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ABSTRACT

State Space Models (SSMs) like Mamba2 are a promising alternative to Trans-
formers, with faster theoretical training and inference times — especially for long
context lengths. Recent work on Matryoshka Representation Learning — and its
application to Transformer backbones in works like MatFormer — showed how
to introduce nested granularities of smaller submodels in one universal elastic
model. In this work, we present MatMamba: a state space model which com-
bines Matryoshka-style learning with Mamba?2, by modifying the block to contain
nested dimensions to enable joint training and adaptive inference. MatMamba al-
lows for efficient and adaptive deployment across various model sizes. We train
a single large MatMamba model and are able to get a number of smaller nested
models for free — while maintaining or improving upon the performance of a base-
line smaller model trained from scratch. We train language and image models
at a variety of parameter sizes from 35M to 1.4B. Our results on ImageNet and
FineWeb show that MatMamba models scale comparably to Transformers, while
having more efficient inference characteristics. This makes MatMamba a practi-
cally viable option for deploying large-scale models in an elastic way based on the
available inference compute.

1 INTRODUCTION

Deep learning practitioners often train different sizes of the same kind of model to facilitate deploy-
ment in a variety of ranges of available inference compute. For example, the Llama 3.2 (Dubey et al.,
2024) series has 1B, 3B, 11B, and 90B variations. These models are extremely powerful individu-
ally — but due to independent training do not necessarily share the same metric space — a property
which can be extremely useful for inference applications like speculative decoding (Leviathan et al.,
2023), hybrid cloud-edge inference, or just general input or compute adaptive processing. Moreover,
because training these models is expensive, we typically see only a few chosen sizes trained. This is
not desirable in situations where the deployment setup can optimally support an intermediate model
(e.g. a 2B model), but has to settle for the less accurate 1B model instead.

Techniques like model compression and distillation aim to address these issues, but require addi-
tional training (for which data may not be available), and can sometimes drop accuracy (Jaiswal
et al.,, 2023). Thus, methods that offer adaptive inference out of the box at intermediate granulari-
ties are extremely useful. This has been explored for Transformers (Devvrit et al., 2023; Cai et al.,
2024b) and ConvNets (Yu & Huang, 2019; Cai et al., 2019). The core focus of this work is to try to
enable out of the box adaptive inference in a newer architecture: Mamba2 (Dao & Gu, 2024).

State Space Models like Mamba2 (Dao & Gu, 2024) and a number of other related newer archi-
tectures (see Section 2) have shown tremendous potential as they try to improve on the efficiency
of Transformers, while maintaining their potency as accurate and general sequence processing ar-
chitectures. Mamba?2 has comparable scaling properties to Transformers, while being significantly
faster at longer context lengths.

In this work, we introduce MatMamba, a nested Matryoshka structure (Kusupati et al., 2022) within
a Mamba?2 block (Dao & Gu, 2024). MatMamba enables the extraction of hundreds of nested sub-
models from the same set of weights, without requiring any additional training during deployment.
MatMamba is a general-purpose sequence processing architecture that can be applied to any type
of model (encoder/decoder), modality (language/vision/sound/actions), loss function, or learning
algorithm compatible with a Transformer or Mamba2 layer.
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The philosophically closest work to MatMamba is MatFormer (Devvrit et al., 2023) — which imposes
a nested structure on the FFN block in a Transformer layer. We use the same concept to impose
a nested structure on any learnable parameter in a Mamba2 block that depends upon the hidden
dimensionality of the block. Formally, a MatMamba block consists of a nested combination of
g Mamba2 blocks M;, such that My C My C ... C Mg, where M; C M; means that all the
parameters of a sub-block M; are present in M;. We train the model using g forward passes with
gradient accumulation followed by a single backward pass for parameter updates (see Figure 1).

By jointly training all g granularities, the smallest sub-blocks are incentivized to represent the
most important information, like in Matryoshka Representation Learning (Kusupati et al., 2022).
We can now use any of the g nested sub-blocks M; flexibly. Additionally, we can flexibly slice
the block along any dimensionality (even beyond the g explicitly optimized granularities). Using
Mix’n’Match (Section 3.4), we can perform this operation over multiple layers at varying granu-
larities to flexibly extract a combinatorially large number of models from the single larger model.
We observe that these extracted models preserve the metric space of the larger model, and are ac-
curate across a variety of tested tasks — effectively allowing us to choose a tradeoff between model
performance and compute.

We train MatMamba-based vision models (MatMamba-Vision), and find that: (a) MatMamba-
Vision models scale as well as baseline Mamba2 based models at all g = 4 granularities; (b)
Using Mix’n’Match, we can flexibly extract submodels between the explicitly optimized granular-
ities. The submodels span (and sometimes exceed) the pareto optimal accuracy-vs-compute curve;
(c) MatMamba-Vision models are significantly faster at higher resolutions than ViTs, making them
promising candidates for long-form and high resolution visual tasks, while enabling adaptive visual
processing with the nested submodels (see Section 4.1.1).

Furthermore, MatMamba-Vision models can act as elastic image encoders for adaptive image re-
trieval. We can encode visual datasets with the largest model, and because the smaller submodels
share its metric space, we can use them as query encoders, needing drastically lower compute with
minimal loss in accuracy (see Section 4.1.2).

We also train MatMamba-based decoder language models (MatMamba-LM) at various sizes from
130M-1.4B parameters, and at ¢ = 4 granularities. We make similar observations here too, that
MatMamba-LM models scale as well as Mamba2 baselines with the same architecture for all nested
granularities. We also observe interesting homogenous scaling behaviour between the nested gran-
ularities for different models (see Section 4.2).

Through MatMambea, for the first time, we bring together the adaptivity of Matryoshka-style learning
and the efficiency of state space models (SSMs) like Mamba?2 (Dao & Gu, 2024).

We make the following research contributions:

1. We introduce MatMamba, which imposes a nested Matryoshka structure on a Mamba2 state
space model. We jointly optimize all nested granularities to train a single elastic model.

2. We show that MatMamba models scale as well as the baseline Mamba2 models for a variety of
model sizes from 35M-1.4B parameters on language and vision tasks.

3. Using Mix’n’Match with MatMamba allows the flexible extraction of hundreds of submodels to
perform adaptive inference. These submodels preserve the metric space of the original model.

4. MatMamba-Vision models are comparably accurate and significantly faster at higher resolutions
than ViTs, making them well suited for long-form/high resolution and adaptive visual processing.

2 RELATED WORK

The ever growing demand of Al models across various accuracy and resource constraints makes it
infeasible to train a different model for each use case. Instead, these adaptive deployment needs
are often solved through introducing elasticity in models (Kusupati, 2024). Work on slimmable
networks (Yu et al., 2018; Yu & Huang, 2019) and once-for-all networks (Cai et al., 2019) brought
the idea of training multiple submodels present within one universal model. Nested dropout (Rip-
pel et al., 2014) generalizes this idea to learn ordered representations which further extended to
enable elasticity at each dense vector embeddings through Matryoshka Representation Learning
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Figure 1: MatMamba introduces a nested Matryoshka (Kusupati et al.,, 2022) structure in a
Mamba2 (Dao & Gu, 2024) block. We jointly train a few chosen granularities to get a single model
from which we can flexibly extract a large number of nested submodels for adaptive inference based
on the available deployment compute.

(MRL) (Kusupati et al., 2022). MRL simplifies the training process to induce elasticity with a small
set of nested granularities (hence the name Matryoshka), exponentially separated in size, all opti-
mized with the same target loss function as the full vector. MRL further smoothly interpolates to
the granularities not seen during training, thus allowing for complete elasticity to extract sub-vectors
based on the requirements.

Matryoshka information packing and learning has been widely adopted in bringing adaptivity not
only in output space, but also in input (Beyer et al., 2023) and model weights (Devvrit et al., 2023;
Cai et al., 2024b; Valipour et al., 2023). MatFormer (Devvrit et al., 2023) is a direct translation of
MRL to every hidden activation vector of a MLP sub-block within a Transformer layer (Vaswani
et al., 2017). MatFormer showed scaling trends similar to Transformer, while also providing the
capability to adaptively extract submodels that fall on the accuracy-vs-compute pareto curve. More
recent works (Cai et al., 2024b; Jain et al., 2024) developed dynamic routing on top of the con-
ditional computation enabled by MatFormer to realize performance gains in deployment. Further,
matryoshka packing was also used for flexible tokenization (Cai et al., 2024a; Hu et al., 2024) as
well as diffusion models (Gu et al., 2023).

Transformers (Vaswani et al.,, 2017) have been fundamental sequence processing blocks in neu-
ral networks for the past few years. There has been a recent wave of work on efficient sequence
processing architectures that aim to be faster and equally performant alternatives to Transformers.
Mamba (Gu & Dao, 2023) and Mamba2 (Dao & Gu, 2024) are the most relevant to this work,
with other very closely related works like Linear Attention (Katharopoulos et al., 2020), Test-time
training (Sun et al., 2024), RWKV (Peng et al., 2023), Griffin (De et al., 2024), Jamba (Lieber
et al., 2024), xLSTM (Beck et al., 2024), HGRN2 (Qin et al., 2024), RetNet (Sun et al., 2023),
RecurrentGemma (Botev et al., 2024). Waleffe et al. (2024) present a detailed study of how to
train large-scale Mamba-based language models. Works like MambaVision (Hatamizadeh & Kautz,
2024), MambaND (Li et al., 2024b), Vision Mamba (Zhu et al., 2024), VideoMamba (Li et al.,
2024a), and Sonic (CartesiaAl, 2024) have all shown how a Mamba layer can process visual data
and other modalities. Liu et al. (2024) present a detailed survey of Mamba-based vision models.
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3 MATMAMBA

3.1 MAMBA2 PRELIMINARIES

MatMamba is based on Mamba2. We make simple modifications to the Mamba2 block to impose the
Matryoshka structure. A detailed description of the internals of Mamba?2 can be found in the original
paper Dao & Gu (2024). However for the purposes of this work, we treat the Mamba2 block as a
combination of an input linear projection (W,,,, which can be broken down into W, W, Wg, W,
Wae), a causal 1D convolution layer with kernel size 4 (with weights that are a concatenation of
Weonvys Weonvg, and Weon,,, applied in groups), a chunk + selective scan operation (SSM), and
an output projection layer (W,,;). Similar to a Transformer, this block takes in an (b, [, d) shaped
tensor — b is batch size, [ is sequence length, and d is the dimensionality — and produces a (b, [, d)
shaped output after a sequence transformation. For an input tensor u, the Mamba2 block M (u)
consists of the following steps:

XBC(u) = 0(Conv(Weonw, Weonvy Weonve s We ™ Wp.au™ We.u)) (1)
Y (u) = SSM(XBC(w), Was.u, A, D) )
M (u) = Norm(Y (u).c (W, .u)).WZ, 3)

where " is the concatenation operation, Conv(k, s) applies a 1-D causal convolution with weights
k (applied in len(k) groups) on a sequence s, and A and D are learnable SSM parameters. o is a
nonlinearity which we set to SiLU (Elfwing et al., 2018), and Norm is a layer norm function which
we set to RMSNorm (Zhang & Sennrich, 2019).

3.2 MATMAMBA BLOCK

A MatMamba block also has both input and output shapes as (b,l,d). It is defined as a nested
combination of g Mamba2 blocks M;, such that M, C M, C ... C My, where M; C M; means
that all the parameters of a sub-block M; are present in M;. Works like MatFormer (Devvrit et al.,
2023), OFA (Cai et al., 2019), and Flextron (Cai et al., 2024b) all share similar designs in which
the largest model M, is the single universal base model from which numerous smaller submodels
M; can be flexibly extracted. In MatMamba, we impose the nested structure along the dimensions
of the model parameters. Specifically for a sub-block M; with expansion factor e = % we

model’

choose a Matryoshka dimension m;, such that 0 < m; < d,,04e1, Which results in an inner slice

dimension d; = e X m; and number of heads h; = d}di -, subject to d; mod dpeqq = 0. For

example, parameters like TV, have a shape of (d;nner; dmodet )- For the M; sub-block, it will become
W, [0 : d;] by slicing it along the d;;ner dimension. Similarly for parameters like A which have a
shape of (Nheqds), it will become A[0 : h;]. Concretely, the MatMamba block M;(u) when applied
to an input tensor u is these steps:

XBC;(u) = 0(Conv(Weony, [0 : di]™ Weonvs ™ Weonves W0 & di].u”™ Wp.u™ We.u)) )
Yi(u) = SSM(XBC;(u), Wyg[0 = hy].u, A[O = h;], D[0 : h;]) 3
M;(u) = Norm(Y;(uw).o(W,[0 : d;].u)) . Wout[O : di]T (6)

In practice, W, W, Wg, W¢, and Wy, are implemented as a single input projection layer with
tensor parallelism, with appropriate rearranging of dimensions depending on m;. Figure 1 illustrates
the MatMamba block. We also provide PyTorch-style pseudocode for the block in Appendix A, to
provide a clearer understanding of our implementation.

Compared to MatFormer (Devvrit et al., 2023), where the Matryoshka structure is only applied on
the MLP subblock of the Transformer block, MatMamba applies nesting to the entire block wherever
the inner dimension plays a role. This leads to a nearly linear reduction in total parameter count (and
also a nearly linear reduction in flop count due to the nature of Mamba2). Also, typically > 95%
of the parameter count in a MatMamba block is in the input and output projections, which can
be converted into nested layers while maintaining the well understood systems characteristics of
projection layers. See Appendix A for a detailed example of parameter count reduction.
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We can stack L such MatMamba blocks to create a MatMamba model. For a given m,; and nested
blocks M; C My C ... C M, we can create a MatMamba model f; with L layers, and g nested
models fi C fa C ... C f4. Each f; is formed by stacking M; L times. Like Mamba2, the Mat-
Mamba backbone is a general purpose sequence processing architecture, which with an appropriate
tokenizer and output head can process a variety of modalities.

3.3 TRAINING

To train a model comprised of MatMamba blocks for g chosen granularities, we perform g forward
passes to calculate a joint loss function. For an input =, model f, target y and loss function L:

g

Lioint(z,y) = N L(fi(z),y) )

i=1
where )\; is the weight of the i-th nested submodel’s loss. In this work, we train g = 4
nested submodels with a uniform A; = 1/g = 0.25 for each submodel. As shown in Fig-

ure 1, during each forward pass, we accumulate gradients. The parameter update is done with
a single backward pass. During the whole process, the model and the weights are the same,
thereby also making memory usage the same as a regular Mamba2 block. In this work, we train
MatMamba models with g = 4 nested granularities, with the corresponding list of m;’s being
[dmodels Amodet /2, Amodel /4, dmodet /8], i-€. a halving of dimensionality for every sub-model. Like
MatFormer (Devvrit et al., 2023) and Flextron (Cai et al., 2024b), we note that it is also possible to
finetune an existing pretrained model to produce a nested structure. However, in this work, we focus
on training from scratch to study the scaling characteristics of MatMamba models.

3.4 MIX’N’MATCH

We can apply the Mix’n’Match strategy from MatFormer (Devvrit et al., 2023) to flexibly extract
any submodel from MatMamba for inference. Concretely, for a model f with L layers, we need to
choose a dimensionality m; at each layer ¢. Note that m; can be either one of the explicitly optimized
g granularites (e.g. picking from one of [1024, 512, 256, 128] from a 135M-MatMamba-Vision
model, see section 4.1), or we can choose interpolated dimensionalities that were not explicitly
optimized for (e.g. picking any random valid value like 768 or 384 that was not explicitly trained).
For instance, we could choose m; = 256 (25% size) in layer 1, mo = 1024 (100% size) in layer 2,
mg = 768 (75% size) in layer 3, and so on. The only constraint on m; in MatMamba is that it needs
to lead to an integer number of heads, or that (e x m;) mod dpeqq = 0, where e = m This
leads to a combinatorially large number of possible submodels (beyond the g explicitly optimized
granularities) that can be flexibly extracted — all from the same set of base model weights — as shown
in Figure 1. Due to the Matryoshka structure, the first few dimensions (that are shared among all the
nested submodels) are incentivized to learn the strongest representations.

3.5 ELASTIC INFERENCE

When deploying a MatMamba model for inference, we typically need to store the single universal
model f; in memory. If compute is not constrained (or if the inference workload is predictable),
then we can use the full model to get the most accurate results. However, depending on dynamic
constraints (e.g. available inference compute, energy usage, system load, desired accuracy etc.), we
can perform a forward pass on a chosen slice of the network on the fly.

There are exciting possibilities like combining cloud and edge inference — we could store a smaller
model f; on the edge device and when necessary, use the larger model f; on the cloud, or using a
smaller model to act as a draft model for speculative decoding (Leviathan et al., 2023) with a larger
verifier model. We could also potentially do input-adaptive sub-model selection (e.g. use a larger
model for a more difficult input). All of these are possible only because MatMamba has a consistent
and nested Matryoshka structure, in which all the sub-models share the same metric space.
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4 EXPERIMENTS

In this section, we demonstrate the effectiveness of MatMamba-based models across two modal-
ities: vision (MatMamba-Vision) and language (MatMamba-L.M). For vision, we show results
for image classification (Section 4.1.1) and adaptive image retrieval (Section 4.1.2). For language,
we train decoder language models (Section 4.2). We train models at a variety of scales from 35M
to 1.4B parameters. For a fair comparison, we also independently train baseline Mamba2 models
which have the same architecture as the submodels of each MatMamba granularity. Please note
that we do not aim to achieve state-of-the-art results in this work on either language or vision for
the chosen model sizes. We instead focus on properties like nested structure consistency, parameter
reduction, inference speedups/memory usage for submodels, and scaling of simple networks built
using the MatMamba block.

4.1 MATMAMBA-VISION

MatMamba-Vision (Figure 2) contains a patch embedding followed by L MatMamba blocks with a
unidirectional SSM scan. One crucial design choice we make is to use the [CLS] token as a suffix
instead of the conventional prefix. This allows it to attend to information from the entire sequence.
We find that this simple architecture works effectively on both image classification and adaptive
retrieval. We train two model variations (35M with d,,,0qe; = 512 and 135M with d,,04¢; = 1024,
see Table 1) with patch size 16 and L = 20 layers on ImageNet-1k Deng et al. (2009) which has
1.28M training images and 50k validation images. Compared to other recent work on SSM’s for
vision tasks like MambaVision (Hatamizadeh & Kautz, 2024), MambaND (Li et al., 2024b), and
Vision Mamba (Zhu et al., 2024) — all of which have major design changes on top of Mamba layers
like bidirectional scan with additional projections, varying order of scans, or combining SSM layers
with attention and convolution layers — we keep our network architecture as simple as possible.

Table 1: Base model architectures for MatMamba-Vision (35M and 135M) with the explicitly opti-
mized submodels for g = 4 nested granularities.

Parameters

Base Model Layers m; h; Patchembed MatMamba Layers
20 1024 32 787,456 132,739,840

20 512 16 787,456 69,004,160

135M-1024D 20 256 8 787,456 37,136,320
20 128 4 787,456 21,202,400

20 512 32 393,728 34,927,360

20 256 16 393,728 18,787,200

IMSI2D 5 g g 393728 10,717.120
20 64 4 393,728 6,682,080
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Figure 3: ImageNet-1K Classification: MatMamba-Vision is as accurate as explicitly trained base-
lines across various constraints while also spanning the accuracy-vs-compute pareto optimal curve
through mix’n’match submodels.

We use FFCV (Leclerc et al., 2023) dataloaders for efficient training. We apply augmentations
like RandAug (Cubuk et al., 2020), Random Erasing (Zhong et al., 2020), Mixup (Zhang, 2017),
Cutmix (Yun et al., 2019), and a number of other settings following DEiT-3 (Touvron et al., 2022),
AugReg (Steiner et al., 2021), and Better ViT Baselines (Beyer et al., 2022). The exact detailed
experimental settings can be seen in Appendix A.

4.1.1 IMAGE CLASSIFICATION

In Figure 3, we see that for both the 35M and 135M MatMamba-Vision models, the explicitly
optimized submodels closely match the 4 independently trained baseline models with the same ar-
chitecture as the nested submodel. However, instead of needing four separate models, we can get all
levels of performance/parameter counts flexibly in a single model.

Adaptive Inference using Mix’n’Match: Additionally (Figure 3), using Mix’n’Match at a vari-
ety of combined granularities yields models that smoothly interpolate (and sometimes exceed) the
accuracy on the line joining the explicitly optimized granularities. This points towards powerful
adaptivity, because we can extract a combinatorially large number of submodels along the accuracy-
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Figure 4: Inference speed and memory usage for batch size 1 on an H100 for nested MatMamba-
Vision models and a ViT baseline. At larger resolutions, the characteristics of MatMamba are better.
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Figure 5: Adaptive Image Retrieval on ImageNet-1K: Submodels obtained from the largest
MatMamba-Vision model preserve the metric space of embeddings resulting in accurate and adap-
tive query processing at scale while baseline struggles to work across models without distillation.

compute curve. We can optimize submodel selection for deployment constraints flexibly, all while
only using the weights of a single nested universal model.

Inference Speeds at Higher Resolutions: In Figure 4, we also study the inference speed tradeoffs
of nested granularities of MatMamba- Vision models when compared with each other and a ViT-B/16
model. We find that at or below 512px resolution, the sequence length is low enough for the ViT
to be the fastest model (due to GPU parallelism and optimizations like FlashAttention). However,
as we increase the resolution to 1024px and beyond, Mamba-style models start outperforming ViT
in both througput and latency. We also study inference memory usage, and find that MatMamba-
Vision scales slightly better than an optimized ViT-B/16 as the resolution increases. Both of these
observations offer promising evidence that MatMamba-based models can be suitable for processing
longer sequences of visual data at higher resolutions on a single accelerator (as opposed to scaling
context length in Transformers using methods like RingAttention Liu et al. (2023) which needs
multiple interconnected accelerators for a single forward pass at long sequence lengths).

4.1.2 ADAPTIVE IMAGE RETRIEVAL

Image retrieval aims to locate semantically similar images using representations generated by a
pretrained encoder (Chen et al., 2022). The standard method involves encoding both database and
query images with the same encoder and then performing nearest neighbor retrieval. While using
a powerful encoder for database images is feasible, the query encoder must be efficient for real-
time applications. Moreover, query encoding scenarios can vary, such as on-device versus cloud
processing and varying query load and complexity. Existing solutions with fixed encoders often
compromise accuracy or cost in different settings.

Due to its flexibility, MatMamba-Vision is a promising candidate for query encoding. However, re-
trieval also requires that submodels maintain distance relationships between fixed database (encoded
with a larger encoder) and query embeddings across various granularities. Using smaller baseline
Mamba2 models solely for query encoding can lead to significant distance preservation issues and
poor retrieval accuracy (as illustrated in Figure 5).

We evaluated both the baseline and MatMamba-Vision encoders on ImageNet-1K for image retrieval
at 35M and 135M parameter scales. Using the [CLS] token representation, we calculated 1-nearest
neighbor (NN) accuracy. Figure 5 demonstrates that submodels extracted from MatMamba can
effectively preserve distances and offer greater flexibility. For example, MatMamba-Vision-135M
can reduce compute cost by 55% with a minimal accuracy loss of less than 0.5%. While causal
models with suffix [CLS] token might not be as accurate as bi-directional encoders for retrieval, this
is a promising start towards better long-context encoders while enabling adaptive query processing.
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Table 2: Base model architectures for MatMamba-LM

Base Model Layers dpodei  dheaq Embed params Non-embed params  Tokens

130M 24 768 24 38,615,040 90,368,448  62.9B
370M 48 1024 32 51,486,720 316,851,712 125.8B
790M 48 1536 48 77,230,080 702,918,912  125.8B
1.4B 48 2048 64 102,973,440 1,240,767,488 251.6B

4.2 MATMAMBA-LM

We train decoder language models using the MatMamba block (MatMamba-LM). The models
closely follow the training procedure and hyperparameters of 11m.c (Karpathy, 2024). We use
the GPT-2 (Radford et al., 2019) tokenizer with a padded vocabulary size of 50,280. We use the
FineWeb (Penedo et al., 2024) dataset to train all models. We train 4 separate models (with base
model parameter sizes 130M, 370M, 790M, and 1.4B). For each of these base models, we optimize
g = 4 nested granularities [dmodel, @modet /25 model /4, dmodet/8). For baselines, we train vanilla
Mamba2 models with the same architecture as the nested submodels. Table 2 shows the exact con-
figurations for each model.

MatMamba-LM scales as well as Mamba2: In Figure 6, we see that MatMamba-LM models
scale with training tokens as well as Mamba2 models for the largest granularity. In Figure 7, we
also see that for all granularities, the final trained models of every granularity scale as well as the
baseline model trained with the same architecture. Furthermore, we observe that the validation
loss in Figure 6 for every nested granularity is at a similar distance (usually a delta of 0.4 in val
loss) between the largest model (m; = dpoder) and the smallest model (m; = dinoder/8), With
consistent gaps for the intermediate models. These scaling trends offer very promising evidence that
a single nested MatMamba-LM model can be used in a variety of deployments instead of training 4
separate models independently. We also report performance on a number of downstream LM eval
tasks for all granularities of each MatMamba-LM model (along with baselines trained with the same
architecture) in Tables 5, 6, 7, 8.

In Figure 7, we show results for adaptive inference using Mix’n’Match on all 4 MatMamba-LM
variants. We see a smooth interpolation between the d,,o4e1/2 and d,oge; granularities (e.g. be-
tween doder/8 and dyode1/4). However, for the lower granularities, even though the explicitly
optimized granularities scale as well as expected, the Mix’n’Match models that have not been ex-
plicitly trained suffer a slight performance degradation. We observed that during earlier stages of
training, the Mix’n’Match trends for all granularities were exactly on the performance-compute

13 Scaling Trends on FineWeb (1024 Sequence Length) Scaling Trends on FineWeb (1024 Sequence Length)
: —A— Mamba2-1.4B 38 —A— Mambaz baselines
5 —e— MatMamba-1.48-2048D 3.7 —e— MatMamba-790M
3. —e— MatMamba-1.4B-1024D 3.6 —e— MatMamba-370M
—e— MatMamba-1.4B-512D ’ MatMamba-130M
3.1 MatMamba-1.4B-256D 3.5
3.4
g 301 g 3.3}{9}\:\\\‘
— -
< 204 = 3.24 — 102M
'g ' -E 140M
§ 2.8 432M § 31 Now 181M
] s 3.0 4 217M
2.7 2.91 781M 267M
369M
2.6 1 281 438M
2.74 781M
1343M
25— T T T T 2.6 T T T T T T
50B 1008 1508 200B 250B 10B 308 50B 70B 90B 1108 130B
Tokens Training Tokens
(a) 1.4B model (b) All other models

Figure 6: MatMamba-LM scales as well as explictly optimized Mamba?2 baselines across all model
and training scales all while providing accurate sub-models on the go.
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Figure 7: Validation loss for the language modelling task across model sizes showing MatMamba-
LM is accurate as a Mamba?2 baseline at explictely optimized granualrities, while enabling pareto
optimal submodels through Mix’n’Match.

curve. However, towards the later stages, the explicitly optimized granularities improve faster than
the Mix’n’Match granularities (almost like anchor points). There are mechanisms that can poten-
tially fix this: like a self-distillation loss with the output of the largest submodel, training with more
than g = 4 granularities, or the surrogate model structure used in Flextron (Cai et al., 2024b), that
should make the Mix’n’Match trend smooth. However, this requires more rigorous understanding,
and we leave deeper exploration to future work.

5 CONCLUSIONS

In this work, we presented MatMamba, which is a way to impose a nested Matryoshka structure
on a Mamba?2 state space model. It brings together the best of both Mamba-style models (faster
inference times, especially for longer sequences) and Matryoshka-style learning. A single Mat-
Mamba model contains hundreds of nested and accurate submodels that can be flexibly extracted
for inference. MatMamba-Vision and MatMamba-LM models match the performance and accuracy
of the independently trained Mamba?2 baselines. MatMamba models allow us to choose a desired
performance-compute tradeoff, all while being a single Matryoshka-style model instead of multiple
different models for specific scenarios. This enables interesting use cases like speculative decod-
ing using a smaller draft model and a larger verifier model, input-adaptive submodel selection, and
hybrid cloud-edge inference with the same model based on available compute.
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A APPENDIX

# Example MatMamba parameters
d_model = 1024

expand = 2

headdim = 64

d_state = 128

d_inner = expand % d_model

n_heads = d_inner // headdim

# Learnable parameters, their shapes:
wW_z # (d_inner, d_model)
W_X # (d_inner, d_model)
w_B # (d_state, d_model)
w_C # (d_state, d_model)
w_dt # (n_heads, d_model)
D # (n_heads)

A # (n_heads)

w_conv_x # (d_inner, 1, 4)
w_conv_BC # (2 * d_state, 1, 4)
w_out # (d_model, d_inner)

def matmamba_layer (x_in, mat_dims):
rrr
Arguments:
x_in: (batch, seq_len, d_model)
mat_dims: how many matryoshka dims to select in this block
Returns:
y: (batch, seq_len, d_model)
e
mat_d_inner = expand * mat_dims
mat_n_heads = mat_d_inner // headdim
assert mat_d_inner % headdim ==

w_in_proj = torch.cat(

dim=0
)

zxbcdt = F.linear(x_in, w_in_proj)

# Matryoshka structure on W_conv_x based on mat_dims

w_conv = torch.cat ([w_conv_x[:mat_d_inner], w_conv_BC])

xBC = F.convld(xBC, w_conv, groups=mat_d_inner + 2 x d_state)

x, B, C = torch.split(xBC, [mat_d_inner, d_state, d_state], dim=-1)

# Matryoshka structure on number of heads in dt, A, and D
y = mamba_chunk_scan_combined(x, dt[:mat_n_heads], A[:mat_n_heads],

y = rmsnorm(y * F.silu(z), w_norm)

# Matryoshka structure on dims of W_out
y = F.linear(y, w_out_proj[:, :mat_d_inner])

return y

# Matryoshka structure on dims of W_z and W_x, and number of heads of W_dt

[w_z[:mat_d_inner, :], w_x[:mat_d_inner, :], w_B, w_C, w_dt[:mat_n_heads, :11,

z, xBC, dt = torch.split (zxbcdt, [mat_d_inner, mat_d_inner + 2+d_state, mat_n_heads], dim=-1

B, C, D[:mat_n_heads])

Listing 1: Pytorch-style pseudocode for a MatMamba block

14




Under review as a conference paper at ICLR 2025

Table 3: Training Configuration for ImageNet runs

MatMamba-Vision

Procedure 135M 35M
Model Dim. 1024 512
Layers 20 20
Batch Size 4096 8192
Training Steps 249,600 124,800
Optimizer AdamW  AdamW
LR 0.005 0.005
LR Decay Cosine Cosine
Weight decay 0.1 0.1
Warmup steps 10,000 10,000
Label smoothing eps. 0.1 0.1
Dropout 0.1 0.1
Stochastic depth 0.1 0.1
Repeated Aug Yes Yes
Gradient clip 1.0 1.0
Horizontal flip Yes Yes
Random Resized Crop  Yes Yes
RandAugment 2,9 2,9)
MixUp Alpha 0.8 0.8
CutMix Alpha 1.0 1.0
RandomErase prob. 0.3 0.3
ColorlJitter 0.3 0.3
Test crop ratio 1.0 1.0
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Table 4: Learnable parameters (without biases) in a MatMamba layer, with example parameter
reduction from a Mamba2 layer for d,,oqe1 = 1024, dhead = 32, dipner = 2 X 1024 = 2048
(expand factor 2), dgiqte = 128, m; = 512, and h; = 16 (half of the original dimensions and half

of original heads being used inside the model).

Parameter Mamba Shape MatMamba Shape  Reduction Fraction
dinner X dmodel (2 X ml) X dmodel
W, 2048 x 1024 (2 x 512) x 1024 0.5x
2,097,152 1,048,576
dinner X dmodel (2 X ml) X dmodel
W 2048 x 1024 (2 x 512) x 1024 0.5x
2,097,152 1,048,576
dstate X dmodel dstate X dmodel
Wpg 128 x 1024 128 x 1024 1x
131,072 131,072
dstate X dmodel dstate X dmodel
We 128 x 1024 128 x 1024 1x
131,072 131,072
Nheads X dmodel h1 X dmodel
Wae 32 x 1024 16 x 512 0.5x
32,768 16,384
Nheads h1
39 16 0.5x
Nheads hz
39 16 0.5x
Ainner X 1 X 4 2xm; x1x4
Weonwv, 2048 x 1 x 4 (2x512) x1x4 0.5x
8,192 4,096
(2 X dstate) X 1 x4 (2 X dstate) X 1 x4
Weonvso (2x128) x1x4 (2x128) x1 x4 1x
256 256
dmodel X dinner dmodel X (2 X mz)
Wout 1024 x 2048 1024 x (2 x 512) 0.5x
2,097,152 1,048,576
Total 6,594,880 3,428,640 0.519x

Table 5: Downstream LM Eval results for baseline and MatMamba-LM on 1.4B granularities

Downstream Task

256-D (d-model/8)

512-D (d-model/4)

1024-D (d-model/2)

2048-D (d-model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 36.48 36.74 43.17 43 50.24 50.05 53.77 53.7
Hellaswag 33.89 33.77 38.17 38.05 42.24 42.43 45.17 45.56
‘WinoGrande 50.59 50.67 55.01 54.54 56.21 56.12 58.75 58.64
PIQA 67.94 68.01 70.35 70.46 73.11 73.07 74.58 74.54
ARC-E 50.02 49.54 54.11 53.41 58.77 58.75 62.67 62.63
ARC-C 19.67 19.45 21.86 21.84 24.73 24.66 282 28.16
OpenBookQA 18.6 18.4 212 21.2 22 21.8 242 242
TriviaQA (EM) 0.81 0.74 3.38 3.31 7.1 6.98 9.33 9.31
GSM8k 0.71 2.12 1.33 1.36 1.39 1.21 1.79 1.67
MMLU 23.49 2297 2477 24.41 24.39 2443 23.49 23.84
ANLI-R1 33.58 31.7 334 315 33.27 334 33.71 335
ANLI-R2 34.11 342 34.24 34.6 34.28 34.6 352 35

ANLI-R3 35.12 35.58 35.17 34.75 35.34 3533 35.27 33.67
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Table 6: Downstream LM Eval results for baseline and MatMamba-LM on 790M granularities

Downstream Task 192-D (d.model/8) 384-D (d.model/4) 768-D (d_model/2) 1536-D (d_model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 31.34 31.32 37.71 3775 424 42.42 46.59 46.52
Hellaswag 31.28 3111 35.01 34.38 37.74 37.67 40.39 40.37
WinoGrande 50.25 51.38 51.38 51.38 51.74 51.7 54.51 54.54
PIQA 68.2 68.17 69.41 69.37 71.61 71.55 73.14 73.12
ARC-E 46.21 46.09 50.04 49.92 53.01 52.82 552 55.05
ARC-C 18.79 18.77 20.77 20.73 21.79 21.76 22.33 22.27
OpenBookQA 17.8 17.6 20.2 20 20.6 20.6 214 212
TriviaQA (EM) 0.41 0.37 0.48 045 2.11 2.08 3.71 3.64
GSMS8k 1.47 1.9 1.77 1.74 1.84 1.82 1.96 1.97
MMLU 23.97 2298 24.41 23.49 24.17 23.87 24.69 25.04
ANLI-R1 33.41 32.6 33.58 29.2 33.71 322 33.17 323
ANLI-R2 3428 343 3424 347 35.11 352 35.17 33.6
ANLI-R3 35.26 36.25 3528 34.75 3491 35.08 35.02 34.58

Table 7: Downstream LM Eval results for baseline and MatMamba-LM on 370M granularities

Downstream Task 128-D (d.model/8) 256-D (d.model/4) 512-D (d-model/2) 1024-D (d_model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 27.09 27.09 32.02 31.98 37.57 37.55 42.11 42.05
Hellaswag 29.21 29.46 31.28 31.3 33.77 33.81 36.29 36.39
WinoGrande 50.77 5114 50.74 50.67 51.22 51.38 51.68 51.14
PIQA 65.21 65.23 67.41 67.36 68.24 68.28 70.49 70.51
ARC-E 44.02 43.94 47.02 46.8 483 48.32 50.79 50.76
ARC-C 19.05 19.03 19.2 19.11 20.5 2048 21.18 21.16
OpenBookQA 15.6 15.6 17.8 17.4 19.8 19.2 19.8 18.2
TriviaQA (EM) 0.21 0.2 0.4 0.42 0.62 0.61 1.34 1.32
GSMB8k 1.13 1.59 1.31 1.29 1.62 1.59 1.68 1.59
MMLU 24.28 23 24717 22.99 2453 23.09 2477 2297
ANLI-R1 33.78 319 33.14 343 33.92 327 3322 337
ANLI-R2 35.27 339 3329 338 35.01 337 3497 332
ANLI-R3 35.78 3475 35.12 35.17 35.89 33.83 35.58 34.67

Table 8: Downstream LM Eval results for baseline and MatMamba-LM on 130M granularities

Downstream Task 96-D (d.model/8) 192-D (d-model/4) 384-D (d-model/2) 768-D (d-model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 19.97 20.01 23.27 23.31 26.47 26.49 29.38 29.32
Hellaswag 27.63 27.61 28.34 28.44 29.38 29.48 30.11 30.32
WinoGrande 50.11 50.75 5224 52.33 5222 52.01 5224 5233
PIQA 61.93 61.97 62.31 62.3 65.97 64.91 66.52 66.49
ARC-E 40.87 40.82 42.31 42.26 43.67 43.6 45.12 45.08
ARC-C 17.31 17.32 17.43 17.41 17.85 17.83 18.89 18.86
OpenBookQA 12.8 12.4 14.2 14.4 15.8 15.6 16.2 15

TriviaQA (EM) 0.11 0.09 0.15 0.16 0.25 0.26 0.45 0.46
GSMB8k 1.07 1.21 1.24 1.29 1.51 1.52 1.55 1.06
MMLU 24.11 2297 24.39 229 24.92 2297 2433 2295
ANLI-R1 33.88 325 33.88 31.1 33.62 31.1 34.11 342
ANLI-R2 34.67 32.8 3477 33.1 34.59 34.6 34.89 344
ANLI-R3 35.78 36.17 35.28 3325 35.64 36.25 35.78 36.08
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