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ABSTRACT

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting
millions worldwide, with its prevalence expected to rise as the global population
ages. Early diagnosis is crucial for effective management and improved quality
of life for patients. However, current accelerometer-based studies focus more on
detecting the symptoms of PD, while less research has been conducted on early de-
tection of PD. This study presents a novel multi-modal deep learning model named
GeneMamba for early PD diagnosis, using state space modelling approaches to
effectively analyze sequences and combining accelerometer data from wearable
devices with genetic variants data. Our model predicts early PD occurrence up
to 7 years before clinical onset, outperforming existing methods. Furthermore,
through knowledge transfer, we enable accurate PD prediction using only wear-
able device data, enhancing our model’s real-world applicability. Additionally,
our interpretation methods uncover both established and previously unidentified
genes associated with PD, advancing our understanding of the disease’s genetic
architecture and potentially highlighting new therapeutic targets. Our approach
not only advances early PD diagnosis but also offers insights into the disease’s
etiology, paving the way for improved risk assessment and personalized interven-
tions.

1 INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects millions of indi-
viduals globally. With over 8.5 million people worldwide living with PD and approximately 90,000
people diagnosed with Parkinson’s disease each year in the United States, it represents a significant
public health challenge and a substantial burden on healthcare systems (Bhidayasiri et al., 2024;
Willis et al., 2022). PD is characterized by motor symptoms such as tremors, rigidity, and bradyki-
nesia, as well as non-motor symptoms including cognitive impairment, sleep disorders, and depres-
sion (Sveinbjornsdottir, 2016). As the global population ages, the prevalence of PD is expected to
rise, underscoring the urgent need for improved diagnostic and treatment strategies.

Early diagnosis of Parkinson’s disease allows for timely intervention, which can slow disease pro-
gression and help manage symptoms more effectively (Emamzadeh & Surguchov, 2018). By identi-
fying at-risk individuals during the prodromal phase, healthcare providers can initiate targeted mon-
itoring and personalized treatment plans, potentially improving long-term patient outcomes (de Bie
et al., 2020). Moreover, early diagnosis enables patients and their families to better prepare for
the challenges associated with the disease, including planning for future care needs and accessing
support services.

Despite the importance of early detection, current diagnostic methods for PD often rely on clinical
observations of motor symptoms, which typically manifest when significant neuronal loss has al-
ready occurred. This highlights the need for innovative approaches to identify PD in its preclinical
or early stages.

Recent advancements have opened new avenues for early PD prediction, particularly in wearable
devices and deep learning. The integration of accelerometer data and deep learning holds promise
for enhancing the accuracy and timeliness of PD diagnosis. Accelerometer data, which can capture
subtle changes in movement patterns, has shown potential for detecting early motor manifestations
of PD (Borzı̀ et al., 2023; Sun et al., 2021). In addition, we propose combining accelerometer
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data with genetic data to identify patients at high risk of developing PD from an early stage. The
incorporation of genetic data in PD prediction models offers the opportunity to uncover new insights
into the disease’s etiology. While several genetic variants have been found to be associated with
PD risks, many aspects of the genetic architecture of the disease remain unknown. Interpretation
methods applied to genetic data could help identify novel genetic variants related to PD, contributing
to our understanding of the disease mechanisms and potentially revealing new therapeutic targets.

In this paper, we propose a multi-modal deep learning model, GeneMamba, that first applies Mamba
to accelerometer data with cross-modality fusion for the early prediction of PD seven years before
clinical onset. By integrating the diverse data sources, we not only build an early PD prediction
model, predicting up to 7 years before clinical onset, but also identify novel genes related to PD,
helping to identify individuals at risk in advance. Our main contributions are as follows:

1. We propose the first application of Mamba, a Structured State Space Sequence model, to ac-
celerometer data, combined with genetic data through cross-modality fusion for early PD prediction,
outperforming existing methods up to seven years before clinical onset.

2. Our model leverages cross-modality to harness diverse data sources for accurate early PD pre-
diction. Furthermore, recognizing that genetic data are often challenging to obtain, we employ
knowledge distillation to transfer insights from the complex genetic information to more accessible
accelerometer data, enabling our model to maintain high prediction accuracy while using wearable
device data alone, and enhancing its practical utility in developing real-world health monitoring
systems for early detection and intervention.

3. Our interpretation methods reveal both existing genes related to PD and novel genes not previ-
ously identified, helping to identify individuals at higher risk of developing PD.

2 RELATED WORKS

PD prediction has gathered significant attention in recent years. Researchers have employed various
methods and modalities for the classification and prediction of PD, ranging from neuroimaging
techniques to handwriting analysis and vocal feature extraction. This section provides an overview
of the current approaches in PD-related research.

Magnetic Resonance Imaging (MRI) have shown promise in PD prediction. Shu et al. (2021) ex-
tracted white matter features from structural MRI scans and combined Support Vector Machine
(SVM) and logistic regression algorithms to classify between stable PD and progressive PD. Their
model achieved an Area Under the Curve (AUC) of 0.836, demonstrating the potential of MRI-based
features in predicting PD progression. Handwriting analysis has emerged as another valuable tool
for PD prediction. Li et al. (2022) proposed a Continuous Convolution Network (CC-Net) to distin-
guish between healthy individuals and PD patients based on handwriting samples, with an average
AUC of 0.934 and an accuracy of 0.893. Speech impairment is a common symptom in PD, making
vocal feature analysis a relevant area of study. Quan et al. (2022) developed a method that extracts
time series features from speech signals and processes them using time-distributed two-dimensional
convolutional neural networks (2D-CNNs) and a one-dimensional CNN (1D-CNN) for PD detec-
tion. Their approach achieved an accuracy of up to 0.92 on one of the speech tasks, demonstrating
the potential of vocal biomarkers in PD detection.

Wearable devices offer a non-invasive and accessible method of collecting movement data for PD
prediction and symptom detection. Several studies have focused on specific PD symptoms using
these devices. Freezing of Gait (FOG), a debilitating symptom commonly associated with PD, has
been a focus of such studies. Borzı̀ et al. (2023) utilized a single inertial sensor attached to the waist
to collect accelerometer data and applied a multi-head convolutional neural network to predict FOG.
Their model achieved an AUC of 0.946. Hand tremor is another common symptom of PD. Sun et al.
(2021) proposed a method using data collected from a wrist sensor and an 8-layer convolutional
neural network (CNN) to classify PD rest, postural, and action tremors. Their approach achieved an
accuracy over 0.95.

While much research has focused on detecting PD and its symptoms, early prediction of PD re-
mains a challenging and less-studied area. Schalkamp et al. (2023) addressed this gap by using
accelerometer data from the UK Biobank dataset to predict PD up to seven years before clinical
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diagnosis. Employing machine learning methods, they achieved a mean Area Under the Precision-
Recall Curve (AUPRC) of 0.78 in distinguishing prodromal PD from matched controls. This study
highlights the potential of longitudinal accelerometer data in early PD prediction.

In summary, the field of PD symptom detection and prediction has seen significant advancements
across various modalities, including MRI, handwriting images, speech signals, and wearable device
data. While each approach shows potential, the integration of multiple modalities and the focus on
early prediction still remain areas that need further exploration. Our study bridges the gap between
deep learning and early PD prediction by proposing a multi-modal model, namely GeneMamba, that
can accurately predict PD seven years before its first diagnosis. Our model effectively integrates ac-
celerometer and genetic data through Mamba and cross-modality fusion, and further incorporates
a knowledge distillation approach, enabling fine-grained early PD prediction with enhanced real-
world applicability. Furthermore, we employ interpretability methods to provide insights into the
model’s decision-making process, thus supporting more informed clinical decision-making. This
methodology not only advances the field of early PD prediction research, reaching an AUPRC of
0.859 in predicting early PD, but also reveals genes that offer potential targets for therapeutic inter-
vention and biomarker development, enabling early detection and personalized treatment strategies
for individuals at risk of developing PD.
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Figure 1: Architecture of GeneMamba.

3 METHODS

3.1 PRELIMINARY

Structured State Space Model (S4) is a framework used to represent the dynamics of a system
through state variables, inputs, and outputs (Gu et al., 2022). S4 represents a system’s underly-
ing state as a vector that evolves over time according to a set of equations, while observations are
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treated as functions of this state. S4 consists of two main components: a state transition equation
that describes how the system’s state changes from one time point to the next, and an observation
equation that relates the hidden state to observable measurements. By representing the system’s state
at each time step and modeling how it evolves over time through state transition equations, S4 can
effectively handle long-range dependencies and continuous processes inherent in time-series data,
making it suitable for processing time-series data. The formula of S4 is shown below:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where u(t) is the input vector, x(t) is the state vector, ẋ(t) represents the time derivative of the state
vector, y(t) is the output vector, and A, B, C, and D are matrices that define the system dynamics.

Mamba is a State Space Model with a novel selection mechanism. Unlike Transformer, which rely
heavily on attention mechanisms, Mamba employs a selective state space mechanism that dynam-
ically adjusts its parameters based on the input sequence (Gu & Dao, 2023). Mamba replaces the
complex attention blocks of Transformer with a state space block, leading to faster inference and
lower computational complexity. Additionally, the selection mechanism makes the model not only
more efficient but also capable of filtering out less relevant data, focusing on crucial information
from the sequences. These designs make Mamba a promising backbone model in long sequence
modeling tasks.

3.2 MODEL

In this study, we present a deep learning model mainly composed of three modules: the Accelerom-
eter Encoder, the Gene Encoder, and the Fusion Module, as shown in Figure 1. The Accelerome-
ter Encoder processes the 3-day time-series accelerometer data collected from subjects in the UK
Biobank (UKBB). We propose using the Mamba model to handle the long sequence of acceleration
intensity data. The Gene Encoder processes the gene variants of each subject, beginning with di-
mensionality reduction and feature extraction via a 1D convolutional neural network (1D-CNN) and
subsequently integrating the information from individual variants using a long short-term memory
(LSTM) network (Hochreiter, 1997). Finally, to merge the features from both the accelerometer data
and gene variants, we introduce a Cross-Attention Fusion module (Lin et al., 2022). The outputs of
this module are then passed through linear layers to compute the probability of the subject belonging
to PD. Assuming Xacc ∈ Rt, Xgene ∈ Rn×m, this process can be represented as:

zacc = ACCEncoder(Xacc) ∈ Rd

zgene = GeneEncoder(Xgene) ∈ Rd

zfusion = Fusion(zacc, zgene) ∈ Rd

yacc = Linear(zacc) ∈ [0, 1]

yfusion = Linear(zfusion) ∈ [0, 1]

(1)

where zacc and zgene represent the embedding vectors of the Accelerometer Encoder and Gene
Encoder, respectively. zfusion is the output fusion vector of zacc and zgene. yacc and yfusion are the
prediction results from the Accelerometer Encoder and the fusion model, respectively.

Accelerometer Encoder

The Accelerometer Encoder processes time-series acceleration intensity data collected over a 3-
day period at 5-second intervals, represented by Xacc ∈ Rt. The initial 1D CNN layer serves
to extract low-level features and significantly reduce the input dimension with a stride of 7. This
dimensionality reduction is crucial for efficient processing of the time-series data, as considerable
noise present in the collected data.

The initial 1D CNN layer is followed by a stack of ResMamba blocks. The ResMamba block in-
tegrates a Mamba block with a Residual block, leveraging the strengths of both architectures. The
Mamba block excels at processing temporal relationships in time-series data, effectively handling
long-range dependencies and focusing on crucial information. Complementing this, the Residual
block is proficient in processing spatial information, aiding in noise reduction and the identification
of important time periods related to the PD manifestations. By alternating these structures, the net-
work can simultaneously learn spatial and temporal features at multiple scales, which is particularly
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effective for processing the complex patterns inherent in acceleration data. We gradually increase
the size of the feature embeddings from 64 to 512, allowing the network to capture increasingly
abstract representations of the input data. The proposed architecture enables the network to capture
and process the diverse dynamics of acceleration intensity data more comprehensively, addressing
both the spatial and temporal aspects of the input while filtering out irrelevant information.

Gene Encoder

We propose Gene Encoder to process the genetic data obtained from the genome-wide association
study (GWAS) results. The input data is a 2D matrix, represented by Xgene ∈ Rn×m, where
n represents the number of Single Nucleotide Polymorphisms (SNPs) identified as significant in
GWAS, and m represents a region of SNPs within the linkage disequilibrium (LD) range of each
significant SNP.

LD is a common phenomenon in genetics where alleles at different loci are inherited together more
frequently, which means that the presence of a specific allele at one SNP can predict the presence
of a specific allele from another SNP if the two SNPs are in LD (Slatkin, 2021). However, the
functionally relevant or associated SNPs may not necessarily be at the center of the LD region, but
could occur at any position within the LD range.

To address this positional variability, we leveraged the spatial invariance property of 2D CNNs,
enabling the model to detect significant patterns regardless of their location within each m-SNP
window. We implemented this approach by treating the n × m gene map as a 2D feature map of
depth 1 and setting the kernel size to 1×M . The kernel size of 1 along the n dimension ensures in-
dependent processing of each LD window, while M accommodates the positional variability within
the LD region, thereby preserving the unique information of each genetic locus. This architecture
allows the CNN to effectively capture LD patterns across various positions in the genetic sequence
while maintaining the ability to differentiate between individual SNPs and their associated LD re-
gions, thus improving the model’s ability to identify functionally relevant genetic variations. The 2D
CNN also serves to reduce dimensionality along the m axis, which is essential because LD regions
often contain a considerable amount of noise and redundant information, as many genetic variants
present do not have a strong association with the trait or disease of interest.

Following the CNN layers, an LSTM layer aggregates the processed genetic information into vec-
tors. Our architecture enables Gene Encoder to effectively process patterns in genetic data, mitigat-
ing the noise while extracting and enhancing the most informative features in each LD region.

Fusion

The Fusion module combines embeddings from genetic and accelerometer data through two parallel
Cross Attention modules. In one, gene embeddings are the query while accelerometer embeddings
are the key and value, while the accelerometer embeddings serve as the query and gene embeddings
serve as the key and value in the other. The result is the concatenation of the outputs of the two Cross
Attention modules. This Cross Attention approach enables inter-modal information exchange, cap-
turing complex relationships between genetic variations and physical activity patterns. By allowing
each modality to selectively focus on relevant information from the other, the module outputs a
comprehensive data representation, uncovering subtle interactions between genetic information and
physical behaviors. The fusion process can be represented as:

zag = CrossAtt(q = Xacc, k = Xgene, v = Xgene) ∈ Rd

zga = CrossAtt(q = Xgene, k = Xacc, v = Xacc) ∈ Rd

zfusion = Linear(Concat(zag, zga)) ∈ Rd

(2)

3.3 LOSS

Our model used both genetic and accelerometer data as inputs. While accelerometer data is easily
obtainable through wearable devices like smartwatches, genetic data is difficult to acquire for ordi-
nary people. We propose to transfer the knowledge learned from Gene Encoder to the Accelerometer
Encoder. This strategy offers two key advantages: first, it allows our model to achieve improved re-
sults based solely on accelerometer data, and second, it removes the need for genetic data collection,
which is often unfeasible for home users. We added the knowledge transfer loss to the loss function,
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and it is calculated as follows:

Lemb = ∥zfusion − zacc∥22
Lbce = BCE(y, yfusion) +BCE(y, yacc)

L = αLemb + (1− α)Lbce

(3)

where Lemb is the mean squared error between the accelerometer embedding and the fusion embed-
ding. Lbce consists of the binary cross-entropy loss of the Fusion model outputs and accelerometer
model outputs compared to the ground truth, and α is the weight of the Lemb loss. By aligning the
embedding of the Accelerometer Encoder with the Fusion module, we gradually transfer knowl-
edge from the Gene Encoder to the Accelerometer Encoder, not only improving the results when
using accelerometer data only but also making the model suitable for scenarios where genetic data
is unavailable.

4 DATA
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Figure 2: Distribution of the years from accelerometer data collection date to PD diagnosis.

UK Biobank (UKBB) is a large-scale biomedical database established in the United Kingdom. Es-
tablished between 2006 and 2010, the project recruited around 500,000 participants, aged 40 to 69
years, from across the UK. Participants underwent initial assessments at 22 centers nationwide, pro-
viding blood, urine, and saliva samples, as well as detailed information about their medical history,
lifestyle, and environmental factors. The project has since expanded its data collection to include
genotyping and whole-genome sequencing, as well as extensive imaging studies, including brain,
heart, and body MRI scans on a subset of 100,000 participants, and physical activity data collected
from over 100,000 participants using wrist-worn accelerometers. This comprehensive dataset pro-
vides researchers a valuable resource for investigating the causes of a wide range of diseases, with
the ultimate aim of improving prevention, diagnosis, and treatment.

4.1 SAMPLE SELECTION

We selected our study samples from the UKBB by the following steps: we first identified participants
who had both genetic data and accelerometer data, and then we selected individuals diagnosed with
PD and paired each PD sample with a healthy control (HC) matched for age, weight, and height.
We excluded participants with Alzheimer’s Disease or cancer to avoid confounding factors. Since
many PD samples lacked sufficient 7-day accelerometer data, we set a minimum requirement of 3
days of data, and applied a quality control step to exclude samples with too many Not-a-Number
(NaN) values in their accelerometer data. Finally, participants diagnosed with PD more than two
years after the accelerometer data was collected were classified as prodromal PD (PPD) cases. The
distribution of the time difference between the year of accelerometer data collection and the year of
diagnosis is shown in Figure 2.
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4.2 PROCESSING

GWAS is a widely-adopted method used to scan the entire genome for genetic variations, particularly
SNPs, to identify associations with specific traits or diseases. To identify significant SNPs associated
with PD, we conducted GWAS study using PLINK on the imputed genotype dataset from the UKBB
(Weeks, 2010). The primary phenotype was PD diagnosis status. To filter out significant SNPs, we
applied a p-value threshold of 1e-5, which is commonly used in exploratory GWAS analyses.

LD plays an important role in genetic studies, and therefore we expanded our selection to include
the 200 nearest SNPs for each significant SNP, corresponding to approximately 65 kilobases (kb)
of genomic distance. This approach allows for a more comprehensive examination of potentially
relevant genetic regions. Our analysis yielded 590 significant SNPs from the initial PLINK output.
The resulting dataset was structured as a three-dimensional array with dimensions 590 x 200 x 3,
where 590 represents the number of significant SNPs, 200 represents the number of nearest SNPs,
and 3 represents the probabilities for each possible genotype (homozygous for the reference allele,
heterozygous, and homozygous for the alternative allele). We then flattened the last dimension of
the array, forming the input Xgene ∈ Rn×m, where n is 590 and m is 600.

Following the Sample Selection and Processing steps, we obtained 215 PD samples, 284 PPD sam-
ples, and 499 healthy controls. Each healthy control was paired with either a PD or PPD sample.
For data augmentation, we selected a 3-day length for the accelerometer data and applied a 3-hour
sliding window to sample the data. The resulting dimension of the accelerometer data, Xacc, is
51,840.

5 RESULTS

Table 1: Model performance comparison for PD vs HC and PPD vs HC classification (mean ± std
across 5-fold cross validation)

Model PD vs HC PPD vs HC
AUROC AUPRC Accuracy AUROC AUPRC Accuracy

(Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std) (Mean ± Std)
GRU 0.907±0.271 0.925±0.263 0.890±0.367 0.805±0.369 0.832±0.345 0.786±0.368
LSTM 0.910±0.267 0.928±0.250 0.898±0.351 0.807±0.358 0.839±0.338 0.792±0.370
Transformer 0.904±0.280 0.923±0.271 0.881±0.357 0.798±0.373 0.820±0.340 0.780±0.363
Ours (ACC Only) 0.918±0.262 0.935±0.241 0.905±0.352 0.814±0.350 0.847±0.331 0.799±0.361
Ours (ACC + KD) 0.925±0.246 0.940±0.233 0.911±0.331 0.825±0.341 0.854±0.325 0.805±0.357
Ours (Fusion) 0.926±0.241 0.943±0.228 0.917±0.330 0.829±0.342 0.859±0.321 0.812±0.340

5.1 IMPLEMENTATION

Our model was implemented using PyTorch 2.0 and trained on a server with 128 GB of memory
and an NVIDIA RTX A6000 GPU. The initial training objective was to classify PD from HC, after
which the model was fine-tuned to predict PPD from HC. During the training stage, we employed
the Adam optimizer with a weight decay of 1e-5. We utilized cosine annealing warm restarts, setting
the initial learning rate to 1e-3 and the minimum learning rate to 1e-5 (Loshchilov & Hutter, 2017).
For the fine-tuning stage, we froze all model parameters except for the final linear layer, which was
kept trainable for fine-tuning. The total number of training epochs was set to 50 and each experiment
underwent a 5-fold cross validation.

5.2 EVALUATION

As little literature has tried deep learning models for early PD prediction using accelerometer data,
to fairly evaluate our model’s performance, we conducted comparisons against three prevalent ar-
chitectures used in time-series data: Gated recurrent unit (GRU), LSTM and Transformer (Cho,
2014). The GRU, LSTM and Transformer models were implemented by replacing Mamba in the
ResMamba block with corresponding blocks. This selection of comparative models allows us to
assess the efficacy of our approach against both RNN-based and attention-based models.

We selected Area Under the Receiver Operating Characteristic curve (AUROC), AUPRC, and accu-
racy as our evaluation metrics, as presented in Table 1. For the task of classifying PD from HC, the
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Table 2: Genes Related to Parkinson’s Disease Discovered by GWAS and GradCAM++ Methods

GWAS Method GradCAM++ Method
Previously discov-
ered genes

Previously undis-
covered genes

Previously discov-
ered genes

Previously undis-
covered genes

SEPTIN11 SOS1 ABCB9 UVRAG
COP1 AKAP6 CASC2 ADAMTS17
SNCA TTLL13 ANO10 LINC00845
GRIK3 UVRAG MAPT GRID2
ANO10 NEO1 LINC02210 GDAP2
DPP6 SAMD8 LINGO1 GPC5
TANC1 GRAMD2A FXR1 AKAP6
LINC02210 MARCHF4 SNCA NECTIN1
KANSL1 GRID2 SOX2 RNF169
PLEK ICE1 SAMD8
FXR1 UTRN ZKSCAN7
MAPT DPP6 TMEM212
SLC17A6

Fusion model achieved the best AUROC of 0.926 and AUPRC of 0.943, while in predicting PPD,
it achieved an AUROC of 0.829 and AUPRC of 0.859. Notably, all tested models surpassed the
previous machine learning model used by Schalkamp et al. (2023), which achieved an AUPRC of
0.78 in both tasks. Among the tested models, the Transformer performed the worst overall, which
may be attributed to its known limitation in effectively learning from relatively small datasets. Our
ACC-only model outperformed the GRU, LSTM, and Transformer models. Furthermore, the model
with KD showed significant improvement compared to the ACC-only model and was comparable to
the Fusion model. This indicates that, through KD, the learned knowledge of genetic variants was
transferred to the Accelerometer Encoder, thus improving its performance when using ACC data
only.

5.3 INTERPRETATION

In our interpretation study, we first identified 590 significant SNPs using a p-value threshold of 1e-5
from the GWAS results. We then applied GradCAM++ to investigate which genes our model focuses
on (Chattopadhay et al., 2018). Table 2 lists the top 50 genes identified by GWAS and GradCAM++,
sorted in descending order of importance based on their respective values. We identified genes
that have previously been linked to PD, according to the GeneCards database (Safran et al., 2010).
Notably, several genes, including DPP6, SNCA, and MAPT, were identified by both methods and
have been previously linked to PD in existing literature (Li et al., 2024; Konno et al., 2016; Zabetian
et al., 2007). Additionally, we found genes such as AKAP6, UVRAG, SAMD8, and GRID2 that
were highlighted by both GradCAM++ and GWAS but have been less frequently associated with PD
in previous studies. Among these findings, SOS1 and UVRAG emerged as the top genes identified
by GradCAM++ and GWAS, respectively. UVRAG, a key regulator of autophagy and endosomal
trafficking, may contribute to PD pathogenesis through impaired clearance of protein aggregates and
dysfunctional mitochondria, potentially exacerbating neuronal dysfunction and death (Yin et al.,
2011). The SOS1 gene, encoding a guanine nucleotide exchange factor for RAS proteins, may
contribute to PD through its involvement in EGFR-mediated neuroprotective signaling pathways
and potential interaction with LRRK2, a major genetic risk factor for the disease (Chardin et al.,
1993). The combined effects of UVRAG’s role in cellular quality control and SOS1’s influence on
neuroprotective signaling pathways may represent a novel axis in the complex molecular landscape
of PD, offering potential targets for therapeutic intervention and biomarker development.
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6 CONCLUSIONS

In this paper, we introduced GeneMamba, a model integrating genetic and accelerometer data for
the early prediction of PD. Our model achieved an AUPRC of 0.943 in classifying PD subjects from
HC, and an AUPRC of 0.859 in predicting PPD cases up to 7 years before clinical diagnosis. By
employing a knowledge transfer approach, we enhanced the performance of our model utilizing ac-
celerometer data only, which is easier to obtain through wearable devices and has greater real-world
applicability. Furthermore, our GWAS analysis revealed several significant genes associated with
PD, while GradCAM++ provided insights into the genes prioritized by our model. These results
were consistent with previous studies, confirming the importance of several genes already known
to be significant in PD. Additionally, our methods identified genes that have been less frequently
associated with PD in previous research, namely UVRAG and SOS1, which emerged as top genes
from GradCAM++ and GWAS analyses, respectively. These findings suggest potential new avenues
for PD prevention, although further investigation is required to confirm their relevance to the dis-
ease. Overall, GeneMamba represents a novel method for the early detection of PD, combining
accelerometer and genetic data to improve PD prediction and potentially uncover novel genetic fac-
tors associated with PD. This approach could contribute significantly to early intervention strategies
and personalized medicine in the field of neurodegenerative diseases.
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