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Abstract

Data Augmentation (DA) has become a widely
adopted strategy for addressing data scarcity in nu-
merous NLP tasks, especially in scenarios with
limited resources or imbalanced classes. How-
ever, many existing augmentation techniques rely
on randomness or additional resources, present-
ing challenges in both performance and practical
implementation. Furthermore, there is a lack of
exploration into what constitutes effective aug-
mentation. In this paper, we systematically evalu-
ate existing DA methods across a comprehensive
range of text-classification benchmarks. The em-
pirical analysis highlights that the most significant
change resulting from augmentation is observed in
the data variance. This observation inspires the
proposed approach, termed Mask-for-Data
Augmentation (M4DA), which strategically
masks tokens from original samples for augmen-
tation. Specifically, M4DA consists of a Variance-
Oriented Masker Module (VMM), which ensures
an increase in data variances, and a Complexity-
Enhanced Selection Module (CSM), designed to
select the augmented sample with the highest se-
mantic complexity. The effectiveness of the pro-
posed method is empirically validated across vari-
ous text-classification benchmarks, including sce-
narios with limited or full resources and imbal-
anced classes. Experimental results demonstrate
considerable improvements over state-of-the-arts.

1 INTRODUCTION

Data Augmentation methods are extensively utilized in Nat-
ural Language Processing (NLP), incorporating a range of
strategies aimed at enhancing training data. The integration
of augmented training samples has proven crucial in achiev-

ing remarkable success across numerous downstream tasks,
including sentiment analysis [Yoon et al., 2021], question
answering [Chen et al., 2022], and review classification [Ren
et al., 2021], among others.

Consequently, extensive and diverse research efforts have
been devoted to proposing varied strategies for generating
diverse and meaningful samples. One approach in this field
involves the creation of additional samples at the character
or word level through operations such as swapping, insert-
ing, deleting, replacing original characters/words with alter-
natives, or perturbing word embeddings [Wei and Zou, 2019,
Karimi et al., 2021, Yi et al., 2021, Wei et al., 2021, Ren
et al., 2021, Zheng et al., 2023]. Another line of the work
focuses on the sentence level, employing techniques like
translation, mixing, or perturbation of existing sentences
to generate variations [Yoo et al., 2021, Yoon et al., 2021,
Zhang et al., 2022, Chen et al., 2022, 2023]. Section 2 pro-
vides a summary about existing DA approaches.

Despite their prevalence in NLP, existing DA methods suf-
fer from two serious weaknesses. First, a critical concern
arises from the inherent randomness observed in certain ex-
isting DA methods, wherein candidates (whether characters,
words or sentences) are selected and modified in a random
manner [Wei and Zou, 2019, Karimi et al., 2021, Wei et al.,
2021, Ren et al., 2021, Yoon et al., 2021, Chen et al., 2022].
This randomness introduces a significant risk of incorporat-
ing less meaningful or even conflicting augmented data into
the training process, thereby exhibiting undesired variations
and inconsistencies. Second, computational expenses rep-
resent another challenge. Techniques, designed to enhance
datasets through sophisticated transformations or synthesis
of instances, frequently result in extended processing times
and increased infrastructure demands, particularly evident in
resource-intensive models like Large Language Models [Yi
et al., 2021, Xie et al., 2020, Yoo et al., 2021, Zhang et al.,
2022]. This not only limits the scalability of these methods
but also poses practical challenges in real-time or resource-
constrained environments. Addressing these weaknesses re-
quires approaches that have a comprehensive understanding
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towards the data augmentation, which prompts the following
critical research question: What is the primary factor under-
mining the positive impact of Data Augmentation? While it
is relatively straightforward to attribute the benefits of DA
to an expanded data scale, the specific contributing factor
that influences the model performance remains unknown.

To tackle it, we conduct a systematic evaluation of exist-
ing DA methods across a comprehensive range of text-
classification benchmarks. The augmentation performance
is assessed using five metrics, with particular empha-
sis on the metric of data variance, which exhibits the
most significant change before and after augmentation.
This observation motivates the exploration of a novel DA
method from the variance change introduced by augmented
data. Specifically, this paper introduces Mask-for-Data
Augmentation, namely M4DA, that strategically masks
tokens from original samples for augmentation.

It is worth noting that the [Mask] token is typically used to
hold out a portion of input tokens for predicting missing to-
kens. Although a limit number of studies leverage [Mask]
to generate augmented samples [Maas et al., 2011, Gao et al.,
2022, Hu et al., 2023, Yao et al., 2023b, Liu et al., 2023],
their primary aim still remains filling in masked tokens. In
contrast, M4DA directly incorporates samples with masked
tokens during the model fine-tuning. Yet, the introduction
of [Mask] tokens brings forth two additional challenges:
determining what content to mask and how many tokens to
mask. To address the question of what content to mask, we
implement random masking, which involves masking the
original samples multiple times to generate a diverse can-
didate pool. Additionally, we leverage semantic complexity
to identify challenging samples for masking. Regarding the
masking budget (i.e., how many tokens to mask), we ensure
that the masking process is guided to promote an increase
in data variance, thereby enhancing the effectiveness of sub-
sequent model training. This approach facilitates a more
comprehensive exploration of the data space, leading to im-
proved model robustness and performance. In summary, our
contributions are three-fold:

• We perform a comprehensive empirical study of existing
Data Augmentation methods utilizing benchmark datasets
and evaluating with five metrics, where the empirical anal-
ysis reveals that data variance contributes significantly.

• We introduce the [Mask]-for-Data-Augmentation ap-
proach, referred to as M4DA. In this approach, token
masking is directed to ensure an increase of data variances
and the incorporation of maximum semantic complexity
into the augmented data.

• We conduct extensive experiments across diverse bench-
marks to demonstrate the superior performance of M4DA.
Additionally, a series of ablation studies is presented to
examine the stability and robustness of our approach.

2 RELATED WORK

Data Augmentation (DA) is of great significance as a widely
employed technique, which aims at expanding datasets
through the generation of modified replicas from exist-
ing data or the creation of new instances based on prior
knowledge. Embraced extensively in various Natural Lan-
guage Processing (NLP) tasks, DA has consistently deliv-
ered promising outcomes, exemplified by notable successes
in various tasks [Yoon et al., 2021, Chen et al., 2022, Ren
et al., 2021, Yao et al., 2023a].

One representative direction of DA involves the manipula-
tion of words (or tokens) within existing textual data. For
instance, EDA [Wei and Zou, 2019] introduces a collection
of augmentation techniques, including synonym replace-
ment and random insertion, swapping, or deletion of words.
AEDA [Karimi et al., 2021] generates new instances via
randomly inserting noisy punctuation, such as colons, pe-
riods, and exclamation marks, into the original sentences.
In BERT-aug [Yi et al., 2021], input tokens are randomly
masked out and subsequently replaced using a pre-trained
BERT model, resulting in the creation of a new sample. Fur-
thermore, MTV[Wei et al., 2021], undertakes token replace-
ment using either synonyms or arbitrary tokens. TAA [Ren
et al., 2021] also incorporates token replacement (deletion),
but leveraging a Bayesian-based optimization algorithm to
identify suitable candidate tokens. AWD [Chen et al., 2023]
uses weighted mixing of word embeddings, prioritizing im-
portant words while also enhancing weights of less crucial
ones.

An alternative direction for DA focuses at the sentence
level. Back-trains [Xie et al., 2020] employs a two-way
model for multilingual translations to generate augmented
data. GPT3Mix [Yoo et al., 2021] leverages Large Lan-
guage Models (LLMs), such as GPT-3, to craft high-quality
composite samples by amalgamating existing contextual
instances. Similarly, SSMix [Yoon et al., 2021] alters ex-
isting sentences by first identifying important spans based
on saliency information and subsequently rewriting them to
generate new sentences. Meanwhile, TreeMix [Zhang et al.,
2022] utilizes constituency parsing trees to segment sen-
tences into components and then recombines them to create
new augmentations. In addition, DoubleMix [Chen et al.,
2022] combines original data with synthetically perturbed
data in the hidden space to generate new sentences, while
SEMix [Zheng et al., 2023] integrates the self-evolution
learning with the mixup-based data augmentation.

The summarized overview of discussed DA approaches is
presented in Table 1. Despite the prevalence of DA, two
main issues persist. First, certain approaches employ random
selection strategies to determine candidate words/tokens, po-
tentially introducing noisy augmented data [Wei and Zou,
2019, Karimi et al., 2021, Wei et al., 2021, Ren et al., 2021,
Yoon et al., 2021, Chen et al., 2022]. Second, some methods



Table 1: A summary of existing Data Augmentation on the word (or token) and sentence level.

Index Method Operation Level

Swap Insert Delete Replace Noise Mixup Transfer Word Sentence

I EDA [Wei and Zou, 2019] ✓ ✓ ✓ ✓ ✓
II AEDA [Karimi et al., 2021] ✓ ✓
III BERT-aug [Yi et al., 2021] ✓ ✓
IV MTV [Wei et al., 2021] ✓ ✓
V TAA [Ren et al., 2021] ✓ ✓ ✓ ✓ ✓
VI Back-trains [Xie et al., 2020] ✓ ✓
VII GPT3Mix [Yoo et al., 2021] ✓ ✓
VIII SSMix [Yoon et al., 2021] ✓ ✓
IX TreeMix [Zhang et al., 2022] ✓ ✓ ✓ ✓
X DoubleMix [Chen et al., 2022] ✓ ✓ ✓

necessitate model inference or rely on external resources,
such as LLMs, resulting in computational expenses [Yi
et al., 2021, Xie et al., 2020, Yoo et al., 2021, Zhang et al.,
2022]. In this work, we fill in this gap by presenting a com-
prehensive empirical evaluation (present in Section 3) and
developing a simple-yet-effective DA approach motivated
by our observations (present in Section 4).

3 REVISITING DATA AUGMENTATION

The research interest in leveraging Data Augmentation (DA)
for downstream applications is particularly significant in
low-resource and/or class-imbalanced settings. Yet, a no-
ticeable gap exists regarding the contributing factors or in-
formation embedded within augmented data. Specifically,
the exploration of how certain characteristics influence the
efficacy of augmentation remains largely unexplored. In this
section, we attempt to address this gap by examining the
effects of DA from a statistical perspective.

3.1 EFFECT OF AUGMENTATIONS

Let X ⊃ X = [XORG, XAUG], where XORG/AUG rep-
resents the set of original/augmented samples, and X is
the input space. Subsequently, we further obtain a naive
model (encoder) M : X → Z , fine-tuned exclusively with
XORG, where Z is the output (feature) space. The aug-
mented model, written as M′, is trained using both XORG

and XAUG. Further, let Z,Z ′ ⊂ Z be the hidden repre-
sentations of X obtained from M and M′, respectively
(e.g., the last-layer [CLS] embedding in Transformer-based
encoders). Accordingly, zi, z′

i ∈ Z denote the i-th represen-
tations from Z and Z ′, e.g., z(′)

i = M(′)(xi). This study
employs the following widely-recognized metrics to access
changes before and after the augmentation, including:

• Variance: a measure of how the data spreads out or scat-
ters, i.e., Var(Z/Z ′): Var(Z) = 1

L

∑L
l var(Zl), where

var is the variance operator and Zl is the lth dimension
with slight abuse of notations.

• Covariance: the data interdependence or correlation level,

i.e., Cov(Z/Z ′): Cov(Z) = 2
L(L−1)

∑
l>m cov(Zl, Zm)

where cov is the covariance operator.
• Pair Invariance: the robustness between Z and Z ′, ir-

respective of the applied augmentation, estimated by the
mean-squared Euclidean distance and cosine similarity:{

PIMSE (Z,Z ′) = 1
n

∑n
i=1 ∥zi − z′

i∥
2
2 ,

PICOS (Z,Z
′) = 1

n

∑n
i=1

zi·z′
i

∥zi∥∥z′
i∥
.

(1)

• Effective invariance [Gao et al., 2022]: the measure of
consistency and confidence of predictions:

EI (Z,Z ′) =

{ √
pZ · pZ′ if correct

0 otherwise. (2)

where pZ/Z′ is prediction confidence score using Z or Z ′.

The effect of various augmentations (discussed in Section 2)
is investigated via following the experimental setup outlined
in [Karimi et al., 2021, Yi et al., 2021, Wei et al., 2021, Ren
et al., 2021], with additional details provided in Appendix A.
The resulting metrics for the SST-2 dataset, over 10 runs, are
presented in Fig. 1, and again, experimental results on other
datasets are provided in Appendix A. Additionally, Bayesian
hypothesis testing [Rouder et al., 2009] is incorporated to
ensure the reliability of our findings. This is accomplished
by computing the Bayes factor BF10 to gauge the degree of
support for the alternative hypothesis over the null hypothe-
sis. In this context, the alternative hypothesis H1 states that
there is sensitivity to augmentation in terms of Covariance
and (Pair/Effective) Invariance, while the null hypothesis
H0 suggests there is no discernible difference.

The following observation is made. 1) As expected, the
model trained with augmented data consistently demon-
strates superior accuracy compared to its naive counterpart.
2) A clear trend is the general rise in variance, that is pro-
portional to the performance gain. 3) In contrast with the
variance metric, there is typically no substantial change
in the covariance and (pair/effective) invariance. For ex-
ample, while two methods (e.g., V and VI) may exhibit
similar augmentation gains, they might yield entirely differ-
ent covariance values. A similar occurrence is noted with
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Figure 1: The resulting metrics over 10 runs on the SST-2 dataset. The naive model M achieves the classification accuracy of
68.3±3.7, Var(Z) is 0.138±0.121, and Cov(Z) is 0.372±0.051. The three plots labelled by AccAUG, Var(Z ′), and Cov(Z ′)
respectively represent the differences between the augmented model M′ and the naive model M.

Figure 2: Illustration of the proposed M4DA, maximizing data variance and semantic complexity of augmented samples.

(pair/effective) invariance. Consequently, utilizing covari-
ance and invariance as an augmentation indicator is not
feasible. Bayesian hypothesis testing also supports these ob-
servations, consistently rejecting the H1 hypothesis with a
robust BF10 consistently exceeding 100. Motivated by this
observation, a novel augmentation method with a specific
focus on data variance is introduced in the next section.

4 PROPOSED METHOD

In this section, we introduce our proposed Mask-for-Data
Augmentation (M4DA) method. The overall pipeline is il-
lustrated in Fig. 2. M4DA consists of two key modules,
i.e., Variance-oriented Masker Module (VMM, addressing
the issue of how many tokens to mask) and Complexity-
enhanced Selection Module (CSM, addressing the issue of
what content to mask). Specifically, original inputs are
masked to generate additional training samples, with a si-
multaneous emphasis on maximizing data variance (via
VMM) and semantic complexity (vis CSM) of augmented
data to ensure the effectiveness. In the following, we will
introduce the design of M4DA in detail.

4.1 VARIANCE-ORIENTED MASKER
MODULE(VMM)

Given the tokenized original sequence x, for the classifica-
tion task, we aim to optimize an encoder Mϕ with parame-
ters in ϕ to extract the latent representation z = M(x) and
a Multilayer Perceptron (MLP) layer (with all its parame-
ters collected in θ) fθ : Z → Y to map to its target label
y ∈ Y such that, y = f(z). We drop the parameters when
it is clear. The encoder Mϕ is typically fine-tuned with a
penalty function, such as the cross-entropy-based loss.

To augment x, conventional approaches primarily rely on
data perturbation, including methods like synonym replace-
ment and word insertion/swapping/deletion. Yet, the pertur-
bation task is nontrivial, particularly in the textual context,
where directly modifying input texts can result in semanti-
cally meaningless or even conflicting augmentations [Pel-
licer et al., 2023].

To address this issue, we introduce the variance-oriented
masker module, strategically substituting existing tokens in
x with [Mask]. In this module, we introduce η, a masking
budget (i.e., the fraction of masked tokens). For an original
instance x ∈ XORG, we apply T = ⌈|x| ∗ η⌉ [Mask]
tokens to randomly replace existing ones within x and
generate a masked sequence x̃. We repeat this random-



ized masking N times, resulting in an augmentation set
X̃ = {x̃1, x̃2, · · · , x̃N}, whose items will be screened by
the selection module.

4.2 COMPLEXITY-ENHANCED SELECTION
MODULE(CSM)

The variance-oriented masker module introduces random-
ness by masking existing tokens in input sequences, result-
ing in augmented samples with increasing variances. How-
ever, the lack of control in this random masking can lead
to arbitrary outcomes. To address this limitation, we intro-
duce the complexity-enhanced selection module, with the
objective of choosing the augmented sample with the high-
est semantic complexity. This enhancement is intended to
potentially benefit the subsequent effectiveness of encoder
training.

For this purpose, we utilize the Kantorovich-Rubinstein
Distance [Villani, 2016] to select one augmented sample
from X̃ with the maximum distance to the cohort for the
final augmentation. Let (X , γ) be a Polish metric space
with metric γ(x, y) where xi or x̃i are from. For any two
probability measures µ, v on X , the Kantorovich-Rubinstein
distance between µ and v is defined by

W (µ, v) = inf
p∈Π(µ,v)

∫
X
γ(x, y)dp(x, y),

s.t.
∫
X
p(x, y)dy = µ,

∫
X
p(x, y)dx = v.

(3)

where Π(µ, v) is the set of all couplings of µ and ν. We use
token frequency as µ and ν. In particular, µ is for X̃ and ν
is for the candidate from X̃ . γ is the pairwise token distance
of their vector representations, say from BERT tokenizer.
Basically, we select the one that has the minimum seman-
tic coverage among X̃ , equivalent to the highest semantic
complexity. The computation of Eq. (3) is carried out by
Sinkhorn algorithm Cuturi [2013] efficiently.

4.3 OPTIMIZATION

The proposed CSM module collaborates with VMM to gen-
erate a most effective augmented instance from a given
one. Drawing inspiration from the insights in Section 3, the
process is guided through iterative optimization, with the
objective of achieving progressive variance increase.

In simpler terms, our optimization process is an iterative
scheme that alternates between enhancing performance and
increasing variance, with both CSM and VMM embedded
within it. To this end, we introduce a probability generator
pω with parameters collected in ω such that

η = pω(Mϕ(X)). (4)

As a result, the masking probability is adaptive and subject
to optimization. Since we compute the variance in Z , it is
directly linked to M, specifically through its parameter set
ϕ. Whenever we update ϕ, the variance will consequently
change. We start with an encoder Mϕ0 , such as a pre-trained
BERT model with parameters ϕ0. Suppose at step k, let
X and Y represent the original samples and their labels,
respectively, and X̃k denote the corresponding augmented
samples generated through VMM and CSM using Mϕk and
ηk. Note that ηk = pωk(Mϕk(X)) by Eq. (4). We define
Dk = {X ∪ X̃k, Y ∪ Y k} as the combined data set at
step k, noting that Y k = Y . Subsequently, we perform the
following to update the encoder and the MLP layer as:

(θk+
1
2 , ϕk+ 1

2 ) = argmin
ϕ,θ|ϕk,θk

Lce(fθ ◦Mϕ, D
k), (5)

then

(ωk+1, θk+1, ϕk+1) = argmin
ω,θ,ϕ|ωk,ϕk+1

2 ,θk+1
2

Var(M
ϕk+1

2
(X̃k))

Var(Mϕ(X̃k))

+ Lce(fθ ◦Mϕ, D
k), (6)

where ◦ is functioncomposition, Lce(f,D) represents the
cross-entropy loss for model f on data D, and argminξ|ξkL
means minimizing L w.r.t ξ starting with ξk. The minimiza-
tion process involves a single iteration using gradient de-
scent, as chosen in our experiments. Eq. (5) aims to boost the
classification performance, while Eq (6) aims to increase the
variance before and after the augmentation, with the updated
encoder and the MLP layer. As the optimization progresses,
an increase in variance is expected, as also confirmed by
our experiments. Furthermore, the utility of augmented data
is maximized throughout the process, with intermediate
samples utilized for training the model. The optimization
process terminates upon reaching a predetermined maxi-
mum number of steps (epochs).

5 EXPERIMENTS

5.1 DATASETS

For the text classification task, we employ the following
benchmarks: (1) IMDB [Maas et al., 2011], SST-2, and
SST-5 [Socher et al., 2013] for sentiment classification, (2)
TREC [Li and Roth, 2002] for question-type classification,
(3) YELP-2 and YELP-5 [Zhang et al., 2015] for review
classification. The dataset statistics are provided in Table 2.

Low-resource setting. We downsample each dataset to
create smaller training and validation sets while pre-
serving the original distribution using Stratified Shuffle
Split [Shahrokh Esfahani and Dougherty, 2013]. The re-
sulting datasets (IMDB, SST-5, SST-2, TREC, YELP-2,
and YELP-5) contain different numbers of labeled training



Table 2: Statistics on employed text classification bench-
marks, where #Classes, #Train, #Test, #Min, #Max, #Me-
dian, and #Length represent, respectively, the number of
classes, instances in the training and test sets, minimum
length, maximum length, median length, and the average
length of input text.

Dataset #Classes #Train #Test #Min #Max #Median #Length

IMDB 2 25,000 25,000 2 2470 173 326
SST-2 2 7,791 1,821 2 56 18 18
YELP-2 2 560,000 38,000 1 1052 97 139
TREC 6 5,452 500 3 37 9 10
SST-5 5 9,643 2,210 2 56 18 19
YELP-5 5 650,000 50,000 1 1052 99 141

samples (80, 200, 80, 120, 80, and 200, respectively) and
validation samples (60, 150, 60, 60, 60, and 150, respec-
tively). To ensure fair comparison, we only consider one
augmented sample for every existing one.

Class-imbalanced setting. Following the experimental
setup outlined in [Ren et al., 2021], for binary classifica-
tion datasets like IMDB, YELP-2, and SST-2, we reduce
positive samples from the training set. That is, the negative
class within the training set comprises 1000 samples, while
the positive class contains only 20/50 training samples, de-
noted respectively as γimb = 2% and γimb = 5% (the ratio
between positive and negative samples). Additionally, we
utilize the Over-Sampling (OS) baseline in this scenario,
duplicating positive class training samples 50 times for an
imbalance ratio of 2% and 20 times for a ratio of 5%.

5.2 BASELINES AND EVALUATION

Our method is compared with the following baselines, in-
cluding EDA [Wei and Zou, 2019], Back-trans [Xie et al.,
2020], BERT-aug [Yi et al., 2021], AEDA [Karimi et al.,
2021], TAA [Ren et al., 2021], MTV [Wei et al., 2021],
Double Mix [Chen et al., 2022], AWD [Chen et al., 2023]
and SEMix [Zheng et al., 2023]. Those methods have been
discussed in Section 2. For all baselines, we reproduce their
results using open-sourced codes with the default param-
eter settings from the corresponding papers. For M4DA,
we employ the BERT-Base as the embedding encoders (the
impact from the encoder type is provided in the ablation
study). We utilize an Adam optimizer with a learning rate
of 4× 10−5. The training epoch is 20 for TREC and 10 for
the remaining datasets. All models are fine-tuned using a
NVIDIA A100 GPU server. In low-resource settings, we as-
sess methods using Accuracy(%). For imbalanced scenarios,
evaluation includes both Accuracy(%) and F1-score, where
higher values signify better classification performance. At
last, we conduct all experiments using three random seeds
and perform five runs under each seed, and report the mean
Accuracy and its standard deviation.

5.3 MAIN RESULTS

Table 3 presents an experimental comparison across six text
classification tasks in the low-resource scenario. From the
results, we derive the following insights: 1) In low-resource
contexts, our method consistently outperforms baselines
by a significant margin, showcasing the effectiveness of
M4DA in producing augmented samples that enhance sub-
sequent classification models. 2) Methods such as EDA
and BERT-aug, relying on random augmentation strategies,
exhibit larger variations in standard deviation due to their
dependency on specific parameters. Conversely, heuristic-
based methods like AEDA and TAA overlook sample diffi-
culty, employing fixed strategies for augmentation, result-
ing in suboptimal performance. In contrast, our method
is more adaptive and proficient in generating increasingly-
complex augmented samples, aligning with the model’s
learning progress. 3) Even with the original full datasets,
our method consistently surpasses existing baseline aug-
mentations across all datasets. This is exemplified by an
absolute-point accuracy increase of 2.2 compared to the
best baseline (AWD).

Table 4, on the other hand, presents the classification re-
sults under the class-imbalance scenario. The following
observations are made: 1) All methods generally perform
better in a less imbalanced scenario, as evidenced in SST-2,
where there is an average accuracy increase of 9.7% when
the imbalance ratio is raised from 2% to 5%. 2) Similar to
the low-resource scenario, M4DA significantly enhances
accuracy by an average of approximately 18.9%, surpass-
ing alternative methods. F1-score results in the imbalanced
scenario are available in Appendix B.

Overall, results from Table 3 and 4 highlight the superiority
of M4DA. Other methods do not exhibit a clear advantage in
either the low-resource or class-imbalanced scenarios. For
instance, while EDA achieves the second-best results in the
low-resource setting, DoubleMix is the second place in the
imbalanced scenario. Their inconsistent performance can be
attributed to either inherent data randomness or the inflexi-
bility in adapting to data difficulty. In contrast, our method
consistently outperforms others in both settings, demon-
strating its effectiveness in accurately classifying intents by
producing effective augmentations.

6 ABLATION STUDY

On the encoder flexibility. We begin by assessing the im-
pact of the underlying encoder. Specifically, we utilize the
RoBERTa-Base encoder [Zhuang et al., 2021]. Most exper-
imental settings, such as batch size and sequence length,
remain consistent with previous evaluations, except for the
learning rate, which is set to 3e−5. Comparison results are
presented in Table 5 and Table 6, where our method still
demonstrates the highest performance across all datasets.



Table 3: Comparison of classification accuracy with the low-resource setting. The best and the second best results are
indicated in bold and underline, respectively. The first and second number represents the performance obtained from the
low-resource and full dataset, respectively. Statistically significant gains achieved by the proposed method at p-values < 0.01
are marked with †.

Method IMDB SST-2 SST-5 TREC YELP-2 YELP-5

BERT-Base 64.7±3.4/87.5±0.1 67.6±4.2/91.2±0.1 36.1±3.9/51.8±0.1 69.3±5.3/97.0±0.1 73.8±4.2/96.1±0.1 36.6±4.6/65.1±0.2
+EDA 72.6±4.6/87.8±0.1 76.8±3.3/91.8±0.1 37.9±1.2/51.8±0.2 82.4±2.6/97.1±0.3 74.6±2.4/95.6±0.2 36.9±3.1/65.2±0.1
+Back-trans 73.9±4.3/87.5±0.1 77.7±3.1/91.3±0.1 35.2±2.1/51.2±0.2 79.0±3.8/96.9±0.4 77.4±3.3/95.4±0.2 40.3±4.3/65.1±0.1
+BERT-aug 75.9±3.3/87.3±0.1 74.4±6.8/91.2±0.1 35.9±1.5/51.5±0.2 78.6±2.3/97.0±0.1 77.4±2.2/95.1±0.1 43.4±3.8/65.3±0.1
+AEDA 75.3±3.5/87.9±0.2 79.5±2.5/91.0±0.2 37.1±2.3/52.4±0.1 80.2±6.3/97.6±0.1 78.4±3.7/95.7±0.1 41.2±3.0/65.9±0.2
+TAA 74.2±2.4/88.3±0.1 78.0±3.4/91.9±0.2 37.4±2.6/52.4±0.2 79.6±4.6/97.1±0.1 78.9±2.7/96.1±0.1 44.6±1.8/65.6±0.2
+MTV 76.3±4.2/87.5±0.1 77.3±1.3/91.5±0.1 36.4±1.4/52.6±0.1 77.1±3.6/96.8±0.2 78.4±2.4/95.8±0.2 40.2±3.0/65.4±0.1
+Double Mix 75.8±2.6/88.0±0.3 78.5±2.1/92.1±0.1 37.7±1.6/52.9±0.2 82.1±1.3/97.4±0.1 79.6±3.0/96.0±0.2 43.5±3.6/65.5±0.1
+AWD 77.4±3.6/88.2±0.1 81.2±3.9/92.2±0.3 39.6±2.8/52.8±0.1 83.7±4.4/97.3±0.2 80.5±3.9/96.1±0.1 45.3±4.1/66.0±0.2
+SEMix 76.8±3.1/88.1±0.1 81.0±3.7/92.0±0.2 38.4±2.2/52.7±0.2 83.0±3.7/97.3±0.3 81.4±2.4/96.2±0.1 46.0±4.0/65.8±0.1
+M4DA 79.6±2.1†/88.5±0.2† 82.3±1.9†/92.4±0.1† 42.5±1.5†/53.1±0.2† 84.8±1.8†/97.7±0.1† 83.2±1.5†/96.3±0.2† 48.4±2.7†/66.1±0.2†

Table 4: Comparison of the classification accuracy with the class-imbalance setting. The best and second-best results are
highlighted in bold and underline, respectively. Statistically significant gains achieved by the proposed method at p-values
< 0.01 are marked with †.

Method
SST-2 IMDB YELP-2

γimb = 2% γimb = 5% γimb = 2% γimb = 5% γimb = 2% γimb = 5%

BERT-Base 50.2±1.3 55.0±6.3 50.1±0.0 51.8±4.6 52.2±1.2 56.2±2.6
+OS 52.0±1.8 58.6±5.6 52.3±2.7 59.1±6.3 54.4±2.6 61.3±3.1
+EDA 52.9±3.9 59.2±5.9 57.3±5.7 64.1±7.2 59.3±2.2 68.6±3.4
+Back-trans 54.1±4.2 59.5±5.7 52.2±2.9 57.4±6.9 62.6±3.5 73.2±4.8
+BERT-aug 54.6±3.2 64.9±3.7 60.8±2.2 68.5±3.8 63.7±1.6 79.4±3.3
+AEDA 53.4±1.8 67.8±3.9 57.8±1.2 70.2±5.4 60.6±1.7 80.2±4.0
+TAA 56.5±3.7 66.1±4.9 56.9±2.8 66.7±4.2 65.8±2.8 77.5±4.5
+MTV 52.6±2.5 60.3±4.8 54.4±2.2 62.4±3.4 61.1±2.5 72.6±4.8
+Double Mix 55.1±2.5 68.5±3.9 59.3±2.1 69.6±4.0 63.8±1.9 81.9±2.7
+AWD 55.8±2.9 69.2±3.1 59.9±2.0 71.9±5.3 65.0±2.5 83.1±2.8
+SEMix 56.2±2.7 68.8±3.3 60.4±2.5 70.4±4.5 64.1±2.7 82.5±2.3
+M4DA 58.4±1.6† 70.3±4.4† 61.2±2.5† 73.4±3.8† 67.4±1.3† 84.9±3.1†

Additionally, F1-score results in the imbalanced scenario
are provided in Appendix B. Furthermore, we observe in-
consistent performance among other methods. For instance,
when transitioning the encoder from BERT to RoBERTa,
the EDA method shows improved performance in the low-
resource scenario but exhibits inferior performance in the
imbalanced case. These findings demonstrate the stability
and robustness of our method across underlying encoders
(both RoBERTa and BERT), consistently outperforming
current state-of-the-art models. An ablation study assess-
ing the impact of the model size is also conducted, utilizing
RoBERTa-Large as the encoder, and the result is provided in
Appendix C. To maintain consistency, subsequent ablation
studies are conducted using BERT-base.

On the model breakdown. We introduce three variants
to analyze M4DA: +[Mask], which augments the vanilla
model with random token masking; +VMM, which augments
samples with progressively increasing variance; and +CSM,
which further selects augmented samples with the highest se-
mantic complexity. We repeat all variants for five runs with
three random seeds, and the results are shown in Fig. 3. No-
tably, both components of +VMM and +CSM exhibit improve-
ments over the baseline. In particular, the +VMM achieves

a notable increase with an average of 2.3%. However, the
+CSM component contributes the most, with a further 3.5%
improvement. This comparison highlights the significant
contribution of VMM to ensuring performance gains.

IMDB SST-2 SST-5 TREC YELP-2 YELP-5
0

20

40

60

80
BERT-base
+[Mask]
+VMM
+CSM

Figure 3: Ablation results on six datasets are presented to
evaluate the impact of [Mask] based Data Augmentation,
VMM, and optimal transport.

Variance from augmentation. We also visualize the vari-
ance of augmented samples for each epoch across six
datasets in the low-resource case, with results shown in
Fig. 4. Taking the SST-5 dataset as an example, during the



Table 5: Comparison of classification accuracy with the low-resource setting with the RoBERTa-Base. The best and the
second best results are indicated in bold and underline, respectively. The first and second number represents the performance
obtained from the low-resource and full dataset, respectively. Statistically significant gains achieved by the proposed method
at p-values < 0.01 are marked with †.

Method IMDB SST-2 SST-5 TREC YELP-2 YELP-5

RoBERTa-Base 73.5±0.4/95.0±0.1 71.3±1.3/94.6±0.1 33.4±2.8/57.1±0.5 72.8±5.3/97.1±0.1 77.8±1.5/95.7±0.1 40.3±3.3/65.4±0.1
+EDA 84.2±1.5/94.7±0.2 82.8±5.8/94.7±0.1 40.9±3.9/57.2±0.5 82.2±6.9/97.0±0.2 88.4±1.9/95.9±0.1 46.1±4.2/65.8±0.1
+Back-trans 83.8±0.3/95.3±0.1 83.9±1.8/94.5±0.1 40.1±3.2/57.5±0.3 81.3±6.2/97.0±0.2 87.4±2.5/95.8±0.1 47.9±2.6/65.7±0.3
+BERT-aug 84.2±1.8/95.3±0.1 82.9±2.6/94.2±0.1 36.9±3.2/56.4±1.4 80.9±3.0/97.2±0.4 89.1±3.3/95.7±0.2 43.7±6.5/65.9±0.1
+AEDA 82.9±1.1/95.4±0.1 83.9±2.3/94.1±0.2 38.3±2.1/57.4±0.6 82.1±7.0/97.2±0.1 87.8±1.7/96.0±0.2 46.6±3.9/66.1±0.1
+TAA 84.0±1.2/95.1±0.1 83.2±2.7/94.9±0.1 40.3±1.7/57.3±0.4 81.9±4.3/97.9±0.1 89.3±2.6/96.1±0.2 47.5±2.8/66.0±0.2
+MTV 83.5±1.7/95.2±0.1 82.2±2.9/94.4±0.1 36.6±6.0/57.7±0.3 80.6±4.8/97.8±0.1 88.9±1.4/95.6±0.2 47.8±2.5/66.2±0.1
+Double Mix 84.6±0.9/95.0±0.1 83.5±1.6/94.8±0.1 41.6±2.6/57.5±0.5 81.5±3.6/98.0±0.1 89.6±1.6/95.9±0.2 46.9±2.7/65.9±0.2
+AWD 85.1±1.2/95.3±0.2 85.2±2.4/94.7±0.2 42.2±2.3/57.8±0.2 83.9±4.7/98.1±0.3 90.1±2.6/96.0±0.3 47.7±1.9/66.4±0.3
+SEMix 84.3±1.4/95.2±0.1 84.6±2.0/94.7±0.1 42.7±3.4/57.4±0.3 82.2±3.2/98.0±0.1 90.8±2.4/95.8±0.2 47.2±2.8/66.2±0.2
+M4DA 86.2±0.9†/95.6±0.1† 86.3±2.1†/95.0±0.2† 44.8±1.8†/57.9±0.3† 84.7±2.2†/98.3±0.2† 92.7±1.4†/96.2±0.1† 49.5±1.8†/66.6±0.2†

Table 6: Comparison of the classification accuracy with the class-imbalance setting with the RoBERTa-Base. The best
and second-best results are highlighted in bold and underline, respectively. Statistically significant gains achieved by the
proposed method at p-values < 0.01 are marked with †.

Method
SST-2 IMDB YELP-2

γimb = 2% γimb = 5% γimb = 2% γimb = 5% γimb = 2% γimb = 5%

RoBERTa-Base 52.3±1.7 57.3±3.8 51.3±0.8 53.6±1.5 52.8±1.0 57.6±2.4
+OS 54.5±2.1 63.2±4.3 52.5±1.6 62.7±2.7 56.0±2.3 65.8±3.8
+EDA 54.9±1.6 65.3±3.7 53.3±1.4 64.6±4.5 66.3±1.5 76.6±5.5
+Back-trans 55.6±2.6 67.3±2.6 57.3±2.8 67.7±5.8 72.6±2.0 79.3±3.8
+BERT-aug 57.2±3.4 70.0±4.1 56.4±3.3 66.1±3.9 64.3±2.5 78.3±6.5
+AEDA 63.1±6.0 76.6±6.2 60.6±2.7 72.3±4.9 67.6±2.2 79.6±4.5
+TAA 61.5±4.9 72.3±4.1 62.7±2.6 69.7±3.3 68.3±3.4 81.2±3.8
+MTV 59.5±2.0 68.7±6.1 58.8±3.2 70.4±4.6 67.7±2.3 75.6±4.8
+Double Mix 60.3±2.4 74.0±3.6 61.1±1.3 73.8±2.6 70.3±1.3 80.2±3.8
+AWD 62.9±3.3 78.2±5.3 62.4±1.8 76.6±4.3 73.7±2.6 82.8±4.5
+SEMix 61.4±2.6 77.1±4.3 62.0±2.7 75.4±3.2 74.4±2.9 81.9±3.9
+M4DA 65.7±3.6† 80.1±5.0† 63.5±2.3† 78.7±3.7† 76.8±2.3† 84.6±5.4†

first five epochs, the variance values exhibit an increasing
trend: {0.04, 0.15, 0.28, 0.32, 0.36}. This indicates the ef-
fectiveness of our strategy in promoting data variance.
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Figure 4: The variance trend of augmented samples at each
epoch from six datasets.

On the masking ratio. In this experiment, we adjust the

masking rate η of augmented samples during training across
six datasets in the low-resource scenario, illustrating its
variability within specific ranges. The results are summa-
rized in Table 7. For example, the YELP2 dataset exhibits
a wide range of masking rates, from a minimum of 38% to
a maximum of 68%, indicating significant variation in aug-
mentation. Conversely, the IMDB dataset shows a narrower
range (from 20% to 39%). Obviousely, the masking rate
η is determined by the employed data itself, with further
discussion provided in Appendix D.

Table 7: The masking rate variation of augmented samples
across six datasets.

IMDB SST2 SST5 TREC YELP2 YELP5

Min 20 % 26 % 28 % 28 % 38 % 20 %
Max 39 % 43 % 42 % 44 % 68 % 59 %
Avg 32 % 31 % 37 % 39 % 56 % 40 %

On the augmented samples. M4DA augments one original
sample ten times to create ten candidates, which are then
selected using the CSM during training. To examine the



impact of the number of augmented samples, we vary the
number of augmentations to 5, 10, 15, and 20. The results
are presented in Table 8. Clearly, providing more augmented
samples allows the model to choose better augmentations.
For example, setting the number of augmented samples to
10 yields an average improvement of 1.4% over 5 across
all six datasets. However, when using 15 candidates, the
increase is insignificant, indicating that moderate value (i.e.,
10) typically results in commendable performance.

Table 8: The ablation results on six datasets to evaluate the
impact from the numbers of augmented samples.

IMDB SST-2 SST-5 TREC YELP-2 YELP-5

5 78.4±2.2 81.2±1.1 40.6±1.7 82.9±1.4 82.4±1.3 46.7±2.2
10 79.6±2.1 82.3±1.9 42.5±1.5 84.8±1.8 83.2±1.5 48.4±2.7
15 80.2±3.6 82.7±2.4 42.9±1.9 85.2±2.6 83.6±2.1 48.8±3.2
20 80.4±3.8 82.8±2.6 43.0±2.2 85.4±2.8 83.8±2.3 48.9±3.3

On the augmentation and selection strategy. The follow-
ing experiments aim to evaluate the effectiveness of the
proposed VMM and CSM. For comparison purposes, we
substitute VMM with the traditional masking-then-filling
(MLM) approach, and we explore three strategies for CSM:
Random selection, Mahalanobis and Cosine-based similar-
ity selection. Results in Table 9 reveal that VMM outper-
forms MLM, with the latter potentially introducing conflict-
ing tokens. Additionally, CSM outperforms other selection
strategies, with the Mahalanobis-distance based approach
as the runner-up. However, the random selection strategy
introduces variability in the difficulty of chosen samples,
leading to a larger standard deviation.

Table 9: Ablation study on different strategies for augment-
ing samples or selecting final samples.

Dataset MLM Random Mahalanobis Cosine M4DA

IMDB 79.0±2.8 77.9±4.6 78.8±2.6 78.3±3.4 79.6±2.1
SST-2 81.7±3.1 80.5±3.4 81.4±2.0 80.9±1.6 82.3±1.9
SST-5 41.9±2.3 39.6±2.9 41.1±1.8 40.4±0.9 42.5±1.5
TREC 84.0±2.3 83.0±4.8 84.0±2.6 83.6±2.5 84.8±1.8
YELP-2 82.6±2.5 81.2±2.5 82.4±0.8 81.8±2.2 83.2±1.5
YELP-5 47.7±3.6 45.8±3.6 47.0±2.9 46.4±2.3 48.4±2.7

On the Computational Complexity. In our method, the
primary computational overhead arises from the CSM mod-
ule, where the Kantorovich-Rubinstein distance is computed
with a complexity of O(p3 log(p)) [Altschuler et al., 2017].
Here, p represents the number of unique tokens from the
input text. Yet, the computational complexity of M4DA is
comparable to existing methods such as DoubleMix and
TAA, as shown in Table 10. For instance, for DoubleMix,
each sample is augmented N times, resulting in N aug-
mented samples used for model fine-tuning. Conversely,
M4DA selects the most challenging augmentation per sam-
ple. TAA, on the other hand, employs the Sequential Model-
based Global Optimization technique to optimize the aug-
mentation policy. This process involves accumulating the

size of the observation history and incurs significant com-
putational costs for evaluating policies and updating the
surrogate model, making it very time-consuming.

Table 10: Computational efficiency of various methods for
training each epoch’s samples in terms of GPU calculation
time (seconds).

Method IMDB SST2 SST5 TREC YELP2 YELP5 Average

TAA 1430 491 375 298 957 688 707
DoubleMix 328 114 303 128 337 658 311
M4DA 216 86 206 85 189 447 204

7 CONCLUSION

This paper introduces a novel augmentation method,
Mask-for-Data Augmentation (M4DA), which
strategically masks tokens from original samples for aug-
mentation. Specifically, M4DA incorporates the Variance-
Oriented Masker Module to introduce randomness by mask-
ing existing tokens in input sequences, thereby generating
augmented samples with increasing variances. Additionally,
we introduce the Complexity-Enhanced Selection Module
with the goal of selecting the augmented sample with the
highest semantic complexity. Extensive experiments demon-
strate the superiority of M4DA over baseline methods in
six highly-competitive benchmarks, encompassing scenar-
ios with both limited and imbalanced training resources.
Our method consistently outperforms existing approaches,
showcasing its robustness and efficacy across diverse set-
tings. In future work, we aim to explore more effective Data
Augmentation techniques and extend the application of our
approach to other downstream tasks.
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A EFFECT OF AUGMENTATIONS

We also computed the metrics on the IMDB and YELP-2 datasets, and the results are presented in Fig. 5 and Fig. 6. Color is
employed to distinguish between different augmentation methods. For instance, the VII method (GPT3Mix, as shown in
Table 1) is represented by the Blue color, while the IX (TreeMix) method is denoted by Red. Correspondingly, the index
column in Table 1 corresponds to the method ID utilized in Fig. 1. Specifically, for each original sample XORG, using each
method mentioned in Table 1 generates an augmented sample XAUG. The augmented samples and original samples are
simultaneously used to train the naive model M. The augmented model M′ is then tested on the training set.
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Figure 5: The resulting metrics on the IMDB dataset. The naive model M achieves the classification accuracy of 58.3±6.2,
Var(Z) is 0.078±0.102, and Cov(Z) is 0.371±0.071. AccAUG, Var(Z ′), and Cov(Z ′) respectively represent the differences
between the augmented model augmented model M′ and the naive model M.

B F1 SCORE IN IMBALANCED SCENARIOS

To comprehensively evaluate the imbalance scenarios, we used the F1 score metric, with the results shown in Table 11 and
Table 12. The following observations were noted: (1). All methods seemingly perform better in less imbalanced scenarios,
similar to the Accuracy (%) metric. For example, in SST-2, the average F1 score increases by 5.7% and 7.4%, respectively,
when the imbalance ratio rises from 2% to 5%; and (2). Our method significantly boosts the F1 score by an average of
approximately 11.6% and 14.6%, respectively, outperforming other methods. These findings highlight the effectiveness of
our method in handling imbalanced scenarios.
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Figure 6: The resulting metrics on the YELP-2 dataset. The naive model M achieves the classification accuracy of 69.6±1.5,
Var(Z) is 0.186±0.094, and Cov(Z) is 0.359±0.015. AccAUG, Var(Z ′), and Cov(Z ′) respectively represent the differences
between the augmented model augmented model M′ and the naive model M.

Table 11: Comparison of the classification F1 score performance under the class-imbalance setting. The best and second-best
results are highlighted in bold and underline, respectively. Statistically significant gains achieved by the proposed method at
p-values < 0.01 are marked with †.

Method
SST-2 IMDB YELP-2

γimb = 2% γimb = 5% γimb = 2% γimb = 5% γimb = 2% γimb = 5%

BERT-Base 61.3±0.8 62.7±2.3 63.8±0.6 67.2±2.1 67.5±0.7 69.5±1.4
+OS 64.9±1.2 68.1±1.8 67.4±1.5 71.7±3.6 68.3±1.0 71.9±1.7
+EDA 66.7±2.3 70.7±1.7 69.5±1.1 72.1±2.8 70.1±1.3 76.0±1.3
+Back-trans 67.8±2.9 71.4±1.6 67.1±1.2 69.7±1.7 72.6±2.0 79.1±2.6
+BERT-aug 68.4±2.4 73.3±2.2 72.3±1.1 74.1±1.9 72.7±1.1 82.1±2.1
+AEDA 67.2±1.1 75.7±2.7 69.9±0.7 75.5±2.8 71.2±2.5 83.6±1.4
+TAA 69.1±0.9 74.1±2.4 69.3±1.3 72.8±1.4 74.3±1.8 80.5±3.2
+MTV 65.9±1.7 72.6±2.2 68.7±1.7 72.0±1.1 72.0±1.2 77.4±2.1
+Double Mix 68.7±0.6 76.6±2.0 70.7±1.1 75.3±1.9 73.0±1.3 84.9±1.2
+AWD 68.7±1.2 77.0±1.4 71.0±1.7 76.0±1.7 74.1±2.4 86.0±1.4
+SEMix 68.9±1.5 76.9±2.6 71.3±0.9 75.8±1.9 73.9±1.9 85.3±2.5
+M4DA 70.8±0.7† 77.5±1.8† 73.0±0.8† 78.6±1.6† 76.1±0.8† 87.2±1.8†

Table 12: Comparison of the classification F1 score performance under the class-imbalance setting. The best and second-best
results are highlighted in bold and underline, respectively. Statistically significant gains achieved by the proposed method at
p-values < 0.01 are marked with †.

Method
SST-2 IMDB YELP-2

γimb = 2% γimb = 5% γimb = 2% γimb = 5% γimb = 2% γimb = 5%

Roberta-Base 63.7±0.6 69.8±1.2 62.6±1.8 64.2±2.1 64.2±1.4 70.2±1.2
+OS 65.2±2.5 73.2±2.6 64.0±2.0 72.6±1.8 69.7±1.2 74.3±2.2
+EDA 67.7±1.9 74.5±1.7 65.1±0.4 73.3±1.4 74.9±2.1 80.6±1.6
+Back-trans 69.0±2.7 75.1±1.8 70.3±0.8 75.1±0.9 78.1±1.4 82.0±0.9
+BERT-aug 70.3±1.5 76.7±2.0 69.5±2.6 74.5±1.7 72.9±1.8 81.3±1.8
+AEDA 73.0±0.4 80.8±2.2 71.8±1.5 78.4±0.6 75.1±1.9 82.4±2.2
+TAA 72.1±1.6 78.0±1.8 72.8±1.2 76.3±1.7 76.0±1.6 83.2±1.1
+MTV 71.2±1.8 76.6±0.7 70.6±2.8 76.9±0.8 75.2±1.7 80.3±1.3
+Double Mix 71.4±1.2 79.6±1.3 72.0±2.1 78.4±1.1 77.2±1.8 83.0±1.0
+AWD 72.7±1.4 81.8±2.2 72.5±1.2 80.9±1.0 79.3±2.2 84.6±0.8
+SEMix 72.0±1.7 81.2±1.4 72.2±1.3 80.4±1.3 79.5±2.1 84.1±1.2
+M4DA 74.1±1.8† 83.9±1.2† 73.8±1.6† 82.6±1.5† 81.2±1.6† 86.8±1.3†

C ON THE VARYING MODEL SIZES

We conducted an ablation study to evaluate the impact of varying model sizes, using RoBERTa-Large as the encoder while
keeping all other configurations constant. The evaluation includes the methods BERT-aug, AEDA, Double-Mix, AWD,
and SEMix, chosen for their demonstrated superior performance when using BERT-Base. The classification accuracy for
low-resource and class-imbalance scenarios is presented in Table 13 and Table 14, respectively. Across these settings, our



method consistently delivered the highest performance across all datasets, validating its robust generalization capacity across
different baselines and model sizes.

Table 13: Comparison of classification accuracy with the low-resource setting with the RoBERTa-Large. The best and the
second best results are indicated in bold and underline, respectively. The first and second number represents the performance
obtained from the low-resource and full dataset, respectively. Statistically significant gains achieved by the proposed method
at p-values < 0.01 are marked with †.

Method IMDB SST-2 SST-5 TREC YELP-2 YELP-5

RoBERTa-Large 77.3±1.8 76.8±2.2 37.2±2.5 78.0±3.6 84.3±2.9 44.8±3.8
+BERT-aug 86.8±2.7 84.5±3.1 40.6±4.0 83.3±3.9 91.6±2.6 47.2±5.2
+AEDA 84.3±2.0 85.4±2.9 42.3±3.5 85.6±5.5 89.1±2.4 48.9±4.0
+Double Mix 86.4±2.3 86.2±2.4 44.9±2.1 84.8±2.2 91.0±1.9 51.3±2.2
+AWD 88.0±3.8 88.6±3.1 46.7±3.8 85.1±2.4 93.0±2.8 50.8±3.2
+SEMix 87.6±2.7 86.9±2.6 47.2±1.1 84.2±3.7 92.2±2.9 49.6±3.5
+M4DA 88.9±1.6† 89.5±2.3† 48.4±1.6† 86.7±2.0† 94.1±1.8† 52.3±2.1†

Table 14: Comparison of the classification performance with the class-imbalance setting with the RoBERTa-Large. The
best and second-best results are highlighted in bold and underline, respectively. Statistically significant gains achieved by
the proposed method at p-values < 0.01 are marked with †.

Method
SST-2 IMDB YELP-2

γimb = 2% γimb = 5% γimb = 2% γimb = 5% γimb = 2% γimb = 5%

RoBERTa-Large 53.4±1.3 59.6±2.7 51.8±1.1 57.2±1.9 54.8±1.6 59.2±1.9
+OS 55.1±1.9 62.8±3.0 52.2±1.4 59.9±2.2 55.6±1.3 61.5±1.6
+BERT-aug 64.4±3.3 75.5±4.3 61.7±3.1 71.0±3.4 67.3±3.4 80.6±5.4
+AEDA 71.1±5.1 77.3±5.4 63.2±2.7 75.5±3.8 70.8±2.9 84.7±3.9
+Double Mix 68.2±3.4 82.8±2.8 64.6±1.9 77.4±2.5 74.8±1.6 82.6±2.7
+AWD 72.3±2.1 82.6±3.1 68.1±2.0 79.8±2.8 78.4±1.7 87.6±3.2
+SEMix 73.0±3.7 83.5±2.8 66.9±2.6 80.3±3.6 75.1±2.4 84.0±4.3
+M4DA 74.2±2.9† 85.0±2.7† 69.3±1.4† 82.9±2.8† 80.3±2.4† 89.7±3.8†

D DISCUSSION ON THE MASKING RATE

The initial masking rate is set at 5%, and a condition with a minimum of one masked token per augmentation is also
enforced. That is, we ensure the inclusion of at least one [Mask] in each augmentation. The original sample is omitted
from augmentation in the extreme case where only a single token is present. Furthermore, the masking probability η is
entirely data driven, i.e., dynamically calculated during model fine-tuning. Put simply, the value of η is derived from ω (as
illustrated in Eq. 4), while ω is optimized using Eq. 6. The loss function shows a balance between augmenting data variance
and ensuring the model’s predictions align closely with the ground-truth labels. Arguably, if the level of missingness is high,
the loss incurred from model predictions will escalate, thereby preventing excessive η.


	Introduction
	Related work
	Revisiting Data Augmentation
	Effect of Augmentations

	Proposed Method
	Variance-oriented Masker Module(VMM)
	Complexity-enhanced Selection Module(CSM)
	Optimization

	Experiments
	Datasets
	Baselines and Evaluation
	Main Results

	Ablation study
	Conclusion
	Effect of Augmentations
	F1 Score in Imbalanced Scenarios
	On the varying model sizes
	Discussion on the masking rate

