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Abstract

Our visual experience in daily life are dominated by dynamic change. Decoding
such dynamic information from brain activity can enhance the understanding of the
brain’s visual processing system. However, previous studies predominately focus
on reconstructing static visual stimuli. In this paper, we explore to decode dynamic
visual perception from electroencephalography (EEG), a neuroimaging technique
able to record brain activity with high temporal resolution (1000 Hz) for capturing
rapid changes in brains. Our contributions are threefold: Firstly, we develop a large
dataset recording signals from 20 subjects while they were watching 1400 dynamic
video clips of 40 concepts. This dataset fills the gap in the lack of EEG-video pairs.
Secondly, we annotate each video clip to investigate the potential for decoding
some specific meta information (e.g., color, dynamic, human or not) from EEG.
Thirdly, we propose a novel baseline EEG2Video for video reconstruction from
EEG signals that better aligns dynamic movements with high temporal resolution
brain signals by Seq2Seq architecture. EEG2Video achieves a 2-way accuracy
of 79.8% in semantic classification tasks and 0.256 in structural similarity index
(SSIM). Overall, our works takes an important step towards decoding dynamic
visual perception from EEG signals.

1 Introduction

Our visual experience are composed of continuously evolving scenes caused by the movement
of objects and viewing perspective [1]. The intricate and complex visual system in our brains
which enables us to explore the wonderful and ever-changing visual world has been appealing
interests from philosophers and scientists for centuries [2–6]. To investigate the mechanism of
our visual system, various neuroimaging techniques have been used to analyze brain activities,
especially non-invasive methods like functional Magnetic Resonance Imaging (fMRI) [2, 7, 8],
magnetoencephalography(MEG) [9–11], and electroencephalography(EEG) [12, 13].

Compared to fMRI and MEG which need to be recorded by large and expensive medical devices,
EEG is relatively low-cost and portable and thus has been applied across many human visual studies
[14–18]. For instance, a recent work achieved an accuracy of 15.6% in 200-way zero-shot tasks on
an EEG-image dataset [19], demonstrating the rich visual information in EEG signals. However,
these studies adopt either artificial strobe (SSVEP) [14, 15] or static image [16–18] as stimulation,
which is far different from the dynamic visual world and not suitable for studying brain activities in
naturalistic paradigm. As far as we know, there is currently no research on decoding video from EEG
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signals. Consequently, people have limited knowledge about 1) whether can we decode video from
EEG signals? 2) if yes, what kind of visual information can we decode?

In order to fill the gap, we develop a large EEG dataset, called SJTU EEG Dataset for Dynamic
Vision (SEED-DV) dataset, collected from 20 subjects while they were watching a series of natural
videos belonging to 40 different concepts. Also, we annotate some meta information for each video
clip to comprehensively explore the boundary of which visual information can be decoded from EEG
signals, offering a benchmark containing various visual decoding tasks across object recognition,
color/motion perception, and human/face detection.

Besides the fundamental classification tasks, reconstructing visual perceptions from corresponding
brain signals helps to advance the understanding of our visual neural system. With the development of
the representation learning and artificial intelligence generated content (AIGC), numerous works have
reconstructed vivid images from brain activities [20–30], which utilize the text-to-image generation
models pretrained on large amounts of visual-language pairs by aligning the brain signals with
corresponding text embeddings. Recently, some works reconstruct high-quality two-second videos
from a single fMRI data frame [31, 32]. However, limited by the low temporal resolution of fMRI,
these video generation frameworks lack the ability of capturing high dynamic changes.

To this end, we propose a novel baseline, EEG2Video, for video reconstruction from EEG signals
based on Seq2Seq architectures which extract continuous low-level dynamic visual perception such
as color and position from the brain signals of high temporal resolution. Afterwards, a dynamic-
aware noise-adding (DANA) method is adopted for the diffusion process according to the dynamic
information decoded from EEG. At last, we adopt the inflated diffusion model [33] fine-tuned on our
dataset for video generation using the semantic information predicted from EEG. Our method densely
extract visual information from high temporal resolution brain signals thus can better recover fast
changes. Overall, our video reconstruction results take an important step towards decoding dynamic
visual perception from EEG.

In conclusion, our contribution are as follows:

• For the first time, we develop a large EEG dataset named SEED-DV dataset collected from
20 subjects, offering 1400 EEG-video pairs from 40 concepts for studying dynamic visual
information in EEG signals.

• We annotate the meta information of each video clip for comprehensively analyzing the
visual information in EEG, presenting the EEG-VP benchmark.

• We evaluate various EEG models on the EEG-VP benchmark to determine the decoding
ability of different visual information in raw EEG signals and human-extracted features.

• We propose a novel framework named EEG2Video for video reconstruction from EEG
signals based on Seq2Seq architecture to densely utilize the highly dynamic information.

• The ablation study showcases the effectiveness of Seq2Seq and DANA modules in
EEG2Video, which are designed based on the decoding results of different visual information
on the EEG-VP benchmark.

2 Related Work

2.1 Decoding Static Visual Perception from Brain Activities

Researchers have been trying to decode low-level static visual perception (e.g., shape, color, and
position) from brain activities for decades [34–37], revealing the abundant visual information hidden
in brain signals. Early approaches tried to generate hazy silhouette or higher-quality images with
Deconvolutional Neural Networks (DeCNNs)[38, 39], Generative Adversarial Networks (GANs)[40–
44], and Variational Autoencoders (VAEs) [44]. Recent studies have obtained impressive results on
decoding static visual stimuli from various brain activities like fMRI [20–27], MEG [28], and EEG
[29, 30] with the Latent Diffusion Models (LDMs), also named Stable Diffusion (SD) [45–47], as
image generation module, which is pretrained on a large-scale image dataset to generate vivid images
based on text prompts. Specifically, text prompts are embedded into a text-image sharing latent space
by CLIP [48], a multi-modal encoder to align visual and language representations. By encoding brain
signals into the same sharing space, these methods can decode static visual perception with high
diversity and fidelity using LDMs.
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Compared to the high spatial resolutions of brain signals recorded by large devices like fMRI (≈
100,000 voxels) and MEG (≈ 300 sensors), the limited spatial resolution of EEG (≈ 60 sensors)
brings difficulties to decode accurate visual perception from EEG in both semantic and pixel levels.
Although previous studies claimed to achieve over 60% of semantic decoding accuracy on an EEG
dataset with 40 classes [29, 30], the dataset[49] was blamed due to the block design [50]. The follow-
up rigorous experiment [51] by randomly arranging all images showed at most 7.0% classification
accuracy of the EEG siganls (chance level is 2.5%), exposing the fact that it is still challenging and
insufficiently supported by appropriate datasets to decode visual perception from EEG.

2.2 Decoding Dynamic Visual Perception from Brain Activities

Observing the great success in decoding static visual perception, many endeavours have been devoted
to decoding dynamic visual perception from fMRI [52–54, 31, 32]. These works were conducted on
an fMRI-video dataset collected from 3 female subjects while watching a series of videos, including
animals, humans, and natural scenery [52]. Due to the data sparsity, the DeCNN, VAE and GAN-
based methods can only decode hazy perception of dynamic videos from fMRI [52–54]. To generate
high-quality videos, MinD-Video[31] and NeuroCine[32] utilized an inflated SD model [33] for video
generation, which incorporates network temporal inflation by adding temporal attention modules in
the original SD to ensure the consistency between frames. The video SD is firstly fine-tuned using
the text-video pairs in the training dataset (the text prompts were generated by an automatic image
caption model called BLIP [55]), then the pre-trained fMRI encoder were co-trained with the video
SD to enhance the fMRI guidance.

However, fMRI intrinsically lacks the ability of capturing dynamic visual perception due to the
low temporal resolution, which is limited by the time scale of blood flow and results in a single
fMRI frame every two seconds. MinD-Video[31] and NeuroCine[32] all decoded two-second videos
from only one fMRI frame. Thus, they are unable to decode changes faster than 0.5 Hz. Instead,
other neuroimaging techniques such as EEG with high temporal resolution up to thousands Hz can
offer more appropriate alternatives. To the best of our knowledge, there is no such dataset studying
decoding video stimuli from such signals, and we are the first to support this research direction with
the dataset, benchmarks, and the decoding framework.

3 EEG Dynamic Vision Dataset and Benchmarks

In this section, we first describe how we construct the SJTU EEG Dataset for Dynamic Vision (SEED-
DV). Then we introduce two benchmarks built on the SEED-DV dataset: EEG visual perception
classification benchmark and video reconstruction benchmark. The purpose of building this new
dataset is to answer the following research questions:

RQ1 : Whether can we decode dynamic visual information from EEG signals?

RQ2 : If yes, which visual information can be decoded?

RQ3 : To what extent can we reconstruct video from EEG signals?

Hence, we carefully selected video clips suitable for studying dynamic vision and annotated their
meta information.

3.1 Participants

Twenty healthy students from Shanghai Jiao Tong University (SJTU) participated (mean age: 21.75
STD: 2.05; 10 females, 10 males), all having normal or corrected-to-normal vision. All subjects were
informed of the experimental process and signed informed consent forms before the experiment, then
received monetary reimbursement after finishing. This study was approved by the ethical committee
of SJTU Institutional Review Board for Human Research Protections.

3.2 Visual Stimuli Selection

We elaborately selected 40 concepts of videos in our experiment to study. The number of concepts
follows previous research on EEG-image pairs [51, 49]. It is worth noting that EEG-Things [13]
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Figure 1: The meta information of video clips of 40 concepts, and experiment protocol. (A)
Visualizations of the meta information for all video clips of 40 concepts, we plot the average of each
meta information for each concept. (B) The data collecting environment. (C) Demonstration of a
whole data collecting session. A session will contain 7 video blocks to be watched, and there are rest
phases of at least 30 seconds each between blocks. (D) Demonstration of a video block, there is a
3-second hint before 5 different video clips of the same concept.

dataset (with 1854 object concepts) employed a rapid serial visual presentation (RSVP) paradigm
[56, 57], which cannot be used for EEG-video experiment as video is a continuous stimulation. We
further cluster the concepts into 9 coarser classes, as is demonstrated in Figure 1(A): {land animal,
water animal, plant, exercise, human, natural scene, food, musical instrument, transportation}.

All video clips are collected from two online video websites, Bilibili1 and YouTube2. We selected
35 different two-second video clips for each concept, which are divided randomly into 7 groups,
each group has 5 video clips. Afterwards, 40 groups of different concepts are arranged sequentially
to form a single block, each block containing 40× 5 = 200 video clips. Consequently, there are 7
blocks in our experiment, where the order of 40 categories of videos within each block is random and
different from each other to mitigate the temporal bias of EEG signals.

3.3 Experiment Protocol

To ensure the quality of the acquired EEG data, the experiments were conducted in a controlled
laboratory environment to minimize noise and other environmental disturbances. 62-channel EEG
signals were collected by an active AgCl electrode cap with an international 10-10 system. The EEG
signals were acquired using the ESI NeuroScan System at a sampling rate of 1000 Hz. Besides EEG
data, EOG and ECG signals were recorded simultaneously during the experiment. We also adopt a
Tobii Pro Fusion eye tracker to collect eye movements at a sampling rate of 250Hz.

During the experiment, all subjects were instructed to watch a series of color video clips presented
with the resolution of 1980× 1080 (16:9) in full-screen mode on a 25-inch display. In each block,
the 5 video clips with the same category were displayed continuously, and before playing these 5
same-class videos, there is a hint on the screen to inform the subjects what class they will see next,
which will last for three seconds. Consequently, there are 40× (3 + 5× 2) = 520 seconds, i.e., 8
min 40 s for each block.

There are 7 blocks of videos to watch in our experiment for a subject. After finishing watching a block
(40 classes), the subject was required to rest for at least 30 seconds to mitigate fatigue and assesses
his/her own attention level (ranging from 1 to 5. 1 means sleepy and 5 means very concentrating)

1https://www.bilibili.com
2https://www.youtube.com
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Figure 2: Statistics of each meta information: (A) the fraction of human appearance. (B) the fraction
of face appearance (only count the videos with humans). (C) the distribution of different object
numbers. (D) the distribution of different object colors. (E) the histogram of OFS.

before starting the next block. As a result, the average attention level across all the subjects and
blocks is 4.01± 0.83, ensuring high-quality EEG signals with acceptable concentrations.

3.4 Meta Information of Video Clips

Besides the 40 concepts and 9 coarser classes, we also labeled some other meta information for each
video clip.

Color: The main color of the main object. There are 7 color categories: {Red, Yellow, Blue, Green,
White, Grey, Colorful}. Colorful indicates the color is too complex for identifying an accurate color
from a single video clip.

Optical Flow Score: The optical flow score (OFS) of each 24 FPS two-second video clip obtained by
averaging the length of the optical flow vectors, ranging from 0.008 (almost static) to 6.252 (rapidly
changing). Further, based on the OFS, we divide all the video clips into 2 categories: {Fast, Slow}.
We choose the median OFS of 1.799 as the threshold to make sure the label is balanced.

Object Number: The number of the main objects. There are 3 categories: {One, Two, Many}. Many
indicates the number of the main objects is equal to or more than three.

Human: If there are any humans appearing in the video, the label is 1, otherwise is 0.

Human Face: If there are any human faces appearing in the video, the label is 1, otherwise is 0.

We depict the average meta information of each concept in Figure 1(A):

3.5 EEG Visual Perception Classification Benchmark

To better understand the visual information in EEG signals, some low-level and high-level visual
perception tasks are investigated in our dataset, presenting an EEG Viusal Perception (EEG-VP)
benchmark. There are 7 EEG classification tasks based on the video label and meta information
detailed in Section 3.4, whose statistics are presented in Figure 2:

• The 40-class classification of the fine-grained concept of the video clip.

• The 9-class classification of the course concept of the video clip.

• The 6-class classification of which color of the main object in the video clip. The data while
watching Colorful videos are discarded in this task.

• The binary classification of whether the video is fast or slow based on the OFS.

• The 3-class classification of the number of the main objects in the video clip.

• The binary classification of whether human appears in the video or not.

• The binary classification of whether any human face appears in the video or not. The data
while watching videos without human appearance are discarded in this task.

3.6 Video Reconstruction Benchmark

This task is to reconstruct two-second video clips from the corresponding EEG segments. Following
the previous video reconstruction from fMRI studies [31, 32, 52–54], we utilize the same metrics to
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Figure 3: (A-B) GLMNet Encoders. (C-E) Overview of our EEG2Video framework. (A) The visual
cortex, basically in the occipital lobe. (B) GLMNet architecture which combines the global and local
embedding. (C)The framework of EEG2Video which predicts the latent variabels ẑ0 and semantic
guidance êt with Seq2Seq model and a predictor, respectively. A video diffusion model is then be
adopted for generating videos using ẑ0 and êt. (D) Dynamic-aware noise-adding process based on
the decoded dynamic information β. (E) Using large amounts of video-text pairs to fine-tune the
inflated diffusion UNet for video generation. The texts are obtained by BLIP.

evaluate the quality of generated videos, roughly classified as frame-based metrics and video-based
metrics. Definition of these metrics can be found in Appendix A.

4 Methodology

4.1 EEG Encoder: Mixture of Global and Local Features.

EEG classifiers take into an EEG segment x ∈ X ⊂ RC×T , where C denotes EEG channels and T
denotes time samples, and decode the target information y ∈ Y , which can be defined as f : X → Y .

Previous studies on EEG classification always treat all channels equally [49, 58, 59]: f(x) =
Eglobal(x), where Eglobal is a global encoder for decoding EEG. However, research in neuroscience
indicates that human visual cortex are basically in the occipital lobe, as shown in Figure 3(A), treating
all channels equally is unable to highlight the visual cortex features. To this end, we propose a simple
yet effective network to combine the global features decoded from whole channels and local features
decoded from the visual associated channels called Global Local Mixture Network (GLMNet).
Depicted in Figure 3(B), GLMNet utilizes a local encoder Elocal to extract the vision-associated
features, which can be denoted as f(x) = emb(Concat(Eglobal(x), Elocal(x))).

4.2 EEG2Video: High Temporal Resolution Brain Decoding Framework

Compared to the fMRI-video reconstruction framework [31, 32] which are constrained by the limited
temporal resolution that results in decoding two-second dynamic videos from one fMRI data frame,
EEG signals have higher temporal resolution for better capturing dynamic visual perception to
facilitate video reconstruction. As demonstrated in Figure 3(C), we introduce EEG2Video, a novel
framework which utilize a Seq2Seq model to densely reconstruct low-level visual perception from
continuous EEG embeddings extracted by an overlapping sliding window, and decode the semantic
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and dynamic information with two other modules for guiding an inflated diffusion model to recreate
videos.

EEG Embeddings Extraction For a two-second EEG segment x ∈ RC×T , we apply an overlapping
sliding window for slicing it into shorter segments {x1, x2, . . . , xt}, where t is the total number. EEG
embeddings eeeg = {e1e, e2e, . . . , ete} are then extracted from these shorter segments with an EEG
encoder E that E(xi) = eie, i = {1, 2, . . . , t}.
Seq2Seq Model In contrast to video reconstruction from fMRI (generating several frames from a
single data frame), it is essential to align the high temporal resolution brain signals with videos in
video reconstruction from EEG (generating several frames from several EEG segments) for capturing
rapid changes. The Seq2Seq models are naturally introduced for extracting the continuous visual
information from high temporal resolution brain signals. We employ the Transformer architecture as
the Seq2Seq model in our framework, which can be formulated as a stack of several blocks, each
block containing a multi-head attention (MHA) layer and a feed-forward network (FFN) layer[60].
Denoting the input of the i-th Transformer block as xi

in, the calculation of the output xi
out is given by:

xi
mid = fMHA(LA(xi

in)) + xi
in, xi

out = fFFN(LA(xi
mid)) + xi

mid, (1)

where fMHA is the MHA layer, fFFN is the FFN layer, and LA is layer normalization. In our
framework, the input of Transformer is the addition of EEG embeddings and position embeddings
(PE): x0

in = eeeg + PE, and the output is the latent variables ẑ0 of the corresponding video frames.
As depicted in Figure 3(E), the Ground Truth (GT) video frames are fed into the frozen VAE encoder
to obatin the GT latent variables z0. We apply mean squared error (MSE) loss MSE(ẑ0, z0) for
training the Seq2Seq model that densely predicts the continuous visual information of frames.

Semantic Predictor In order to utilize the pre-trained diffusion models for generating high-quality
videos, we first generate the corresponding text description of each video by feeding the medium
frame to a caption model called BLIP [55], then align the EEG signals with the text embeddings
et ∈ R77×768, which are acquired by the frozen CLIP text encoder as shown in Figure 3(E). An MLP
is adopted as the semantic predictor to project EEG data into the same dimension to obtain êt. Finally,
the MSE loss MSE(êt, et) is employed for aligning EEG and text embeddings.

Dynamic-Aware Noise-Adding Process The frames in a video with high OFS are more diverse
from each other than those in videos with low OFS. Based on the dynamic decoding results, we can
roughly classify whether the video is high dynamic or not from EEG signals. Hence, we introduce
the static noise ϵs and diverse noise ϵd into the diffusion process and balance them by the decoded
dynamic information êd. The diverse noise ϵd = {ϵ1d, ϵ2d, . . . , ϵnd} consists of n different noises, each
ϵid ∼ N (0, 1). The static noise ϵs has the same noise ϵ ∼ N (0, 1) replicated n times. The ratio of
the static noise is smaller when the êd indicates the video is more dynamic. The diffusion process
can be formulated as follows to acquire the noise zT at time steps T :

zT =
√
αT × ẑ0 +

√
1− αT × (

√
β × ϵs +

√
1− β × ϵd), (2)

where αT is the coefficient for adding noise directly to the noise at time steps T , β is depended
by the decoded dynamic information. Here, We set β = 0.2 when the video is high dynamic and
β = 0.3 when the video is low dynamic.

Video Diffusion Model For reconstructing vivid videos from EEG signals, we utilize the Tune-
A-Video technique which fine-tunes an inflated text-to-image diffusion model [33]. The network
inflation trick is adding a sparse temporal attention layer in the image generation model to ensure the
consistency between frames, in which each frame is calculated with the the first frame and the frame
before it. Using the same notations in [33], the attention is formulated as:

Q = WQ · zvi , K = WK · [zvi−1
, zv1 ], V = WV · [zvi−1

, zv1 ], (3)

where [·] denotes concatenation operation, and zvi is the i-th frame. To fine-tune the video generation
model in our framework, the corresponding text description of each video by feeding the medium
frame to a caption model called BLIP [55]. Afterwards, all video-text pairs in the training set are
used for fine-tuning the Stable Diffusion Model V1-4 [45].
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5 Experiment on SEED-DV Dataset

In this section, we evaluate the performance of our methods and other baselines on the proposed two
benchmarks: the EEG-VP benchmark and the video reconstruction benchmark. The details of data
pre-processing, model implementation and training can be found in Appendix B.

5.1 EEG-VP Benchmark

5.1.1 Quantitative Results

We present the overall accuracy of different EEG classifiers in Table 1. Besides raw EEG Signals, we
also run experiments on the PSD features and the DE features [61] of 5 frequency bands.

From the result, we can see that (1) our GLMNet outperformed the baselines consistently across all
the classification tasks, which indicates the importance of extracting vision-associated features for
visual perception tasks. (2) Different types of EEG features yield similar results. (3) Different tasks
have different difficulties. Some meta information are distinguishable via EEG signals, e.g., color,
dynamics, while the statistical significance indicates that the number of main object and whether
human/face appear are difficult or even impossible to be classified. The difference may be attributed
to different processing mechanism by our brains which can inspire research in neuroscience.

To conclude, we can now answer RQ1 and RQ2: Yes, some of visual information can be decoded
from EEG signals, including category, color, dynamics. However, the overall visual perception
benchmark is rather challenging and calls for more advanced algorithms. Refer to Appendix C for
the confusion matrix and analysis across subjects.

Table 1: Average classification accuracy (%) and std across all subjects with different EEG classifiers
on different tasks. Chance level is the percentage of the largest class. The star symbol (∗) represents
the result is above chance level with statistical significance (two-sample t-test: p < 0.05).

Methods 40-c top-1 40-c top-5 9-c top-1 9-c top-3 Color Fast/Slow Numbers Human Face Human
Chance level 2.50 12.50 11.11 33.33 20.57 50.00 65.64 62.25 71.43

Raw EEG Signals
ShallowNet[62] 5.59/2.27∗ 16.93/4.66∗ 21.40/1.96∗ 49.62/2.34∗ 27.00/2.09∗ 56.62/1.77∗ 66.15/0.89 64.87/1.54 73.21/1.52
DeepNet[62] 4.56/1.52∗ 14.30/3.25∗ 20.27/1.25∗ 48.06/1.59∗ 26.37/1.95∗ 55.42/0.59∗ 65.71/0.24 61.58/3.93 72.86/0.40
EEGNet[58] 4.64/0.86∗ 14.25/1.87∗ 19.63/0.81∗ 47.04/1.45∗ 25.46/1.31∗ 51.99/2.00 64.67/0.60 61.37/1.31 72.38/0.98
Conformer[59] 4.93/1.57∗ 15.36/4.44∗ 20.92/0.98∗ 49.25/1.49∗ 27.53/1.37∗ 55.02/0.83∗ 65.73/0.26 64.96/1.14 73.00/0.85
TSConv[19] 4.92/0.99∗ 15.05/2.31∗ 20.00/1.01∗ 47.76/1.51∗ 26.89/1.83∗ 55.32/0.99∗ 65.39/0.41 64.39/1.47 72.68/0.67
GLMNet (Ours) 6.20/3.02∗ 17.75/4.24∗ 21.93/1.87∗ 50.01/2.52∗ 27.33/1.45∗ 57.35/1.98∗ 66.21/0.91 65.10/1.45 73.34/1.31

PSD Features
SVM[63] 5.19/2.81∗ - 19.02/3.27∗ - 21.31/2.97 53.56/1.11∗ 64.15/1.22 58.94/2.21 70.91/1.84
MLP 6.20/3.02∗ 18.91/5.94∗ 21.59/3.00∗ 49.86/3.78∗ 22.02/3.27 55.15/1.20∗ 64.48/0.92 63.94/1.13 71.74/1.76
GLMNet (Ours) 6.23/2.91∗ 18.98/5.62∗ 21.69/3.20∗ 50.03/4.10∗ 26.40/2.99∗ 55.42/1.32∗ 64.68/0.92 64.22/1.43 72.27/1.57

DE Features
SVM[63] 4.82/2.80∗ - 19.05/3.39∗ - 21.07/2.88 53.34/1.25∗ 63.62/1.73 57.82/3.50 70.25/1.94
MLP 6.12/3.08∗ 19.02/5.71∗ 21.17/3.24∗ 49.40/4.94∗ 25.91/3.27∗ 54.76/1.25∗ 64.10/0.70 63.41/1.57 71.74/1.76
GLMNet (Ours) 6.16/3.18∗ 19.12/6.07∗ 21.34/3.34∗ 49.55/4.57∗ 26.15/3.24∗ 55.06/1.20∗ 64.25/0.74 63.63/1.80 72.27/1.58

5.1.2 Analysis of Brain Areas

A C

B
Human / Animal  

Figure 4: Spatial Analysis. (A-B). Topogra-
phies of each electrode’s accuracy for Hu-
man/Animal and Fast/Slow tasks. (C). Ablate
electrodes of different brain regions.

To find electrodes or brain areas most associated with
dynamic visual perception, we conduct a one-channel
classification task to test the classification quality of
each electrode. Due to the reason that only one chan-
nel is used, we simplify the task to binary classifica-
tion: Human/Animal and Fast/Slow tasks, which is
related to object recognition and dynamic perception,
respectively. It can be observed from Figure 4(A)
that the electrodes in the occipital area have higher
accuracy on Human/Animal tasks, demonstrating the
object recognition are related to the occipital area
where the visual cortex is located, presenting a sim-
ilar result as previous works [64, 19, 30]. However,
not all dynamic visual perception are in the occipital
region. Figure 4(B) reveals that the brain area associ-
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ated to movements are around the temporal region where the sensory and motor cortex lies, consistent
with the previous neuroscience study [65].

To verify the findings, we conduct the ablation study by removing electrodes from different brain
regions and show the 40-c top-1 accuracy in Figure 4(C). Removing occipital region significantly
damages the performance (p < 0.01). The performance also declines without the temporal region.

5.2 Video Reconstruction

5.2.1 Quantitative Results

In this section, we evaluate our framework on the SEED-DV dataset and three subsets which contains
less categories to answer Q3. The quantitative results under four cases are reported in Table 2. With
the number of classes increases, the reconstruction performances decrease. Our framework achieves
34.0% of 40-way semantic-level accuracy when dealing with the subset contains 10 classes and 15.9%
when facing the whole 40 classes. Meanwhile, the structural similarity index measure (SSIM) [66],
which reflects the pixel-level similarity between reconstructed samples and ground truth samples, is
up to 0.300 when facing the smallest subset, and drops to 0.256 when facing whole dataset. While
the scores cannot be directly compared, our reconstructed videos have very similar and even higher
SSIM to that reconstructed by fMRI reported in [32], intuitively demonstrating the capability of EEG
signals to reconstruct dynamic visual perceptions. And it is also worth noting that with this more
sophisticated model, the generated videos have much higher 40-way classification accuracy than that
reported in EEG-VP benchmark, highlighting the potential to advance this research direction.

Based on the findings from the results of the EEG-VP benchmark (the statistic significance proves that
Category, Color, and Dynamics can be decoded from EEG signals), we design the DANA module for
injecting the Fast/Slow into diffusion process, the semantic predictor to inject Category information,
and the general Seq2Seq for decoding low-level visual information like Color. We further conduct
the ablation study by removing the Seq2Seq module and the DANA process respectively, and we can
see huge performance drop without either module. This indicates that capturing the dynamics of both
EEG and video is crucial for successful video reconstruction.

Table 2: Quantitative results of each methods on different size of subsets. Standard deviation is
calculated across random seeds.

#
C

la
ss

es Metrics Video-based Frame-based

Semantic-level Semantic-level Pixel-level

Models 2-way 40-way 2-way 40-way SSIM

10
Full Model 0.852±0.02 0.340±0.01 0.798±0.03 0.232±0.02 0.300±0.03
w/o Seq2Seq 0.772±0.02 0.117±0.01 0.696±0.02 0.155±0.03 0.187±0.03
w/o DANA 0.803±0.02 0.183±0.01 0.679±0.02 0.092±0.01 0.292±0.03

20
Full Model 0.813±0.02 0.273±0.03 0.785±0.04 0.184±0.02 0.242±0.03
w/o Seq2Seq 0.800±0.02 0.119±0.01 0.685±0.02 0.099±0.03 0.187±0.04
w/o DANA 0.811±0.02 0.240±0.03 0.784±0.01 0.164±0.02 0.231±0.03

30
Full Model 0.794±0.02 0.209±0.05 0.785±0.04 0.180±0.02 0.228±0.04
w/o Seq2Seq 0.770±0.02 0.122±0.04 0.741±0.02 0.173±0.04 0.207±0.03
w/o DANA 0.789±0.02 0.160±0.02 0.769±0.02 0.139±0.01 0.198±0.02

40
Full Model 0.798±0.03 0.159±0.01 0.774±0.02 0.138±0.01 0.256±0.03
w/o Seq2Seq 0.786±0.03 0.113±0.01 0.734±0.02 0.112±0.01 0.189±0.03
w/o DANA 0.770±0.02 0.128±0.01 0.732±0.03 0.109±0.03 0.217±0.02

5.2.2 Reconstructed Examples

We present some visual examples in Figure 5. It can be observed that various videos are reconstructed,
and as long as the semantic and low-level visual information is correctly predicted by the model, the
downstream diffusion process can generate vivid and high-quality videos. More examples including
failure cases with full 6 frames can be found in Appendix D.
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Figure 5: Reconstruction Presentations. Various video clips with low dynamics (e.g., Mountain,
Beach, Face) and high dynamics (e.g., Skiing, Fireworks, Dancing) across animals, scenes, persons,
and activities can be correctly recovered.

6 Conclusion

In this paper, we developed the large dataset, SEED-DV, to reconstruct videos from EEG signals, upon
which we built the EEG Visual Perception Classification benchmark and the Video Reconstruction
benchmark to support evaluating the advances of EEG-based video reconstruction. Moreover, we
proposed a novel baseline EEG2Video for video reconstruction from EEG signals that can align
visual dynamics with EEG based on the Seq2Seq architecture, and we presented vivid generated
examples by training our framework on SEED-DV.

As the first attempt, we open a new possibility for BCI researchers to decode dynamic visual percep-
tion from EEG signals. Although the overall performance on SEED-DV are still in a preliminary stage,
we hold the strong belief that the game-changing results for the BCI area can soon be discovered.

7 Broader Impacts

Reconstructing dynamic visual perception from brain activities helps to advance the understanding
of our visual system in brains. EEG is a physiological signal widely used in clinical practice and
brain-computer interfaces. Compared to non-portable and expensive neuroimaging techniques like
fMRI and MEG, our work provides a convenient and cheap solution for decoding visual information
from brain activities. This technique can be used for visualize our mind, offering a novel approach
for listening the inner world of people patients with mental illnesses like autistic and depression.

However, every coin has two sides. Personal privacy may leak through our brain activities and be
abused by malicious attackers for reading one’s mind from EEG signals without acknowledgment.
More strict regulations are supposed to be made for protecting the privacy of people’s biological data
by government and medical institutions.

8 Limitations

Our SEED-DV dataset currently records the EEG signals of each subject with one session, leading to
the requirement for collecting more EEG-Video pairs with more sessions, which is significant for
studying the stable neural patterns over time. Our framework is evaluated under the subject-dependent
settings, the cross-subject ability remains unexplored due to individual variations. Future work can
be focused on the transferability and stability of the video reconstruction framework by exploiting
generalizable EEG encoders and Seq2Seq model.
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A Evaluation Metrics for Video Reconstruction Benchmark

In this section, we detail the metrics we use for the video reconstruction benchmark. The metrics
to evaluate the quality of generated videos can be roughly classified as frame-based metrics and
video-based metrics.

Frame-based Metrics Two levels of metrics are considered to judge the quality of generated
frames: the pixel-level and the semantics-level metrics. For the pixel level, we calculate the average
structural similarity index measure (SSIM) [66] of each frame between the ground-truth video and
the reconstructed video. For the semantic level, a CLIP-based classifier [48] trained on ImageNet
[67] is adopted to compute the N-way top-K accuracy of predicted frames. If the ground-truth class
is within the top-K probability of the predicted frames classification results from N arbitrary classes
(including ground-truth class), the semantic-level reconstruction is regarded successful.

Video-based Metric As the ImageNet classifier is unable to well understand videos, a VideoMAE-
based [68] video classifier trained on Kinetics-400 dataset [69], which can understand 400 dynamic
concepts (e.g., changes, human motions), is applied to compute the video semantic-level accuracy.

B Experiment Setup and Implementation Details

B.1 EEG Signals Preprocessing

The raw data was recorded with the 62-channel EEG cap with a sample rate of 1000 Hz and stored in
the continuous EEG data file format (.cnt), a single file for the experiment of each subject. We applied
the 0.1-100 Hz band-pass filter to filter out the DC interference and very high-frequency interference
and down-sampled the EEG data to 200Hz to accelerate computations. A one-second sliding window
with 500 ms overlapping is used for EEG segmentation and frequency feature extraction. Specifically,
power spectral density (PSD) and differential entropy (DE) [61] of five frequency bands (δ: 1-4 Hz,
θ: 4-8 Hz, α: 8-14 Hz, β: 14-31 Hz, and γ: 31-99 Hz) are extracted.

B.2 Classification Experiment Details

We perform a 7-fold cross-validation and report the average accuracy. Specifically, we select each
single video block as the testing set one by one, the block before testing set as the validation set, and the
remaining 5 blocks compose the training set. Several EEG classifiers, including ShallowNet, DeepNet
[62], EEGNet [58], Conformer [59], and TSConv [19], are adopted as baselines for processing raw
EEG. For frequency features, we compare the performance of support vector machine (SVM) [63]
and multilayer perceptron (MLP). In our experiment, Our GLMNet uses a concise global encoder,
which has the same architecture of ShallowNet on raw signals, and MLP on frequency featrues. All
models are implemented with PyTorch and evaluated on an Nvidia A100 GPU. Adam optimizer is
used with the learning rate η = 0.001. Batch size is set to 256 for all methods, and the number of
training epochs is 100.

B.3 Video Reconstruction Experiment Details

We reconstruct a two-second video clip from the corresponding two-second EEG segment. For
efficient training and testing, we down-sampled the 24 FPS 1080p original videos to a small video of
resolution of 512× 288 (16:9) with 3 FPS, resulting in 6 frames for each video. A 500 ms sliding
window with 250 ms overlapping is used for EEG segmentation, forming a total of 7 segments in an
EEG embeddings eeeg ∈ R7×d, where d is the embedding dimension and we set d = 512.

We use the first 6 blocks from all the sessions as the training set and the last blocks as the testing set
in our experiment. The Transformer used as the Seq2Seq model has 2 encoder layers and 4 decoder
layers. Semantic predictor has 4 layers with ReLU activation. Dynamic predictor is GLMNet. An
Adam optimizer with learning rate of 0.0005 and cosine scheduler was adopted for training the above
models with 200 epochs. The inflated video generation model is fine-tuned using the same setting in
[33] on the training set with learning rate of 0.00003 and cosine scheduler for 200 epochs, which
takes about 5 hours. The inference is performed with 100 DDIM [70] steps.

Limited to the low signal-to-noise ratio (SNR) and spatial resolution, decoding videos from EEG
is somehow difficult. Thus, besides applying the full dataset of 40 concepts, we select {Cat, Shark,
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Flower, Dancing, Face, Buildings, Road, Pizza, Guitar, Airplane} to form a 10-class subset, and the
first {1-20} categories and the first {1-30} categories to form other two subsets whose sizes are 20
and 30.

C More Results on EEG-VP benchmark

C.1 40-class Classification Task

We plot the confusion matrices of GLMNet on the 40-class task. It can be seen that though the
accuracy is not high, there is a faint diagonal lines in both confusion matrices. Moreover, a small
square in the right bottom corner is being observed, of which categories are {Drum, Guitar, and
Piano} (32 - 34 class). This discovery may caused by the reason that the musical instruments
stimulate the auditory cortex in our brains with these visual cues, a well-studied phenomenon named
cross-modal perception[71–73], which then has similar reflections in EEG signals.
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Figure 6: Confusion Matrices of GLMNet (A). The performance using DE features. (B). The
performance using raw EEG signals.

C.2 Performance of Each Subject

EEG signal is notorious for its large variations among different subjects. In order to verify whether
the dynamic visual perception decoding generalize across different people, we plot the results on the
EEG-VP benchmark of all the subjects separately in Figure 7. Generally speaking, model trained on
all the individual subject can achieve reasonable results across different tasks, demonstrating that
the phenomenon of visual perception information being contained in the EEG is common across
different people. Meanwhile, we can see the differences in visual specificity contained in the EEG
signals among different subjects. For example, EEG from Subject 3 predicts well on the class of the
objects, EEG from Subject 4 and 13 are more sensitive to color information, and EEG from Subject 9
is better at capturing motor information.

D More Reconstructed Samples

We display more reconstruction results for demonstrating the effectiveness of our EEG2Video
framework. It can be observed that various videos across animals, plants, people, and activities.
Please kindly refer to the supplementary files to find GIFs of these reconstructed videos.

Some failure samples are displayed in Figure 13. These failures are typically caused by the inability
of the model to infer either the semantic information or the low-level visual information correctly,
resulting the irrelevantly generated videos. However, we can still see from these failed examples
that the model reconstructs some features of the real video, from shapes, movements, to the scene
dynamics of the video. For example, the man practicing boxing is reconstructed as a panda practicing
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Figure 7: Performance of each subject on different tasks on EEG-VP benchmark.

boxing, the ship sailing on the sea is reconstructed as a shark, and the fast-moving car is reconstructed
as a fast-moving person.

E Algorithm of EEG2Video

In this section, we write the algorithm of EEG2Video framework in Algorithm 1.

Algorithm 1 Training Stage of EEG2Video Framework
Input: (1) training set Dtrain = {xi, vi, di}, where xi is EEG segments, vi is video clips, di is the

fast/slow label (2) stable diffusion model T2I , whose VAE encoder is Evae (3) image caption
model B

Output: (1) video diffusion model T2V , (2) Seq2Seq model Seq2Seq, (3) semantic predictor Ps,
(4) dynamic predictor Pd

1: Initialize text prompts of training dataset T = {ti}
2: for each (vi) ∈ Dtrain do
3: vi = {f1, f2, . . . , fn}
4: ti ← B(f1)
5: end for
6: Initialize latent vectors of all frames L = {zi}
7: for each (vi) ∈ Dtrain do
8: vi = {f1, f2, . . . , fn}
9: zi = {l1, l2, . . . , ln}

10: for each (fj) ∈ vi do
11: lj ← V AE(fj)
12: end for
13: end for
14: Fine-tune the T2I with {vi, ti} to obtain video diffusion model T2V
15: Train the Seq2Seq model Seq2Seq with all {xi, zi} using MSE loss
16: Train the semantic predictor Ps with all {xi, ti} using MSE loss
17: Train the dynamic predictor Pd with all {xi, di} using Cross Entropy loss
18: return T2V, Seq2Seq,Ps,Pd
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We made clear claims of our contributions in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of our research.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper dose not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we demonstrate all the information needed to reproduce the main experi-
mental results. Moreover, we will public our code for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, we have provide the code for implementing our experiments and part of
the datasets (one data and labels) in the supplementary. However, due to the size limitation
and the principle of anonymity, we are unable to upload whole dataset. We will soon publish
our dataset and code on our official website of the institute.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We demonstrated our method and the experiment settings clearly in Section
5.1. Also, we will public our code of training and testing process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we present the error bar and all statistical significances of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we demonstrated in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we discuss the broader impacts of the EEG2Video technique.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We will check the purpose of people who applied our dataset. Our models and
data do not have high risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all original papers of EEG models used in our experiments.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, our novel dataset is well documented. And the documentation will be
provided alongside the dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Yes, we provide the paper include the full text of instructions and sufficient
monetary reimbursement to subjects, which is above the minimum wage.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: Our experiment has obtained the IRB approvals from our local institution.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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