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Abstract
Since the objective functions of reinforcement
learning problems are typically highly nonconvex,
it is desirable that policy gradient, the most pop-
ular algorithm, escapes saddle points and arrives
at second-order stationary points. Existing results
only consider vanilla policy gradient algorithms
with unbiased gradient estimators, but practical
implementations under the infinite-horizon dis-
counted reward setting are biased due to finite-
horizon sampling. Moreover, actor-critic meth-
ods, whose second-order convergence has not yet
been established, are also biased due to the critic
approximation of the value function. We provide
a novel second-order analysis of biased policy
gradient methods, including the vanilla gradient
estimator computed from Monte-Carlo sampling
of trajectories as well as the double-loop actor-
critic algorithm, where in the inner loop the critic
improves the approximation of the value function
via TD(0) learning. Separately, we also estab-
lish the convergence of TD(0) on Markov chains
irrespective of initial state distribution.

1. Introduction
In the standard reinforcement learning framework, an agent
interacts with an environment according to some policy,
which dictates the best actions to take given the state of the
environment. The ultimate goal of the agent is to adopt a
policy that maximizes some measure of cumulative reward.
To efficiently search for the optimal policy, policy gradient
methods optimize a policy parameter θ through updates
that approximate the gradient of the objective function with
respect to θ. These algorithms can be fast and flexible, and
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under mild assumptions, they share convergence properties
with mainstream gradient descent algorithms.

The policy gradient can be estimated by way of the policy
gradient theorem, which enables the straightforward appli-
cation of existing techniques in gradient-based optimiza-
tion towards understanding PG convergence. The theorem
provides a formula for the exact gradient of the objective
function as the expectation of the state-action value func-
tion over the discounted state-action measure (Sutton et al.,
1999). In practice, the gradient is estimated through two
common approaches: the “vanilla” approach, where the
gradient is approximated via Monte-Carlo sampling, or the
“actor-critic” approach, where the policy parameter θ, called
the “actor parameter,” is updated simultaneously alongside
a “critic parameter” w, which parametrizes the state-action
value function. The critic parameter is typically updated via
bootstrapping temporal difference methods such as TD(0),
although the actor updates may also be bootstrapped (Konda
& Tsitsiklis, 1999; Bhatnagar et al., 2009).

Although it is well-established that policy gradient con-
verges to first-order stationary points where the norm of the
gradient is approximately zero (Sutton et al., 1999; Yuan
et al., 2022; Agarwal et al., 2020), it is of interest whether
policy gradient algorithms yield second-order stationary
points (local maxima) as opposed to saddle points. This
is because the function landscape of RL problems can be
highly nonconvex and features suboptimal stationary points
even in very simple examples (Agarwal et al., 2020; Bhan-
dari & Russo, 2019; Zhang et al., 2020). We can utilize
seminal results in nonconvex optimization that show that
stochastic gradient descent can leverage randomness to es-
cape saddle points either with added noise (Ge et al., 2015;
Jin et al., 2019) or as long as there is a component of noise in
the direction of curvature (Daneshmand et al., 2018; Vlaski
& Sayed, 2022).

However, unlike stochastic gradient descent, practical im-
plementations of policy gradient are frequently biased. For
the discounted infinite-horizon reward objective function,
the vanilla policy gradient estimator is biased due to trunca-
tion of sampled trajectory horizons (Yuan et al., 2022). In
addition, actor-critic algorithms introduce a second source
of bias in the critic’s approximation of the value function.
This therefore requires novel techniques for controlling and
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bounding the bias. In comparison, existing works on second-
order convergence of policy gradient only consider unbiased
gradient estimators; for example, (Zhang et al., 2020) re-
quire artificially constructing an unbiased gradient estimator
via Q-sampling as well as periodic step size enlargement,
and (Yang et al., 2021) assume the gradient estimator is
unbiased. Both works also only consider the vanilla policy
gradient algorithm and not the actor-critic scheme.

In this paper, we address the aforementioned gap by showing
that biased policy gradient methods, including both vanilla
policy gradient and actor-critic methods, can escape saddle
points. Borrowing from the analyses of (Vlaski & Sayed,
2022) regarding unbiased stochastic gradient descent, we
tackle the biased policy gradient setting by showing that
the components of the bias can be sufficiently controlled to
yield second-order convergence guarantees.

Related Work

Escaping Saddle Points. As referenced earlier, escaping sad-
dle points has become a central research topic in nonconvex
optimization in the last few years, with natural extensions
to the policy gradient setting. In addition to the seminal
works showing the second-order convergence of gradient
descent and stochastic gradient descent (Ge et al., 2015;
Jin et al., 2019; 2017; Daneshmand et al., 2018; Vlaski &
Sayed, 2022), an additional body of work has focused on
second-order methods that use Hessian information to arrive
at second-order stationary points faster. Some examples of
reinforcement learning approaches in this direction include
(Shen et al., 2019; Wang et al., 2022; Khorasani et al., 2023).
However, these works only consider unbiased gradient esti-
mators. For an in-depth comparison of sample complexities,
see Appendix A.2.

Global Convergence. Separate from our line of work, there
are several “global convergence” results for policy gradi-
ent and actor-critic algorithms that ensure convergence to a
global optimum for specific policy parametrization or func-
tion structure. For instance, global convergence is estab-
lished for the following settings: tabular or tabular softmax
policy parametrization with exact gradients (Agarwal et al.,
2020; Bhandari & Russo, 2021), objective functions that
satisfy the gradient domination property (Bhandari & Russo,
2019), linear quadratic and nearly linear-quadratic control
systems (Yang et al., 2019; Han et al., 2022), and over-
parametrized neural networks (Wang et al., 2020; Fu et al.,
2020). The premise of “global convergence” also requires
some assumption that the proposed policy parametrization
can approximate the optimal policy with arbitrary precision,
i.e., the optimal policy lies within the policy class. In com-
parison, our second-order convergence guarantees pertain
to finding the best policy parameter θ under a generic policy
parametrization, for policy gradient algorithms with noisy
and biased updates. For an in-depth discussion of global

convergence rates, see Appendix A.1.

Vanilla Policy Gradient. In this work, we refer to policy
gradient algorithms that estimate the gradient via Monte-
Carlo sampling of trajectories as “vanilla policy gradient.”
Early formulas include REINFORCE (Williams, 2004) as
well as GPOMDP (Baxter & Bartlett, 2001), a version of
REINFORCE that enjoys reduced variance (Peters & Schaal,
2008) by employing the ”reward-to-go” trick. Our work
pertains to the GPOMDP estimator. Both REINFORCE
and GPOMDP are unbiased estimators of objectives with
deterministic, fixed horizons, but they are biased estimators
of the infinite-horizon discounted reward due to truncation
(Yuan et al., 2022).

Actor-critic Algorithms. The asymptotic convergence of
actor-critic algorithms was first established in (Konda &
Tsitsiklis, 1999) for gradient actor updates and bootstrapped
critic updates, and in (Bhatnagar et al., 2009) for boot-
strapped actor and critic updates. Since then, finite-time
convergence has been established for a variety of actor-
critic frameworks, although to the best of our knowledge
no second-order convergence result exists. In this work we
consider double-loop actor-critic algorithms where the critic
parameter undergoes TD(0) updates in the inner loop and
the actor parameter undergoes gradient updates in the outer
loop. Several works have shown first-order convergence
of these algorithms with various additional settings; (Yang
et al., 2018) consider i.i.d sampling in the actor and the critic,
(Qiu et al., 2021) consider i.i.d. policy samples and critic
sampling from a stationary Markov chain, and (Xu et al.,
2020b) study mini-batch Markovian sampling for control-
ling the bias error. Separately, (Wang et al., 2020) establish
global convergence for double-loop algorithms where the
actor and critic functions are compatible overparametrized
neural networks. In comparison, we consider linear critic
parametrization and arbitrary actor parametrization with
Markovian sampling, and we do not require the Markov
chain to be stationary.

Recently, two-timescale (Xu et al., 2020a; Wu et al., 2020)
and single-timescale (Fu et al., 2020; Olshevsky & Gharesi-
fard, 2023) actor-critic algorithms have shown a slight per-
formance advantage over double-loop algorithms, although
existing works still only analyze their first-order or global
convergence under specific function parametrizations, while
we focus on second-order convergence.

Temporal Difference Algorithms. Actor-critic algorithms
typically feature some bootstrapping element; in particular,
we consider actor-critic algorithms where the critic updates
via TD(0) learning. The finite-time convergence of TD(0)
has been established recently under independent and identi-
cally distributed sampling (Dalal et al., 2018; Kumar et al.,
2019) as well as under Markovian sampling (Liu & Ol-
shevsky, 2020; Bhandari et al., 2018). The latter is more
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relevant to the RL setting; however, both (Bhandari et al.,
2018) and (Liu & Olshevsky, 2020) assume the Markov
chain begins in the stationary distribution, which is unre-
alistic for practical implementations such as in actor-critic
algorithms.

Our Contributions

Our contributions are as follows.

• We provide the first finite-time convergence analysis of
vanilla policy gradient with biased gradient estimator
to ϵ-second-order stationary points. This results in a
sample complexity of Õ(ϵ−6.5) iterations, where Õ(·)
hides logarithmic dependencies. We note that this is a
stronger result than Õ(ϵ−9) from (Zhang et al., 2020)
and a weaker result than Õ(ϵ−4.5) from (Yang et al.,
2021), both of which only analyze unbiased gradient
estimators.

• We provide the first finite-time convergence analysis
of an actor-critic policy gradient algorithm to ϵ-second-
order stationary points. We show that our double-
loop actor-critic algorithm, where the critic updates via
TD(0) and the actor updates via policy gradient, ar-
rives at an ϵ-second-order stationary point in Õ(ϵ−6.5)
outer loop iterations with Õ(ϵ−8) inner-loop TD(0)
steps. In contrast to existing first-order analyses of
actor-critic algorithms, we allow for Markovian sam-
pling in both the actor and the critic.

• Of separate interest, we provide the first finite-time
convergence analysis of the classic TD(0) algorithm on
nonstationary Markov chains; i.e., we do not assume
that the initial state distribution is the stationary dis-
tribution of the Markov chain. This allows realistic
analyses of the actor-critic setting, where we have no
guarantee that after every policy update the new under-
lying Markov chain is in its stationary distribution. We
show that for K constant timesteps α = 1√

K
and expo-

nential mixing, the algorithm converges at the rate of
O( 1√

K
)+O( 1

K ), as opposed to O( 1√
K
) when starting

from the stationary distribution.

The structure of the paper is as follows. In Section 2, we
formalize the problem and introduce notation used in the
rest of the paper. In Section 3, we establish second-order
convergence for biased policy gradient estimators and apply
our results to vanilla policy gradient. In Section 4, we
present our new analysis of the TD(0) algorithm, which
is incorporated to bound the critic approximation bias and
show second-order convergence of the actor-critic algorithm.
Finally, in Section 5, we summarize our results and discuss
the next steps of our work.

2. Problem Formulation
2.1. Markov Decision Process

We define the Markov decision process as a quadruple
(S,A,P,R), where S is the state space, A is the action
space, P(s′|s, a) is the transition probability from state s to
state s′ by taking action a, and R(s, a) is the reward func-
tion for performing action a in state s. The agent is trying
to learn a stochastic policy π : S → ∆(A), where ∆(A)
is the space of probability distributions over A, such that
π(a|s) is the probability that the agent performs action a
given state s. As the agent interacts with the environment, it
generates a sequence of states, actions, and rewards referred
to as a trajectory τ = {s0, a0, s1, a1, ...}. The trajectory
is sampled from the probability distribution p(·|π), which
describes the probability of a trajectory generated by some
policy π, where ak ∼ π(·|sk) and sk+1 ∼ P(·|sk, ak).

We want to learn a policy π that maximizes the expected
infinite-horizon discounted reward, J . For policy gradient
algorithms, we parameterize the policy π with some param-
eter θ ∈ RM so that J is a function of θ to obtain

J(θ) = Es0∼ρ0(·),τ∼p(·|πθ)[

∞∑
k=0

γkR(sk, ak)]

where γ ∈ (0, 1) is the discount factor and the expectation
is taken with respect to an initial state distribution s0 ∼
ρ0(·) and a stochastic policy πθ under which trajectories are
sampled τ ∼ p(·|πθ). The RL problem is to find an optimal
policy parameter θ∗ such that θ∗ = argmaxθ J(θ).

We also define the state value function and state-action value
function as V π(s) = Eπ[

∑∞
k=0 γ

kR(sk, ak)|s0 = s] and
Qπ(s, a) = Eπ[

∑∞
k=0 γ

kR(sk, ak)|s0 = s, a0 = a]
respectively, such that the objective can be alterna-
tively formulated as J(θ) = Es∼ρ0

[V πθ (s)]. Finally,
we reference the discounted state-weighting measure as
dπθ,ρ0(s) =

∑∞
k=0 γ

kEρ0
[Pr(sk = s |s0, πθ)].

2.2. Policy Gradient Algorithm

Algorithm 1 Biased Policy Gradient Algorithm
Input: initial policy parameters θ0
for t = 0, 1, 2, ...T − 1 do

Sample a trajectory τt of length H under πθt ,

τt = {s0, a0, s1, a1, ...sH−1, aH−1}

where s0 ∼ ρ0(s)
Compute Ĝ(θt; τt) via Algorithm 2 or Algorithm 3
Update θt+1 = θt + µĜ(θt; τt)

end for

In this work we consider policy gradient algorithms of the
form shown in Algorithm 1. We note that these gradient
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algorithms can be mini-batched for additional variance re-
duction, but our analysis does not rely on batching and we
omit this notation for simplicity. At each time step t + 1,
a random trajectory τt is sampled and Ĝ(θt; τt), a biased
estimator of the true policy gradient ∇J(θt), is computed.
Then the policy parameter θ is updated with step-size µ as
follows

θt+1 = θt + µĜ(θt; τt). (1)

Let G(θt) = Eτ [Ĝ(θt; τ)], where the expectation is taken
with respect to the sampled trajectory τ . Then in order to
analyze the convergence of Algorithm 1, we decompose the
updates in terms of the noise ξt+1 and bias dt+1 to obtain

θt+1 = θt + µ∇J(θt) + µξt+1 + µdt+1,

where ξt+1 = Ĝ(θt; τt) − G(θt) represents a zero-mean
noise term induced from sampling the trajectory of length
H and dt+1 = G(θt)−∇J(θt) represents the bias induced
by the gradient estimator algorithm. Specifically, we denote
by {Ft}t≥0 the filtration generated by the random process
{θt}t≥0 such that θt is measurable with respect to Ft. Then
the gradient noise process {ξt}t≥0 satisfies

E[ξt+1|Ft] = E[Ĝ(θt; τt)−G(θt)|Ft] = 0.

Although dt+1 might be random or deterministic depending
on the gradient estimator algorithm, it is generated by a
different process than ξt+1. In the sequel, our analyses rely
on assumptions on ξt+1 and dt+1.

2.3. Second-Order Stationary Points

We define second-order stationary points and approximate
second-order stationary points as follows (Jin et al., 2017;
Nesterov & Polyak, 2006).

Definition 2.1. For the twice-differentiable function J(θ),
θ is a second-order stationary point if ∥∇J(θ)∥= 0
and λmax(∇2J(θ)) ≤ 0. In addition, if ∇2J(θ) is χ-
Lipschitz, θ is an ϵ-second order stationary point of J(θ) if
∥∇J(θ)∥ ≤ ϵ and λmax(∇2J(θ)) ≤ √

χϵ.

In line with the strict-saddle definition introduced in (Ge
et al., 2015) and later used in (Jin et al., 2019; 2017; Danesh-
mand et al., 2018), we focus on escaping saddle points with
at least one strictly positive eigenvalue. We divide the pa-
rameter space of the objective function J(θ) into regions
where the gradient is large or small with respect to the step-
size µ, which we assume to be a small hyperparameter. We
define the following sets

G =

{
θ : ∥∇J(θ)∥2 ≥ µℓ

(
1 +

1

δ

)}
,

H = {θ : θ ∈ GC , λmax(∇2J(θ)) ≥ ω},

M = {θ : θ ∈ GC , λmax(∇2J(θ)) < ω},

where ℓ > 0 is a parameter depending on the problem and
δ > 0, ω > 0 are parameters depending on the desired
accuracy of the algorithm that we choose later on. The set
GC represents approximate first-order stationary points, and
within GC , the region H represents “strict-saddle” points,
whereas the region M represents approximately second-
order stationary points. Specifically, points in M represent
the set of local maxima with respect to first and second-order
information.

3. Second-Order Convergence of Vanilla Policy
Gradient

In this section, we establish the second-order convergence
of biased policy gradient in general and apply it to vanilla
policy gradient. We begin with the original policy gradient
theorem (Sutton et al., 1999), which states

∇J(θ) =
∑
s∈S

dπθ,ρ0(s)
∑
a∈A

πθ(a|s)∇ log πθ(a|s)Qπθ (s, a),

which is equivalent to the temporal summation

∇J(θ) = Eπθ,ρ0 [

∞∑
k=0

∞∑
t=k

γt∇ log πθ(ak|sk)R(st, at)].

For further details on the connection between these two
formulations, see Appendix F.

Through Monte-Carlo sampling of trajectories τ of fixed
length H , we construct the GPOMDP gradient estimator
(Baxter & Bartlett, 2001) as follows

ĜV PG(θ; τ) =

H−1∑
h=0

∇ log πθ(ah|sh)
H−1∑
i=h

γiR(si, ai).

Algorithm 2 Vanilla Policy Gradient Estimator
Input: policy parameter θt, trajectory τt =
{s0, a0, s1, a1, ...sH−1, aH−1}
Compute gradient estimator from τt:

ĜV PG(θt; τt) =

H−1∑
h=0

∇ log πθ(ah|sh)
H−1∑
i=h

γiR(si, ai)

return ĜV PG(θt; τt)

This yields the “vanilla” policy gradient algorithm as out-
lined in Algorithm 2. We define the truncated or finite-
horizon objective JH(θ) = Eπθ,ρ0

[
∑H−1

t=0 γtR(st, at)].
As observed in (Yuan et al., 2022; Zhang et al., 2020; Wu
et al., 2022), since we cannot practically sample infinite-
horizon trajectories, ĜV PG(θ; τ) is a biased gradient esti-
mator of J(θ) and an unbiased gradient estimator of JH(θ),
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such that

E[ĜV PG(θ; τ)] = ∇JH(θ) ̸= ∇J(θ).

3.1. Assumptions

We require the following assumptions for the convergence
of biased policy gradient algorithms.
Assumption 3.1. The following conditions hold for all
(s, a) ∈ S ×A and θ:

1. The rewards are bounded such that there exists
Rmax > 0 with |R(s, a)| ≤ Rmax.

2. The policy score function ∇ log πθ(a|s) exists and
its norm is bounded by a constant G > 0 such that
∥∇ log πθ(a|s)∥ ≤ G.

3. The Jacobian of the score function exists and its
norm is bounded by a constant B > 0 such that
∥∇2 log πθ(a|s)∥ < B, and it is Lipschitz continuous
such that for all θ1, θ2, we have

∥∇2 log πθ1(a|s)−∇2 log πθ2(a|s)∥ ≤ ι∥θ1 − θ2∥.

In Assumption 3.1, we assume that the reward and the pol-
icy log gradient are bounded, assumptions first put forward
in (Papini et al., 2018) and since widely adopted in many
theoretical analyses of policy gradient (Zhu & Gong, 2023;
Zhang et al., 2020; Yang et al., 2021). Assumption 3.1 is sat-
isfied by commonly used policy parametrizations, including
the softmax policy parametrization πθ(a|s) = eh(s,a,θ)∑

b eh(s,b,θ) .
The action preferences h(s, a, θ) can be parametrized via
deep neural networks or other functions of the feature vec-
tors ϕ(s, a). The assumption is also satisfied by Gaussian
policies such as πθ(a|s) ∼ N (ϕ(s)⊺θ, σ2) if the parameter
θ lies in some bounded set and the actions and the feature
vectors ϕ(s) are bounded (Zhang et al., 2020). In addi-
tion, Assumption 3.1 has several important implications as
follows.
Lemma 3.2. (Lemma 3.2 of (Zhang et al., 2020)) The score
function ∇ log πθ(a|s) is B-Lipschitz continuous. Moreover,
the policy gradient ∇J(θ) is Lipschitz continuous such that
for all θ1, θ2, we have

∥∇J(θ1)−∇J(θ2)∥ ≤ L∥θ1 − θ2∥

where L = RmaxB
(1−γ)2 + (1+γ)RmaxG

2

(1−γ)3 .

Lemma 3.3. (Lemma 5.4 from (Zhang et al., 2020)) The
Hessian matrix of J(θ) is Lipschitz continuous such that for
all θ1, θ2, we have

∥∇2J(θ1)−∇2J(θ2)∥ ≤ χ∥θ1 − θ2∥

where χ = RmaxGB
(1−γ)2 + RmaxG

3(1+γ)
(1−γ)3 + RmaxG

1−γ ·

max{B, G2γ
1−γ ,

ι
G , Bγ

1−γ ,
G2(1+γ)+B(1−γ)γ

(1−γ)2 }.

Finally, we require assumptions on the noise of the algo-
rithm that allows the iterates to escape saddle points.

Assumption 3.4. The covariance matrix of the noise ξt+1

generated at iterate θt, defined as Rξ(θt) = E[ξt+1ξ
⊺
t+1|Ft],

is Lipschitz such that

∥Rξ(θ1)−Rξ(θ2)∥≤ βR∥θ1 − θ2∥ν

where 0 < ν ≤ 4 and βR > 0.

Assumption 3.5. Let ∇2J(θ) = VθΛθV
T
θ be the eigende-

composition of the Hessian matrix at θ where the eigenval-
ues and eigenvectors are ordered as follows

Vθ =
[
V >0
θ V ≤0

θ

]
, Λθ =

[
Λ>0
θ 0

0 Λ≤0
θ

]
where Λ>0

θ > 0 and Λ≤0
θ ≤ 0. Then, we assume that there

exists σ2
l > 0 such that for any approximate strict-saddle

point θt ∈ H

λmin((V
>0
θt

)⊺E[ξt+1ξ
⊺
t+1]V

>0
θt

) ≥ σ2
l .

Assumption 3.4 states that the covariance matrix is Lips-
chitz, an assumption proposed in (Vlaski & Sayed, 2022;
Vlaski et al., 2020). Assumption 3.4 requires that the covari-
ance of noise does not change too much between iterates,
which can be ensured by restricting our parameter search
space to a compact set, which reflects common practices.
Assumption 3.5, or the condition of “correlated negative
curvature,” states that there must be a component of noise
in the direction of negative curvature in order for the noise
to help the iterates escape the saddle point. It is necessary
for most second-order convergence analyses (Daneshmand
et al., 2018; Zhang et al., 2020; Yang et al., 2021). Like
(Vlaski & Sayed, 2022), we note that although Assumption
3.5 is a technical requirement for convergence, the condition
can be achieved by simply adding isotropic noise at each
parameter update iteration like in (Ge et al., 2015; Jin et al.,
2019).

3.2. Main Result

We first present the following theorem for general biased
policy gradient, which shows that if the gradient estimator
and bias are sufficiently bounded, we can conclude second-
order convergence. Theorem 3.6 adapts Theorem 3 from
(Vlaski & Sayed, 2022) regarding second-order convergence
of unbiased stochastic gradient descent. Our approach fol-
lows the framework proposed in (Vlaski et al., 2020) for
showing second-order convergence of federated learning, a
form of biased stochastic gradient descent.

Theorem 3.6. For the iterates θt of Algorithm 1, suppose
that Assumptions 3.1-3.5 hold and for σ > 0, D > 0, the
following hold

∥Ĝ(θt; τt)∥ ≤ σ (2)
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E[∥dt+1∥4|Ft] ≤ D4µ4 (3)

E[∥dt+1∥2∥ξt+1∥2|Ft] ≤ σ2E[∥dt+1∥2|Ft]. (4)

Let ℓ = Lσ2−D2µ. Then with probability 1−δ, Algorithm
1 yields θT ∈ M such that ∥∇J(θT )∥2≤ µℓ(1 + 1

δ ) and
λmax(∇2J(θT )) ≤ ω in T iterations, where

T ≤ 4Rmax

µ2(1− γ)(Lσ2 +D2µ)δ
· T

T =
log(2M σ2

σ2
l
+ 1)

log(1 + 2µω)
.

Proof. See Appendix B.

Therefore, for both the vanilla and actor-critic settings, our
key challenge is establishing the conditions (2) (3) (4). By
applying Theorem 3.6 and choosing µ to be small enough
with respect to ϵ, we can arrive at the following theorem es-
tablishing convergence of vanilla policy gradient to ϵ-second
order stationary points, specifying the required horizon of
each sampled trajectory.
Theorem 3.7. Suppose Assumptions 3.1-3.5 hold and let
ϵ > 0. For µ < ϵ2δ

Lσ2+D2 where D = GRmax

1−γ and
σ = GRmax

(1−γ)2 , we have with probability 1 − δ that Algo-
rithm 1 with vanilla policy gradient estimator computed via
Algorithm 2 and H = O(log(ϵ−2)) reaches an ϵ-second
order stationary point in Õ(ϵ−6.5) iterations, where Õ(·)
hides logarithmic dependencies.

In Theorem 3.7, O(·) hides dependency on γ, and Õ(·)
hides dependencies on L, G, Rmax, γ, M , σl, χ, δ.

The detailed proof of Theorem 3.7 is provided in Appendix
C. The proof sketch is as follows. In order to apply Theorem
3.6, we first show that the gradient estimator is uniformly
bounded based on our assumptions (Lemma C.1). This also
implies that the second and fourth moment of the noise are
also bounded. We then establish that the gradient bias due
to truncation is deterministically bounded and decays as
the trajectory horizon H increases (Lemma C.3). For large
enough H , the bias error is proportional to µ, allowing us
to bound away its effects.

4. Second-Order Convergence of Actor-Critic
Policy Gradient

Now we consider the second-order convergence of actor-
critic policy gradient algorithms. Actor-critic methods can
reduce the variance of policy gradient methods by separately
learning to approximate the state-action value function Qπ .
With some algebraic manipulation, the policy gradient can
be expressed as follows

∇J(θ) = Eπθ,ρ0
[

∞∑
k=0

γk∇ log πθ(ak|sk)Qπθ (sk, ak)].

This motivates the construction of the following biased gra-
dient estimator from a trajectory τ of length H

ĜAC(θ; τ) =

H∑
k=0

γk∇ log πθ(ak|sk)Qw(sk, ak),

where Qw(s, a) is a function with parameter w that ap-
proximates Qπθ (s, a). Note that ĜAC(θ; τ) depends on w,
although we omit this dependency in notation. In contrast
to vanilla policy gradient, the actor-critic gradient estimator
has two sources of bias: bias from the horizon truncation
that depends on H , and bias from the critic approximation
Qw. Our following analysis addresses both. Let

G(θ) = GH(θ) = Eτ [Ĝ
AC(θ; τ)]

= Eτ [

H∑
k=0

γk∇ log πθ(ak|sk)Qw(sk, ak)]

represent the expectation of the gradient estimator with
respect to the sampled trajectory τ of length H . Let

G∞(θ) = Eτ [

∞∑
k=0

γk∇ log πθ(ak|sk)Qw(sk, ak)]

represent the expectation of an infinite-horizon gradient esti-
mator with respect to a sampled trajectory of infinite horizon.
As before, we have the following noise-bias decomposition
of the policy updates

θt+1 = θt + µ∇J(θt) + µξt+1 + µdt+1,

where ξt+1 = ĜAC(θt; τt)−GH(θt) once again represents
a zero-mean noise term. Then we can further decompose
the bias term dt+1 as follows

dt+1 = GH(θt)−∇J(θt)

= GH(θt)−G∞(θt) +G∞(θt)−∇J(θt)

= pt+1 + qt+1

where pt+1 = GH(θt) − G∞(θt) represents the bias
component due to truncation of the infinite horizon and
qt+1 = G∞(θt) − ∇J(θt) represents the bias component
induced by the critic approximation. In order to apply Theo-
rem 3.6, we need to bound both pt+1 and qt+1; although the
former can be bounded using the approach of the previous
section, the latter requires novel techniques.

The structure of our algorithm is as follows. We consider
a double-loop actor-critic algorithm with linear function
approximation of Qπθ and an arbitrary policy parametriza-
tion. In the inner loop, the critic parameter w is updated via
TD(0) and projected onto a convex set Θ, and in the outer
loop, the policy parameter θ is updated via gradient updates.
The gradient estimator algorithm is outlined in Algorithm 3.
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Algorithm 3 Actor-Critic Gradient Estimator
Input: initial critic parameters w0, policy parameter θt,
trajectory τt = {s0, a0, s1, a1, ...sH−1, aH−1}
Sample initial state-action pair s′0 ∼ ρ0 and a′0 ∼
πθt(·|s′0)
for k = 0, 1, 2, ...K − 1 do

Sample s′k+1 ∼ P(·|s′k, a′k) and a′k+1 ∼ πθt(·|s′k+1)
Compute the TD(0) semi-gradient gk(wk)

gk(wk) =(R(s′k, a
′
k) + γQwk

(s′k+1, a
′
k+1)

−Qwk
(s′k, a

′
k))∇Qwk

(s′k, a
′
k)

wk+1 = ProjΘ[wk + αkgk(wk)]
end for
Calculate the averaged parameter w̄K,t =

1
K

∑K−1
k=0 wk

Compute gradient estimator from τt:

ĜAC(θt; τt) =

H−1∑
h=0

γhQw̄K,t
(sh, ah)∇ log πθt(ah|sh)

return ĜAC(θt; τt)

To control the actor-critic bias qt+1 and ensure second-order
convergence by Theorem 3.6, we require that for each policy
parameter iterate, the inner loop converges to the global
optima w∗(θt) and that Qw∗(θt) precisely approximates the
true value function Qπθt . The first requirement is satisfied
by linear TD, as shown in Section 4.1, and the second is
formalized later in Assumption 4.9.

4.1. Convergence of TD(0) on Nonstationary Markov
Chains

The inner-loop structure of Algorithm 3 suggests that we
should apply existing results regarding the finite-time con-
vergence of TD(0) with Markovian sampling (Bhandari
et al., 2018; Liu & Olshevsky, 2020). However, these analy-
ses rely on an additional assumption that the Markov chain
begins in the stationary distribution, which is unrealistic
for the actor-critic setting since there is no guarantee that
after each policy update we can begin at the new station-
ary distribution with respect to the updated policy. As ar-
gued in (Bhandari et al., 2018; Liu & Olshevsky, 2020;
Dalal et al., 2018), an exponentially mixing Markov chain
approximately arrives at its stationary distribution after a
logarithmic number of time steps. However, although this
explanation justifies the assumption in a practical sense, it
is not conducive for finite-time convergence analysis, since
we can never reach the exact stationary distribution after a
finite number of time steps.

As it turns out, the general convergence of TD(0) does hold
without this initial state distribution assumption after some

proof adjustments. In this section we reestablish the core
results of (Bhandari et al., 2018) for a nonstationary Markov
chain (i.e. a Markov chain that has not reached steady-state).
These results, which are also utilized in (Qiu et al., 2021;
Liu & Olshevsky, 2020), may be of independent interest.

4.1.1. SETUP

We consider TD(0) with linear function approximation and
a projection step. We define a set of N feature func-
tions ϕn : S × A → R, 0 < n ≤ N . For each
state-action pair (s, a), we define the vector ϕ(s, a) =
(ϕ1(s, a), ϕ2(s, a), ..., ϕN (s, a))⊺ as the vector representing
the features of (s, a). Then we denote as Φ ∈ R|S×A|×N

the matrix Φ = [ϕ1, ...ϕN ]. Finally, we denote our linear
parametrization of Qπ by the parameter w ∈ RN as

Qw(s, a) = w⊺ϕ(s, a).

Let gk represent the stochastic semi-gradient at time step k
such that

gk(w) =R(sk, ak)ϕ(sk, ak)

+ (γϕ(sk+1, ak+1)
⊺w − ϕ(sk, ak)

⊺w)ϕ(sk, ak).

As is common in the TD convergence literature, we consider
TD(0) projected onto a convex set Θ that contains the limit
point w∗ of the algorithm (Bhandari et al., 2018). Therefore,
the TD update can be written as

wk+1 = ProjΘ[wk + αgk(wk)]. (5)

4.1.2. ASSUMPTIONS

The following assumptions and Assumption 3.1 are neces-
sary to show the convergence of TD(0).

Assumption 4.1. For all θ and (s, a) ∈ S × A, we have
πθ(s, a) > 0.

Assumption 4.1 is satisfied by popular policy parametriza-
tions such as the softmax policy parametrization.

Assumption 4.2. For any π > 0, The Markov chain defined
by P (s, a, s′, a′) = P(s′|s, a)π(a′|s′) is ergodic.

Combined with Assumption 4.1, Assumption 4.2 is satisfied
if there is a positive probability of transitioning between any
two state-action pairs in a finite number of steps. Assump-
tion 4.2 is a common assumption in the TD and actor-critic
literature (Bhandari et al., 2018; Qiu et al., 2021; Liu & Ol-
shevsky, 2020; Wu et al., 2020; Xu et al., 2020a;b) that has a
number of implications; the Markov chain is irreducible and
aperiodic, it has a unique stationary distribution ηπ(s, a),
and ηπ(s, a) ̸= 0 for all (s, a). In addition, the Markov
chain mixes at a uniform geometric rate, i.e., there exists

7
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m > 0, r ∈ (0, 1), such that for t ∈ N we have

sup
s∈S
a∈A

dTV (P(st = ·, at = ·|s0 = s, a0 = a), ηπ) ≤ mrt

(6)
and τmix(ϵ) = min{t ∈ N |mrt ≤ ϵ} is the mixing time.

Assumption 4.3. The number of states and actions is finite.

As discussed in (Bhandari et al., 2018), Assumption 4.3 can
be relaxed to consider countably infinite state-action pairs.

Assumption 4.4. The feature matrix Φ has full column rank,
i.e., the feature vectors {ϕ1, ...ϕN} are linearly independent.
In addition, for all (s, a) ∈ S ×A, ∥ϕ(s, a)∥2≤ 1 .

Assumption 4.5. There exists R > 0 such that
diam(Θ) ≤ R, where diam is the diameter.

Assumptions 4.4 and 4.5 are also common in the literature
(Bhandari et al., 2018; Liu & Olshevsky, 2020; Tsitsiklis
& Van Roy, 1997; Qiu et al., 2021). See Section 8.2 of
(Bhandari et al., 2018) and Proposition 3 of (Qiu et al.,
2021) for additional details on defining R.

Finally, let Aθ denote the positive definite matrix
E(s,a)∼ηθ,(s′,a′)∼P (s,a,·)[ϕ(s, a)(ϕ(s, a) − γϕ(s′, a′))⊺].
Based on Assumptions 4.2 and 4.4, we can conclude that
Aθ is positive definite (Tsitsiklis & Van Roy, 1997). We
further assume the smallest eigenvalue of Aθ is uniformly
bounded away from zero in the following assumption,
which is also utilized in (Qiu et al., 2021).

Assumption 4.6. There exists a lower bound ς > 0, such
that for all θ ∈ RM we have λmin(Aθ +A⊺

θ ) ≥ ς.

4.1.3. FINITE-TIME CONVERGENCE OF TD(0)

We first require the following theorem from (Tsitsiklis &
Van Roy, 1997), which establishes the existence and unique-
ness of the solution to the projected Bellman equation as the
limit point of the TD(0) algorithm.

Theorem 4.7. (Tsitsiklis & Van Roy, 1997) Denote by Tπ

the Bellman operator under policy π such that for a value
function Q : S ×A → R we have

(TπQ)(s, a) =R(s, a) + γ
∑
s′∈S
a′∈A

P(s′|s, a)π(a′|s′)Q(s′, a′).

Then given Assumptions 3.1, 4.1-4.5, the limit point w∗ of
the TD(0) algorithm with linear function approximation
exists, and it is the unique solution to the projected Bellman
equation

Φw = ProjΦ(TπΦw)

where ProjΦ is the projection operator onto the subspace
{Φx|x ∈ RN} spanned by the feature vectors ϕn.

Now we share our main result regarding the convergence of
TD(0). Theorem 4.8 establishes the convergence rate of the
Projected TD(0) algorithm after T constant time steps on a
nonstationary Markov chain.

Theorem 4.8. Suppose Assumptions 3.1, 4.1-4.5 hold and
w̄K = 1

K

∑K−1
k=0 wk is generated by K steps of the Pro-

jected TD(0) algorithm with w∗ ∈ Θ and α = 1√
K

. Then

E[∥Qw∗ −Qw̄K
∥2ηπ

] ≤
∥w∗ − w0∥2+F 2(17 + 12τmix( 1√

K
))

2(1− γ)
√
K

+
10F 2m

(1− r)(1− γ)K
,

where F = Rmax + 2R and

∥Qw∗−Qw̄K
∥2ηπ

=
∑
s∈S
a∈A

ηπ(s, a)(Qw∗(s, a)−Qw̄K
(s, a))2.

Proof. See Appendix D.

We can compare this result with Theorem 3 from (Bhandari
et al., 2018) which shows

E[∥Qw∗−Qw̄K
∥2ηπ

] ≤
∥w∗ − w0∥2+F 2(9 + 12τmix( 1√

K
))

2(1− γ)
√
K

(7)
for TD(0) on a stationary Markov chain. We note that the
nonstationary result involves slightly different constants and
an additional term that decays at the rate of O(1/K).

4.2. Main Result

Returning to the actor-critic setting, the following assump-
tion combined with the existence and uniqueness theorem
(Theorem 4.7) implies for the limit point of the TD(0) al-
gorithm w∗, the resulting function Qw∗ = w∗Tϕ(s, a) ap-
proximates the true state-action value function Qπθ with
arbitrarily close precision.

Assumption 4.9. The value function lies in the linear func-
tion class such that

inf
w∈Θ

E(s,a)∼ηπθ
[(Tπθ (w⊺ϕ(s, a))− w⊺ϕ(s, a))2] = 0.

Assumption 4.9 is a linear realizability assumption that
states that the value function can be sufficiently represented
by a linear model of the feature vectors. This can be satisfied
via an appropriate choice of feature vectors, such as radial
basis functions, Fourier basis functions, or neural networks
(Ji et al., 2019). Other actor-critic works (Xu et al., 2020a;
Kumar et al., 2019; Fu et al., 2020) also require similar
assumptions.

By characterizing the convergence of TD(0), we show in
the following lemma that the norm of the bias term qt+1
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decays with respect to the number of inner-loop iterations.
Lemma 4.10 features diminishing step sizes because it re-
quires a stronger fourth moment bound showing the direct
convergence of w̄K to w∗, as opposed to the weaker result
obtained in Theorem 4.8. The details of the proof are in
Appendix E.1.

Lemma 4.10. For K = O( log
2(µ−4)
µ4 ) as µ → 0, for which

O(·) does not hide dependencies on other constants, and

Dq = G

(
192F 2R2

ς2 log2(r−1)
+O(

1

logµ−4
)

)−1/4

for which O(·) hides dependencies on F , r, ς , m, the ex-
pected function approximation bias is bounded such that

E[∥qt+1∥4|Ft] ≤ G4E[∥w̄K,t − w∗∥4|Ft] ≤ D4
qµ

4.

Finally, by combining Theorem 3.6 with Lemma 4.10 and
bounds on the truncation bias pt+1 (Lemma E.2) and noise
ξt+1 (Lemma E.1), we arrive at Theorem 4.11.
Theorem 4.11. Suppose Assumptions 3.1-3.5, 4.1-4.6, 4.9
hold and let ϵ > 0. For µ < ϵ2δ

Lσ2+D2 where σ = GR
1−γ ,

D = 2(D4
p +D4

q)
1/4 and Dp = GR

1−γ , we have with proba-
bility 1−δ that Algorithm 1 with actor-critic policy gradient
estimator computed via Algorithm 3 with H = O(log(ϵ−2))
and K = Õ(ϵ−8) reaches an ϵ-second order stationary
point in Õ(ϵ−6.5) iterations.

Proof. See Appendix E.

In Theorem 4.11, O(·) hides dependency on γ and Õ(·)
hides dependencies on L, G, R, γ, M , σl, χ, δ, F , r, m, ς .

5. Conclusion
In this work, we provide a novel analysis on the convergence
of biased policy gradient methods to second-order stationary
points. Our work applies to general policy parametrization
and Markovian sampling. We also show the convergence of
TD(0) on nonstationary Markov chains, which pertains to
realistic actor-critic implementations.

Future directions may involve extending this work to two-
timescale or single-timescale actor-critic algorithms, which
may provide some performance improvement. In addition,
instead of assuming Assumption 4.9, we may want to show
second-order convergence of actor-critic algorithms with re-
spect to some irremoveable approximation error ϵapp repre-
senting the imperfect critic approximation, similar to several
first-order analyses (Wu et al., 2020; Qiu et al., 2021).

Impact Statement
This paper advances the field of reinforcement learning by
characterizing the solutions achieved by policy gradient al-
gorithms. There are many potential societal consequences

of our work, none which we feel must be specifically high-
lighted here.
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A. Additional Discussion of Related Work
A.1. Global Convergence

We first present some of the many global convergence results available in terms of ϵ-optimality. In reinforcement learning,
global convergence guarantees for policy gradient algorithms tend to arise from some underlying structure of the optimization
problem, due to specific policy parametrization or algorithm.

For first-order algorithms, the following papers achieve global optimality.

• In (Agarwal et al., 2020), tabular parametrization with exact gradients, O(ϵ−2) iterations

• In (Bhandari & Russo, 2019), objective functions that satisfy a gradient dominance property with exact gradients,
O(ϵ−2) iterations

• In (Mei et al., 2020), tabular softmax parametrization with exact gradients, O(ϵ−1) iterations

• In (Wang et al., 2020), neural policy gradient with extremely wide shallow neural networks, O(ϵ−2) iterations

More powerful global convergence results are achieved for quasi-second-order methods like natural policy gradient and
mirror descent policy gradient. These results can go beyond the tabular setting.

• In (Agarwal et al., 2020), natural policy gradient with tabular softmax parametrization with exact gradients, O(ϵ−1)
iterations

• In (Xu et al., 2020b), natural actor-critic with function approximation where the feature vectors vary in each iteration,
O(ϵ−4) outer-loop iterations

• In (Cayci et al., 2022), natural actor-critic policy gradient where the actor and critic are parametrized with extremely
wide neural networks, O(ϵ−2) iterations

• In (Yuan et al., 2023), natural policy gradient for log-linear policies with compatible function approximation, linear
convergence in terms of outer loop iterations

• In (Alfano et al., 2023), policy mirror descent with general parametrization, linear convergence in terms of outer loop
iterations

In comparison, we achieve an ϵ-second-order stationary point in Õ(ϵ−6.5) iterations. Our work focuses on first-order
algorithms and general policy parametrization which are simpler to implement and more widely used in practice. We also
do not use oracles or exact gradients in our analysis. Finally, our work also has no dependence on the distribution mismatch
coefficient, which is widely used in global convergence results and roughly quantifies how well the initial state distribution
matches the optimal state distribution.

A.2. Second-Order Convergence

Our work inherits the sample complexity of Õ(ϵ−6.5) from (Vlaski & Sayed, 2022), which is weaker than the best sample
complexity of Õ(ϵ−4) obtained by (Jin et al., 2019), both of which analyze the second-order convergence of vanilla stochastic
gradient descent. Faster second-order convergence is available for algorithms with exact gradients, such as perturbed gradient
descent which converges in Õ(ϵ−2) iterations (Jin et al., 2017). However, exact gradient computations are intractable for
realistic policy gradient implementations. Second-order or quasi-second-order algorithms that utilize Hessian information
can also converge faster. SPIDER-SFO from (Fang et al., 2018) obtains a sample complexity of Õ(ϵ−3) via a negative
curvature search method. Similar techniques are extended to the policy gradient setting in (Khorasani et al., 2023) with
complexity Õ(ϵ−3) and (Wang et al., 2022) with complexity Õ(ϵ−3.5). All of these aforementioned works only deal with
unbiased gradient estimators. To the best of our knowledge only (Vlaski et al., 2020) show second-order convergence with
biased gradient estimators in the form of federated learning, requiring Õ(ϵ−6.5) global iterations. This matches our sample
complexity, as expected.
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B. Proof of Theorem 3.6
B.1. Key Lemmas and Proof Sketch

Our approach for proving that Algorithm 1 arrives at an ϵ-second order stationary point relies on bounding the bias and
noise of the gradient estimator and applying the techniques developed in (Vlaski & Sayed, 2022). Broadly speaking, (Vlaski
& Sayed, 2022) show second-order convergence for unbiased stochastic gradient descent by first showing the iterates on the
second-order Taylor expansion of the objective function escape saddle points, and then showing that the iterates and those
on its Taylor approximation are sufficiently close. Therefore, if we also show that the policy gradient iterates are close to the
iterates on the Taylor expansion, we can conveniently apply the convergence results of (Vlaski & Sayed, 2022) to our setting.

We begin with establishing fourth moment bounds on the noise term ξt+1 by the following lemma.

Lemma B.1. Suppose for some random variable X we have E[X] = µ and ∥X∥ ≤ σ. Then

E[∥X − µ∥2] ≤ σ2,

E[∥X − µ∥4] ≤ 4σ2.

Proof.
E[∥X − µ∥2] = E[∥X∥2]− µ2 ≤ E[∥X∥2] ≤ σ2

∥X − µ∥4≤ ∥X − µ∥2·4σ2

E[∥X − µ∥4] ≤ 4σ4

So by Lemma B.1, we have
E[∥ξt+1∥2|Ft] ≤ σ2, (8)

E[∥ξt+1∥4|Ft] ≤ 4σ4. (9)

In addition, by Jensen’s inequality, the fourth-moment bound

E[∥dt+1∥4|Ft] ≤ D4µ4

also implies the following second-moment bound

E[∥dt+1∥2|Ft] ≤ D2µ2. (10)

To proceed with the proof, we first show that in the large gradient regime, we observe a large ascent in function value,
whereas around local maxima, the possible descent is bounded. Then we construct a pair of coupled sequences {θi+j}
and {θ′i+j}, where {θi+j} represents the gradient iterates on the original objective function and {θ′i+j} represents gradient
ascent iterates on the second-order Taylor approximation of the function centered at θi with the same noise term. Through
moment bounds, we show that the difference between the coupled sequences is sufficiently small. These results allow us to
leverage Theorems 2 and 3 in (Vlaski & Sayed, 2022).

The following lemma establishes that for small enough step sizes, we have sufficient ascent starting in the large gradient
regime θi ∈ G, and descent is bounded starting near a local maxima θi ∈ M.

Lemma B.2. For µ < 1
L , we have after one iteration of Algorithm 1,

E[J(θi+1)|θi ∈ G] ≥ E[J(θi)|θi ∈ G] + µ2(Lσ2 +D2µ)

2δ

E[J(θi+1)|θi ∈ M] ≥ E[J(θi)|θi ∈ M]− µ2(Lσ2 +D2µ)

2
.

13



On the Second-Order Convergence of Biased Policy Gradient Algorithms

Proof of Lemma B.2: see Appendix B.3.

Beginning from θi ∈ H, we define {θ′i+j} as the gradient ascent iterates on the second-order Taylor approximation of J(θ)
plus the noise term ξi+j+1 from the original sequence. Denote the Taylor expansion around θi as Ĵ as follows

Ĵ(θ) = J(θi) +∇J(θi)
T (θ − θi) +

1

2
(θ − θi)

⊺∇2J(θi)(θ − θi)

∇Ĵ(θ) = ∇J(θi) +∇2J(θi)(θ − θi).

So we have {θ′i+j} and our original sequence iterates {θi} defined as follows

θ′i+j+1 = θ′i+j + µ∇J(θi) + µ∇2J(θi)(θ
′
i+j − θi) + µξi+j+1

θi+j+1 = θi+j + µ∇J(θi+j) + µξi+j+1 + µdi+j+1.

Then we can conclude in the following lemma that in the vicinity of a saddle point, the distance between θi and θi+j+1 is
bounded, and the distance between θi and θ′i is bounded.

Lemma B.3. For {θi} and {θ′i} defined above, and j ≤ C
µ , where C is a constant independent of µ, we have

E[∥θi − θi+j+1∥2|θi ∈ H] ≤ O(µ) (11)

E[∥θi − θi+j+1∥4|θi ∈ H] ≤ O(µ2) (12)

E[∥θ′i+j+1 − θi+j+1∥2|θi ∈ H] ≤ O(µ2). (13)

Corollary B.4. From the results of Lemma B.3, we can conclude

E[∥θi − θi+j+1∥3|θi ∈ H] ≤ O(µ3/2) (14)

E[∥θi − θ′i+j+1∥2|θi ∈ H] ≤ O(µ) (15)

E[∥θi − θ′i+j+1∥3|θi ∈ H] ≤ O(µ3/2). (16)

The first inequality follows from Jensen’s inequality, and the second and third follow from the bounds on ∥θi − θi+j+1∥ and
∥θ′i+j+1 − θi+j+1∥.

Proof of Lemma B.3. See Appendix B.4.

B.2. Proof of Theorem 3.6

Proof. For the sequences {θi} and {θ′i} defined above, suppose the moment bounds in Lemma B.3 hold. Then from
Corollary 1 in (Vlaski & Sayed, 2022), beginning at θi ∈ H for the finite horizon j ≤ C

µ we have

E[J(θi+j)|θi ∈ H] ≥ E[J(θ′i+j)|θi ∈ H]−O(µ3/2),

which basically states that the function values on {θi} stay close to the function values on {θ′i}. This allows us to conclude
that sufficient ascent occurs on the Taylor approximation as well as the original function by way of Theorem 2 from (Vlaski
& Sayed, 2022). Beginning at a strict saddle point θi ∈ H, gradient ascent iterates on the short-term model for T iterations
after i with

T =
log(2M σ2

σ2
l
+ 1)

log(1 + 2µω)
≤ O(

1

µω
)

guarantees
E[J(θ′i+T )|θi ∈ H] ≥ E[J(θi)|θi ∈ H] +

µ

2
Mσ2 − o(µ).

Combined with the bounds on the iterates from Lemma B.3, this implies

E[J(θi+T )|θi ∈ H] ≥ E[J(θi)|θi ∈ H] +
µ

2
Mσ2 − o(µ).

This result, in combination with Lemma B.2, and the observation that |J(θ)| ≤ Rmax

1−γ for all θ allows us to apply Theorem 3
from (Vlaski & Sayed, 2022), yielding our final result.
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B.3. Proof of Lemma B.2

Proof. Our iterates are
θi+1 = θi + µ∇J(θi) + µξi+1 + µdi+1.

Because J is Lipschitz smooth by Lemma 3.2, we have

J(θi+1) ≥J(θi) +∇J(θi)
T (θi+1 − θi)−

L

2
∥θi+1 − θi∥2

≥J(θi) + µ∇J(θi)
T (∇J(θi) + ξi+1 + di+1)−

Lµ2

2
∥∇J(θi) + ξi+1 + di+1∥2

≥J(θi) + µ∥∇J(θi)∥2+µ∇J(θi)
T ξi+1 + µ∇J(θi)

T di+1

− Lµ2

2
(∥∇J(θi) + di+1∥2+∥ξi+1∥2+2(∇J(θi) + di+1)

T ξi+1).

We can take expectation with respect to the filtration Fi on either side to remove the cross terms with the noise term ξi+1,
and then we have by (8)

E[J(θi+1)|Fi] ≥ J(θi) + µ∥∇J(θi)∥2+µE[∇J(θi)
T di+1|Fi]−

Lµ2

2
E[∥∇J(θi) + di+1∥2|Fi]−

Lµ2

2
E[∥ξi+1∥2|Fi]

≥ J(θi) + µ∥∇J(θi)∥2+µE[∇J(θi)
T di+1|Fi]−

Lµ2

2
E[∥∇J(θi) + di+1∥2|Fi]−

Lµ2σ2

2
.

We assume that µ < 1
L to obtain

E[J(θi+1)|Fi] ≥ J(θi) + µ∥∇J(θi)∥2+µE[∇J(θi)
T di+1|Fi]−

µ

2
E[∥∇J(θi) + di+1∥2|Fi]−

Lµ2σ2

2
.

Then we use the fact that ∥a+ b∥2= ∥a∥2+2aT b+ ∥b∥2 and (10) to obtain

E[J(θi+1)|Fi] ≥J(θi) + µ∥∇J(θi)∥2+µE[∇J(θi)
T di+1|Fi]−

µ

2
∥∇J(θi)∥2−

µ

2
E[∥di+1∥2|Fi]

− µE[∇J(θi)
T di+1|Fi]−

Lµ2σ2

2

=J(θi) +
µ

2
∥∇J(θi)∥2−

µ

2
E[∥di+1∥2|Fi]−

Lµ2σ2

2

≥J(θi) +
µ

2
∥∇J(θi)∥2−

D2µ3

2
− Lµ2σ2

2
.

Now we want to apply the law of total expectation and condition on where wi is located in the parameter space. We first
condition on θi ∈ G, where we have ∥∇J(θi)∥2> µ(Lσ2 +D2µ)(1 + 1

δ ) to arrive at

E[J(θi+1)|θi ∈ G] ≥ E[J(θi)|θi ∈ G] + µ

2
µ(Lσ2 +D2µ)(1 +

1

δ
)− Lµ2σ2

2
− D2µ3

2

E[J(θi+1)|θi ∈ G] ≥ E[J(θi)|θi ∈ G] + µ2(Lσ2 +D2µ)

2δ
.

If we instead condition on θi ∈ M, we have that

E[J(θi+1)|θi ∈ M] ≥ E[J(θi)|θi ∈ M]− µ2(Lσ2 +D2µ)

2
.

B.4. Proof of Lemma B.3

Before we proceed with the proof of Lemma B.3, we require a preliminary lemma from (Vlaski & Sayed, 2022) that will
help us show that our product does not blow up for small µ.
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Lemma B.5. For C, µ, L > 0 and k ∈ Z+ with µ < 1
L

lim
µ→0

(
(1 + µL)k +O(µ2)

(1− µL)k−1

)C/µ

= O(1).

Proof of Lemma B.5. See (Vlaski & Sayed, 2022).

Proof. First we want to show (11), restated below

E[∥θi − θi+j+1∥2|θi ∈ H] ≤ O(µ).

We have by (8)

∥θi − θi+j+1∥2 = ∥θi − θi+j − µ∇J(θi+j)− µξi+j+1 − µdi+j+1∥2

E[∥θi − θi+j+1∥2|Fi+j ] = E[∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2|Fi+j ] + µ2E[∥ξi+j+1∥2|Fi+j ]

≤ E[∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2|Fi+j ] + µ2σ2

= E[∥θi − θi+j − µ∇J(θi+j) + µ∇J(θi)− µ∇J(θi)− µdi+j+1∥2|Fi+j ] + µ2σ2.

By Jensen’s inequality, we have for 0 < α < 1,

∥a+ b∥2≤ 1

α
∥a∥2+ 1

1− α
∥b∥2.

So we have

E[∥θi−θi+j+1∥2|Fi+j ] ≤
1

1− µL
∥θi−θi+j−µ∇J(θi+j)+µ∇J(θi)∥2+

µ2

µL
E[∥∇J(θi)+di+j+1∥2|Fi+j ]+µ2σ2. (17)

We consider the first term on the right hand side of (17) and expand it to obtain

∥θi − θi+j − µ∇J(θi+j) + µ∇J(θi)∥2

≤ ∥θi − θi+j∥2+2µ∥θi − θi+j∥·∥∇J(θi+j)−∇J(θi)∥+µ2∥∇J(θi+j)−∇J(θi)∥2.

By Lipschitz smoothness, we have

∥θi − θi+j − µ∇J(θi+j) + µ∇J(θi)∥2 ≤ ∥θi − θi+j∥2+2µL∥θi − θi+j∥·∥θi+j − θi∥+µ2L2∥θi+j − θi∥2

= (1 + 2µL+ µ2L2)∥θi − θi+j∥2

= (1 + µL)2∥θi − θi+j∥2.

We plug this into our original expression (17) and use (10) to obtain

E[∥θi − θi+j+1∥2|Fi+j ] ≤
(1 + µL)2

1− µL
∥θi − θi+j∥2+

µ

L
E[∥∇J(θi) + di+j+1∥2|Fi+j ] + µ2σ2

≤ (1 + µL)2

1− µL
∥θi − θi+j∥2+

2µ

L
E[∥di+j+1∥2|Fi+j ] +

2µ

L
∥∇J(θi)∥2+µ2σ2

≤ (1 + µL)2

1− µL
∥θi − θi+j∥2+

2D2µ3

L
+

2µ

L
∥∇J(θi)∥2+µ2σ2.

Now we want to condition on θi ∈ H to obtain

E[∥θi − θi+j+1∥2|θi ∈ H] ≤ E[
(1 + µL)2

1− µL
∥θi − θi+j∥2|θi ∈ H] +

2D2µ3

L
+

2µ2

L
· µ(Lσ2 +D2µ)(1 +

1

δ
) + µ2σ2

≤ (1 + µL)2

1− µL
E[∥θi − θi+j∥2|θi ∈ H] +O(µ2).
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Then we can evaluate this recursive formula starting at j = 0, since E[∥θi − θi∥2] = 0, to arrive at

E[∥θi − θi+j+1∥2|θi ∈ H] ≤ O(µ2)

j−1∑
n=0

( (1 + µL)2

1− µL

)n

≤ O(µ2)
1− ( (1+µL)2

1−µL )j

1− (1+µL)2

1−µL

= O(µ2)
(1− µL)(( (1+µL)2

1−µL )j − 1)

1 + 2µL+ µ2L2 − 1 + µL

= O(µ)
(1− µL)(( 1+2µL+µ2L2

1−µL )j − 1)

3L+ µL2

≤ O(µ)
( (1+µL)2

1−µL )j

3L
≤ O(µ)

( (1+µL)2

1−µL )
C
µ

3L
.

By Lemma B.5, this gives us

E[∥θi − θi+j+1∥2|θi ∈ H] ≤ O(µ).

Now we want to show the fourth moment bound (12), restated below

E[∥θi − θi+j+1∥4|θi ∈ H] ≤ O(µ2).

We use the inequality ∥a+ b∥4≤ ∥a∥4+3∥b∥4+8∥a∥2∥b∥2+4∥a∥2(aT b) to expand the expression as follows

∥θi − θi+j+1∥4=∥θi − θi+j − µ∇J(θi+j)− µξi+j+1 − µdi+j+1∥4

≤∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥4+3µ4∥ξi+j+1∥4

+ 8µ2∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2·∥ξi+j+1∥2

+ 4∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2(θi − θi+j − µ∇J(θi+j)− µdi+j+1)
T ξi+j+1.

(18)

We first consider the first term on the right hand side of (18) and decompose it via Jensen’s inequality:

∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥4≤
1

(1− µL)3
∥θi − θi+j − µ∇J(θi+j) + µ∇J(θi)∥4

+
µ

L3
∥∇J(θi) + di+j+1∥4

≤ (1 + µL)4

(1− µL)3
∥θi − θi+j∥4+

8µ

L3
∥∇J(θi)∥4+

8µ

L3
∥di+j+1∥4.

(19)

We then consider the third term on the right hand side of (18). From the analysis above, we have

∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2≤
(1 + µL)2

1− µL
∥θi − θi+j∥2+

2µ

L
∥∇J(θi)∥2+

2µ

L
∥di+j+1∥2. (20)

Now we can plug (19) and (20) into (18) to obtain

∥θi − θi+j+1∥4 ≤ (1 + µL)4

(1− µL)3
∥θi − θi+j∥4+

8µ

L3
∥∇J(θi)∥4+

8µ

L3
∥di+j+1∥4+3µ4∥ξi+j+1∥4

+ 8µ2∥ξi+j+1∥2
(
(1 + µL)2

1− µL
∥θi − θi+j∥2+

2µ

L
∥∇J(θi)∥2+

2µ

L
∥di+j+1∥2

)
+ 4∥θi − θi+j − µ∇J(θi+j)− µdi+j+1∥2(θi − θi+j − µ∇J(θi+j)− µdi+j+1)

T ξi+j+1
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When we take the expectation on both sides, the cross term with ξi+j+1 disappears, and we have by (8), (9), (3) and (4)

E[∥θi − θi+j+1∥4|Fi+j ] ≤
(1 + µL)4

(1− µL)3
∥θi − θi+j∥4+

8µ

L3
∥∇J(θi)∥4+

8µ

L3
E[∥di+j+1∥4|Fi+j ] + 12µ4σ4

+
8µ2σ2(1 + µL)2

1− µL
∥θi − θi+j∥2+

16µ3σ2

L
∥∇J(θi)∥2

+
16µ3

L
E[∥ξi+j+1∥2 · ∥di+j+1∥2|Fi+j ]

E[∥θi − θi+j+1∥4|Fi+j ] ≤
(1 + µL)4

(1− µL)3
∥θi − θi+j∥4+

8µ

L3
∥∇J(θi)∥4+

8D4µ5

L3
+ 12µ4σ4

+
8µ2σ2(1 + µL)2

1− µL
∥θi − θi+j∥2+

16µ3σ2

L
∥∇J(θi)∥2+

16σ2D2µ5

L

Now we take expectation conditioned on θi ∈ H, allowing us to use the bound (11) derived before on ∥θi − θi+j∥2 to obtain

E[∥θi − θi+j+1∥4|θi ∈ H] ≤ (1 + µL)4

(1− µL)3
E[∥θi − θi+j∥4|θi ∈ H] +

8µ

L3
E[∥∇J(θi)∥4|θi ∈ H]

+
8µ2σ2(1 + µL)2

1− µL
E[∥θi − θi+j∥2|θi ∈ H] +

16µ3σ2

L
E[∥∇J(θi)∥2|θi ∈ H] +O(µ4)

≤ (1 + µL)4

(1− µL)3
E[∥θi − θi+j∥4|θi ∈ H] +O(µ3)

Then we can evaluate this recursive expression as follows

E[∥θi − θi+j+1∥4|θi ∈ H] ≤ O(µ3)

j−1∑
n=0

(
(1 + µL)4

(1− µL)3
)n

= O(µ3)
1− ( (1+µL)4

(1−µL)3 )
j

1− (1+µL)4

(1−µL)3

= O(µ3)
(( (1+µL)4

(1−µL)3 )
j − 1)(1− µL)3

(1 + µL)4 − (1− µL)3
≤ O(µ2)

( (1+µL)4

(1−µL)3) )
j

7L+ 3µL2 + 5µ2L3 + µ3L4

By Lemma B.5, this gives us
E[∥θi − θi+j+1∥4|θi ∈ H] ≤ O(µ2).

Finally, we want to bound (13), restated below

E[∥θi+j − θ′i+j∥2|θi ∈ H] ≤ O(µ).

First we expand the expression as follows using the definition of θ and θ′

∥θi+j+1 − θ′i+j+1∥2= ∥θi+j − θ′i+j + µ∇J(θi+j) + µdi+j+1 − µ∇J(θi)− µ∇2J(θi)(θ
′
i+j − θi)∥2

= ∥(I + µ∇2J(θi))(θi+j − θ′i+j) + µ∇2J(θi)(θi − θi+j) + µ∇J(θi+j)− µ∇J(θi) + µdi+j+1∥2

Define Hi+j =
∫ 1

0
∇2J((1− t)θi+j + tθi)dt, then we can plug this into the expression and expand via Jensens’s inequality

to obtain

∥θi+j+1 − θ′i+j+1∥2= ∥(I + µ∇2J(θi))(θi+j − θ′i+j) + µ(∇2J(θi)−Hi+j)(θi − θi+j) + µdi+j+1∥2

≤ 1

1− µL
∥(I + µ∇2J(θi))(θi+j − θ′i+j)∥2+

µ

L
∥(∇2J(θi)−Hi+j)(θi − θi+j) + di+j+1∥2

≤ 1

1− µL
∥(I + µ∇2J(θi))(θi+j − θ′i+j)∥2+

2µ

L
∥(∇2J(θi)−Hi+j)(θi − θi+j)∥2+

2µ

L
∥di+j+1∥2
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As observed in (Vlaski & Sayed, 2022), we have

∥∇2J(θi)−Hi+j∥ = ∥∇2J(θi)−
∫ 1

0

∇2J((1− t)θi+j + tθi)dt∥

= ∥
∫ 1

0

∇2J(θi)−∇2J((1− t)θi+j + tθi)dt∥

≤
∫ 1

0

∥∇2J(θi)−∇2J((1− t)θi+j + tθi)∥dt

≤ χ

∫ 1

0

∥(1− t)θi − (1− t)θi+j∥dt ≤
χ

2
∥θi − θi+j∥,

(21)

which implies
∥(∇2J(θi)−Hi+j)(θi − θi+j)∥2≤

χ

2
∥θi − θi+j∥4. (22)

We can plug (22) back into (21) and take expectation of both sides, conditioned on θi ∈ H. When we apply the fourth
moment bound from Lemma B.3, we obtain

E[∥θi+j+1 − θ′i+j+1∥2|θi ∈ H] ≤ (1 + µL)2

(1− µL)
E[∥θi+j − θ′i+j∥2|θi ∈ H] +O(µ3).

This is the same recursion as in the proof of (11), so again from Lemma B.5 we have

E[∥θi+j+1 − θ′i+j+1∥2|θi ∈ H] ≤ O(µ2).

C. Noise and Bias Bounds for Vanilla Policy Gradient
To apply Theorem 3.6, we first show in Lemma C.1 that the gradient estimator and the second and fourth moment of the
noise are bounded. Then we show that the deterministic bias term dt+1 is bounded via Lemma C.3. This allows us to
directly conclude the results of Theorem 3.7.
Lemma C.1. The gradient noise process {ξt}t≥0 satisfies

E[ξt+1|Ft] = E[ĜV PG(θt; τt)−∇JH(θt)|Ft] = 0.

In addition, let σ = GRmax

(1−γ)2 . Then we have the following bounds

∥ĜV PG(θt; τt)∥ ≤ σ,

E[∥ξt+1∥2|Ft] ≤ σ2,

E[∥ξt+1∥4|Ft] ≤ 4σ4.

Proof.

∥ĜV PG(θ; τ)∥ = ∥
H−1∑
h=0

∇θ log πθ(ah|sh)
H−1∑
t=h

γtR(st, at)∥

≤
H−1∑
h=0

∥∇θ log πθ(ah|sh)
H−1∑
t=h

γtR(st, at)∥

≤
H−1∑
h=0

∥∇θ log πθ(ah|sh)∥γh
H−1∑
t=h

γt−hRmax

≤
H−1∑
h=0

∥∇θ log πθ(ah|sh)∥γhRmax

1− γ

≤ GRmax

(1− γ)2
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Then the rest of the bounds follow from Lemma B.1. Thanks to reviewer feedback, we note that the bound on the noise
variance E[∥ξt+1∥2] can be tightened by a factor of 1

1−γ as shown in Lemma 4.2 of (Yuan et al., 2022).

Before we can prove Lemma C.3, we require the following lemma from (Yuan et al., 2022).

Lemma C.2. (Lemma 4.5 from (Yuan et al., 2022)) For D = GRmax

1−γ , we have that the bias term di+1 is bounded such that

∥di+1∥= ∥∇J(θi)−∇JH(θi)∥≤ D(
1

1− γ
+H)1/2γH .

Now we can proceed with the proof of Lemma C.3.

Lemma C.3. For H = 1
log 1

γ

· O(log( 1µ )) where µ → 0, we have that the gradient bias is deterministically bounded as

follows

∥dt+1∥ = ∥∇J(θt)−∇JH(θt)∥ ≤ D(
1

1− γ
+H)1/2γH ≤ Dµ

where D = GRmax

1−γ .

Proof. We have the bound on the bias in terms of H from Lemma C.2. We want to choose H large enough so that

D(
1

1− γ
+H)1/2γH ≤ Dµ

(
1

1− γ
+H)1/2γH ≤ µ.

We begin by finding the approximate solution to the following equation using asymptotic expansion

(
1

1− γ
+H)1/2γH = µ

1

2
log(

1

1− γ
+H) +H log γ = logµ

1

2
log(

1

1− γ
+H)−H log

1

γ
= − log

1

µ

H log
1

γ
− 1

2
log(

1

1− γ
+H) = log

1

µ
.

Now we use the method of dominant balance, treating µ as a small parameter. We have that log 1
µ and H log 1

γ must balance
each other out, so

H ∼
log 1

µ

log 1
γ

=
logµ

log γ
.

We consider the next term in our asymptotic expansion of H , assuming that it is much smaller than the first term

H ∼ logµ

log γ
+ x1.

We substitute this into the inequality to obtain

(
logµ

log γ
+ x1) log

1

γ
− 1

2
log(

1

1− γ
+

logµ

log γ
+ x1) = log

1

µ

x1 log
1

γ
− 1

2
log(

1

1− γ
+

logµ

log γ
+ x1) = 0

x1 =
log( 1

1−γ + log µ
log γ + x1)

2 log 1
γ

.
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Since we assume x1 is much smaller than log µ
log γ we have

x1 ∼
log( 1

1−γ + log µ
log γ )

2 log 1
γ

.

Our asymptotic expansion is H = log µ
log γ +O(log( log µ

log γ )). So we can pick H = O( log µ
log γ ) to achieve our inequality.

D. Proof of Theorem 4.8
D.1. Key Lemmas and Proof Sketch

In Theorem 4.8, we establish the convergence of Qw̄K
to Qw∗ under constant time steps. Our approach will mirror that of

(Bhandari et al., 2018) by establishing a recurrence relation for the iterates and then bounding the bias induced by Markovian
sampling. The key challenge is characterizing the distance between the initial state distribution and the stationary distribution
in terms of the mixing rate.

We define ḡ(w) as the expectation of of the semigradient gt(w) with respect to the stationary distribution of the Markov
chain as follows

ḡ(w) = Eηπ
[gt(w)] =

∑
s,s′,a,a′

ηπ(s, a)P(s, a, s′, a′)(R(s, a) + γϕ(s′, a′)⊺w − ϕ(s, a)⊺w)ϕ(s, a).

We also define ζt to represent the bias from Markovian sampling as follows

ζt(w) = (gt(w)− ḡ(w))⊺(w − w∗).

First, The following lemma, which is Lemma 6 and 10 from (Bhandari et al., 2018), uniformly bounds the norm of the
semi-gradient and Markov bias term ζt.

Lemma D.1. Let F = Rmax + 2R. Then R ≤ F
2 and for all t ≥ 0 we have

∥gt(w)∥2≤ Rmax + 2∥w∥2≤ F

In addition, for all w ∈ Θ, the gradient bias is bounded such that

|ζt(w)| ≤ 2F 2

|ζt(w)− ζt(w
′)| ≤ 6F∥w − w′∥2.

Then we obtain the following lemma for general nonstationary Markov chains, which differs from Lemma 9 in (Bhandari
et al., 2018) by a factor of 2.

Lemma D.2. Consider two random variables X and Y such that

X → st → st+τ → Y

forms a Markov chain for some fixed t ≥ 0 and τ > 0. Assume the Markov chain mixes at a uniform geometric rate
as in Assumption 4.2. Let X ′ and Y ′ denote independent copies drawn from the marginal distributions of X and Y , so
P)X ′ = ·, Y ′ = ·) = P(X = ·)⊗ P(Y = ·). Then, for any bounded function v,

|E[v(X,Y )]− E[v(X ′, Y ′)]| ≤ 4∥v∥∞(mrτ ),

where ∥v∥∞ = supx |f(x)|.

Proof. See Appendix D.3.

Now in the following key lemma, we apply Lemma D.2 to bound ζt(wt) with respect to exponential mixing. Although we
follow the proof of Lemma 11 in (Bhandari et al., 2018), it is not sufficient to directly carry the factor of 2 over from Lemma
D.2 because we need to account for the fact that the marginal distribution of each observation Ot is now time-dependent and
not equal to the stationary distribution.
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Lemma D.3. Consider a non-increasing step-size sequence α0 ≥ α1 ≥ ... ≥ αT . Let τ0 = τmix(αT ). Fix any t ≤ T and
set t∗ = max{0, t− τ0}. Then,

E[ζt(wt)] ≤ F 2(8 + 6τ0)αt∗ + 10F 2mrt.

Proof. See Appendix D.4.

Finally, we have the following lemma from (Bhandari et al., 2018) that establishes a recursion for the distance between the
iterates and the limit point w∗.

Lemma D.4. With probability 1, for every t ∈ N0,

∥w∗ − wt+1∥2 ≤ ∥w∗ − wt∥2 − 2αt(1− γ)∥Qw∗ −Qwt
∥2ηπ

+ 2αtζt(wt) + α2
tF

2.

Proof. See the proof of Lemma 8 in (Bhandari et al., 2018).

These key lemmas allow us to proceed with the proof of Theorem 4.8.

D.2. Proof of Theorem 4.8

Proof. Rearranging the terms of the inequality in Lemma D.4 and summing from t = 0 to K − 1, we arrive at

2α0(1− γ)

K−1∑
t=0

E[∥Qw∗ −Qwt
∥2ηπ

] ≤ ∥w∗ − w0∥22+F 2 + 2α0

K−1∑
t=0

E[ζt(wt)].

Then we can use the bound on ζt(wt) from Lemma D.3 and the fact that our step-sizes are constant to obtain

2α0(1− γ)

K−1∑
t=0

E[∥Qw∗ −Qwt
∥2ηπ

] ≤ ∥w∗ − w0∥22+F 2 + 2α0

K−1∑
t=0

F 2(8 + 6τ0)α0 + 2α0

K−1∑
t=0

10F 2mrt

≤ ∥w∗ − w0∥22+F 2 + 2α2
0KF 2(8 + 6τ0) +

20F 2mα0

1− r
.

Now we can divide both sides by 2α0(1− γ) and substitute α0 = 1√
K

to obtain

K−1∑
t=0

E[∥Qw∗ −Qwt
∥2ηπ

] ≤ ∥w∗ − w0∥22+F 2

2α0(1− γ)
+

α0KF 2(8 + 6τ0)

1− γ
+

10F 2m

(1− r)(1− γ)

=

√
K(∥w∗ − w0∥22+F 2)

2(1− γ)
+

√
KF 2(8 + 6τ0)

1− γ
+

10F 2m

(1− r)(1− γ)

=

√
K(∥w∗ − w0∥22+17F 2 + 12F 2τ0)

2(1− γ)
+

10F 2m

(1− r)(1− γ)
.

Finally, we divide both sides by K and use Jensen’s inequality to obtain our final result

E[∥Qw∗ −Qw̄K
∥2ηπ

] ≤ 1

K

K−1∑
t=0

E[∥Qw∗ −Qwt∥2ηπ
] ≤ ∥w∗ − w0∥22+F 2(17 + 12τ0)

2(1− γ)
√
K

+
10F 2m

(1− r)(1− γ)K
.

D.3. Proof of Lemma D.2

We first require the following auxiliary lemma.

Lemma D.5. For any Markov chain {st} with stationary distribution η and finite state space S,

dTV (η,P(st+τ = ·)) ≤ sup
s∈S

dTV (η,P(st+τ = ·|s0 = s)).
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Proof. It follows from proof by induction that for a general convex function f , if f(xn) ≥ f(xi) for all xi ∈ {x1, ...xn}
then f(xn) ≥ f(x) for x =

∑n
i=1 αixn where

∑n
i=1 αi = 1. In other words, f(xn) is greater than f(x) for any x that is a

convex combination of the other {x1, ...xn}.

Now let f(x) = 1
2

∑
si∈S |x⊺P t+τ (si)− η(si)|, which is a convex function, and let ei ∈ RS represent the unit vector that

is 1 at index i and 0 everywhere else. Then we have

dTV (η,P(st+τ = ·)) = f(ρ0)

dTV (η,P(st+τ = ·|s0 = si)) = f(ei).

Since any initial state distribution ρ0 will be a convex combination of the ei unit vectors, we have shown the result.

Now we can proceed with the proof of Lemma D.2.

Proof. Let h = v
2∥v∥∞

denote the function v rescaled to take values in [−1/2, 1/2]. Then we can follow the steps of Lemma
9 in (Bhandari et al., 2018) to arrive at

|E[h(X,Y )]− E[h(X ′, Y ′)]| ≤
∑
s∈S

P(st = s)dTV (P(st+τ = ·|st = s),P(st+τ = ·). (23)

We can bound dTV (P(st+τ = ·|st = s),P(st+τ = ·)) as follows

dTV (P(st+τ = ·|st = s),P(st+τ = ·)) ≤ dTV (P(st+τ = ·|st = s), ηπ) + dTV (ηπ,P(st+τ = ·)) (24)

because total variation distance is a norm and obeys the triangle inequality. The first term on the right hand side of (24) is
bounded by exponential mixing

dTV (P(st+τ = ·|st = s), ηπ) ≤ mrτ .

The second term can be bound as follows by Lemma D.5

dTV (ηπ,P(st+τ = ·)) ≤ sup
s∈S

dTV (ηπ,P(st+τ = ·|s0 = s)) ≤ mrt+τ .

Returning to (24), we have

dTV (P(st+τ = ·|st = s),P(st+τ = ·)) ≤ mrτ +mrt+τ ≤ 2mrτ ,

and applying these inequalities to (23), we have

|E[v(X,Y )]− E[v(X ′, Y ′)]| ≤ 4∥v∥∞mrτ .

D.4. Proof of Lemma D.3

First we require the following auxiliary lemmas.

Lemma D.6. Let P and Q represent two different probability distributions. For some bounded function f , and random
variable X , we have

|EP [f(X)]− EQ[f(X)]| ≤ 2∥f∥∞dTV (P,Q)

Proof. This can be shown with the definition

dTV (P,Q) = sup
v:∥v∥∞≤ 1

2

|
∫

vdP −
∫

vdQ|
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Lemma D.7. Let O′′ = (s, a, s′, a′) represent the observation tuple of consecutive state-action pairs where (s, a) is drawn
from the stationary distribution of the Markov chain ηπ, and let Ot = (st, at, st+1, at+1) represent the observation tuple
drawn at time t from the Markov chain. Then

dTV (P(O′′ = ·),P(Ot = ·)) = dTV (ηπ,P(st = ·, at = ·)) ≤ mrt

Now we can proceed with the proof of Lemma D.3, which mirrors the framework of Lemma 11 in (Bhandari et al., 2018).
The main difference in our proofs is in Step 2.

Proof. Step 1: Relate ζt(wt) and ζt(wt−τ )

We apply Lemma D.1 to bound ζt as follows

|ζt(wt)− ζt(wt−τ )| ≤ 6F∥w − wt−τ∥≤ 6F 2
t−1∑

i=t−τ

αi

ζt(wt) ≤ ζt(wt−τ ) + 6F 2
t−1∑

i=t−τ

αi (25)

Step 2: Bound E[ζt(wt−τ )] using Lemma D.2 and exponential mixing

We denote by Ot = (st, at, st+1, at+1) the observation tuple at each time step, and we overload the notation of gt and ζt to
make clear their dependence on Ot as follows

gt(w,Ot) = (r(st, at) + γϕ(st+1, at+1)
⊺w − ϕ(st, at)

⊺w)ϕ(st, at)

ζ(w,Ot) = (gt(w,Ot)− ḡ(w))⊺(w − w∗)

To apply Lemma D.2, we consider random variables w′
t−τ and O′

t drawn independently from their marginal distributions
P(wt−τ = ·) and P(Ot = ·) respectively, such that their joint distribution is defined as follows

P(w′
t+τ = ·, O′

t = ·) = P(wt−τ = ·)⊗ P(Ot = ·)

Note that typically the random variables wt−τ and Ot are not independent. Now we want to bound E[ζ(w′
t−τ , O

′
t)]. We can

use the law of total expectation as follows

E[ζ(w′
t−τ , O

′
t)] = E[E[ζ(w′

t−τ , O
′
t)|w′

t−τ ]]

Now we consider the conditional expectation term E[ζ(w′
t−τ , O

′
t)|w′

t−τ ]. Since w′
t−τ and O′

t are independent, we have

E[ζ(w′
t−τ , O

′
t)|w′

t−τ ] = EO′
t∼P(Ot=·)[ζ(w

′
t−τ , O

′
t)|w′

t−τ ]

= EO′
t∼P(Ot=·)[(gt(w

′
t−τ , O

′
t)− ḡ(w′

t−τ ))
⊺(w′

t−τ − w∗)|w′
t−τ ]

= (EO′
t∼P(Ot=·)[gt(w

′
t−τ , O

′
t)]− ḡ(w′

t−τ ))
⊺(w′

t−τ − w∗)

= (EO′
t∼P(Ot=·)[gt(w

′
t−τ , O

′
t)]− EO′′∼ηπ

[g(w′
t−τ , O

′′)])⊺(w′
t−τ − w∗)

≤ ∥EO′
t∼P(Ot=·)[gt(w

′
t−τ , O

′
t)]− EO′′∼ηπ

[g(w′
t−τ , O

′′)]∥·∥w′
t−τ − w∗∥

≤ ∥EO′
t∼P(Ot=·)[gt(w

′
t−τ , O

′
t)]− EO′′∼ηπ [g(w

′
t−τ , O

′′)]∥·2R,

where the last inequality is due to the fact that ∥w∥≤ R. Here O′
t is drawn from the time-dependent marginal distribution

P(Ot = ·) whereas O′′ is drawn from the stationary distribution of the Markov chain. Then by Lemma D.6 and the fact
that ∥gt∥≤ F and R ≤ F

2 , we can bound this difference in expectation by the total variation distance between the two
distributions as follows

E[ζ(w′
t−τ , O

′
t)|w′

t−τ ] ≤ 2F 2dTV (P(O′′ = ·),P(Ot = ·)).

Then by Lemma D.5 and Lemma D.7 we have

E[ζ(w′
t−τ , O

′
t)|w′

t−τ ] ≤ 2F 2mrt.
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Now we can apply Lemma D.2 to bound E[ζt(wt−τ ), Ot)]. By Lemma D.1, we have |ζ(w,Ot)| ≤ 2F 2. Since θt−τ →
st−τ → st → Ot forms a Markov chain, applying Lemma D.2 yields

|E[ζ(wt−τ , Ot)]− E[ζ(w′
t−τ , O

′
t)]| ≤ 8F 2mrτ

|E[ζ(wt−τ , Ot)]| ≤ 8F 2mrτ + 2F 2mrt. (26)

Step 3: Combine terms.

We combine (25) and (26) to arrive at

E[ζt(wt)] ≤ 8F 2mrτ + 2F 2mrt + 6F 2ταt−τ .

Let τ0 = τmix(αT ). For t ≤ τ0, pick τ = t, to arrive at the bound

E[ζt(wt)] ≤ 8F 2mrt + 2F 2mrt + 6F 2tα0 ≤ 10F 2mrt + 6F 2τ0α0.

Now for T ≥ t > τ0 we pick τ = τ0 to get the bound

E[ζt(wt)] ≤ 8F 2αT + 2F 2mrt + 6F 2τ0αt−τ0 ≤ F 2(8 + 6τ0)αt−τ0 + 2F 2mrt.

E. Noise and Bias Bounds for Actor-Critic Policy Gradient
Our general approach for actor-critic policy gradient is similar to that of vanilla policy gradient. Once again, we bound the
noise and bias — bounding ξt in Lemma E.1, pt in Lemma E.2, and dt in Lemma E.1.

We note that for vanilla policy gradient, the noise term ξt+1 is random due to the sampled trajectory τt whereas the bias term
dt+1 is deterministic conditioned on Ft. In contrast, for the actor-critic algorithm, ξt+1 depends on two random variables, τt
and the averaged critic parameter w̄K,t, whereas the bias term depends only on w̄K,t. Moreover, τt and w̄K,t are generated
from independently sampled trajectories and are therefore independent. We quantify these observations in the following
lemma.
Lemma E.1. The gradient noise process {ξt}t≥0 satisfies

E[ξt+1|Ft] = 0

In addition, let σ = GR
1−γ . Then we have the following bounds

∥Ĝ(θt; τt)∥≤ σ,

E[∥ξt+1∥2|Ft] ≤ σ2

E[∥ξt+1∥4|Ft] ≤ 4σ4

E[∥dt+1∥2∥ξt+1∥2|Ft] ≤ σ2E[∥dt+1∥2|Ft]

Proof. As discussed earlier, ξt+1 depends on two random independent variables: τt and w̄K,t. We can overload notation
and denote the gradient estimator as Ĝ(θt; τt; w̄K,t). We therefore obtain

E[ξt+1|Ft] = E[Ĝ(θt; τt; w̄K,t)− Eτ [Ĝ(θt; τt; w̄K,t)]|Ft]

= E[E[Ĝ(θt; τt; w̄K,t)− Eτ [Ĝ(θt; τt; w̄K,t)]|w̄K,t]|Ft]

= E[Eτ [Ĝ(θt; τt; w̄K,t)]− Eτ [Ĝ(θt; τt; w̄K,t)]|Ft] = 0

Now we want to show the bound on Ĝ(θt; τt).

∥Ĝ(θt; τt; w̄K,t)∥ = ∥
H∑
j=0

γjQw̄K,t
(sj , aj)∇ log πθt(aj |sj)∥

= ∥
H∑
j=0

γjw̄⊺
K,tϕ(sj , aj)∇ log πθt(aj |sj)∥≤

RG

1− γ
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By Lemma B.1
E[∥ξt+1∥2||w̄K,t] = Eτ [∥ξt+1∥2] ≤ σ2

E[∥ξt+1∥2|Ft] = E[E[∥ξt+1∥2|w̄K,t]|Ft] ≤ σ2

E[∥ξt+1∥4|Ft] ≤ 4σ2

Finally we have
E[∥dt+1∥2∥ξt+1∥2|Ft] = E[E[∥dt+1∥2∥ξt+1∥2|w̄K,t]|Ft]

= E[∥dt+1∥2E[∥ξt+1∥2|w̄K,t]|Ft]

≤ E[∥dt+1∥2|Ft]σ
2

In the following lemma, we bound the bias in the actor-critic gradient estimator due to truncation of the infinite horizon. The
approach is similar to the proof of Lemma C.2.

Lemma E.2. For Dp = GR
(1−γ) and H ≥ log µ

log γ , the truncation bias is deterministically bounded such that

∥pt+1∥≤ Dpµ

∥pt+1∥4≤ D4
pµ

4.

Proof.
∥pt+1∥ = ∥GH(θt)−G∞(θt)∥

= ∥E[
H∑
j=0

γjQw̄K,t
(sj , aj)∇ log πθt(aj |sj)]− E[

∞∑
j=0

γjQw̄K,t
(sj , aj)∇ log πθt(aj |sj)]∥

= ∥E[
∞∑

j=H

γjQw̄K,t
(sj , aj)∇ log πθt(aj |sj)]∥

= ∥E[
∞∑

j=H

γjw̄⊺
K,tϕ(sj , aj)∇ log πθt(aj |sj)]∥

≤ RG

∞∑
j=H

γj ≤ GR

(1− γ)
γH

E.1. Proof of Lemma 4.10

Although Theorem 4.8 establishes the convergence of TD(0) in terms of Qw̄K
under constant step sizes, we actually require

a stronger convergence result showing the direct convergence of w̄K to w∗ in order to bound the critic approximation
bias. In the following proofs, we use core results proved in Appendix D to prove an alternate fourth-moment bound under
diminishing step sizes. These convergence results are formalized in Lemma E.3.

Lemma E.3. Suppose w̄K is generated by K steps of the Projected TD(0) algorithm with w∗ ∈ Θ and diminishing step-size
αt = 1

(t+1)ς . Then

E[∥w∗ − w̄K∥4] ≤ log2 K

K
·
(

192F 2R2

ς2 log2(r−1)
+O(

1

logK
) +O(

1

log2 K
)

)

Proof: See Appendix E.2.1

Lemma E.4 follows from Lemma E.3.
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Lemma E.4. For K = O( log
2(µ−4)
µ4 ) as µ → 0 iterations of Algorithm 3 and

D =

(
192F 2R2

ς2 log2(r−1)
+O(

1

logµ−4
)

)−1/4

we have
E[∥w∗ − w̄K∥4] ≤ D4µ4

Proof. See Appendix E.2.2.

Now we can proceed with the proof of Lemma 4.10.

Proof. We can characterize the bias by the quality of the critic approximation achieved by the TD(0) algorithm. We can
”roll up” the temporal summation as follows

qt+1 = G∞ −∇J(θt)

= Eπ,ρ0
[

∞∑
k=0

γkQw̄K,t
(sk, ak)∇ log πθ(ak|sk)]−∇J(θ)

= Eπ,ρ0 [

∞∑
k=0

γkQw̄K,t
(sk, ak)∇ log πθ(ak|sk)]− Eπ,ρ0 [

∞∑
k=0

γk∇ log π(ak|sk)Qπ
γ (sk, ak)]

= Eπ,ρ0
[

∞∑
k=0

γk∇ log πθ(ak|sk)(Qw̄K,t
(sk, ak)−Qπ

γ (sk, ak))]

=
∑
s∈S

∑
a∈A

∞∑
k=0

P(sk = s|s0)π(a|s)γk∇ log πθ(a|s)(Qw̄K,t
(s, a)−Qπ

γ (s, a))

=
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)∇ log πθ(a|s)(Qw̄K,t
(s, a)−Qπ

γ (s, a)),

where dπγ (s) =
∑∞

k=0 γ
kP(sk = s|s0) denotes the discounted state visitation measure. Since we have∑

s∈S

∑
a∈A

dπγ (s)π(a|s) =
∑
s∈S

dπγ (s) =
1

1− γ
,

then by Jensen’s inequality, we can obtain the following bound

∥qt+1∥4 ≤ (1− γ)
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)∥∇ log πθ(a|s)(Qw̄K,t
(s, a)−Qπ

γ (s, a))∥4

≤ (1− γ)
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)G4∥Qw̄K,t
(s, a)−Qπ

γ (s, a)∥4

= (1− γ)
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)G4∥w̄⊺
K,tϕ(s, a)− w∗⊺ϕ(s, a)∥4

≤ (1− γ)
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)G4∥ϕ(s, a)∥4·∥w̄K,t − w∗∥4

≤ (1− γ)
∑
s∈S

∑
a∈A

dπγ (s)π(a|s)G4 · ∥w̄K,t − w∗∥4

≤ G4 · ∥w̄K,t − w∗∥4.

Now we take expectation on both sides with respect to the TD(0) algorithm that occurs between timestep t and t + 1 to
obtain

E[∥qt+1∥4] ≤ G4 · E[∥w̄K,t − w∗∥4].

Finally, we can apply Lemma E.4 to achieve the final result.
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E.2. Proof of Key Lemmas

E.2.1. PROOF OF LEMMA E.3

We first require the following auxiliary lemma.
Lemma E.5. Recall the definition of Aθ = E(s,a)∼ηθ,(s′,a′)∼P (s,a,·)[ϕ(s, a)(ϕ(s, a)− γϕ(s′, a′))⊺]. Then

(w∗ − wt)
⊺ḡ(wt) ≥

1

2
λmin(Aθ +AT

θ )∥w∗ − wt∥2≥
1

2
ς∥wt − w∗∥2

where ς is defined in Assumption 4.6.

Proof.

(w∗ − wt)
⊺ḡ(wt) = (w∗ − wt)

⊺(ḡ(wt)− ḡ(w∗))

= (w∗ − wt)
⊺E[(γϕ(s′, a′)⊺wt − ϕ(s, a)⊺wt − γϕ(s′, a′)⊺w∗ − ϕ(s, a)⊺w∗)ϕ(s, a)]

= (w∗ − wt)
⊺E[(γϕ(s′, a′)− ϕ(s, a))⊺(wt − w∗)ϕ(s, a)]

= (w∗ − wt)
⊺Aθ(w

∗ − wt)

=
1

2
(w∗ − wt)

⊺(Aθ +AT
θ )(w

∗ − wt)

≥ 1

2
λmin(Aθ +AT

θ )∥w∗ − wt∥2

Now we can proceed with the proof of Lemma E.3.

Proof.
∥w∗ − wt+1∥2 = ∥w∗ − ProjΘ(wt + αtgt(wt))∥2

= ∥ProjΘ(w
∗)− ProjΘ(wt + αtgt(wt))∥2

≤ ∥w∗ − wt − αtgt(wt)∥2

= ∥w∗ − wt∥2−2αtgt(wt)
⊺(w∗ − wt) + α2

t ∥gt(wt)∥2

= ∥w∗ − wt∥2−2αtḡ(wt)
⊺(w∗ − wt) + 2αtζt(wt) + α2

tF
2

So we have the following fourth moment bound (since both sides of the inequality are positive):

∥w∗ − wt+1∥4 ≤ [∥w∗ − wt∥2−2αtḡ(wt)
⊺(w∗ − wt) + 2αtζt(wt) + α2

tF
2
]2

= ∥w∗ − wt∥4+4α2
t (ḡ(wt)

⊺(w∗ − wt))
2 + 4α2

t (ζt(wt))
2 + α4

tF
4

− 4αt∥w∗ − wt∥2(ḡ(wt)
⊺(w∗ − wt)) + 4αt∥w∗ − wt∥2ζt(wt) + 2α2

tF
2∥w∗ − wt∥2

− 8α2
t (ḡ(wt)

⊺(w∗ − wt))ζt(wt)− 4α3
tF

2(ḡ(wt)
⊺(w∗ − wt)) + 4α3

tF
2ζt(wt)

By Lemma E.5,

∥w∗ − wt+1∥4≤∥w∗ − wt∥4+4α2
t (ḡ(wt)

⊺(w∗ − wt))
2 + 4α2

t (ζt(wt))
2 + α4

tF
4

− 2αt∥w∗ − wt∥2ς∥w∗ − wt∥2+4αt∥w∗ − wt∥2ζt(wt) + 2α2
tF

2∥w∗ − wt∥2

+ 4α2
t ς∥w∗ − wt∥2|ζt(wt)| − 2α3

tF
2ς∥w∗ − wt∥2+4α3

tF
2ζt(wt)

≤(1− 2αtς)∥w∗ − wt∥4+4α2
t (ḡ(wt)

⊺(w∗ − wt))
2 + 4α2

t (ζt(wt))
2 + α4

tF
4

+ (4αt + 4α2
t ς)∥w∗ − wt∥2|ζt(wt)|+ (2α2

tF
2 − 2α3

tF
2ς)∥w∗ − wt∥2+4α3

tF
2ζt(wt).

We can utilize the bounds ∥w∥≤ R, |ζt(w)| ≤ 2F 2, ∥gt(w)∥≤ F from Lemma D.1 to arrive at

∥w∗ − wt+1∥4≤(1− 2αtς)∥w∗ − wt∥4+16α2
tF

2R2 + 16α2
tF

4 + α4
tF

4

+ (4αt + 4α2
t ς)∥w∗ − wt∥2|ζt(wt)|+ (2α2

tF
2 − 2α3

tF
2ς)4R2 + 8α3

tF
4

≤(1− 2αtς)∥w∗ − wt∥4+(8αt + 8α2
t ς)R

2|ζt(wt)|+ 24α2
tF

2R2 + 16α2
tF

4

+ α4
tF

4 − 8α3
tF

2ςR2 + 8α3
tF

4.
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After some rearrangement of terms, we have

αtς∥w∗ − wt∥4≤(1− αtς)∥w∗ − wt∥4−∥w∗ − wt+1∥4+(8αt + 8α2
t ς)R

2|ζt(wt)|
+ 24α2

tF
2R2 + 16α2

tF
4 + α4

tF
4 − 8α3

tF
2ςR2 + 8α3

tF
4

E[∥w∗ − wt∥4] ≤(
1

αtς
− 1)E[∥w∗ − wt∥4]−

1

αtς
E[∥w∗ − wt+1∥4] + (

8

ς
+ 8αt)R

2E[|ζt(wt)|]

+
24αtF

2R2

ς
+

16αtF
4

ς
+

α3
tF

4

ς
− 8α2

tF
2R2 +

8α2
tF

4

ς
.

Let αt =
1

(t+1)ς , then we have

E[∥w∗ − wt∥4] ≤tE[∥w∗ − wt∥4]− (t+ 1)E[∥w∗ − wt+1∥4] + (
8

ς
+

8

(t+ 1)ς
)R2E[|ζt(wt)|]

+
24F 2R2

ς2(t+ 1)
+

16F 4

ς2(t+ 1)
+

F 4

ς4(t+ 1)3
− 8F 2R2

(t+ 1)2ς2
+

8F 4

ς3(t+ 1)2
.

Then we sum on either side from 0 to K − 1 and divide by K, using the facts that
∑K

t=1
1
t2 ≤ π2

6 and
∑K

t=1
1
t =

log(K) +O(1) to conclude

1

K

K−1∑
t=0

E[∥w∗ − wt∥4] ≤
1

K

K−1∑
t=0

[tE[∥w∗ − wt∥4]− (t+ 1)E[∥w∗ − wt+1∥4]] +
1

K

K−1∑
t=0

(
8

ς
+

8

(t+ 1)ς
)R2E[|ζt(wt)|]

+
1

K

K−1∑
t=0

[
24F 2R2

ς2(t+ 1)
+

16F 4

ς2(t+ 1)
+

F 4

ς4(t+ 1)2
+

8F 4

ς3(t+ 1)2
]

≤∥w1 − w∗∥4

K
+

1

K

K−1∑
t=0

(
8

ς
+

8

(t+ 1)ς
)R2E[|ζt(wt)|] +

1

K

K−1∑
t=0

[
24F 2R2

ς2(t+ 1)
+

16F 4

ς2(t+ 1)
]

+
4F 4π2

3ς3K
+

F 4π2

6ς4K

≤∥w1 − w∗∥4

K
+

1

K

K−1∑
t=0

16R2

ς
E[|ζt(wt)|] + (

24F 2R2 + 16F 4

ς2
)
logK +O(1)

K

+
4F 4π2

3ς3K
+

F 4π2

6ς4K
.

To bound the summation on the right hand side, we can apply the results of Lemma D.3 for t ≤ K − 1, with

29



On the Second-Order Convergence of Biased Policy Gradient Algorithms

τ0 = τmix(αT−1) ≤ log(mςT )
log(r−1) . Then we have

K−1∑
t=0

E[|ζt(wt)|] ≤ F 2(8 + 6τ0)

K−1∑
t=0

αt∗ + 10F 2m

K−1∑
t=0

rt

= F 2(8 + 6τ0)

τ0∑
t=0

α0 + F 2(8 + 6τ0)

K−1∑
t=τ0+1

αt + 10F 2m

K−1∑
t=0

rt

≤ F 2(8 + 6τ0)

τ0∑
t=0

α0 + F 2(8 + 6τ0)

K−1∑
t=τ0+1

αt +
10F 2m

1− r

= F 2(8 + 6τ0)τ0α0 + F 2(8 + 6τ0)

K−1∑
t=τ0+1

αt +
10F 2m

1− r

≤ 8F 2

ς

log(mςK)

log(r−1)
+

6F 2

ς

log2(mςK)

log2(r−1)
+

F 2

ς
(8 + 6

log(mςK)

log(r−1)
)(logK +O(1)) +

10F 2m

1− r

≤ (
6F 2

ς log2(r−1)
+

6F 2

ς log(r−1)
) log2 K +O(log(K)) +O(1)

≤ 12F 2

ς log2(r−1)
log2 K +O(log(K)) +O(1).

So we have for the original expression

1

K

K−1∑
t=0

E[∥w∗ − wt∥4] ≤(
192F 2R2

ς2 log2(r−1)
+O(

1

logK
) +O(

1

log2 K
)) · log

2 K

K
,

and by Jensen’s inequality, we obtain

E[∥w∗ − w̄K∥4] ≤ 1

K

K−1∑
t=0

E[∥w∗ − wt∥4] ≤ (
192F 2R2

ς2 log2(r−1)
+O(

1

logK
) +O(

1

log2 K
)) · log

2 K

K
.

E.2.2. PROOF OF LEMMA E.4

Proof. We establish a bound on E[∥w∗ − w̄K∥4] via Lemma E.3. Let ϵ = µ2. Then we want to find K large enough such
that

log(K) ≤ ϵ
√
K

We look for the asymptotic solution to
log(K) = ϵ

√
K

in the form K = k1

ϵ2 . Plugging this in, we get

log(k1) + log(
1

ϵ2
) =

√
k1

By the method of dominant balance, we have √
k1 ≈ log(

1

ϵ2
)

k1 ≈ log2(
1

ϵ2
)

So we have K = O(
log2( 1

ϵ2
)

ϵ2 ).
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F. Policy Gradient Theorem
The original policy gradient theorem derived in (Sutton et al., 1999) addresses the gradient of the value function, which is a
slightly different objective that we denote as J̃(θ) as follows

J̃(θ) = V πθ (s0) = Eπθ
[

∞∑
k=0

γkR(sk, ak)|s0]

Then from (Sutton et al., 1999) we have the original policy gradient theorem:

∇J̃(θ) =
∑
s∈S

dπ(s)
∑
a∈A

∇πθ(s, a)Q
πθ (s, a)

Where

dπ(s) =

∞∑
k=0

γkPr(sk = s|s0, π)

We consider instead the expectation of the value function over an initial state distribution:

J(θ) = Eρ0
[V πθ (s0)]

Then
∇J(θ) =

∑
s∈S

dπθ,ρ0(s)
∑
a∈A

∇πθ(a|s)Qπ(s, a)

Where

dπθ,ρ0(s) =

∞∑
k=0

γkEρ0 [Pr(sk = s|s0, πθ)]

When we implement the “log-likelihood trick”, we have

∇J(θ) =
∑
s

dπθ,ρ0

∑
a

πθ(a|s)∇ log πθ(a|s)Qπθ (s, a)

We can “unroll” this result as in (Wu et al., 2022) to acquire the temporal formulation:

= Eπ,ρ0 [

∞∑
k=0

γk∇ log π(ak|sk)Qπ(sk, ak)]

To derive the GPOMDP estimator from this result, we use the definition of Qπ

Qπ(s, a) = Eπ[

∞∑
t=0

γtR(st, at)|s0 = s, a0 = a] = Eπ[

∞∑
t=0

γtR(st+k, at+k)|sk = s, ak = a]

∇J(θ) = Eπ,ρ0 [

∞∑
k=0

γk∇ log π(ak|sk)Eπ[

∞∑
t=0

γtR(s′t+k, a
′
t+k)|s′k = sk, a

′
k = ak]]

= Eπ,ρ0
[

∞∑
k=0

Eπ[

∞∑
t=0

γk+t∇ log π(ak|sk)R(s′t+k, a
′
t+k)|s′k = sk, a

′
k = ak]]

= Eπ,ρ0 [

∞∑
k=0

∞∑
t=0

γk+t∇ log π(ak|sk)R(st+k, at+k)]

= Eπ,ρ0
[

∞∑
k=0

∞∑
t=k

γt∇ log π(ak|sk)R(st, at)]

And so we end with an unbiased estimator of the policy gradient

∇J(θ) = Eτ∼p(·|θ)[∇ log pθ(τ)R(τ)].
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