

6

M
odel(s) = LF

Aleatoric Uncertainty

Original
RevertEGO
ScrambleEGO
Blackout
LaneDeletion
ScrambleEGO
+LaneDeletion
Blackout
+ScrambleEGO
+LaneDeletion

Figure 13: Total and aleatoric uncertainties for LAformer for the original dataset as well as all out-
of-distribution datasets.
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Figure 14: Total and aleatoric uncertainties for LaPred for the original dataset as well as all out-of-
distribution datasets.
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G ADDITIONAL CORRELATION PLOTS FOR OOD SCENARIOS
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Figure 15: Pearson correlation coefficient ρ between total uncertainty and MinADE1 for baseline
models (y-axis) and ensembles (x-axis) over the validation set. Different colors represent various
baseline models, while different markers indicate distinct datasets.
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Figure 16: Pearson correlation coefficient ρ between total uncertainty and MinADE10 for baseline
models (y-axis) and ensembles (x-axis) over the validation set. Different colors represent various
baseline models, while different markers indicate distinct datasets.
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H VALUES OF THE CORRELATION COEFFICIENT

Table 5: Pearson correlation coefficient between the different types of uncertainties (total, aleatoric,
and epistemic) estimated by our approach and MinADE1 across all out-of-distribution and the orig-
inal dataset and all ensembles as well as single models.

Model(s) DS Ours Baseline
ρtotal ρaleatoric ρepistemic

1× {LP, LF, PGP}

Original 0.28 0.28 0.17 0.06
Blackout 0.16 0.14 0.15 0.06
Blackout+ScrambleEGO+LaneDeletion 0.18 0.15 0.16 0.09
LaneDeletion 0.22 0.18 0.18 0.08
RevertEGO 0.21 0.15 0.29 0.07
ScrambleEGO 0.23 0.22 0.15 0.05
ScrambleEGO+LaneDeletion 0.22 0.19 0.17 0.08

3× PGP

Original 0.29 0.27 0.19 0.06
Blackout 0.20 0.19 0.14 0.05
Blackout+ScrambleEGO+LaneDeletion 0.20 0.18 0.15 0.12
LaneDeletion 0.29 0.25 0.21 0.14
RevertEGO 0.23 0.20 0.24 0.06
ScrambleEGO 0.24 0.24 0.21 0.06
ScrambleEGO+LaneDeletion 0.25 0.25 0.21 0.17

3× LP

Original 0.22 0.17 0.18 0.08
Blackout 0.14 0.13 0.07 0.06
Blackout+ScrambleEGO+LaneDeletion 0.13 0.11 0.08 0.09
LaneDeletion 0.20 0.15 0.17 0.07
RevertEGO 0.11 0.06 0.26 0.07
ScrambleEGO 0.26 0.19 0.28 0.04
ScrambleEGO+LaneDeletion 0.26 0.19 0.28 0.01

3× LF

Original 0.25 0.24 0.18 0.05
Blackout 0.08 0.07 0.10 0.05
Blackout+ScrambleEGO+LaneDeletion 0.12 0.10 0.12 0.05
LaneDeletion 0.26 0.26 0.16 0.06
RevertEGO 0.25 0.23 0.19 0.09
ScrambleEGO 0.30 0.28 0.27 0.04
ScrambleEGO+LaneDeletion 0.31 0.30 0.24 0.05

Dropout + PGP

Original 0.26 0.26 0.16 0.05
Blackout 0.23 0.23 0.15 0.05
Blackout+ScrambleEGO+LaneDeletion 0.21 0.20 0.16 0.09
LaneDeletion 0.22 0.21 0.17 0.11
RevertEGO 0.19 0.19 0.12 0.08
ScrambleEGO 0.20 0.19 0.14 0.03
ScrambleEGO+LaneDeletion 0.23 0.20 0.20 0.09

Dropout + LP

Original 0.17 0.14 0.09 0.05
Blackout 0.12 0.11 0.08 0.07
Blackout+ScrambleEGO+LaneDeletion 0.16 0.14 0.08 0.07
LaneDeletion 0.20 0.17 0.11 0.05
RevertEGO 0.13 0.10 0.13 0.06
ScrambleEGO 0.21 0.19 0.13 0.06
ScrambleEGO+LaneDeletion 0.23 0.21 0.15 0.05

Dropout + LF

Original 0.24 0.24 0.18 0.05
Blackout 0.13 0.12 0.08 0.04
Blackout+ScrambleEGO+LaneDeletion 0.18 0.18 0.10 0.04
LaneDeletion 0.28 0.27 0.20 0.06
RevertEGO 0.21 0.21 0.15 0.09
ScrambleEGO 0.23 0.22 0.21 0.03
ScrambleEGO+LaneDeletion 0.30 0.29 0.25 0.04

PGP

Original 0.17 0.17 - -
Blackout 0.09 0.09 - -
Blackout+ScrambleEGO+LaneDeletion 0.12 0.12 - -
LaneDeletion 0.14 0.14 - -
RevertEGO 0.15 0.15 - -
ScrambleEGO 0.14 0.14 - -
ScrambleEGO+LaneDeletion 0.13 0.13 - -

LP

Original 0.16 0.16 - -
Blackout 0.15 0.15 - -
Blackout+ScrambleEGO+LaneDeletion 0.00 0.00 - -
LaneDeletion 0.06 0.06 - -
RevertEGO 0.15 0.15 - -
ScrambleEGO 0.16 0.16 - -
ScrambleEGO+LaneDeletion 0.13 0.13 - -

LF

Original 0.22 0.22 - -
Blackout 0.04 0.04 - -
Blackout+ScrambleEGO+LaneDeletion 0.08 0.08 - -
LaneDeletion 0.23 0.23 - -
RevertEGO 0.20 0.20 - -
ScrambleEGO 0.25 0.25 - -
ScrambleEGO+LaneDeletion 0.24 0.24 - -
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Table 6: Pearson correlation coefficient between the different types of uncertainties (total, aleatoric,
and epistemic) estimated by our approach and MinADE5 across all out-of-distribution and the orig-
inal dataset and all ensembles as well as single models.

Model(s) DS Ours Baseline
ρtotal ρaleatoric ρepistemic

1× {LP, LF, PGP}

Original 0.38 0.36 0.28 0.06
Blackout 0.26 0.24 0.17 0.08
Blackout+ScrambleEGO+LaneDeletion 0.24 0.21 0.16 0.13
LaneDeletion 0.36 0.31 0.26 0.05
RevertEGO 0.28 0.22 0.32 0.14
ScrambleEGO 0.37 0.30 0.41 0.03
ScrambleEGO+LaneDeletion 0.38 0.31 0.41 0.07

3× PGP

Original 0.35 0.34 0.23 0.14
Blackout 0.18 0.17 0.12 0.06
Blackout+ScrambleEGO+LaneDeletion 0.25 0.20 0.24 0.18
LaneDeletion 0.33 0.25 0.33 0.25
RevertEGO 0.32 0.27 0.34 0.13
ScrambleEGO 0.33 0.29 0.26 0.09
ScrambleEGO+LaneDeletion 0.34 0.27 0.28 0.18

3× LP

Original 0.27 0.19 0.28 0.11
Blackout 0.17 0.14 0.12 0.11
Blackout+ScrambleEGO+LaneDeletion 0.14 0.10 0.14 0.12
LaneDeletion 0.21 0.12 0.31 0.14
RevertEGO 0.10 0.05 0.24 0.03
ScrambleEGO 0.37 0.31 0.33 0.04
ScrambleEGO+LaneDeletion 0.33 0.26 0.34 0.03

3× LF

Original 0.39 0.38 0.25 0.10
Blackout 0.17 0.13 0.19 0.13
Blackout+ScrambleEGO+LaneDeletion 0.25 0.22 0.22 0.09
LaneDeletion 0.44 0.42 0.28 0.17
RevertEGO 0.41 0.42 0.21 0.14
ScrambleEGO 0.37 0.33 0.38 0.04
ScrambleEGO+LaneDeletion 0.43 0.39 0.38 0.06

Dropout + PGP

Original 0.31 0.31 0.21 0.04
Blackout 0.30 0.29 0.21 0.18
Blackout+ScrambleEGO+LaneDeletion 0.22 0.18 0.23 0.17
LaneDeletion 0.25 0.21 0.25 0.20
RevertEGO 0.28 0.29 0.15 0.16
ScrambleEGO 0.30 0.29 0.22 0.07
ScrambleEGO+LaneDeletion 0.29 0.24 0.29 0.16

Dropout + LP

Original 0.21 0.15 0.23 0.17
Blackout 0.21 0.15 0.20 0.14
Blackout+ScrambleEGO+LaneDeletion 0.30 0.26 0.19 0.13
LaneDeletion 0.33 0.28 0.21 0.09
RevertEGO 0.12 0.08 0.20 0.14
ScrambleEGO 0.31 0.26 0.25 0.10
ScrambleEGO+LaneDeletion 0.32 0.28 0.23 0.10

Dropout + LF

Original 0.37 0.36 0.28 0.17
Blackout 0.28 0.27 0.22 0.10
Blackout+ScrambleEGO+LaneDeletion 0.35 0.34 0.23 0.10
LaneDeletion 0.42 0.41 0.30 0.14
RevertEGO 0.40 0.38 0.31 0.17
ScrambleEGO 0.28 0.24 0.38 0.08
ScrambleEGO+LaneDeletion 0.34 0.30 0.39 0.08

PGP

Original 0.27 0.27 - -
Blackout 0.10 0.10 - -
Blackout+ScrambleEGO+LaneDeletion 0.12 0.12 - -
LaneDeletion 0.17 0.17 - -
RevertEGO 0.20 0.20 - -
ScrambleEGO 0.27 0.27 - -
ScrambleEGO+LaneDeletion 0.16 0.16 - -

LP

Original 0.15 0.15 - -
Blackout 0.19 0.19 - -
Blackout+ScrambleEGO+LaneDeletion 0.07 0.07 - -
LaneDeletion -0.01 -0.01 - -
RevertEGO 0.07 0.07 - -
ScrambleEGO 0.11 0.11 - -
ScrambleEGO+LaneDeletion 0.10 0.10 - -

LF

Original 0.26 0.26 - -
Blackout 0.07 0.07 - -
Blackout+ScrambleEGO+LaneDeletion 0.15 0.15 - -
LaneDeletion 0.29 0.29 - -
RevertEGO 0.27 0.27 - -
ScrambleEGO 0.27 0.27 - -
ScrambleEGO+LaneDeletion 0.31 0.31 - -
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Table 7: Pearson correlation coefficient between the different types of uncertainties (total, aleatoric,
and epistemic) estimated by our approach and MinADE10 across all out-of-distribution and the
original dataset and all ensembles as well as single models.

Model(s) DS Ours Baseline
ρtotal ρaleatoric ρepistemic

1× {LP, LF, PGP}

Original 0.38 0.36 0.28 0.08
Blackout 0.23 0.21 0.15 0.06
Blackout+ScrambleEGO+LaneDeletion 0.23 0.20 0.15 0.13
LaneDeletion 0.37 0.32 0.24 0.07
RevertEGO 0.25 0.21 0.27 0.17
ScrambleEGO 0.42 0.36 0.39 0.05
ScrambleEGO+LaneDeletion 0.39 0.33 0.39 0.07

3× PGP

Original 0.33 0.31 0.24 0.17
Blackout 0.13 0.12 0.08 0.05
Blackout+ScrambleEGO+LaneDeletion 0.23 0.17 0.25 0.14
LaneDeletion 0.33 0.25 0.35 0.25
RevertEGO 0.25 0.20 0.31 0.12
ScrambleEGO 0.33 0.29 0.25 0.07
ScrambleEGO+LaneDeletion 0.33 0.26 0.30 0.22

3× LP

Original 0.25 0.16 0.30 0.12
Blackout 0.14 0.12 0.08 0.14
Blackout+ScrambleEGO+LaneDeletion 0.10 0.07 0.11 0.13
LaneDeletion 0.18 0.09 0.32 0.16
RevertEGO 0.10 0.07 0.19 0.00
ScrambleEGO 0.35 0.28 0.31 0.04
ScrambleEGO+LaneDeletion 0.32 0.26 0.31 0.04

3× LF

Original 0.39 0.38 0.24 0.11
Blackout 0.13 0.09 0.17 0.09
Blackout+ScrambleEGO+LaneDeletion 0.22 0.19 0.20 0.10
LaneDeletion 0.44 0.43 0.28 0.15
RevertEGO 0.40 0.40 0.19 0.16
ScrambleEGO 0.37 0.32 0.39 0.05
ScrambleEGO+LaneDeletion 0.44 0.40 0.38 0.07

Dropout + PGP

Original 0.30 0.30 0.20 0.06
Blackout 0.30 0.29 0.21 0.18
Blackout+ScrambleEGO+LaneDeletion 0.20 0.16 0.23 0.17
LaneDeletion 0.23 0.18 0.27 0.05
RevertEGO 0.27 0.27 0.14 0.13
ScrambleEGO 0.32 0.30 0.23 0.07
ScrambleEGO+LaneDeletion 0.28 0.23 0.29 0.11

Dropout + LP

Original 0.19 0.12 0.25 0.19
Blackout 0.20 0.14 0.22 0.17
Blackout+ScrambleEGO+LaneDeletion 0.31 0.27 0.20 0.15
LaneDeletion 0.32 0.26 0.23 0.11
RevertEGO 0.13 0.09 0.19 0.17
ScrambleEGO 0.26 0.22 0.24 0.13
ScrambleEGO+LaneDeletion 0.28 0.24 0.23 0.12

Dropout + LF

Original 0.37 0.36 0.29 0.21
Blackout 0.31 0.30 0.25 0.14
Blackout+ScrambleEGO+LaneDeletion 0.37 0.36 0.25 0.13
LaneDeletion 0.43 0.41 0.31 0.16
RevertEGO 0.41 0.39 0.32 0.19
ScrambleEGO 0.24 0.18 0.41 0.08
ScrambleEGO+LaneDeletion 0.29 0.24 0.41 0.06

PGP

Original 0.29 0.29 - -
Blackout 0.07 0.07 - -
Blackout+ScrambleEGO+LaneDeletion 0.13 0.13 - -
LaneDeletion 0.16 0.16 - -
RevertEGO 0.20 0.20 - -
ScrambleEGO 0.25 0.25 - -
ScrambleEGO+LaneDeletion 0.15 0.15 - -

LP

Original 0.12 0.12 - -
Blackout 0.16 0.16 - -
Blackout+ScrambleEGO+LaneDeletion 0.01 0.01 - -
LaneDeletion -0.07 -0.07 - -
RevertEGO 0.10 0.10 - -
ScrambleEGO 0.12 0.12 - -
ScrambleEGO+LaneDeletion 0.10 0.10 - -

LF

Original 0.39 0.39 - -
Blackout 0.09 0.09 - -
Blackout+ScrambleEGO+LaneDeletion 0.18 0.18 - -
LaneDeletion 0.42 0.42 - -
RevertEGO 0.40 0.40 - -
ScrambleEGO 0.30 0.30 - -
ScrambleEGO+LaneDeletion 0.35 0.35 - -
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I ADDITIONAL ERROR PLOTS FOR OOD SCENARIOS
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Figure 17: Differences (∆) in MinADE1 between the original dataset and the corresponding out-of-
distribution dataset for baseline models (y-axis) and ensembles (x-axis) over the validation set. Dif-
ferent colors correspond to various baseline models, while different markers denote distinct datasets.
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Figure 18: Differences (∆) in MinADE10 between the original dataset and the corresponding out-of-
distribution dataset for baseline models (y-axis) and ensembles (x-axis) over the validation set. Dif-
ferent colors correspond to various baseline models, while different markers denote distinct datasets.
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J VALUES OF ERROR CHANGES IN OOD SCENARIOS

Table 8: Differences (∆) in MinADEk and MinFDEk between the corresponding out-of-distribution
dataset and original dataset for PGP, Dropout + PGP, and 3× PGP.

Dataset Model(s) ∆MinADE(↓) ∆MinFDE(↓)
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Blackout
PGP 3.20 2.20 1.68 5.62 3.66 2.56
Dropout + PGP 0.57 0.22 0.15 1.06 0.31 0.17
3× PGP 2.19 1.49 1.32 3.39 2.00 1.70

Blackout
+ ScrambleEGO
+ LaneDeletion

PGP 4.48 3.35 2.63 8.58 6.53 5.06
Dropout + PGP 2.82 1.78 1.55 6.17 4.18 3.71
3× PGP 3.75 2.50 2.24 7.00 4.53 4.03

LaneDeletion
PGP 1.91 1.41 1.07 4.48 3.61 2.83
Dropout + PGP 2.20 1.46 1.29 5.07 3.65 3.32
3× PGP 1.87 1.14 0.97 4.36 2.87 2.52

RevertEGO
PGP 12.15 6.95 4.80 20.47 11.19 7.34
Dropout + PGP 7.60 3.15 2.50 12.54 4.50 3.42
3× PGP 9.82 4.52 3.73 15.91 6.55 5.22

ScrambleEGO
PGP 1.18 0.76 0.57 1.69 0.91 0.61
Dropout + PGP 2.81 1.31 1.05 3.91 1.42 0.95
3× PGP 1.25 0.55 0.43 1.76 0.65 0.50

ScrambleEGO
+ LaneDeletion

PGP 2.93 2.28 1.81 5.78 4.63 3.68
Dropout + PGP 3.19 2.08 1.87 5.82 3.86 3.43
3× PGP 3.11 1.86 1.61 6.04 3.42 3.89

Table 9: Differences (∆) in MinADEk and MinFDEk between the corresponding out-of-distribution
dataset and original dataset for LF, Dropout + LF, and 3× LF.

Dataset Model(s) ∆MinADE(↓) ∆MinFDE(↓)
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Blackout
LF 2.58 2.15 1.29 3.76 2.85 1.12
Dropout + LF 0.91 0.25 0.38 1.87 0.44 0.74
3× LF 2.63 1.40 1.26 3.96 1.52 1.15

Blackout
+ ScrambleEGO
+ LaneDeletion

LF 2.94 1.42 2.38 4.63 3.46 1.57
Dropout + LF 1.32 0.46 0.60 2.78 0.98 1.29
3× LF 3.03 1.42 1.59 4.82 1.61 2.02

LaneDeletion
LF 0.45 0.13 0.18 1.13 0.37 0.51
Dropout + LF 0.49 0.19 0.21 1.23 0.51 0.57
3× LF 0.26 0.12 0.14 0.68 0.32 0.38

RevertEGO
LF 3.70 1.54 2.87 5.59 1.87 4.30
Dropout + LF 1.91 0.83 0.95 2.86 1.07 1.32
3× LF 3.53 1.52 1.72 5.28 1.95 2.30

ScrambleEGO
LF 3.48 1.02 2.54 5.53 0.91 3.62
Dropout + LF 6.27 2.09 2.59 7.83 1.94 2.72
3× LF 4.43 1.14 1.42 6.73 0.99 1.46

ScrambleEGO
+ LaneDeletion

LF 3.56 1.17 2.34 6.00 1.27 3.36
Dropout + LF 6.06 2.04 2.49 7.74 2.12 2.80
3× LF 4.16 1.19 1.41 6.22 1.18 1.56
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Table 10: Differences (∆) in MinADEk and MinFDEk between the corresponding out-of-
distribution dataset and original dataset for LP, Dropout + LP, and 3× LP.

Dataset Model(s) ∆MinADE(↓) ∆MinFDE(↓)
k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Blackout
LP 2.46 1.76 1.29 4.29 2.68 1.69
Dropout + LP 1.22 0.39 0.30 2.41 0.67 0.48
3× LP 2.38 1.38 1.28 4.03 1.92 1.71

Blackout
+ ScrambleEGO
+ LaneDeletion

LP 2.72 1.88 1.42 4.88 3.02 2.04
Dropout + LP 1.59 0.66 0.55 3.25 1.33 1.09
3× LP 2.47 1.51 1.39 4.27 2.23 1.96

LaneDeletion
LP 0.31 0.17 0.14 0.77 0.42 0.37
Dropout + LP 0.38 0.21 0.19 0.86 0.53 0.49
3× LP 0.14 0.10 0.08 0.35 0.25 0.21

RevertEGO
LP 6.03 2.01 1.24 10.97 3.36 1.74
Dropout + LP 3.27 1.14 0.97 5.54 1.87 1.49
3× LP 4.99 1.61 1.24 8.61 2.65 1.89

ScrambleEGO
LP 4.10 2.41 2.22 7.10 2.73 2.34
Dropout + LP 2.16 0.80 0.64 3.30 0.94 0.61
3× LP 4.64 2.36 2.02 6.94 2.81 2.25

ScrambleEGO
+ LaneDeletion

LP 4.53 2.71 2.47 7.91 3.42 2.91
Dropout + LP 2.54 1.03 0.81 4.19 1.51 1.05
3× LP 5.08 2.64 2.25 7.88 3.46 2.76

Table 11: Differences (∆) in MinADEk and MinFDEk between the corresponding out-of-
distribution dataset and original dataset for various models, including LP, LF, and PGP, as well
as their combination 1× {LP, LF, PGP}.

Dataset Model(s) ∆MinADE ∆MinFDE

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

Blackout

PGP 3.20 2.20 1.68 5.62 3.66 2.56
LF 2.58 2.15 1.29 3.76 2.85 1.12
LP 2.46 1.76 1.29 4.29 2.68 1.69
1× {LP, LF, PGP} 2.43 1.18 1.06 3.95 1.58 1.35

Blackout
+ ScrambleEGO
+ LaneDeletion

PGP 4.48 3.35 2.63 8.58 6.53 5.06
LF 2.94 2.38 1.42 4.63 3.46 1.57
LP 2.72 1.88 1.42 4.88 3.02 2.04
1× {LP, LF, PGP} 2.96 1.38 1.22 5.18 2.05 1.75

LaneDeletion

PGP 1.91 1.41 1.07 4.48 3.61 2.83
LF 0.45 0.18 0.13 1.13 0.51 0.37
LP 0.31 0.17 0.14 0.77 0.42 0.37
1× {LP, LF, PGP} 0.63 0.16 0.12 1.50 0.44 0.34

RevertEGO

PGP 12.15 6.95 4.80 20.47 11.19 7.34
LF 3.70 2.87 1.54 5.59 4.30 1.87
LP 6.03 2.01 1.24 10.97 3.36 1.74
1× {LP, LF, PGP} 5.41 1.88 1.48 8.81 2.95 2.14

ScrambleEGO

PGP 1.18 0.76 0.57 1.69 0.91 0.61
LF 3.48 2.54 1.02 5.53 3.62 0.91
LP 4.10 2.41 2.22 7.10 2.73 2.34
1× {LP, LF, PGP} 1.02 0.75 0.52 1.57 1.00 0.58

ScrambleEGO
+ LaneDeletion

PGP 2.93 2.28 1.81 5.78 4.63 3.68
LF 3.56 2.34 1.17 6.00 3.36 1.27
LP 4.53 2.71 2.47 7.91 3.42 2.91
1× {LP, LF, PGP} 1.62 1.14 0.86 2.93 1.76 1.17
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