
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATMAMBA: A MATRYOSHKA STATE SPACE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

State Space Models (SSMs) like Mamba2 are a promising alternative to Trans-
formers, with faster theoretical training and inference times – especially for long
context lengths. Recent work on Matryoshka Representation Learning – and its
application to Transformer backbones in works like MatFormer – showed how
to introduce nested granularities of smaller submodels in one universal elastic
model. In this work, we present MatMamba: a state space model which com-
bines Matryoshka-style learning with Mamba2, by modifying the block to contain
nested dimensions to enable joint training and adaptive inference. MatMamba al-
lows for efficient and adaptive deployment across various model sizes. We train
a single large MatMamba model and are able to get a number of smaller nested
models for free – while maintaining or improving upon the performance of a base-
line smaller model trained from scratch. We train language and image models
at a variety of parameter sizes from 35M to 1.4B. Our results on ImageNet and
FineWeb show that MatMamba models scale comparably to Transformers, while
having more efficient inference characteristics. This makes MatMamba a practi-
cally viable option for deploying large-scale models in an elastic way based on the
available inference compute.

1 INTRODUCTION

Deep learning practitioners often train different sizes of the same kind of model to facilitate deploy-
ment in a variety of ranges of available inference compute. For example, the Llama 3.2 (Dubey et al.,
2024) series has 1B, 3B, 11B, and 90B variations. These models are extremely powerful individu-
ally – but due to independent training do not necessarily share the same metric space – a property
which can be extremely useful for inference applications like speculative decoding (Leviathan et al.,
2023), hybrid cloud-edge inference, or just general input or compute adaptive processing. Moreover,
because training these models is expensive, we typically see only a few chosen sizes trained. This is
not desirable in situations where the deployment setup can optimally support an intermediate model
(e.g. a 2B model), but has to settle for the less accurate 1B model instead.

Techniques like model compression and distillation aim to address these issues, but require addi-
tional training (for which data may not be available), and can sometimes drop accuracy (Jaiswal
et al., 2023). Thus, methods that offer adaptive inference out of the box at intermediate granulari-
ties are extremely useful. This has been explored for Transformers (Devvrit et al., 2023; Cai et al.,
2024b) and ConvNets (Yu & Huang, 2019; Cai et al., 2019). The core focus of this work is to try to
enable out of the box adaptive inference in a newer architecture: Mamba2 (Dao & Gu, 2024).

State Space Models like Mamba2 (Dao & Gu, 2024) and a number of other related newer archi-
tectures (see Section 2) have shown tremendous potential as they try to improve on the efficiency
of Transformers, while maintaining their potency as accurate and general sequence processing ar-
chitectures. Mamba2 has comparable scaling properties to Transformers, while being significantly
faster at longer context lengths.

In this work, we introduce MatMamba, a nested Matryoshka structure (Kusupati et al., 2022) within
a Mamba2 block (Dao & Gu, 2024). MatMamba enables the extraction of hundreds of nested sub-
models from the same set of weights, without requiring any additional training during deployment.
MatMamba is a general-purpose sequence processing architecture that can be applied to any type
of model (encoder/decoder), modality (language/vision/sound/actions), loss function, or learning
algorithm compatible with a Transformer or Mamba2 layer.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The philosophically closest work to MatMamba is MatFormer (Devvrit et al., 2023) – which imposes
a nested structure on the FFN block in a Transformer layer. We use the same concept to impose
a nested structure on any learnable parameter in a Mamba2 block that depends upon the hidden
dimensionality of the block. Formally, a MatMamba block consists of a nested combination of
g Mamba2 blocks Mi, such that M1 ⊂ M2 ⊂ ... ⊂ Mg , where Mi ⊂ Mj means that all the
parameters of a sub-block Mi are present in Mj . We train the model using g forward passes with
gradient accumulation followed by a single backward pass for parameter updates (see Figure 1).

By jointly training all g granularities, the smallest sub-blocks are incentivized to represent the
most important information, like in Matryoshka Representation Learning (Kusupati et al., 2022).
We can now use any of the g nested sub-blocks Mi flexibly. Additionally, we can flexibly slice
the block along any dimensionality (even beyond the g explicitly optimized granularities). Using
Mix’n’Match (Section 3.4), we can perform this operation over multiple layers at varying granu-
larities to flexibly extract a combinatorially large number of models from the single larger model.
We observe that these extracted models preserve the metric space of the larger model, and are ac-
curate across a variety of tested tasks – effectively allowing us to choose a tradeoff between model
performance and compute.

We train MatMamba-based vision models (MatMamba-Vision), and find that: (a) MatMamba-
Vision models scale as well as baseline Mamba2 based models at all g = 4 granularities; (b)
Using Mix’n’Match, we can flexibly extract submodels between the explicitly optimized granular-
ities. The submodels span (and sometimes exceed) the pareto optimal accuracy-vs-compute curve;
(c) MatMamba-Vision models are significantly faster at higher resolutions than ViTs, making them
promising candidates for long-form and high resolution visual tasks, while enabling adaptive visual
processing with the nested submodels (see Section 4.1.1).

Furthermore, MatMamba-Vision models can act as elastic image encoders for adaptive image re-
trieval. We can encode visual datasets with the largest model, and because the smaller submodels
share its metric space, we can use them as query encoders, needing drastically lower compute with
minimal loss in accuracy (see Section 4.1.2).

We also train MatMamba-based decoder language models (MatMamba-LM) at various sizes from
130M-1.4B parameters, and at g = 4 granularities. We make similar observations here too, that
MatMamba-LM models scale as well as Mamba2 baselines with the same architecture for all nested
granularities. We also observe interesting homogenous scaling behaviour between the nested gran-
ularities for different models (see Section 4.2).

Through MatMamba, for the first time, we bring together the adaptivity of Matryoshka-style learning
and the efficiency of state space models (SSMs) like Mamba2 (Dao & Gu, 2024).

We make the following research contributions:

1. We introduce MatMamba, which imposes a nested Matryoshka structure on a Mamba2 state
space model. We jointly optimize all nested granularities to train a single elastic model.

2. We show that MatMamba models scale as well as the baseline Mamba2 models for a variety of
model sizes from 35M-1.4B parameters on language and vision tasks.

3. Using Mix’n’Match with MatMamba allows the flexible extraction of hundreds of submodels to
perform adaptive inference. These submodels preserve the metric space of the original model.

4. MatMamba-Vision models are comparably accurate and significantly faster at higher resolutions
than ViTs, making them well suited for long-form/high resolution and adaptive visual processing.

2 RELATED WORK

The ever growing demand of AI models across various accuracy and resource constraints makes it
infeasible to train a different model for each use case. Instead, these adaptive deployment needs
are often solved through introducing elasticity in models (Kusupati, 2024). Work on slimmable
networks (Yu et al., 2018; Yu & Huang, 2019) and once-for-all networks (Cai et al., 2019) brought
the idea of training multiple submodels present within one universal model. Nested dropout (Rip-
pel et al., 2014) generalizes this idea to learn ordered representations which further extended to
enable elasticity at each dense vector embeddings through Matryoshka Representation Learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

proj
dims

proj
dims

12.5%SSM
heads

12.5%

12.5%

25%

25%

25%

50%

50%

50%

100%

100%

100%

N x N x N x N x

Input 1 Input 2 Input 3 Input 4

Ld/8 Ld/4 Ld/2 Ld

Training

Ljoint

Adaptive Inference

Single backward
pass for 4 forward
passes for
fixed nested
granularities

📱
Phone

💻
Laptop

☁
Cloud GPU

🖥
Desktop

25% 75%

100%

100%

100%

100%50%

40%

100%100%

87.5%

12.5%

🕶
Wearables

12.5%

12.5%

12.5%

12.5%

50%

50%

75%

25%

proj
dims

proj
dims

SSM
heads

proj
dims

proj
dims

SSM
heads

proj
dims

proj
dims

SSM
heads

Conv

SSM

x b c dt z

σ
X B C A

Y

σ

N

Input

Output

MatMamba Block

🪆Matryoshka Structure on:
- Dimensions of Wx , Wz , Wout , Wconv_x
- Number of heads of dt, A

Figure 1: MatMamba introduces a nested Matryoshka (Kusupati et al., 2022) structure in a
Mamba2 (Dao & Gu, 2024) block. We jointly train a few chosen granularities to get a single model
from which we can flexibly extract a large number of nested submodels for adaptive inference based
on the available deployment compute.

(MRL) (Kusupati et al., 2022). MRL simplifies the training process to induce elasticity with a small
set of nested granularities (hence the name Matryoshka), exponentially separated in size, all opti-
mized with the same target loss function as the full vector. MRL further smoothly interpolates to
the granularities not seen during training, thus allowing for complete elasticity to extract sub-vectors
based on the requirements.

Matryoshka information packing and learning has been widely adopted in bringing adaptivity not
only in output space, but also in input (Beyer et al., 2023) and model weights (Devvrit et al., 2023;
Cai et al., 2024b; Valipour et al., 2023). MatFormer (Devvrit et al., 2023) is a direct translation of
MRL to every hidden activation vector of a MLP sub-block within a Transformer layer (Vaswani
et al., 2017). MatFormer showed scaling trends similar to Transformer, while also providing the
capability to adaptively extract submodels that fall on the accuracy-vs-compute pareto curve. More
recent works (Cai et al., 2024b; Jain et al., 2024) developed dynamic routing on top of the con-
ditional computation enabled by MatFormer to realize performance gains in deployment. Further,
matryoshka packing was also used for flexible tokenization (Cai et al., 2024a; Hu et al., 2024) as
well as diffusion models (Gu et al., 2023).

Transformers (Vaswani et al., 2017) have been fundamental sequence processing blocks in neu-
ral networks for the past few years. There has been a recent wave of work on efficient sequence
processing architectures that aim to be faster and equally performant alternatives to Transformers.
Mamba (Gu & Dao, 2023) and Mamba2 (Dao & Gu, 2024) are the most relevant to this work,
with other very closely related works like Linear Attention (Katharopoulos et al., 2020), Test-time
training (Sun et al., 2024), RWKV (Peng et al., 2023), Griffin (De et al., 2024), Jamba (Lieber
et al., 2024), xLSTM (Beck et al., 2024), HGRN2 (Qin et al., 2024), RetNet (Sun et al., 2023),
RecurrentGemma (Botev et al., 2024). Waleffe et al. (2024) present a detailed study of how to
train large-scale Mamba-based language models. Works like MambaVision (Hatamizadeh & Kautz,
2024), MambaND (Li et al., 2024b), Vision Mamba (Zhu et al., 2024), VideoMamba (Li et al.,
2024a), and Sonic (CartesiaAI, 2024) have all shown how a Mamba layer can process visual data
and other modalities. Liu et al. (2024) present a detailed survey of Mamba-based vision models.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 MATMAMBA

3.1 MAMBA2 PRELIMINARIES

MatMamba is based on Mamba2. We make simple modifications to the Mamba2 block to impose the
Matryoshka structure. A detailed description of the internals of Mamba2 can be found in the original
paper Dao & Gu (2024). However for the purposes of this work, we treat the Mamba2 block as a
combination of an input linear projection (Win, which can be broken down into Wz , Wx, WB , WC ,
Wdt), a causal 1D convolution layer with kernel size 4 (with weights that are a concatenation of
Wconvx , WconvB

, and WconvC
applied in groups), a chunk + selective scan operation (SSM), and

an output projection layer (Wout). Similar to a Transformer, this block takes in an (b, l, d) shaped
tensor – b is batch size, l is sequence length, and d is the dimensionality – and produces a (b, l, d)
shaped output after a sequence transformation. For an input tensor u, the Mamba2 block M(u)
consists of the following steps:

XBC(u) = σ(Conv(Wconvx
⌢WconvB

⌢WconvC
,Wx.u

⌢WB .u
⌢WC .u)) (1)

Y (u) = SSM(XBC(u),Wdt.u, A,D) (2)

M(u) = Norm(Y (u).σ(Wz.u)).W
T
out (3)

where ⌢ is the concatenation operation, Conv(k, s) applies a 1-D causal convolution with weights
k (applied in len(k) groups) on a sequence s, and A and D are learnable SSM parameters. σ is a
nonlinearity which we set to SiLU (Elfwing et al., 2018), and Norm is a layer norm function which
we set to RMSNorm (Zhang & Sennrich, 2019).

3.2 MATMAMBA BLOCK

A MatMamba block also has both input and output shapes as (b, l, d). It is defined as a nested
combination of g Mamba2 blocks Mi, such that M1 ⊂ M2 ⊂ ... ⊂ Mg , where Mi ⊂ Mj means
that all the parameters of a sub-block Mi are present in Mj . Works like MatFormer (Devvrit et al.,
2023), OFA (Cai et al., 2019), and Flextron (Cai et al., 2024b) all share similar designs in which
the largest model Mg is the single universal base model from which numerous smaller submodels
Mi can be flexibly extracted. In MatMamba, we impose the nested structure along the dimensions
of the model parameters. Specifically for a sub-block Mi with expansion factor e = dinner

dmodel
, we

choose a Matryoshka dimension mi, such that 0 < mi < dmodel, which results in an inner slice
dimension di = e × mi and number of heads hi = di

dhead
, subject to di mod dhead = 0. For

example, parameters like Wx have a shape of (dinner, dmodel). For the Mi sub-block, it will become
Wx[0 : di] by slicing it along the dinner dimension. Similarly for parameters like A which have a
shape of (nheads), it will become A[0 : hi]. Concretely, the MatMamba block Mi(u) when applied
to an input tensor u is these steps:

XBCi(u) = σ(Conv(Wconvx [0 : di]
⌢WconvB

⌢WconvC
,Wx[0 : di].u

⌢WB .u
⌢WC .u)) (4)

Yi(u) = SSM(XBCi(u),Wdt[0 : hi].u, A[0 : hi], D[0 : hi]) (5)

Mi(u) = Norm(Yi(u).σ(Wz[0 : di].u)).Wout[0 : di]
T (6)

In practice, Wz , Wx, WB , WC , and Wdt are implemented as a single input projection layer with
tensor parallelism, with appropriate rearranging of dimensions depending on mi. Figure 1 illustrates
the MatMamba block. We also provide PyTorch-style pseudocode for the block in Appendix A, to
provide a clearer understanding of our implementation.

Compared to MatFormer (Devvrit et al., 2023), where the Matryoshka structure is only applied on
the MLP subblock of the Transformer block, MatMamba applies nesting to the entire block wherever
the inner dimension plays a role. This leads to a nearly linear reduction in total parameter count (and
also a nearly linear reduction in flop count due to the nature of Mamba2). Also, typically > 95%
of the parameter count in a MatMamba block is in the input and output projections, which can
be converted into nested layers while maintaining the well understood systems characteristics of
projection layers. See Appendix A for a detailed example of parameter count reduction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We can stack L such MatMamba blocks to create a MatMamba model. For a given mi and nested
blocks M1 ⊂ M2 ⊂ ... ⊂ Mg , we can create a MatMamba model fi with L layers, and g nested
models f1 ⊂ f2 ⊂ ... ⊂ fg . Each fi is formed by stacking Mi L times. Like Mamba2, the Mat-
Mamba backbone is a general purpose sequence processing architecture, which with an appropriate
tokenizer and output head can process a variety of modalities.

3.3 TRAINING

To train a model comprised of MatMamba blocks for g chosen granularities, we perform g forward
passes to calculate a joint loss function. For an input x, model f , target y and loss function L:

Ljoint(x, y) =

g∑
i=1

λi.L(fi(x), y) (7)

where λi is the weight of the i-th nested submodel’s loss. In this work, we train g = 4
nested submodels with a uniform λi = 1/g = 0.25 for each submodel. As shown in Fig-
ure 1, during each forward pass, we accumulate gradients. The parameter update is done with
a single backward pass. During the whole process, the model and the weights are the same,
thereby also making memory usage the same as a regular Mamba2 block. In this work, we train
MatMamba models with g = 4 nested granularities, with the corresponding list of mi’s being
[dmodel, dmodel/2, dmodel/4, dmodel/8], i.e. a halving of dimensionality for every sub-model. Like
MatFormer (Devvrit et al., 2023) and Flextron (Cai et al., 2024b), we note that it is also possible to
finetune an existing pretrained model to produce a nested structure. However, in this work, we focus
on training from scratch to study the scaling characteristics of MatMamba models.

3.4 MIX’N’MATCH

We can apply the Mix’n’Match strategy from MatFormer (Devvrit et al., 2023) to flexibly extract
any submodel from MatMamba for inference. Concretely, for a model f with L layers, we need to
choose a dimensionality mi at each layer i. Note that mi can be either one of the explicitly optimized
g granularites (e.g. picking from one of [1024, 512, 256, 128] from a 135M-MatMamba-Vision
model, see section 4.1), or we can choose interpolated dimensionalities that were not explicitly
optimized for (e.g. picking any random valid value like 768 or 384 that was not explicitly trained).
For instance, we could choose m1 = 256 (25% size) in layer 1, m2 = 1024 (100% size) in layer 2,
m3 = 768 (75% size) in layer 3, and so on. The only constraint on mi in MatMamba is that it needs
to lead to an integer number of heads, or that (e × mi) mod dhead = 0, where e = dinner

dmodel
. This

leads to a combinatorially large number of possible submodels (beyond the g explicitly optimized
granularities) that can be flexibly extracted – all from the same set of base model weights – as shown
in Figure 1. Due to the Matryoshka structure, the first few dimensions (that are shared among all the
nested submodels) are incentivized to learn the strongest representations.

3.5 ELASTIC INFERENCE

When deploying a MatMamba model for inference, we typically need to store the single universal
model fg in memory. If compute is not constrained (or if the inference workload is predictable),
then we can use the full model to get the most accurate results. However, depending on dynamic
constraints (e.g. available inference compute, energy usage, system load, desired accuracy etc.), we
can perform a forward pass on a chosen slice of the network on the fly.

There are exciting possibilities like combining cloud and edge inference – we could store a smaller
model fi on the edge device and when necessary, use the larger model fj on the cloud, or using a
smaller model to act as a draft model for speculative decoding (Leviathan et al., 2023) with a larger
verifier model. We could also potentially do input-adaptive sub-model selection (e.g. use a larger
model for a more difficult input). All of these are possible only because MatMamba has a consistent
and nested Matryoshka structure, in which all the sub-models share the same metric space.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Linear Projection of Flattened Patches

1 2 3 4 5 6 7 8 9 0

C
lassification H

ead

Class
dog
cat
car
…

Suffix[CLS]token

MatMamba Layers

L ⨯

Embedded Patches

E
m

bedded P
atches

Input Image

i Position embedding

Patch tokens

[CLS] token

Figure 2: MatMamba layers for vision tasks. Similar to a ViT (Dosovitskiy, 2020), we convert an
image into a tensor of embedded patches. Because of the causal nature of the Mamba2 block, we
suffix the [CLS] token. We intentionally keep the design simple to better study the properties of the
MatMamba block.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of MatMamba-based models across two modal-
ities: vision (MatMamba-Vision) and language (MatMamba-LM). For vision, we show results
for image classification (Section 4.1.1) and adaptive image retrieval (Section 4.1.2). For language,
we train decoder language models (Section 4.2). We train models at a variety of scales from 35M
to 1.4B parameters. For a fair comparison, we also independently train baseline Mamba2 models
which have the same architecture as the submodels of each MatMamba granularity. Please note
that we do not aim to achieve state-of-the-art results in this work on either language or vision for
the chosen model sizes. We instead focus on properties like nested structure consistency, parameter
reduction, inference speedups/memory usage for submodels, and scaling of simple networks built
using the MatMamba block.

4.1 MATMAMBA-VISION

MatMamba-Vision (Figure 2) contains a patch embedding followed by L MatMamba blocks with a
unidirectional SSM scan. One crucial design choice we make is to use the [CLS] token as a suffix
instead of the conventional prefix. This allows it to attend to information from the entire sequence.
We find that this simple architecture works effectively on both image classification and adaptive
retrieval. We train two model variations (35M with dmodel = 512 and 135M with dmodel = 1024,
see Table 1) with patch size 16 and L = 20 layers on ImageNet-1k Deng et al. (2009) which has
1.28M training images and 50k validation images. Compared to other recent work on SSM’s for
vision tasks like MambaVision (Hatamizadeh & Kautz, 2024), MambaND (Li et al., 2024b), and
Vision Mamba (Zhu et al., 2024) – all of which have major design changes on top of Mamba layers
like bidirectional scan with additional projections, varying order of scans, or combining SSM layers
with attention and convolution layers – we keep our network architecture as simple as possible.

Table 1: Base model architectures for MatMamba-Vision (35M and 135M) with the explicitly opti-
mized submodels for g = 4 nested granularities.

Parameters
Base Model Layers mi hi Patch embed MatMamba Layers

135M-1024D

20 1024 32 787,456 132,739,840
20 512 16 787,456 69,004,160
20 256 8 787,456 37,136,320
20 128 4 787,456 21,202,400

35M-512D

20 512 32 393,728 34,927,360
20 256 16 393,728 18,787,200
20 128 8 393,728 10,717,120
20 64 4 393,728 6,682,080

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.0M 10.0M 15.0M 20.0M 25.0M 30.0M 35.0M
Number of non-embedding parameters

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5
Va

lid
at

io
n

Ac
c

(to
p

1)

MatMambaVision-35M-patch16

Baseline
MatMamba
MixNMatch

(a) 35M model

20.0M 40.0M 60.0M 80.0M 100.0M 120.0M
Number of non-embedding parameters

70

72

74

76

78

Va
lid

at
io

n
Ac

c
(to

p
1)

MatMambaVision-135M-patch16

Baseline
MatMamba
MixNMatch

(b) 135M model

Figure 3: ImageNet-1K Classification: MatMamba-Vision is as accurate as explicitly trained base-
lines across various constraints while also spanning the accuracy-vs-compute pareto optimal curve
through mix’n’match submodels.

We use FFCV (Leclerc et al., 2023) dataloaders for efficient training. We apply augmentations
like RandAug (Cubuk et al., 2020), Random Erasing (Zhong et al., 2020), Mixup (Zhang, 2017),
Cutmix (Yun et al., 2019), and a number of other settings following DEiT-3 (Touvron et al., 2022),
AugReg (Steiner et al., 2021), and Better ViT Baselines (Beyer et al., 2022). The exact detailed
experimental settings can be seen in Appendix A.

4.1.1 IMAGE CLASSIFICATION

In Figure 3, we see that for both the 35M and 135M MatMamba-Vision models, the explicitly
optimized submodels closely match the 4 independently trained baseline models with the same ar-
chitecture as the nested submodel. However, instead of needing four separate models, we can get all
levels of performance/parameter counts flexibly in a single model.

Adaptive Inference using Mix’n’Match: Additionally (Figure 3), using Mix’n’Match at a vari-
ety of combined granularities yields models that smoothly interpolate (and sometimes exceed) the
accuracy on the line joining the explicitly optimized granularities. This points towards powerful
adaptivity, because we can extract a combinatorially large number of submodels along the accuracy-

512 1024 1536 2048 2560 3072 3584
Image Resolution (pixels)

2

5

10

20

50

100

FP
S

(lo
g

sc
al

e)

FPS vs Image Resolution

MatMamba-135M-full
MatMamba-135M-512D
MatMamba-135M-256D
MatMamba-135M-128D
MatMamba-35M-full
MatMamba-35M-256D
MatMamba-35M-128D
MatMamba-35M-64D
ViT-B/16

(a) MatMamba-Vision FPS vs. Image Size

512 1024 1536 2048 2560 3072 3584
Image Resolution (pixels)

0

5

10

15

20

25

30

35

40

M
em

or
y

Us
ag

e
(G

B)

Memory Usage vs Image Resolution
MatMamba-135M-full
MatMamba-135M-512D
MatMamba-135M-256D
MatMamba-135M-128D
MatMamba-35M-full
MatMamba-35M-256D
MatMamba-35M-128D
MatMamba-35M-64D
ViT-B/16

(b) MatMamba-Vision Memory Usage

Figure 4: Inference speed and memory usage for batch size 1 on an H100 for nested MatMamba-
Vision models and a ViT baseline. At larger resolutions, the characteristics of MatMamba are better.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.0M 10.0M 15.0M 20.0M 25.0M 30.0M 35.0M
Number of non-embedding parameters

45

50

55

60

65

70

75

1-
NN

 A
cc

 (%
)

MatMambaVision-35M-patch16

Baseline
MatMamba
MixNMatch

(a) 1-NN Retrieval for 35M model

20.0M 40.0M 60.0M 80.0M 100.0M 120.0M
Number of non-embedding parameters

62

64

66

68

70

72

74

76

1-
NN

 A
cc

 (%
)

MatMambaVision-135M-patch16

Baseline
MatMamba
MixNMatch

(b) 1-NN Retrieval for 135M model

Figure 5: Adaptive Image Retrieval on ImageNet-1K: Submodels obtained from the largest
MatMamba-Vision model preserve the metric space of embeddings resulting in accurate and adap-
tive query processing at scale while baseline struggles to work across models without distillation.

compute curve. We can optimize submodel selection for deployment constraints flexibly, all while
only using the weights of a single nested universal model.

Inference Speeds at Higher Resolutions: In Figure 4, we also study the inference speed tradeoffs
of nested granularities of MatMamba-Vision models when compared with each other and a ViT-B/16
model. We find that at or below 512px resolution, the sequence length is low enough for the ViT
to be the fastest model (due to GPU parallelism and optimizations like FlashAttention). However,
as we increase the resolution to 1024px and beyond, Mamba-style models start outperforming ViT
in both througput and latency. We also study inference memory usage, and find that MatMamba-
Vision scales slightly better than an optimized ViT-B/16 as the resolution increases. Both of these
observations offer promising evidence that MatMamba-based models can be suitable for processing
longer sequences of visual data at higher resolutions on a single accelerator (as opposed to scaling
context length in Transformers using methods like RingAttention Liu et al. (2023) which needs
multiple interconnected accelerators for a single forward pass at long sequence lengths).

4.1.2 ADAPTIVE IMAGE RETRIEVAL

Image retrieval aims to locate semantically similar images using representations generated by a
pretrained encoder (Chen et al., 2022). The standard method involves encoding both database and
query images with the same encoder and then performing nearest neighbor retrieval. While using
a powerful encoder for database images is feasible, the query encoder must be efficient for real-
time applications. Moreover, query encoding scenarios can vary, such as on-device versus cloud
processing and varying query load and complexity. Existing solutions with fixed encoders often
compromise accuracy or cost in different settings.

Due to its flexibility, MatMamba-Vision is a promising candidate for query encoding. However, re-
trieval also requires that submodels maintain distance relationships between fixed database (encoded
with a larger encoder) and query embeddings across various granularities. Using smaller baseline
Mamba2 models solely for query encoding can lead to significant distance preservation issues and
poor retrieval accuracy (as illustrated in Figure 5).

We evaluated both the baseline and MatMamba-Vision encoders on ImageNet-1K for image retrieval
at 35M and 135M parameter scales. Using the [CLS] token representation, we calculated 1-nearest
neighbor (NN) accuracy. Figure 5 demonstrates that submodels extracted from MatMamba can
effectively preserve distances and offer greater flexibility. For example, MatMamba-Vision-135M
can reduce compute cost by 55% with a minimal accuracy loss of less than 0.5%. While causal
models with suffix [CLS] token might not be as accurate as bi-directional encoders for retrieval, this
is a promising start towards better long-context encoders while enabling adaptive query processing.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Base model architectures for MatMamba-LM

Base Model Layers dmodel dhead Embed params Non-embed params Tokens

130M 24 768 24 38,615,040 90,368,448 62.9B
370M 48 1024 32 51,486,720 316,851,712 125.8B
790M 48 1536 48 77,230,080 702,918,912 125.8B
1.4B 48 2048 64 102,973,440 1,240,767,488 251.6B

4.2 MATMAMBA-LM

We train decoder language models using the MatMamba block (MatMamba-LM). The models
closely follow the training procedure and hyperparameters of llm.c (Karpathy, 2024). We use
the GPT-2 (Radford et al., 2019) tokenizer with a padded vocabulary size of 50,280. We use the
FineWeb (Penedo et al., 2024) dataset to train all models. We train 4 separate models (with base
model parameter sizes 130M, 370M, 790M, and 1.4B). For each of these base models, we optimize
g = 4 nested granularities [dmodel, dmodel/2, dmodel/4, dmodel/8]. For baselines, we train vanilla
Mamba2 models with the same architecture as the nested submodels. Table 2 shows the exact con-
figurations for each model.

MatMamba-LM scales as well as Mamba2: In Figure 6, we see that MatMamba-LM models
scale with training tokens as well as Mamba2 models for the largest granularity. In Figure 7, we
also see that for all granularities, the final trained models of every granularity scale as well as the
baseline model trained with the same architecture. Furthermore, we observe that the validation
loss in Figure 6 for every nested granularity is at a similar distance (usually a delta of 0.4 in val
loss) between the largest model (mi = dmodel) and the smallest model (mi = dmodel/8), with
consistent gaps for the intermediate models. These scaling trends offer very promising evidence that
a single nested MatMamba-LM model can be used in a variety of deployments instead of training 4
separate models independently. We also report performance on a number of downstream LM eval
tasks for all granularities of each MatMamba-LM model (along with baselines trained with the same
architecture) in Tables 5, 6, 7, 8.

In Figure 7, we show results for adaptive inference using Mix’n’Match on all 4 MatMamba-LM
variants. We see a smooth interpolation between the dmodel/2 and dmodel granularities (e.g. be-
tween dmodel/8 and dmodel/4). However, for the lower granularities, even though the explicitly
optimized granularities scale as well as expected, the Mix’n’Match models that have not been ex-
plicitly trained suffer a slight performance degradation. We observed that during earlier stages of
training, the Mix’n’Match trends for all granularities were exactly on the performance-compute

50B 100B 150B 200B 250B
Tokens

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Va
lid

at
io

n
Lo

ss

1343M

1343M

736M

432M

280M

Scaling Trends on FineWeb (1024 Sequence Length)
Mamba2-1.4B
MatMamba-1.4B-2048D
MatMamba-1.4B-1024D
MatMamba-1.4B-512D
MatMamba-1.4B-256D

(a) 1.4B model

10B 30B 50B 70B 90B 110B 130B
Training Tokens

2.6

2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Va
lid

at
io

n
Lo

ss

781M

369M

129M

781M

438M

267M

181M

369M

217M

140M

102M

129M

86M

64M

54M

Scaling Trends on FineWeb (1024 Sequence Length)
Mamba2 baselines
MatMamba-790M
MatMamba-370M
MatMamba-130M

(b) All other models

Figure 6: MatMamba-LM scales as well as explictly optimized Mamba2 baselines across all model
and training scales all while providing accurate sub-models on the go.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.17B 0.44B 0.7B 0.97B 1.24B
Number of non-embedding parameters

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
lo

ss

MatMambaLM - 1.4B granularities

Baseline
MatMamba
MixNMatch

(a) 1.4B model

99.0M 250.2M 401.5M 552.8M 704.0M
Number of non-embedding parameters

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Va
lid

at
io

n
lo

ss

MatMambaLM - 790M granularities

Baseline
MatMamba
MixNMatch

(b) 790M model

48.0M 115.5M 183.0M 250.5M 318.0M
Number of non-embedding parameters

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Va
lid

at
io

n
lo

ss

MatMambaLM - 370M granularities

Baseline
MatMamba
MixNMatch

(c) 370M model

15.0M 34.0M 53.0M 72.0M 91.0M
Number of non-embedding parameters

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
lo

ss

MatMambaLM - 130M granularities

Baseline
MatMamba
MixNMatch

(d) 130M model

Figure 7: Validation loss for the language modelling task across model sizes showing MatMamba-
LM is accurate as a Mamba2 baseline at explictely optimized granualrities, while enabling pareto
optimal submodels through Mix’n’Match.

curve. However, towards the later stages, the explicitly optimized granularities improve faster than
the Mix’n’Match granularities (almost like anchor points). There are mechanisms that can poten-
tially fix this: like a self-distillation loss with the output of the largest submodel, training with more
than g = 4 granularities, or the surrogate model structure used in Flextron (Cai et al., 2024b), that
should make the Mix’n’Match trend smooth. However, this requires more rigorous understanding,
and we leave deeper exploration to future work.

5 CONCLUSIONS

In this work, we presented MatMamba, which is a way to impose a nested Matryoshka structure
on a Mamba2 state space model. It brings together the best of both Mamba-style models (faster
inference times, especially for longer sequences) and Matryoshka-style learning. A single Mat-
Mamba model contains hundreds of nested and accurate submodels that can be flexibly extracted
for inference. MatMamba-Vision and MatMamba-LM models match the performance and accuracy
of the independently trained Mamba2 baselines. MatMamba models allow us to choose a desired
performance-compute tradeoff, all while being a single Matryoshka-style model instead of multiple
different models for specific scenarios. This enables interesting use cases like speculative decod-
ing using a smaller draft model and a larger verifier model, input-adaptive submodel selection, and
hybrid cloud-edge inference with the same model based on available compute.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k.
arXiv preprint arXiv:2205.01580, 2022.

Lucas Beyer, Pavel Izmailov, Alexander Kolesnikov, Mathilde Caron, Simon Kornblith, Xiaohua
Zhai, Matthias Minderer, Michael Tschannen, Ibrahim Alabdulmohsin, and Filip Pavetic. Flex-
ivit: One model for all patch sizes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 14496–14506, 2023.

Aleksandar Botev, Soham De, Samuel L Smith, Anushan Fernando, George-Cristian Muraru, Ruba
Haroun, Leonard Berrada, Razvan Pascanu, Pier Giuseppe Sessa, Robert Dadashi, et al. Re-
currentgemma: Moving past transformers for efficient open language models. arXiv preprint
arXiv:2404.07839, 2024.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

Mu Cai, Jianwei Yang, Jianfeng Gao, and Yong Jae Lee. Matryoshka multimodal models. arXiv
preprint arXiv:2405.17430, 2024a.

Ruisi Cai, Saurav Muralidharan, Greg Heinrich, Hongxu Yin, Zhangyang Wang, Jan Kautz, and
Pavlo Molchanov. Flextron: Many-in-one flexible large language model. arXiv preprint
arXiv:2406.10260, 2024b.

CartesiaAI. Sonic, 2024. URL https://cartesia.ai/blog/sonic. [Online; accessed
10/01/2024].

Wei Chen, Yu Liu, Weiping Wang, Erwin M Bakker, Theodoros Georgiou, Paul Fieguth, Li Liu, and
Michael S Lew. Deep learning for instance retrieval: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

F Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia
Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain, et al. Matformer: Nested
transformer for elastic inference. arXiv preprint arXiv:2310.07707, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

11

https://cartesia.ai/blog/sonic

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Joshua M Susskind, and Navdeep Jaitly. Matryoshka
diffusion models. In The Twelfth International Conference on Learning Representations, 2023.

Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
arXiv preprint arXiv:2407.08083, 2024.

Wenbo Hu, Zi-Yi Dou, Liunian Harold Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Ma-
tryoshka query transformer for large vision-language models. arXiv preprint arXiv:2405.19315,
2024.

Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens. arXiv
preprint arXiv:2407.19985, 2024.

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang. Compress-
ing llms: The truth is rarely pure and never simple. arXiv preprint arXiv:2310.01382, 2023.

Andrej Karpathy. llm.c: Llm training in simple, raw c/cuda. https://github.com/
karpathy/llm.c, 2024. Accessed: 10/1/2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Aditya Kusupati. Towards Adaptive Intelligence. PhD thesis, University of Washington, 2024.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Madry. Ffcv: Accelerating training by removing data bottlenecks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12011–12020, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274–19286. PMLR, 2023.

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
State space model for efficient video understanding. arXiv preprint arXiv:2403.06977, 2024a.

Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
multi-dimensional data. arXiv preprint arXiv:2402.05892, 2024b.

Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi,
Shaked Meirom, Yonatan Belinkov, Shai Shalev-Shwartz, et al. Jamba: A hybrid transformer-
mamba language model. arXiv preprint arXiv:2403.19887, 2024.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context. arXiv preprint arXiv:2310.01889, 2023.

Xiao Liu, Chenxu Zhang, and Lei Zhang. Vision mamba: A comprehensive survey and taxonomy.
arXiv preprint arXiv:2405.04404, 2024.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. arXiv preprint arXiv:2406.17557, 2024.

12

https://github.com/karpathy/llm.c
https://github.com/karpathy/llm.c

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. arXiv preprint arXiv:2404.07904, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pp. 1746–1754. PMLR, 2014.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In European confer-
ence on computer vision, pp. 516–533. Springer, 2022.

Mojtaba Valipour, Mehdi Rezagholizadeh, Hossein Rajabzadeh, Marzieh Tahaei, Boxing Chen, and
Ali Ghodsi. Sortednet, a place for every network and every network in its place: Towards a
generalized solution for training many-in-one neural networks. arXiv preprint arXiv:2309.00255,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training techniques.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 1803–1811,
2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Hongyi Zhang. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412,
2017.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmen-
tation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–
13008, 2020.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

Example MatMamba parameters
d_model = 1024
expand = 2
headdim = 64
d_state = 128
d_inner = expand * d_model
n_heads = d_inner // headdim

Learnable parameters, their shapes:
w_z # (d_inner, d_model)
w_x # (d_inner, d_model)
w_B # (d_state, d_model)
w_C # (d_state, d_model)
w_dt # (n_heads, d_model)
D # (n_heads)
A # (n_heads)
w_conv_x # (d_inner, 1, 4)
w_conv_BC # (2 * d_state, 1, 4)
w_out # (d_model, d_inner)

def matmamba_layer(x_in, mat_dims):
'''
Arguments:

x_in: (batch, seq_len, d_model)
mat_dims: how many matryoshka dims to select in this block

Returns:
y: (batch, seq_len, d_model)

'''
mat_d_inner = expand * mat_dims
mat_n_heads = mat_d_inner // headdim
assert mat_d_inner % headdim == 0

Matryoshka structure on dims of W_z and W_x, and number of heads of W_dt
w_in_proj = torch.cat(

[w_z[:mat_d_inner, :], w_x[:mat_d_inner, :], w_B, w_C, w_dt[:mat_n_heads, :]],
dim=0

)

zxbcdt = F.linear(x_in, w_in_proj)
z, xBC, dt = torch.split(zxbcdt, [mat_d_inner, mat_d_inner + 2*d_state, mat_n_heads], dim=-1)

Matryoshka structure on W_conv_x based on mat_dims
w_conv = torch.cat([w_conv_x[:mat_d_inner], w_conv_BC])
xBC = F.conv1d(xBC, w_conv, groups=mat_d_inner + 2 * d_state)
x, B, C = torch.split(xBC, [mat_d_inner, d_state, d_state], dim=-1)

Matryoshka structure on number of heads in dt, A, and D
y = mamba_chunk_scan_combined(x, dt[:mat_n_heads], A[:mat_n_heads], B, C, D[:mat_n_heads])

y = rmsnorm(y * F.silu(z), w_norm)

Matryoshka structure on dims of W_out
y = F.linear(y, w_out_proj[:, :mat_d_inner])

return y

Listing 1: Pytorch-style pseudocode for a MatMamba block

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Training Configuration for ImageNet runs

MatMamba-Vision
Procedure 135M 35M

Model Dim. 1024 512
Layers 20 20
Batch Size 4096 8192
Training Steps 249,600 124,800
Optimizer AdamW AdamW
LR 0.005 0.005
LR Decay Cosine Cosine
Weight decay 0.1 0.1
Warmup steps 10,000 10,000
Label smoothing eps. 0.1 0.1
Dropout 0.1 0.1
Stochastic depth 0.1 0.1
Repeated Aug Yes Yes
Gradient clip 1.0 1.0
Horizontal flip Yes Yes
Random Resized Crop Yes Yes
RandAugment (2,9) (2,9)
MixUp Alpha 0.8 0.8
CutMix Alpha 1.0 1.0
RandomErase prob. 0.3 0.3
ColorJitter 0.3 0.3
Test crop ratio 1.0 1.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Learnable parameters (without biases) in a MatMamba layer, with example parameter
reduction from a Mamba2 layer for dmodel = 1024, dhead = 32, dinner = 2 × 1024 = 2048
(expand factor 2), dstate = 128, mi = 512, and hi = 16 (half of the original dimensions and half
of original heads being used inside the model).

Parameter Mamba Shape MatMamba Shape Reduction Fraction

Wz

dinner × dmodel (2×mi)× dmodel

0.5x2048× 1024 (2× 512)× 1024
2,097,152 1,048,576

Wx

dinner × dmodel (2×mi)× dmodel

0.5x2048× 1024 (2× 512)× 1024
2,097,152 1,048,576

WB

dstate × dmodel dstate × dmodel

1x128× 1024 128× 1024
131,072 131,072

WC

dstate × dmodel dstate × dmodel

1x128× 1024 128× 1024
131,072 131,072

Wdt

nheads × dmodel hi × dmodel

0.5x32× 1024 16× 512
32,768 16,384

D
nheads hi 0.5x
32 16

A
nheads hi 0.5x
32 16

Wconvx

dinner × 1× 4 2×mi × 1× 4
0.5x2048× 1× 4 (2× 512)× 1× 4

8,192 4,096

WconvBC

(2× dstate)× 1× 4 (2× dstate)× 1× 4
1x(2× 128)× 1× 4 (2× 128)× 1× 4

256 256

Wout

dmodel × dinner dmodel × (2×mi)
0.5x1024× 2048 1024× (2× 512)

2,097,152 1,048,576

Total 6,594,880 3,428,640 0.519x

Table 5: Downstream LM Eval results for baseline and MatMamba-LM on 1.4B granularities

Downstream Task 256-D (d model/8) 512-D (d model/4) 1024-D (d model/2) 2048-D (d model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 36.48 36.74 43.17 43 50.24 50.05 53.77 53.7
Hellaswag 33.89 33.77 38.17 38.05 42.24 42.43 45.17 45.56

WinoGrande 50.59 50.67 55.01 54.54 56.21 56.12 58.75 58.64

PIQA 67.94 68.01 70.35 70.46 73.11 73.07 74.58 74.54
ARC-E 50.02 49.54 54.11 53.41 58.77 58.75 62.67 62.63
ARC-C 19.67 19.45 21.86 21.84 24.73 24.66 28.2 28.16
OpenBookQA 18.6 18.4 21.2 21.2 22 21.8 24.2 24.2

TriviaQA (EM) 0.81 0.74 3.38 3.31 7.1 6.98 9.33 9.31
GSM8k 0.71 2.12 1.33 1.36 1.39 1.21 1.79 1.67
MMLU 23.49 22.97 24.77 24.41 24.39 24.43 23.49 23.84

ANLI-R1 33.58 31.7 33.4 31.5 33.27 33.4 33.71 33.5
ANLI-R2 34.11 34.2 34.24 34.6 34.28 34.6 35.2 35
ANLI-R3 35.12 35.58 35.17 34.75 35.34 35.33 35.27 33.67

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Downstream LM Eval results for baseline and MatMamba-LM on 790M granularities

Downstream Task 192-D (d model/8) 384-D (d model/4) 768-D (d model/2) 1536-D (d model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 31.34 31.32 37.71 37.75 42.4 42.42 46.59 46.52
Hellaswag 31.28 31.11 35.01 34.38 37.74 37.67 40.39 40.37

WinoGrande 50.25 51.38 51.38 51.38 51.74 51.7 54.51 54.54

PIQA 68.2 68.17 69.41 69.37 71.61 71.55 73.14 73.12
ARC-E 46.21 46.09 50.04 49.92 53.01 52.82 55.2 55.05
ARC-C 18.79 18.77 20.77 20.73 21.79 21.76 22.33 22.27
OpenBookQA 17.8 17.6 20.2 20 20.6 20.6 21.4 21.2

TriviaQA (EM) 0.41 0.37 0.48 0.45 2.11 2.08 3.77 3.64
GSM8k 1.47 1.9 1.77 1.74 1.84 1.82 1.96 1.97
MMLU 23.97 22.98 24.41 23.49 24.17 23.87 24.69 25.04

ANLI-R1 33.41 32.6 33.58 29.2 33.71 32.2 33.17 32.3
ANLI-R2 34.28 34.3 34.24 34.7 35.11 35.2 35.17 33.6
ANLI-R3 35.26 36.25 35.28 34.75 34.91 35.08 35.02 34.58

Table 7: Downstream LM Eval results for baseline and MatMamba-LM on 370M granularities

Downstream Task 128-D (d model/8) 256-D (d model/4) 512-D (d model/2) 1024-D (d model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 27.09 27.09 32.02 31.98 37.57 37.55 42.11 42.05
Hellaswag 29.21 29.46 31.28 31.3 33.77 33.81 36.29 36.39

WinoGrande 50.77 51.14 50.74 50.67 51.22 51.38 51.68 51.14

PIQA 65.21 65.23 67.41 67.36 68.24 68.28 70.49 70.51
ARC-E 44.02 43.94 47.02 46.8 48.3 48.32 50.79 50.76
ARC-C 19.05 19.03 19.2 19.11 20.5 20.48 21.18 21.16
OpenBookQA 15.6 15.6 17.8 17.4 19.8 19.2 19.8 18.2

TriviaQA (EM) 0.21 0.2 0.4 0.42 0.62 0.61 1.34 1.32
GSM8k 1.13 1.59 1.31 1.29 1.62 1.59 1.68 1.59
MMLU 24.28 23 24.77 22.99 24.53 23.09 24.77 22.97

ANLI-R1 33.78 31.9 33.14 34.3 33.92 32.7 33.22 33.7
ANLI-R2 35.27 33.9 33.29 33.8 35.01 33.7 34.97 33.2
ANLI-R3 35.78 34.75 35.12 35.17 35.89 33.83 35.58 34.67

Table 8: Downstream LM Eval results for baseline and MatMamba-LM on 130M granularities

Downstream Task 96-D (d model/8) 192-D (d model/4) 384-D (d model/2) 768-D (d model)

Baseline MatMamba Baseline MatMamba Baseline MatMamba Baseline MatMamba

LAMBADA 19.97 20.01 23.27 23.31 26.47 26.49 29.38 29.32
Hellaswag 27.63 27.61 28.34 28.44 29.38 29.48 30.11 30.32

WinoGrande 50.11 50.75 52.24 52.33 52.22 52.01 52.24 52.33

PIQA 61.93 61.97 62.31 62.3 65.97 64.91 66.52 66.49
ARC-E 40.87 40.82 42.31 42.26 43.67 43.6 45.12 45.08
ARC-C 17.31 17.32 17.43 17.41 17.85 17.83 18.89 18.86
OpenBookQA 12.8 12.4 14.2 14.4 15.8 15.6 16.2 15

TriviaQA (EM) 0.11 0.09 0.15 0.16 0.25 0.26 0.45 0.46
GSM8k 1.07 1.21 1.24 1.29 1.51 1.52 1.55 1.06
MMLU 24.11 22.97 24.39 22.9 24.92 22.97 24.33 22.95

ANLI-R1 33.88 32.5 33.88 31.1 33.62 31.1 34.11 34.2
ANLI-R2 34.67 32.8 34.77 33.1 34.59 34.6 34.89 34.4
ANLI-R3 35.78 36.17 35.28 33.25 35.64 36.25 35.78 36.08

17

	Introduction
	Related Work
	MatMamba
	Mamba2 Preliminaries
	MatMamba Block
	Training
	Mix'n'Match
	Elastic Inference

	Experiments
	MatMamba-Vision
	Image Classification
	Adaptive Image Retrieval

	MatMamba-LM

	Conclusions
	Appendix

