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Abstract

Language Language Models (LLMs) face001
safety concerns due to potential misuse by ma-002
licious users. Recent red-teaming efforts have003
identified adversarial suffixes capable of jail-004
breaking LLMs using the gradient-based search005
algorithm Greedy Coordinate Gradient (GCG).006
However, GCG struggles with computational007
inefficiency, limiting further investigations re-008
garding suffix transferability and scalability009
across models and data. In this work, we bridge010
the connection between search efficiency and011
suffix transferability. We propose a two-stage012
transfer learning framework, DeGCG, which013
decouples the search process into behavior-014
agnostic pre-searching and behavior-relevant015
post-searching. Specifically, we employ direct016
first target token optimization in pre-searching017
to facilitate the search process. We apply018
our approach to cross-model, cross-data, and019
self-transfer scenarios. Furthermore, we intro-020
duce an interleaved variant of our approach,021
i-DeGCG, which iteratively leverages self-022
transferability to accelerate the search process.023
Experiments on HarmBench demonstrate the024
efficiency of our approach across various mod-025
els and domains. Notably, our i-DeGCG out-026
performs the baseline on Llama2-chat-7b with027
ASRs of 43.9 (+22.2) and 39.0 (+19.5) on028
valid and test sets, respectively. Further analy-029
sis on cross-model transfer indicates the pivotal030
role of first target token optimization in leverag-031
ing suffix transferability for efficient searching.032

1 Introduction033

Large Language Models (LLMs) have become inte-034

gral to everyday decision-making processes (Ope-035

nAI, 2023; Pichai, 2023; Touvron et al., 2023).036

However, alongside the convenience they offer,037

there is increasing concern about their potential038

to produce harmful and ethically problematic re-039

sponses to user queries, which raises significant040

safety issues. In response to these concerns, recent041
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Figure 1: GCG Training Dynamics of Cross Entropy
Loss for tokens located at different positions in the tar-
get sequence. We plot the changes in cross-entropy loss
of target tokens at positions [1, 2, 4, 8] every 100 steps.
This discrepancy in loss dynamics highlights the impor-
tance of first token optimization in GCG.

efforts have focused on aligning LLMs with hu- 042

man preferences to enhance the responsibility and 043

harmlessness of their responses (Bai et al., 2022; 044

Ouyang et al., 2022; Korbak et al., 2023). De- 045

spite these alignment efforts, LLMs still remain 046

vulnerable to potential attacks (Wei et al., 2023). 047

Recent studies have revealed various types of jail- 048

break attacks (Wei et al., 2023; Albert, 2023; Kang 049

et al., 2023; Lapid et al., 2023; Liu et al., 2023a), 050

which involve using jailbreak prompts alongside 051

malicious queries to compel aligned LLMs to gen- 052

erate harmful and unethical responses, thereby cir- 053

cumventing the safety alignment constraints. 054

One notable attack, Greedy Coordinate Gradient 055

(GCG) (Zou et al., 2023), utilizes gradient informa- 056

tion to search for adversarial prompts, also known 057

as adversarial suffixes, which can be appended 058

to malicious queries to elicit harmful responses. 059

These adversarial suffixes consist of random tokens 060

and are generally not comprehensible to humans. 061

However, deriving these suffixes through gradient- 062

based searching is computationally inefficient. The 063
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exponentially increasing search space of random064

suffixes with length expansion presents significant065

challenges to search efficiency. Besides, the ran-066

dom initialization for each search is inefficient, in-067

curring additional but unnecessary searching costs.068

Recent work (Zou et al., 2023) suggests that the069

adversarial suffixes may possess universal transfer-070

ability across models, indicating that the previously071

searched suffix could serve as an effective initial-072

ization. Furthermore, Meade et al. (2024) finds that073

models aligned through preference optimization074

exhibit robustness against suffix transfer. Despite075

these insights, prior works primarily focused on076

direct transfer, which shows limited transferability077

across different models or data domains. The po-078

tential for using adversarial suffixes as initialization079

for transfer learning remains largely unexplored.080

In this work, motivated by the challenges in op-081

timizing the gradient-based search process with082

effective initial adversarial suffixes, we explore083

how to leverage the transferability of these suf-084

fixes during optimization. Our empirical investi-085

gation has identified the importance of optimizing086

the first target token loss, as illustrated in Fig. 1.087

We attribute the inefficiency in searching to the088

cross-entropy optimization goal applied to the en-089

tire target sentence. To address this, we propose090

a two-stage transfer learning framework, DeGCG,091

which decouples the original search process into092

two stages: behavior-agnostic pre-searching and093

behavior-relevant post-searching:094

• In the pre-searching stage, we perform a095

simplified task, First-Token Searching (FTS),096

searching for adversarial suffixes with a097

behavior-agnostic target such as “Sure”, en-098

abling LLMs to elicit the first target token099

without refusal.100

• In the post-searching stage, we start with the101

suffix obtained from the pre-searching stage102

and conduct Content-Aware Searching (CAS)103

with a behavior-relevant target. This stage104

transfers the behavior-agnostic initialization105

to behavior-relevant suffixes.106

We found that suffixes obtained through first-107

token searching can be effectively transferred108

across different models and datasets with further109

searching. Additionally, we leverage the self-110

transferability of adversarial suffixes and propose111

an interleaved training algorithm, i-DeGCG, which112

performs FTS and CAS in an interleaved manner.113

We evaluate our proposed method on the Harm- 114

Bench across various LLMs. Our experimental 115

results demonstrate the effectiveness and efficiency 116

of the DeGCG framework and i-DeGCG variant, 117

highlighting the success of suffix transfer through 118

two-stage learning and underscoring the impor- 119

tance of initialization for search efficiency. 120

2 Related Work 121

2.1 Safety-Aligned LLMs 122

LLMs have demonstrated impressive capabilities 123

but raised safety concerns about the potential for 124

malicious usage. To mitigate these concerns, ef- 125

forts have been made to supervised fine-tuning of 126

LLMs with instructions aimed at ensuring help- 127

fulness and safety (Chung et al., 2022; Wei et al., 128

2021; Touvron et al., 2023), and align LLMs with 129

human preference, known as Reinforcement Learn- 130

ing from Human Feedback (RLHF) (Christiano 131

et al., 2017; Ouyang et al., 2022; Korbak et al., 132

2023; Bai et al., 2022). RLHF involves training 133

LLMs based on the rewards derived from models 134

that have been trained on human preference data. 135

Recent studies show that models aligned by pref- 136

erence optimization achieve improved robustness 137

against adversarial attacks compared with models 138

by fine-tuning (Meade et al., 2024). Despite the 139

efficacy of these alignment methods in promoting 140

helpfulness and safety, LLMs remain susceptible 141

to certain cases in which they still produce ma- 142

licious responses under jailbreak attacks (Kang 143

et al., 2023; Hazell, 2023; Albert, 2023). Our study 144

mainly focuses on different safety-aligned models 145

to explore the effectiveness of jailbreak attacks. 146

2.2 Jailbreak Attacks on Aligned LLMs 147

Existing red teaming has dedicated substantial ef- 148

forts to identifying various jailbreak attacks. Ini- 149

tial jailbreak attacks involve the manual crafting 150

of input prompts. A notable instance is the “Do- 151

Anything-Now” attack, which is implemented by 152

compelling LLMs to play a role that can do any- 153

thing and respond to any query without refusal, 154

thus bypassing safety constraints (Albert, 2023; Liu 155

et al., 2023b). Subsequent advancements have au- 156

tomated the creation of these stealthy prompts (Liu 157

et al., 2023a; Zhu et al., 2023). Additionally, ad- 158

versarial prompts have been identified in GCG, 159

which utilizes gradient information to automati- 160

cally generate effective adversarial prompts (Zou 161

et al., 2023; Shin et al., 2020). Furthermore, their 162
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Figure 2: Our DeGCG framework involves two main stages. In the pre-searching stage, we perform the first-token
searching with LLM A on Behavior Set A. In the post-searching/fine-tuning stage, we perform content-aware
searching with LLM B on Behavior Set B. The Suffix-FTS obtained in the pre-searching serves as the initialization
for the post-searching. Cross-Data Transfer uses the same LLM but distinct sets, while Cross-Model Transfer
uses the same set but distinct LLMs. For Interleaved Self-Transfer, we use the same LLM and set but alternating
between FTS and CAS.

results indicate the transferability and universal-163

ity of these adversarial prompts. Recent work has164

also unveiled jailbreak attacks within the context165

of multilingual scenarios (Deng et al., 2023) and166

non-natural languages such as ciphers (Yuan et al.,167

2023), highlighting the risk for all open-source168

LLMs with modified decoding strategies (Huang169

et al., 2023). Our work focuses on adversarial suf-170

fix transferring learning across aligned LLMs and171

associates transferability with search efficiency.172

3 Method173

3.1 Preliminary174

In this section, we revisit the Greedy Coordinate175

Gradient (GCG) attacks. Let X denote the mali-176

cious prompts, such as “Tell me how to make a177

bomb”, the objective of the GCG attack is to find178

the suffix S = {si}LS
i=1 with length LS , so that by179

using T = {X,S} = {t1, t2, ..., tn} as input, the180

victim model can generate responses starting from181

the target sequence Y = {tn+1, tn+2, ..., tn+m},182

such as “Sure, here is how to make a bomb”. Con-183

sequently, the joint target distribution is represented184

by p(tn+1:n+m|t1:n). The goal of searching for the185

target sequence can be formulated to minimize the186

following negative log-likelihood: 187

min
S
L(X,S)

=min
S

[
−

m∑
k=1

log p(tn+k|t1:n+k−1)

]
(1) 188

GCG searches for adversarial suffixes through 189

multiple iterations, adopting a greedy search strat- 190

egy in each iteration. In one iteration, it selects the 191

candidate suffix with the lowest L from the batch 192

{Si}Bi=1. To construct the candidate batch, it first 193

computes the negative gradient −∇esi
L with re- 194

spect to the one-hot vector representation esi and 195

selects tokens from the vocabulary with the top K 196

values of −∇esi
L, forming the token candidate set 197

at each position. Then it uniformly replaces the 198

token si at each position with random tokens from 199

the obtained token candidate set, resulting in one 200

suffix candidate with one replacement. 201

To optimize the adversarial suffixes using mul- 202

tiple malicious prompts {X(j)}, the aggregated 203

gradient −
∑

j ∇esi
L(X(j),S) and the aggregated 204

loss
∑

j L(X(j),S) are used instead to construct 205

candidate batches and select candidate suffixes. 206
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Algorithm 1 i-DeGCG Algorithm

Input: Initial suffix S0, behavior set {X(j)}, iter-
ations T , batch size B, FTS threshold ϵ1, CAS
threshold ϵ2, stage flag f ∈ {0, 1}, maximum
steps Tf for one stage

1: ▷ Initialize behavior set and accumulated step
2: mj ← 1, tac ← 0
3: for t = 1, 2, ..., T do
4: ▷ Construct suffix batch under specific loss
5: if f = 0 then
6: L ← LFTS , ϵ← ϵ1
7: else
8: L ← LCAS , ϵ← ϵ2
9: end if

10: Get {St
1:B} by −

∑mj

j ∇esi
L(X(j),St−1)

11: St ← argminSt
i

∑mj

j L(X(j),St
i)

12: ▷ Update stage flag
13: if ∀j ∈ [1,mj ],L(X(j),St) ≤ ϵ∨ tac ≥ Tf

then
14: f ← ¬f , tac ← 0
15: else
16: tac ← tac + 1
17: end if
18: ▷ Update behavior set
19: if ∀j ∈ [1,mj ],LFTS(X

(j),St) ≤ ϵ1 ∧
LCAS(X

(j),St) ≤ ϵ2 then
20: mj ← mj + 1
21: end if
22: end for
Output: adversarial suffix ST

3.2 DeGCG207

The challenge of the GCG attack is primarily as-208

sociated with the first-token optimization in Fig. 1.209

However, Eq.1 assigns equal importance to each tar-210

get token, regardless of varying levels of difficulty211

associated with optimizing each one. The multi-212

objective optimization introduces noise into the213

more challenging first-token optimization process,214

where significant loss signals could be biased by215

other competitors, thereby reducing the efficiency216

of the search.217

To address this issue, we propose decoupling the218

search process. Inspired by the popular pre-training219

and fine-tuning paradigm, we introduce a new220

framework, DeGCG, which separates the search221

into behavior-agnostic first-token pre-searching222

and behavior-relevant content-aware fine-tuning.223

In this framework, we link transfer learning with224

searching efficiency. Our DeGCG tunes tokens225

in discrete space in a manner analogous to how 226

parameters in continuous space are tuned during 227

the pre-training and fine-tuning process. In this 228

analogy, the counterpart of parameter space is the 229

searching space in DeGCG. An overview of our 230

method is presented in Fig. 2. 231

3.3 First-Token Searching 232

We introduce the first-token searching (FTS) task in 233

the pre-searching stage. FTS aims to find a univer- 234

sal and generalizable suffix that elicits a response 235

without refusal, applicable to all behaviors. Specif- 236

ically, the goal of FTS in the pre-searching stage is 237

defined as follows: 238

min
S

∑
j

LFTS(X
(j),S)

=min
S

∑
j

[
− log p(t

(j)
n+1|t

(j)
1:n)

] (2) 239

In this task, the suffix is optimized based on 240

the gradient derived solely from the first target to- 241

ken, resulting in a direct and efficient optimization. 242

The first target token is typically behavior-agnostic, 243

such as “Sure” or “Here”. Therefore, the obtained 244

suffixes SFTS serve as a general initialization with 245

a low cross-entropy loss for the first token. Start- 246

ing the search from an effective initialization with 247

a low first-token loss helps to mitigate the ineffi- 248

ciency associated with starting each search from a 249

high first-token loss, reducing the time and compu- 250

tational resources accordingly. 251

3.4 Context-Aware Searching 252

Suffixes obtained from FTS are effective for 253

behavior-agnostic targets but fall short in eliciting 254

behavior-relevant responses. Therefore, we pro- 255

pose to fine-tune the suffix in the pre-searching 256

stage by performing content-aware searching 257

(CAS) with behavior-relevant targets, such as “how 258

to make a bomb”. Given that this step builds upon 259

the success of FTS, we maintain the FTS target in 260

this step as well. Specifically, the goal for CAS is 261

defined as follows 262

min
S

∑
j

LCAS(X
(j),S)

=min
S

∑
j

m∑
k=1

log p(t
(j)
n+k|t

(j)
1:n+k−1)

(3) 263

To transfer the pre-searched suffix effectively, 264

we explore three types of CAS: 265
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Model A
Model B Starling-LM Llama2-chat Mistral-Instruct OpenChat-3.5

Method Valid Test Valid Test Valid Test Valid Test

GCG-M 81.4 81.2 21.7 19.5 81.7 84.4 76.4 69.4
GCG-T 76.9 74.5 20.3 15.9 85.3 84.1 83.1 78.1

Starling-LM DeGCG 78.0 86.2 29.3 29.6 78.0 81.8 85.4 79.2

Llama2-chat DeGCG 90.2 82.4 43.9 39.0 95.1 86.8 85.4 78.6

Mistral-Instruct DeGCG 90.2 85.5 43.9 28.9 85.4 84.3 82.9 71.7

OpenChat-3.5 DeGCG 90.2 85.5 31.7 25.2 87.8 78.6 80.5 81.1

Table 1: Performance comparison (ASR) in Cross-Model Transferring across four different models on both the
Validation (Valid) and the Test sets. Model A and Model B refer to source models and target models respectively.

Cross-Data Transfer uses the pre-searched suffix266

as an initialization when the dataset in CAS dif-267

fers from the one in FTS. In this scenario, domain-268

specific data, such as chemical biology and cyber-269

crime, are utilized to fine-tune the pre-searched270

suffix with the content-aware target.271

Cross-Model Transfer employs the pre-searched272

suffix as an initialization when the LLM in CAS273

differs from the one in FTS.274

Self-Transfer applies when FTS and CAS use the275

same dataset and LLM. This is detailed in the fol-276

lowing Section 3.5.277

3.5 Interleaved Self-Transfer278

Leveraging the self-transferability of suffixes and279

enhance the efficiency of the search process, we280

propose an interleaved variant of our approach, i-281

DeGCG. i-DeGCG integrates FTS and CAS as a282

meta-process and dynamically alternates between283

them. Specifically, in each iteration, it uses the suf-284

fix obtained from FTS as the initialization for CAS285

and then, conversely, uses the suffix from CAS as286

the initialization for FTS. This approach maintains287

a dynamic balance between generating the first288

token and producing behavior-relevant responses.289

The iterative process allows continuous refinement290

of the suffix, leveraging the strength of both FTS291

and CAS for enhanced overall performance. We292

summarize the algorithm in Alg.1.293

4 Experiments294

4.1 Setup295

Datasets. We utilize HarmBench (Mazeika et al.,296

2024) to compare our approach and the baseline.297

We use the text-only set which comprises three298

types of behaviors: Standard, Copyright, and Con-299

textual. Detailed statistics of HarmBench can be300

found in the appendix. In our experiments, we use301

validation and test splits provided by HarmBench.302

Specifically, we use the standard behavior subsets 303

of both validation and test sets. The validation set 304

serves as the training set for searching suffixes, and 305

we evaluate performance on the test set. 306

Implementation Details. We evaluate our 307

method on open-sourced models. Specifically, we 308

utilize LLama2-chat (Touvron et al., 2023), Mistral- 309

Instruct (Jiang et al., 2023), OpenChat-3.5 (Wang 310

et al., 2023), and Starling-LM-alpha (Wang et al., 311

2023) in our experiments. Due to memory con- 312

straints, we use 7b models for all experiments. 313

For evaluation, we report the classifier-based at- 314

tack success rate (ASR). We consider the baseline 315

GCG-M from the HarmBench that uses GCG for 316

suffix searching with multiple behaviors. To en- 317

sure reproducibility and fair comparison, we use 318

the open-source classifier provided in HarmBench. 319

This classifier is a fine-tuned LLama2-13b model, 320

which achieves strong performance on a manually- 321

labeled validation set. 322

4.2 Main Results 323

Cross-Model Transferring. To evaluate the effi- 324

cacy of suffixes trained through FTS on one model 325

transferring to another model via token-level fine- 326

tuning, we conduct cross-model transferring ex- 327

periments across four open-source models. To en- 328

sure a fair comparison, we maintain equal total 329

search steps (FTS + CAS) for all experiments, con- 330

sistent with the baseline, totaling 500 steps. We 331

also include the baseline GCG-T from HarmBench 332

that optimizes suffixes against multiple models for 333

transferring. Our transfer performances on the vali- 334

dation set and test set are presented in Table 1. 335

Our proposed DeGCG approach significantly 336

surpasses the GCG-M across various models on 337

both validation and test sets. For example, DeGCG 338

achieves absolute improvements of 9.0 and 9.8 in 339

ASRs from Starling-LM to OpenChat-3.5 on vali- 340
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Figure 3: Performance comparison (ASR) in Cross-Data Transferring across different behavior types in HarmBench.
We report the results of LLama2-chat-7b on both the Validation and the Test sets.

dation and test sets. This indicates that the suffix341

derived from FTS on one model proves to be an ef-342

fective initialization point for transferring to a new343

target model. Notably, despite differences in tok-344

enizers between source and target models, transfer345

learning from FTS through CAS still yields sig-346

nificant performance improvement. For instance,347

transferring suffix from Mistral-Instruct to Llama2-348

chat achieves absolute enhancements of 22.2 and349

9.4 in ASRs on validation and test sets, demon-350

strating the efficacy of DeGCG. Additionally, the351

DeGCG approach outperforms GCG-T on both val-352

idation and test sets. This further reveals that our353

suffix transfer learning is more effective than the354

direct transfer with suffix concatenations searched355

on multiple models.356

Moreover, when the target model is identical to357

the source model, the DeGCG method significantly358

improves ASR performance, achieving over 100%359

enhancement on LLama2-chat-7b. We attribute this360

improvement to the effective initialization provided361

by FTS on the same model, which facilitates a362

more efficient token fine-tuning process within a363

favorable neighbor area in the search space.364

Cross-Data Transferring. To evaluate the effec-365

tiveness of the DeGCG framework in cross-data366

transferring, we initially perform FTS on llama2-367

chat-7b using the general dataset of HarmBench.368

Subsequently, we conduct CAS with a domain-369

specific dataset derived from the general validation370

set of HarmBench. Specifically, we use six dis-371

tinct semantic categories defined in HarmBench as372

separate domains: Chemical Biological, Misinfor-373

mation, Illegel, Cybercrime, Harmful, and Harass- 374

ment Bully. The general GCG-M without domain 375

data training serves as the baseline. We also in- 376

clude experiments using GCG-M trained with the 377

same domain data. To ensure a fair comparison, all 378

experiments maintain the same total search steps, 379

500. The experimental results for both validation 380

and test sets are displayed in Fig. 3. 381

We observe that DeGCG outperforms GCG-M 382

and GCG-M w/ domain data in terms of ASR per- 383

formance across five of the six categories. The 384

inclusion of domain data significantly enhances per- 385

formance, particularly in the Chemical biological, 386

Misinformation, Illegal, and Cybercrime categories. 387

The relatively lower ASR performance in the Harm- 388

ful and Harassment Bully categories could be at- 389

tributed to the limited data size in these categories. 390

Nonetheless, the success of the behavior-agnostic 391

suffix transferring underscores the efficacy of FTS, 392

validating the necessity of the decoupled first-token 393

searching and content-aware search process. 394

Interleaved Self-Transferring. To evaluate the 395

effectiveness of the proposed i-DeGCG algorithm 396

for self-transferring, we apply the interleaved algo- 397

rithm on Llama2-chat and Openchat-3.5 models, 398

respectively. In this context, the source and tar- 399

get models are identical, and the validation set is 400

used as the training dataset. We assess performance 401

across various scales of the searching space. Specif- 402

ically, given that the searching space grows expo- 403

nentially with increased suffix length, we extend 404

the adversarial suffix length from 20 to 40, 60, 80, 405

and 100, representing five different sizes of search- 406
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Length 20 40 60 80 100

Valid Test Valid Test Valid Test Valid Test Valid Test

Llama2-chat-7b

GCG-M 21.7 19.5 22.0 17.0 31.7 34.0 34.1 34.6 39.0 43.4
i-DeGCG 41.5 37.7 43.9 46.5 41.5 35.8 51.2 42.1 65.9 52.2

OpenChat-3.5-7b

GCG-M 76.4 69.4 70.7 65.4 85.4 67.9 63.4 66.7 70.7 56.0
i-DeGCG 82.9 79.2 87.8 79.9 90.2 74.8 90.2 86.4 95.1 90.6

Table 2: Performance comparison (ASR) of Interleaved Self-Transferring on five different scales of the searching
spaces. We report results on both the Validation (Valid) and the Test sets.

ing spaces. For fair comparison, we maintain the407

same total searching steps across all experiments.408

The experimental results are detailed in Table 2.409

The empirical findings in Table 2 suggest that410

larger searching spaces provide more suffix combi-411

nations and a greater possibility of achieving suc-412

cessful attacks, but also introduce more complexity413

and significant challenges in searching adversar-414

ial suffixes. Notably, our proposed i-DeGCG can415

outperform baselines across all scales of search-416

ing spaces, achieving 65.9 and 52.2 for Llama2-417

chat and 95.1 and 90.6 for OpenChat-3.5 on val-418

idation and test sets. GCG-M struggles with the419

larger search space, resulting in lower performance.420

In contrast, i-DeGCG can facilitate efficient self-421

transfer between FTS and CAS. This underscores422

the importance of self-transferability in enhancing423

the efficiency of adversarial suffix searching.424

5 Analysis425

5.1 Training Dynamics Comparison426

To demonstrate the enhanced search efficiency427

achieved by the DeGCG framework and i-DeGCG428

algorithm, we plot the training dynamics every429

100 steps. Specifically, we examine the cross-430

entropy loss of the first token (FT), the average431

cross-entropy loss of the entire target sentence (ST),432

and the ASR performance on both the validation433

(Valid) and test sets. The dynamics for Llama2-434

chat, with a total of 500 steps and a suffix length of435

20, are illustrated in Fig. 4. For DeGCG under this436

experimental setting, we perform the FTS for 100437

steps followed by CAS for 400 steps.438

As depicted in subfigures (a) and (b) of Fig. 4,439

both DeGCG and i-DeGCG converge faster than440

GCG-M, achieving lower cross-entropy losses for441

both the first-token and the target sequence. No-442

tably, DeGCG reaches a near-zero FT loss within443

100 steps, whereas the one of GCG-M remains444

greater than 10 within the same steps. This indi- 445

cates that the first-token optimization is noised and 446

hindered by other optimization goals, degrading 447

searching efficiency. Compared to DeGCG, the 448

interleaved variant i-DeGCG shows higher FT loss 449

but lower ST loss, attributed to the alternation be- 450

tween FTS and CAS, achieving a dynamic balance 451

between these two searching stages. 452

Regarding the ASR performance, shown in sub- 453

figures (c) and (d), DeGCG and i-DeGCG outper- 454

form GCG-M, achieving the best results within 455

300 steps, while GCG-M continues to underper- 456

form even after 500 steps. It is noteworthy that 457

DeGCG achieves low ASR within the initial 100 458

steps using only FTS and reaches optimal perfor- 459

mance within the subsequent 100 steps using CAS. 460

This reveals that CAS is essential for a successful 461

attack, and FTS provides a solid initialization for 462

CAS. In addition, i-DeGCG achieves higher ASR 463

performance within the first 100 steps compared to 464

both DeGCG and GCG-M, and comparable perfor- 465

mance to DeGCG within the first 300 steps. This 466

success of both DeGCG and the interleaved vari- 467

ant validates the effectiveness of the decoupled 468

framework and highlights the importance of self- 469

transferable suffixes. i-DeGCG is particularly ad- 470

vantageous when the boundary between FTS and 471

CAS is not easily determined due to its dynamic 472

balance nature. 473

5.2 Self-Transferring by Self-Repetition 474

To further investigate the impact of self-transferring 475

on performance enhancement, we conduct a new 476

self-transferring experiment via self-repetition. 477

Specifically, we aim to achieve an effective initial- 478

ization in larger search spaces. Instead of initiating 479

searches from a random suffix in a large search 480

space, we utilize suffixes obtained in a smaller 481

search space and expand the search space through 482

self-repetition of these short suffixes. In other 483
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Figure 4: Training dynamics (cross-entrory loss) comparison for GCG-M, DeGCG, and i-DeGCG.

words, the longer suffix initialization is constructed484

by repeating the shorter suffix and concatenating485

them for searching within the large search space.486

For this experiment, we use the suffix of length 20,487

searched on Llama2-chat-7b after 500 steps, and488

repeat it 2, 3, 4, and 5 times to create suffix initial-489

izations of lengths 40, 60, 80, and 100, respectively.490

We then perform content-aware searching on these491

initializations for an additional 500 steps and report492

the ASR performance in Table 3. The experimental493

results reveal a significant improvement, with ASR494

performance increasing from 21.7 to 68.3 on the495

validation set and from 19.5 to 54.7 on the test set.496

These findings also indicate that suffix search in497

small search spaces provides valuable and effec-498

tive initializations for longer suffix construction for499

further fine-tuning in large search spaces.500

Length 20 40 60 80 100

# Rep. 1 2 3 4 5

Valid 21.7 43.9 65.9 68.3 68.3
Test 19.5 32.1 45.3 54.7 51.6

Table 3: Self-Transferring Performance with Self-
Repetition. # Rep. refers to the times of self-repetition.

5.3 Ablation Study501

To further assess the effectiveness of our design,502

we conduct an ablation study on the initializa-503

tion. Specifically, we compare initializations ob-504

tained by FTS and GCG-M for the same number505

of steps, aiming to evaluate the utility of differ-506

ent trained suffix initializations for content-aware507

fine-tuning. We examine how suffix initializations508

on source models Starling-LM-alpha-7b, Mistral-509

Instruct-7b, and OpenChat-3.5-7b transfer to the510

target model Llama2-chat-7b. The experimental511

results are presented in Table 4. The empirical512

findings demonstrate the superiority of the first-513

token searched initialization. We attribute this to514

the behavior-agonistic nature of suffixed obtained515

by FTS, which is easier to transfer across models516

and can be fine-tuned effectively on a target model, 517

achieving higher ASR performance compared to 518

initializations obtained through GCG-M. 519

Initialization GCG-M FTS

Starling-LM Valid 14.6 29.3
Test 12.6 29.6

Mistral-Instruct Valid 29.3 43.9
Test 23.9 28.9

OpenChat-3.5 Valid 19.5 31.7
Test 23.3 25.2

Table 4: Ablation Study on Transferring with different
initialization to the target model Llama2-chat-7b.

6 Conclusion 520

In this study, we present DeGCG to enhance 521

the efficiency of adversarial suffix searching for 522

aligned LLMs. By decoupling the search process 523

into behavior-agnostic pre-searching and behavior- 524

relevant fine-tuning, DeGCG addresses the ineffi- 525

ciencies inherent in the GCG method. The introduc- 526

tion of First-Token Searching and Content-Aware 527

Searching enables more efficient and effective iden- 528

tification of adversarial suffixes. Additionally, the 529

interleaved algorithm i-DeGCG demonstrates fur- 530

ther improvements by dynamically balancing be- 531

tween FTS and CAS. Experimental results on the 532

HarmBench across various LLMs validate the effec- 533

tiveness of our proposed methods. DeGCG not only 534

improves search efficiency but also achieves higher 535

ASR compared to the baseline GCG-M method. 536

The success of suffix transfer through two-stage 537

learning highlights the critical role of initializa- 538

tion in optimizing the search process. Overall, this 539

work underscores the importance of suffix transfer- 540

ability in enhancing the efficiency of adversarial 541

suffix searching and provides an effective frame- 542

work for future red teaming investigations. The 543

findings contribute to the broader understanding of 544

LLM vulnerabilities and the development of more 545

resilient and secure models. 546
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Limitations547

Several limitations exist in our work. Firstly, our fo-548

cus primarily centers on open-source models, lack-549

ing validation on closed-source models. Future550

research efforts could extend behavior-agnostic pre-551

searching and behavior-relevant post-searching to552

include closed-source models. Additionally, our as-553

sessment of suffix transferability has been limited554

to standard behaviors in the text-only sets, neglect-555

ing copyright, contextual, and multimodal behav-556

iors. Future work could explore the transferabil-557

ity of suffixes between large language models and558

large multimodal models for both text and mul-559

timodal data. Furthermore, our empirical study560

lacks a theoretical understanding of suffix transfer561

learning, which warrants further investigation.562

Ethics Statement563

Our study does not propose a new attack paradigm564

to jailbreak LLMs. Instead, we investigate the565

existing adversarial suffix-based jailbreak attack,566

aiming to understand the properties of adversarial567

suffixes in a better way. For example, we mainly568

examine the suffix transferability with suffix search569

efficiency. This further understanding of suffix570

transferability can help guide the design of more ef-571

fective defense methods in the future. We also high-572

light that current adversarial suffix-based attacks573

can be well defended by the PPL detection-based574

method.575
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A Appendix 691

A.1 Dataset Statistics 692

We show the statistics of the HarmBench subset of Standard behaviors used in our work in Table 5. 693

Specifically, we show the total validation (# Valid)and test(# Test) set sizes and the numbers for six 694

semantic categories: (1) Chemical Biological: Chemical & Biological Weapons/Drugs, (2) Misinforma- 695

tion: Misinformation & Disinformation, (3) Illegal: Illegal Activities, (4) Cybercrime: Cybercrime & 696

Unauthorized Intrusion, (5) Harmful: General Harm, (6) Harassment Bully: Harassment & Bullying. For 697

all experiments, we use the validation set as the training set and evaluate performances on the test set.

Semantic Category # Valid # Test
Total 41 159
Chemical Biological 9 19
Misinformation 7 27
Illegal 11 47
Cybercrime 7 33
Harmful 4 17
Harassment Bullying 3 16

Table 5: Statistics of the HarmBench Subset of Standard Behaviors.

698
A.2 Implementation Details 699

We use Pytorch and Huggingface Transformers in our implementation. We run all evaluations on a single 700

NVIDIA A40 GPU (48G). We provide all used model cards in Table 6. Specifically, we evaluated four 701

models in our main experiments. We used one fine-tuned Llama2-13b model, provided by HarmBench, to 702

classify the output of these evaluated models. 703

For cross-model and cross-data transfer experiments using the DeGCG in Section 4.2, we set the 704

maximum search step of the FTS as 200, indicating a minimum 300 search steps for CAS to keep the 705

500 total search steps. Besides, we set the threshold of the training loss to be 0.2. When the training loss 706

reaches a lower value than the threshold, we update the training behavior set. For interleaved self-transfer 707

experiments using i-DeGCG, we set the threshold ϵ1 and ϵ2 of training loss for both FTS and CAS as 0.2. 708

As for the maximum steps Tf for one stage, we set it to be 20 and 30 for FTS and CAS, respectively. 709

Model Hugging Face page

Llama2-chat-7b https://huggingface.co/meta-llama/Llama-2-7b-hf
OpenChat-3.5-7b https://huggingface.co/openchat/openchat-3.5-1210
Mistral-Instruct-7b https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
Starling-LM-alpha-7b https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha

Classifier

Llama2-13b https://huggingface.co/cais/HarmBench-Llama-2-13b-cls

Table 6: Hugging Face Model Cards for four used models and one classifier.
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