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ABSTRACT

A common and effective human strategy to improve a poor outcome is to first
identify prior experiences most relevant to the outcome and then focus on learn-
ing from those experiences. This paper investigates whether this human strategy
can improve generalization of meta-reinforcement learning (MRL). MRL learns a
meta-prior from a set of training tasks such that the meta-prior can adapt to new
tasks in a distribution. However, the meta-prior usually has imbalanced general-
ization, i.e., it adapts well to some tasks but adapts poorly to others. We propose
a two-stage approach to improve generalization. The first stage identifies “crit-
ical” training tasks that are most relevant to achieve good performance on the
poorly adapted tasks. The second stage improves generalization by encourag-
ing the meta-prior to pay more attention to the critical tasks. We use conditional
mutual information to mathematically formalize the notion of “paying more atten-
tion”. We formulate a bilevel optimization problem to maximize the conditional
mutual information by augmenting the critical tasks and propose an algorithm to
solve the bilevel optimization problem. We theoretically guarantee that (1) the
algorithm converges at the rate of O(1/

√
K) and (2) the generalization improves

after the task augmentation. We use two real-world experiments, two MuJoCo
experiments, and a Meta-World experiment to validate the algorithm.

1 INTRODUCTION

Meta-reinforcement learning (MRL) learns a meta-prior from a set of training tasks where each
training task is an RL problem and is drawn from an implicit task distribution. The predominant
approach in existing works (Beck et al., 2023) is to learn a meta-policy as the meta-prior. In this
paper, we follow this standard setting and denote the learned meta-policy by π0. The goal is for π0 to
generalize effectively across the task distribution. However, both prior works (Dhillon et al., 2019;
Nguyen et al., 2021; Yu et al., 2020) and our empirical findings (see Appendix M.11) indicate that
π0 usually adapts well to some tasks but poorly to others. This paper proposes a method to improve
generalization of the meta-policy π0. Our method is inspired by an effective strategy that humans
commonly use in daily life to improve a poor outcome, where humans first identify prior experiences
most relevant to the poor outcome and then focus on learning from these experiences to improve
the outcome. For example, if a student fails some problems in an exam, a common improvement
strategy for the student is to find similar problems from previous homework and focus more on these
problems in future study. Our approach consists of two stages. The first stage identifies “critical”
training tasks most important to the poorly adapted tasks. The second stage encourages π0 to focus
more on the critical tasks to improve generalization of π0. Note that our approach operates in a post
hoc setting, i.e., after the MRL algorithm has already produced a meta-policy π0.

The first stage proposes an example-based explanation method to identify the training tasks most
relevant to the poorly adapted tasks. Example-based explanation is widely used in explainable ma-
chine learning (Caruana et al., 1999; Sun et al., 2024) to explain a model’s decision through relevant
examples. It is inspired by the observation that humans usually use relevant experiences to interpret
a new thing (Crabbé et al., 2021). In our case, we formulate a bilevel optimization problem where the
upper level learns a weight vector to weight each training task such that the corresponding weighted
meta-policy performs best on the poorly adapted tasks and the lower level learns this weighted meta-
policy. The training tasks with highest weights are the most important/relevant tasks to achieve good
performance on the poorly adapted tasks. We refer to these training tasks as “critical” tasks.
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The second stage improves generalization by encouraging the meta-policy to pay more attention to
the critical tasks. We mathematically formalize the notion of “attention” through an information-
theoretic lens. Specifically, we use the mutual information between the meta-policy and the critical
tasks to quantify the task information of the critical tasks stored in the meta-policy (Yin et al., 2019;
Yao et al., 2021). An increase in mutual information indicates that the meta-policy stores more
information of the critical tasks and thus pays more attention to the critical tasks. To increase this
mutual information, we propose to augment the critical tasks by generating augmented data. The
augmented data enhances data diversity of the critical tasks and contains additional information.
Therefore, it is expected that the meta-policy trained on the augmented data stores more information
of the critical task. Data augmentation has been applied to RL (Wang et al., 2020; Laskin et al., 2020)
and meta-learning (Yao et al., 2021; Rajendran et al., 2020), but these methods use predefined rules
to augment the data. While the predefined augmentation rules can increase the task information of
the critical tasks stored in the meta-policy, they do not maximally increase such stored information.
Motivated by (Yin et al., 2019) which improves generalization by maximizing mutual information
between the task data and meta-parameter, we formulate a bilevel optimization problem. In the upper
level, we learn how to augment the critical tasks to maximally increase the stored information. To
achieve this, we use conditional mutual information (CMI) to quantify the additional information of
the critical tasks stored in the meta-policy after the task augmentation, and learn an augmentation
method to maximize CMI. The difficulty of the upper-level optimization is to compute a distribution
of the meta-policy. Therefore, the lower level formulates a distributional optimization problem
where a meta-policy distribution corresponding to the current augmentation is learned.

We include related works in Appendix B and summarize our contributions as follows.

Contribution statement. This paper proposes to leverage explanation to improve generalization of
the specific meta-policy π0. Our contributions are threefold:

First, we propose an example-based explanation method to identify the critical training tasks that
are most important/relevant to the poorly adapted tasks as an explanation.

Second, we introduce an information-theoretic framework and formalize the problem of leveraging
the explanation to improve generalization as a bilevel optimization problem. The upper level learns
how to augment the critical tasks to maximize the conditional mutual information, and the lower
level computes the meta-policy distribution corresponding to the current augmentation. We propose
an algorithm to solve the bilevel optimization problem.

Third, we theoretically guarantee that (i) our algorithm converges at the rate of O(1/
√
K) and (ii)

the generalization improves after the task augmentation. We use two real-world experiments, two
MuJoCo experiments, and a Meta-World experiment to empirically validate that our algorithm can
improve the generalization of the meta-policy π0.

2 PRELIMINARIES

Reinforcement learning. An RL task Ti is based on a Markov decision process (MDP) Mi =
(S,A, γ, Pi, νi, ri) which includes a state set S, an action set A, a discount factor γ ∈ (0, 1), a
state transition function Pi(·|·, ·), an initial state distribution νi(·), and a reward function ri(·, ·).
RL learns a policy πφ to maximize the cumulative reward maxφE

πφ [
∑∞
t=0 γ

tri(st, at)|s0 ∼ νi].
The policy gradient is E(s,a)∼ρπφ [∇φ log πφ(a|s)A

πφ

i (s, a)] where Aπi is the advantage function
under the reward ri and policy π, ρπ(s, a) ≜ Eπ[

∑∞
t=0 γ

t1{st = s, at = a}|s0 ∼ νi] is the
stationary state-action distribution of the policy π, and 1{·} is the indicator function. Based on
the policy gradient, we can formulate a surrogate objective for RL (Wang et al., 2020): Ji(π) ≜
E(s,a)∼ρπ [log π(a|s)Aπi (s, a)]. For brevity, we omit the explicit notation of the policy parameter φ.

Meta-reinforcement learning. MRL aims to efficiently solve multiple RL tasks by learning a
meta-policy. The meta-policy is learned from a group of N tr training tasks {T tr

i }N
tr

i=1 sampled from
an implicit task distribution P (T ). It is typically assumed (Beck et al., 2023) that different tasks
share (S,A, γ) but may have different (P tr

i , ν
tr
i , r

tr
i ). Here, the superscript “tr” means that these com-

ponents belong to training tasks. Later on, we will use different superscripts to represent different
kinds of tasks. Current mainstream MRL works (Beck et al., 2023; Finn et al., 2017; Fallah et al.,

2
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2021; Xu et al., 2018; Liu et al., 2019) have the following bilevel structure:

max
θ

L(θ, {T tr
i }N

tr

i=1) =
1

N tr

N tr∑
i=1

J tr
i (π

tr
i (θ)), s.t. πtr

i (θ) = Alg(πθ, T tr
i ), (1)

where the upper level learns a meta-policy πθ such that the corresponding task-specific adaptation
πtr
i (θ) can maximize the cumulative reward J tr

i (π
tr
i (θ)) on each training task T tr

i , and the lower level
computes the task-specific adaptation πtr

i (θ) induced from πθ. Different meta-learning methods use
different algorithms to compute the task-specific adaptation πtr

i (θ). Here, we use Alg(πθ, T tr
i ) to

generally represent an algorithm that computes the task-specific adaptation.

We denote the meta-policy learned from (1) by π0, and evaluate its generalization by sampling a set
of new tasks from P (T ). For each sampled task, we perform task-specific adaptation and measure
performance using the resulting cumulative reward. However, as noted in the prior work (Yu et al.,
2020) and confirmed by our experiment (see Appendix M.11), only a subset of the adapted policies
achieve high cumulative reward, while others perform poorly. Therefore, we can find N poor poorly
adapted tasks and denote them by the set {T poor

i }N poor

i=1 . We include the details of how to find poorly
adapted tasks in Appendix M.2.

3 EXAMPLE-BASED EXPLANATION

This section proposes an example-based explanation method. The proposed method is motivated by
the recent advances in example-based explanation for RL. For example, (Guo et al., 2021b; Cheng
et al., 2024) identify the states that are most influential to the cumulative reward as an explanation,
while (Liu & Zhu, 2025) identifies the state-action pairs that are most important to suboptimal per-
formance as an explanation. Inspired by these approaches, we extend the idea to the MRL setting
and aim to identify the training tasks that are most important for the meta-policy to achieve high
cumulative reward on the poorly adapted tasks {T poor

i }N poor

i=1 (after adaptation). We refer to these
training tasks as “critical tasks” and aim to identify the top N cri critical training tasks as an expla-
nation. For this purpose, we propose to learn an importance vector ω ∈ RN tr

where each dimension
ωi captures the importance of the corresponding training task T tr

i for improving cumulative reward
on {T poor

i }N poor

i=1 . The problem is formulated as the following bilevel optimization problem:

max
ω

L(θ∗(ω), {T poor
i }N

poor

i=1 ), s.t. θ∗(ω) = argmax
θ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ)), (2)

where the upper level learns how to weight each training task such that the corresponding weighted
meta-policy πθ∗(ω) can adapt to {T poor

i }N poor

i=1 with maximum cumulative reward, and the lower level
computes the weighted meta-policy πθ∗(ω) corresponding to the current weight ω. We include the
algorithm to solve the problem (2) in Appendix C.

We denote by ω∗ an optimal solution of the problem (2). A larger value of ω∗
i means that the

weighted meta-policy πθ∗(ω∗) assigns more importance to the training task T tr
i , indicating the high

relevance of this task to achieve high cumulative reward on {T poor
i }N poor

i=1 . Accordingly, we define the
top N cri training tasks with the highest weight values as the critical tasks, denoted by {T cri

i }N cri

i=1.

4 GENERALIZATION IMPROVEMENT VIA TASK AUGMENTATION

This section uses the explanation (i.e., the critical tasks {T cri
i }N cri

i=1) in Section 3 to improve general-
ization by encouraging the meta-policy π0 to pay more attention to the critical tasks. One may be
concerned that paying attention to the critical tasks can degrade performance on other tasks, we
include an evaluation in Appendix M.7 to demonstrate that our method only degrades very few (less
than 5%) tasks but the average performance on all the tasks always improves. The key challenge to
encourage the meta-policy to pay more attention to the critical tasks lies in how to mathematically
formalize the notion of “paying more attention”.

A natural approach is to assign higher weights to the critical tasks. However, existing task weighting
methods (Yao et al., 2021; Cai et al., 2020) typically require an additional target task set to guide

3
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how to assign the weights. As a result, these methods aim to generalize specifically to the given
target task set. In contrast, we do not have a target task set and our goal is not to generalize well to
a specific target task set. While solving the problem (2) yields a weighted meta-policy πθ∗(ω∗) that
improves generalization on {Ti}N

poor

i=1 , the generalization over the task distribution may not improve.
In Section 5, we empirically demonstrate that our method outperforms the task weighting method.

We study the notion of “attention” from an information-theoretic perspective. If the task information
of the critical tasks stored in the meta-policy increases, it means that the meta-policy pays more
attention to the critical tasks (Rajendran et al., 2020). To achieve this, we propose to augment the
critical tasks by generating augmented data. The augmented data contains additional information
and diversifies the original training data, therefore, training on the augmented critical tasks can store
more information of the critical tasks in the meta-policy (formally proved in Theorem 2).

Inspired by the empirical success of mixup augmentation in improving generalization in supervised
learning (Zhang et al., 2018), meta-learning (Yao et al., 2021), and RL (Wang et al., 2020), we
adopt mixup to augment the critical tasks. Recall from Section 2 that the surrogate RL objective
for a critical task T cri

i is: J cri
i (π) = E(s,a)∼ρπ [log π(a|s)Aπi (s, a)], where ρπ(s, a) is the stationary

state-action distribution of the policy π. We define the stationary state distribution of π as ρπ(s) ≜∫
a∈A ρ

π(s, a)da. To train a policy, we collect transition tuples (s, a, r, snext) where s ∼ ρπ(·), the
policy π selects action a, and the environment returns reward r and next state snext. Given two
sampled states s, s′ ∼ ρπ(·), mixup generates an augmented state s̄ = λis + (1 − λi)s

′ where
the mixing coefficient λi ∈ [0, 1] of the critical task T cri

i is a random variable sampled from a
distribution P (λ). The augmented state is always feasible in our case (explained in Appendix M.1).
The policy π then selects an action ā at the augmented state s̄, and executes this action to collect the
augmented tuple (s̄, ā, r̄, s̄next). Since the augmented state s̄ is different from the original two states
(s, s′), the augmented tuple (s̄, ā, r̄, s̄′) contains different information from the original two tuples
((s, a, r, snext) and (s′, a′, r′, s′next)). Therefore, adding augmented tuples will diversify the original
training tuples and contain additional information.

For a specific λi, the mixup augmentation induces an augmented stationary state-action distribution
ρ̄π,λi(·, ·) whose expression is in Appendix D. This gives rise to an augmented task T̄ cri

i (λi), with
the augmented surrogate objective defined as J̄ cri

i (π, λi) ≜ E(s̄,ā)∼ρ̄π,λi [log π(ā|s̄)Aπi (s̄, ā)]. Given
the augmented critical tasks, the meta-objective (i.e., the upper-level objective) in (1) becomes:

L(θ, {T̄ cri
i (λi)}N

cri

i=1, {T tr
i }N

tr−N cri

i=1 ) ≜
1

N tr

[ N cri∑
i=1

J̄ cri
i (πcri

i (θ), λi) +

N tr−N cri∑
i=1

J tr
i (π

tr
i (θ))

]
. (3)

In contrast to the original meta-objective in (1), the new objective (3) replaces the original critical
tasks {T cri

i }N cri

i=1 with the augmented critical tasks {T̄ cri
i (λi)}N

cri

i=1. Since λi is a random variable
drawn from P (λ), the corresponding augmented task T̄ cri

i (λi) is also a random variable. In the
following context, we use the notation T̄ cri

i (λi ∼ P (λ)) to highlight this stochasticity.

Remark 1 (Augmentation is different from simply sampling more data). Augmentation is dif-
ferent from using the policy π to sample more data. The reason is that the additional data sampled
by π will always follow the original state-action distribution ρπ and thus the RL objective remains
as the original objective J cri

i (π). In contrast, augmentation changes the state-action distribution to
ρ̄π,λi and thus leads to a different optimization objective J̄ cri

i (π, λi).

In this section, we study the problem of “paying more attention” from the perspective of “storing
more information”. We have intuitively explained that the task augmentation is expected to store
more information of the critical tasks in the meta-policy because the augmented data diversifies the
original training data and contains additional information. In the following context, we formalize
this intuition and mathematically study the problem from an information-theoretic perspective. This
section has three parts. The first part formulates a bilevel optimization problem to learn how to
augment the critical tasks to maximally increase the task information of the critical tasks stored in
the meta-policy. The second part proposes an algorithm to solve the bilevel optimization problem.
The third part theoretically proves that (i) the algorithm converges at the rate of O(1/

√
K), (ii) the

learned augmentation indeed stores more information of the critical tasks in the meta-policy, and
(iii) the generalization improves after the task augmentation.

4
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4.1 PROBLEM FORMULATION

In this part, we formulate a bilevel optimization problem that explicitly captures the goal of “pay-
ing more attention” to the critical tasks by storing more task information in the meta-policy. As
previously discussed, augmenting the critical tasks is expected to increase the amount of task in-
formation stored in the meta-policy. We now formalize this intuition by introducing the following
information-theoretic definition:
Definition 1. The additional information stored in the meta-policy πθ after the task augmentation
can be quantified by I(θ; {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 |{T cri
i }Ncri

i=1 ) which is the conditional mutual in-
formation between the meta-parameter θ and the augmented critical tasks {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 ,
given the original critical tasks {T cri

i }Ncri

i=1 .

In information theory (Wyner, 1978), the conditional mutual information quantifies the difference
between the information that θ and {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 share and the information that θ and
{T cri
i }Ncri

i=1 share. In other words, it quantifies the amount of additional information stored in θ by
additionally knowing {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 given that {T cri
i }Ncri

i=1 is already known. Therefore,
I(θ; {T̄ cri

i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0 means that the information of the critical tasks stored in
the meta-parameter θ increases after we augment {T cri

i }N cri

i=1 to {T̄ cri
i (λi ∼ P (λ))}N cri

i=1.

Our objective is to augment the critical tasks to store more information, ensuring that
I(θ; {T̄ cri

i (λi ∼ P (λ))}Ncri

i=1 |{T cri
i }Ncri

i=1 ) > 0. While the current mixup methods (Yao et al., 2021;
Wang et al., 2020) use a predetermined distribution P (λ) of λi to mix the data, these methods do
not guarantee that the resulting augmentation maximally increases the stored task information. Mo-
tivated by (Yin et al., 2019) that improves generalization by maximizing the mutual information
between the task data and meta-parameter, we propose to learn an optimal augmentation by opti-
mizing the distribution P (λ) to maximize the conditional mutual information. To this end, we model
the distribution of λ as a parameterized distribution Pϕλ

(λ) with parameter ϕλ. Our objective is to
optimize the distribution parameter ϕλ to maximize the following conditional mutual information:

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1)

= E
λi∈[0,1],λi∼Pϕλ

(λ),θ∼P∗(·|{T̄ cri
i (λi)}Ncri

i=1 )

[
logP ∗(θ|{T̄ cri

i (λi)}N
cri

i=1)− logP ∗(θ|{T cri
i }N

cri

i=1)
]
(4)

where the derivation is in Appendix E. Here, P ∗(·|{T̄ cri
i (λi)}N

cri

i=1) is the posterior distribution of
the meta-parameter θ given the augmented critical tasks {T̄ cri

i (λi)}N
cri

i=1, while P ∗(·|{T cri
i }N cri

i=1) is the
posterior distribution of θ if only the original critical tasks {T cri

i }N cri

i=1 are known. For simplicity, we
omit the dependence on the non-critical training tasks (i.e., other training tasks that are not critical
tasks), as they remain unchanged during augmentation.

To maximize the conditional mutual information (4), we need to compute the posterior distributions
P ∗(θ|{T cri

i }N cri

i=1) and P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1). Analogous to (Yin et al., 2019), we treat θ as a random
variable where the randomness comes from the training stochasticity. Mathematically, the posterior
distributions are (the derivation is in Appendix F):

P ∗(·|{T̄ cri
i (λi)}N

cri

i=1) = argmax
ϕ

Epϕ(θ)

[
L(θ, {T̄ cri

i (λi)}N
cri

i=1, {T tr
i }N

tr−N cri

i=1 )
]
,

P ∗(·|{T cri
i }N

cri

i=1) = Eλi∈[0,1],λi∼Pϕλ
(λ)

[
P ∗(·|{T̄ cri

i (λi)}N
cri

i=1)
]
, (5)

where Pϕ(θ) is a distribution of θ parameterized by ϕ. Instead of learning a single meta-parameter θ,
problem (5) aims to learn a distribution of θ that can maximize the meta-objective (3). By combining
(4) and (5), we reach the final bi-level optimization problem:

max
ϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1), s.t. Problem (5), (6)

where the upper-level problem in (6) learns a distribution Pϕλ
(λ) of the mixing coefficients {λi}N

cri

i=1
to maximize the conditional mutual information (4) (i.e., maximally increase the information of

5
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the critical tasks stored in the meta-parameter), and the lower level (i.e., problem (5)) computes the
posterior distribution P ∗(θ|{T̄ cri

i (λi)}N
cri

i=1) corresponding to the current mixing coefficients {λi}N
cri

i=1

and the posterior distribution P ∗(θ|{T cri
i }N cri

i=1) if only the original critical tasks are known.

4.2 ALGORITHM

In this section, we develop an algorithm to improve the generalization of MRL. We first identify
the critical tasks as the explanation (line 1 in Algorithm 1). With the identified critical tasks, we
encourage the meta-parameter θ to pay more attention to the critical tasks by solving the problem
(6). At each iteration k, we first solve the lower-level problem (5) in line 3. In particular, we sam-
ple N ζ̄ sets of mixing coefficients {{λζ̄ji,k}N

cri

i=1}N
ζ̄

j=1 from Pϕλ,k(λ) and project each λζ̄ji,k to [0, 1],

and then compute N ζ̄ posterior distributions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

j=1 where each posterior dis-

tribution P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1) corresponds to each set of mixing coefficients {λζ̄ji,k}N
cri

i=1. We use

these N ζ̄ posterior distributions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

j=1 to estimate the posterior distribution

P ∗(·|{T cri
i }N cri

i=1) =
1
N ζ̄

∑N ζ̄

j=1 P
∗(·|{T̄ cri

i (λ
ζ̄j
i,k)}N

cri

i=1). We then solve the upper-level problem in (6)
via gradient ascent (line 4). In the following, we elaborate how we solve the lower-level and upper-
level problems in (6).

Algorithm 1 Explainable meta reinforcement learning to improve generalization (XMRL)
Input: Initial mixing coefficient distribution Pϕλ,0

(λ) and meta-parameter distribution Pϕ0
(θ),

training tasks {T tr
i }N

tr

i=1, and poorly adapted tasks {T poor
i }N poor

i=1 .
Output: Learned mixing coefficient distribution Pϕλ,K

(λ) and meta-parameter distribution
P
ϕ∗({λi,K}Ncri

i=1 )
(θ).

1: Generate the explanation (i.e., the critical tasks {T cri
i }N cri

i=1) using the algorithm in Appendix C.
2: for k = 0, · · · ,K − 1 do
3: Lower-level optimization: SampleN ζ̄ sets of coefficients {λζ̄ji,k}N

cri

i=1 from Pϕλ,k
(λ); for each

set, compute the distribution parameter ϕ∗({λζ̄ji,k}N
cri

i=1) such that P ∗(θ|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1) =

P
ϕ∗({λ

ζ̄j
i,k}

Ncri
i=1 )

(θ). Estimate P ∗(·|{T cri
i }N cri

i=1) =
1
N ζ̄

∑N ζ̄

j=1 P
∗(·|{T̄ cri

i (λ
ζ̄j
i,k)}N

cri

i=1).

4: Upper-level optimization: Compute the hyper-gradient gϕλ,k
in Lemma 1 and update the

mixing coefficient distribution parameter ϕλ,k+1 = ϕλ,k + βgϕλ,k
.

5: end for

Solve the lower-level problem (line 3). To solve the lower-level problem (5), we parameterize
Pϕ(θ) as a Gaussian distribution whose parameter ϕ = (µ,Σ) includes a mean vector µ and a co-
variance matrix Σ = σσ⊤. We reparameterize θ as θ = µ + σ ◦ ζ where ζ ∼ N (0, I) denotes a
standard Gaussian distribution and ◦ is component-wise multiplication. For each sampled mixup
set {λζ̄ji }N cri

i=1, the gradient of problem (5) is ∇ϕEpϕ(θ)

[
L(θ, {T̄ cri

i (λ
ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 )
]

=

Eζ∼N (0,I)

[
∇ϕθ · ∇θL(θ, {T̄ cri

i (λ
ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 )
]
, and we can use Nζ samples ζj ∼

N (0, I) to estimate the gradient: gϕ = 1
Nζ

∑Nζ

j=1 ∇ϕθj · ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 ),
where θj = µ + σ ◦ ζj , ∇ϕθj is the gradient of θj with respect to the Gaussian distribution

parameter (µ, σ), and ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 ) is the meta-gradient. Note that the

meta-gradient ∇θL(θj , {T̄ cri
i (λ

ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 ) can be different for different meta-learning
methods because it depends on what the task-specific adaptation πtr

i (θ) is, i.e., the lower-level prob-
lem in (1). We include the expressions of ∇θL(θj , {T̄ cri

i (λ
ζ̄j
i )}N cri

i=1, {T tr
i }

N tr−N cri

i=1 ) for several major
meta-learning methods in Appendix H.1. We use gradient ascent to solve the lower-level prob-
lem (5) to get ϕ∗({λζ̄ji }N cri

i=1) = (µ∗({λζ̄ji }N cri

i=1), σ
∗({λζ̄ji }N cri

i=1)), which is the learned distribution

parameter such that P ∗(θ|{T̄ cri
i (λ

ζ̄j
i )}N cri

i=1) = P
ϕ∗({λ

ζ̄j
i }Ncri

i=1 )
(θ). We compute N ζ̄ posterior distribu-
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tions {P ∗(·|{T̄ cri
i (λ

ζ̄j
i,k)}N

cri

i=1)}N
ζ̄

ζ̄j=1
forN ζ̄ sets of mixing coefficients {{λζ̄ji,k}N

cri

i=1}N
ζ̄

ζ̄j=1
, and estimate

P ∗(θ|{T cri
i }N cri

i=1) =
1
N ζ̄

∑N ζ̄

j=1 P
∗(θ|{T̄ cri

i (λ
ζ̄j
i )}N cri

i=1).

Solve the upper-level problem (line 4). We use a Gaussian distribution to parameterize Pϕλ
(λ)

where the distribution parameter ϕλ = (µλ, σλ) includes a mean µλ and a standard deviation σλ.
Therefore, we can reparameterize each sample λζ̄ji from Pϕλ

(λ) via λζ̄ji = µλ + σλζ̄i,j where
ζ̄i,j ∼ N (0, 1). To solve the upper-level problem in problem (6), we need to compute the hyper-
gradient, i.e., the gradient of the conditional mutual information (4) w.r.t. ϕλ.

Lemma 1. Suppose we reparameterize the mixing coefficient λζ̄ji via λζ̄ji = µλ+ σλζ̄i,j , the hyper-

gradient can be estimated by gϕλ
=

∑Nζ̄

j=1 ∇ϕλ
σ∗({λ

ζ̄j
i }Ncri

i=1 )

||
∑Nζ̄

j=1 σ
∗({λ

ζ̄j
i }Ncri

i=1 )||
− 1

N ζ̄

∑N ζ̄

j=1

∇ϕλ
σ∗({λ

ζ̄j
i }Ncri

i=1 )

||σ∗({λ
ζ̄j
i }Ncri

i=1 )||

where ∇ϕλ
σ∗({λζ̄ji }Ncri

i=1 ) = −
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

·

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )].

We include the expression of all the gradients in Appendix H. We solve the upper-level problem in
(6) via gradient ascent ϕλ,k+1 = ϕλ,k + βgϕλ,k

where β is the step size.

4.3 THEORETICAL ANALYSIS

This part shows that (i) Algorithm 1 converges at the rate ofO(1/
√
K), (ii) the learned augmentation

increases the task information of the critical tasks stored in the meta-policy, and (iii) the generaliza-
tion over the task distribution improves after the augmentation. We start with the assumption:
Assumption 1. The parameterized meta-policy πθ satisfies the following: ||∇θ log πθ(a|s)|| ≤ Cθ
and ||∇2

θθ log πθ(a|s)|| ≤ C̄θ for any (s, a) ∈ S ×A where Cθ and C̄θ are positive constants.

Assumption 1 assumes that the parameterized log-policy log πθ is Cθ-Lipschitz continuous and C̄θ-
smooth w.r.t. the parameter θ, which is a standard assumption in RL (Kumar et al., 2023; Zhang
et al., 2020; Agarwal et al., 2021).
Theorem 1. Suppose Assumption 1 holds and we choose the step size β = 2

C̄I

√
K

where

C̄I is a positive constant whose derivation is in Appendix I, then Algorithm 1 converges:
1
K

∑K−1
k=0 ||∇ϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1)||2 ≤ O(1/
√
K).

Theorem 1 guarantees that Algorithm 1 converges at the rate of O(1/
√
K). We next show that the

learned task augmentation stores more information in the meta-parameter:
Theorem 2. Suppose Assumption 1 holds and β < 2

C̄I
, then the output Pϕλ,K

(λ) of Algorithm 1

satisfies I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0.

Theorem 2 guarantees that the augmented critical tasks store additional information in the meta-
parameter. Moreover, Appendix K guarantees that the task information of the non-critical tasks
stored in the meta-parameter does not change even if the stored task information of the critical tasks
increases. We next quantify the generalization improvement of the learned augmentation Pϕλ,K

(λ).
In particular, we first demonstrate that the learned augmentation imposes a quadratic regulariza-
tion on the meta-parameter θ in Lemma 2 and then guarantee that the generalization over the task
distribution P (T ) improves.

To reason about the generalization, we consider the following softmax parameterized meta-policy

πθ(a|s) = eθ
⊤f(s,a)∑

a′∈A eθ⊤f(s,a′) where f(s, a) is a feature vector. This policy parameterization is widely

adopted in RL (Sutton et al., 1999; Kakade, 2001; Peters & Schaal, 2008). We consider MAML
(Finn et al., 2017; Fallah et al., 2021) as the algorithm to compute the task-specific adaptation πtr

i (θ),
and the task-specific adaptation is also softmax parameterized.
Lemma 2. The second-order approximation of the meta-objective (3) after the task augmenta-
tion can be expressed as: Eλi∼Pϕλ,K

[L(θ, {T̄ cri
i (λi)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )] ≈ L(θ, {T tr
i }Ntr

i=1) −

θ⊤( 1
Ncri

∑Ncri

i=1 H̄
cri
i )θ where H̄cri

i is a positive definite matrix whose expression is in Appendix L.
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Lemma 2 shows that the augmented meta-objective (3) imposes a quadratic regularization on the
original meta-objective (1). Since we aim to maximize the meta-objective, this negative quadratic
regularization reduces the solution space and thus can lead to better generalization.

To study the generalization property of this regularization, following (Zhang & Deng, 2021; Yao
et al., 2021), we consider the following softmax policy class that is closely related to the dual prob-
lem of the regularization: Fγ̄ = {πθ : θ⊤(Ei∼P (T )[H̄i])θ ≤ γ̄}. To quantify the improvement of
generalization, we denote the generalization gap by G(Fγ̄) ≜ L(θ, {T tr

i }N
tr

i=1)− Ei∼P (T )[L(θ, Ti)].
The following theorem validates improvement of generalization:

Theorem 3. Suppose the policy is softmax parameterized (i.e., πθ(a|s) = eθ
⊤f(s,a)∑

a′∈A eθ⊤f(s,a′) ) where

the feature vector f(s, a) is twice-differentiable and bounded for any (s, a) ∈ S × A, then with

probability at least 1− δ, the generalization gap satisfies |G(Fγ̄)| ≤ O(
√

γ̄
Ntr +

√
log(1/δ)
Ntr ).

According to Lemma 2, the quadratic regularization (i.e., θ⊤( 1
Ncri

∑Ncri

i=1 H̄
cri
i )θ) imposed by the

learned task augmentation encourages a smaller γ̄. Therefore, according to Theorem 3, the learned
task augmentation will lead to a smaller generalization gap and thus improve generalization.

5 EXPERIMENT

This section uses two real-world experiments, two MuJoCo experiments, and a Meta-World exper-
iment (Appendix M.11) to validate the effectiveness of Algorithm 1 (XMRL). Note that XMRL is
to improve the performance of existing MRL algorithms, rather than being a standalone MRL algo-
rithm. Accordingly, our primary comparisons are against other MRL improvement methods, rather
than against MRL algorithms themselves. For completeness, we report comparisons with some MRL
algorithms in Appendix M.11. We use MAML as the base MRL algorithm that our method and the
baselines aim to improve. We introduce three baselines that improve MRL generalization: (1) Task
weighting (TW) (Cai et al., 2020): This method computes the weighted meta-policy πθ∗(ω). (2)
Meta augmentation (MA) (Yao et al., 2021): This method uses a predefined distribution of λ to
mix the data of each training task to improve generalization. (3) Meta regularization (MR) (Wang
et al., 2023): This method adds quadratic regularization to the upper level and inverted regulariza-
tion to the lower level to improve generalization. Combining the base MRL algorithm with each im-
provement method results in four complete methods: MAML+XMRL, MAML+TW, MAML+MA,
and MAML+MR. Note that our method requires additional interactions with the environment to
generate augmented samples. For a fair comparison, the baselines use the same amount of samples.

Figure 1: Drone navigation

Experiment I: Drone navigation with obstacles. We conduct a nav-
igation experiment (Figure 1) on an AR.Drone 2.0 where the drone
(yellow bounding box) navigates to the goal (green bounding box)
while avoiding the obstacle (red bounding box). We use a motion cap-
ture system “Vicon” to record the location of the drone. For different
navigation tasks, we change the locations of the goal and obstacle.
We use success rate (i.e., the rate of successfully reaching the goal
and avoiding the obstacle) over randomly generated test tasks as the
metric to evaluate generalization performance. We record the mean
and standard deviation of success rate in the second row in Table 1. We visualize the critical tasks
in Appendix M.3 and provide computation time and statistical significance test in Appendix M.6.

Experiment II: Stock market. RL to train a stock trading agent has been widely studied in AI
for finance (Deng et al., 2016). We use the real-world data of 30 constituent stocks in Dow Jones
Industrial Average from 2021-01-01 to 2022-01-01. We use a benchmark “FinRL” (Liu et al., 2021)
to configure the real-world stock data into an MDP environment. The RL agent trades stocks on
every stock market opening day in order to maximize profit as well as avoid taking risks. The
reward function is defined as p1 − p2 where p1 is the profit which is the money earned from trading
stocks subtracting the transaction cost, and p2 models the preference of whether willing to take
risks. In specific, p2 is positive if the investor buys stocks whose turbulence indices are larger than a
certain turbulence threshold, and zero otherwise. The value of p2 depends on the type and amount of
the trading stocks. The turbulence index measures the risk of buying a stock (Liu et al., 2021), and
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Table 1: Experiment results.

Method MAML MAML+XMRL MAML+TW MAML+MA MAML+MR

Drone 0.87± 0.01 0.97± 0.01 0.87± 0.02 0.91± 0.02 0.91± 0.02
Stock Market 359.13± 18.63 421.13± 12.11 362.07± 14.21 389.17± 12.66 362.53± 14.27
HalfCheetah −68.89± 4.36 −44.67± 4.35 −65.14± 4.26 −63.49± 4.07 −61.15± 3.82

Ant 100.64± 3.63 119.15± 4.02 99.92± 4.56 106.44± 4.55 104.15± 4.74

a lower turbulence threshold means that the RL agent is less willing to take risks. The turbulence
thresholds for different RL tasks are different. We include the details in Appendix M.4 and the
results of cumulative reward in the third row in Table 1.

Experiment III: MuJoCo. We consider the target velocity problem (Finn et al., 2017) for two
MuJoCo robots: HalfCheetah and Ant. In particular, the robots aim to maintain a target velocity in
each task, and the target velocity of different tasks is different. We include the details in Appendix
M.5 and the results of cumulative reward in the fourth and fifth rows in Table 1.

Table 1 shows that our proposed method can significantly improve the generalization of MAML
and outperform the other three baselines. For example, our method improves MAML by 35% for
HalfCheetah while the baselines’ improvements are less than 15%.

Minor degradation on very few tasks. Due to the no free lunch theorem, one may be concerned
that our method focuses more on the critical tasks and can lead to degradation on other tasks. We
include an evaluation in Appendix M.7, and the results demonstrate that very small amount of tasks
(less than 5%) can be degraded but the average performance over all the tasks always improves.

The ablation study on the number of critical tasks N cri. We evaluate how the number of critical
tasks N cri affects the generalization performance of our method in Appendix M.8. The results in
Appendix M.8 show that different environments have different optimal number of critical tasksN cri.
In Table 1, we report the generalization result under the optimal number of critical tasks.

The ablation study on augmentation method. The previous works (Yao et al., 2021; Wang et al.,
2020; Zhang et al., 2018) on data mixup augmentation use a predefined distribution P (λ) to mix
the data. In contrast, we aim to learn an optimal augmentation by optimizing this distribution P (λ)
to maximize the conditional mutual information (4). To show the effectiveness of our method, we
include an ablation study in Appendix M.9 where we compare to a method that uses the predefined
distribution in (Wang et al., 2020) to augment the critical tasks. The results in Appendix M.9 show
that our method improves generalization better.

Evaluation of the explanation. We evaluate the fidelity and usefulness of our explanation. Fi-
delity is a widely-used metric in explainable RL (Guo et al., 2021b; Cheng et al., 2024) to evaluate
the correctness of the explanation. The fidelity in our setting means whether the identified critical
tasks {T cri

i }N cri

i=1 are indeed the most important training tasks to achieve high cumulative reward on
the poorly adapted tasks {T poor

i }N poor

i=1 . To evaluate fidelity, we train a meta-policy over the criti-
cal tasks and compare its performance on the poorly adapted tasks with a meta-policy trained on
N cri randomly-sampled training tasks. The usefulness means whether our explanation can help im-
prove generalization. To evaluate the usefulness, we randomly pick N cri training tasks and use our
augmentation method to augment these N cri training tasks to train a meta-policy. We compare the
generalization performance of this meta-policy with XMRL. We include the results in Appendix
M.10, and the results show that our explanation has high fidelity and usefulness.

6 CONCLUSION

This paper proposes to leverage explanation to improve generalization of MRL. The proposed
method has two parts where the first part explains why the learned meta-policy does not adapt well
to certain tasks by identifying the critical training tasks that the meta-policy does not pay enough
attention to, and the second part formulates a bi-level optimization problem to learn how to augment
the critical tasks such that the meta-policy can best pay attention to the critical tasks. We theo-
retically guarantee that the learned augmentation can improve generalization over the whole task
distribution. Experimental results validate that our method improves MRL.
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Jonathan Crabbé, Zhaozhi Qian, Fergus Imrie, and Mihaela van der Schaar. Explaining latent rep-
resentations with a corpus of examples. Advances in Neural Information Processing Systems, 34:
12154–12166, 2021.

Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforcement
learning for financial signal representation and trading. IEEE Transactions on Neural Networks
and Learning Systems, 28(3):653–664, 2016.

Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. In International Conference on Learning Representations, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1082–1092, 2020.

Alireza Fallah, Kristian Georgiev, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence
theory of debiased model-agnostic meta-reinforcement learning. Advances in Neural Information
Processing Systems, 34:3096–3107, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jerome H Friedman and Bogdan E Popescu. Predictive learning via rule ensembles. The Annals of
Applied Statistics, pp. 916–954, 2008.

Sihang Guo, Ruohan Zhang, Bo Liu, Yifeng Zhu, Dana Ballard, Mary Hayhoe, and Peter Stone.
Machine versus human attention in deep reinforcement learning tasks. Advances in Neural Infor-
mation Processing Systems, 34:25370–25385, 2021a.

Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing. Edge: Explaining deep reinforcement
learning policies. Advances in Neural Information Processing Systems, 34:12222–12236, 2021b.

Hongrong Huang and Juergen Sturm. Tum simulator. ROS package at http://wiki. ros.
org/tum simulator, 2014.

Matthew T Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Greg Farquhar, Shi-
mon Whiteson, and Jakob Foerster. Discovering general reinforcement learning algorithms with
adversarial environment design. Advances in Neural Information Processing Systems, 36:79980–
79998, 2023.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
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A APPENDIX

B RELATED WORKS

Meta-Reinforcement learning. MRL has two major categories: optimization-based MRL and
black-box (or context-based) MRL. Optimization-based MRL (Finn et al., 2017; Liu et al., 2019;
Stadie et al., 2018) usually includes a meta-algorithm and an adaptation algorithm. The meta-
algorithm learns a meta-prior (e.g., meta-policy) which is not specialized for each task. The adap-
tation algorithm uses data of a specific task to specialize the meta-prior to achieve high cumulative
reward on this specific task. Black-box MRL (Duan et al., 2016; Rakelly et al., 2019; Zintgraf et al.,
2019b) typically learns an end-to-end model that contains specialized knowledge for different tasks
in the task distribution. The data of a task is used to indicate the task so that the end-to-end model
can directly specialize to this specific task. Note that the method proposed in this paper is not classi-
fied as a MRL method. Instead, we aim to develop a method that can improve MRL and this method
can be applied to different MRL algorithms.

Meta-learning generalization improvement. There are three major ways to improve meta-learning
generalization: task weighting, regularization, and meta-augmentation. Task weighting (Nguyen
et al., 2023; Yao et al., 2021; Cai et al., 2020) proposes to re-weight the training tasks or reshape
the training task distribution to improve generalization. However, (Yao et al., 2021; Cai et al.,
2020) require an additional target task set to guide how to weight the training tasks or reshape the
training task distribution, and thus the learned meta-prior can be biased towards the target task set
and may not adapt well to other tasks that are different from the target task set. Regularization-based
methods are also used to improve generalization where (Wang et al., 2023) proposes to add ordinary
regularization to the upper level and inverted regularization to the lower level, and (Yin et al., 2019)
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imposes regularization to prevent memorization overfitting. The most relevant technique to our
paper is meta-augmentation which augments the data and train on the augmented data to improve
generalization. Specifically, (Rajendran et al., 2020) proposes to add noise to the data and (Yao
et al., 2021) proposes to mix data and shuffle the channels in the hidden layers. The augmentation
method has also been used in RL (Wang et al., 2020; Laskin et al., 2020) to improve generalization
by generating augmented data. These augmentation methods use predefined rules to provide feasible
augmentations. In contrast, our paper formulates a bilevel optimization problem to learn how to best
augment the critical tasks.

Explainable reinforcement learning. While it lacks research works on explainable MRL, explain-
able RL (XRL) has been extensively studied to explain the decision making of the RL agents, in-
cluding learning an interpretable policy (Bastani et al., 2018; Bewley & Lawry, 2021; Verma et al.,
2018), pinpointing regions in the observations that are critical for choosing certain actions (Atrey
et al., 2019; Guo et al., 2021a; Puri et al., 2019), and reward decomposition (Juozapaitis et al., 2019;
Lin et al., 2020; Septon et al., 2023). The most relevant XRL method to our explanation is to identify
the critical states that are influential to the cumulative reward as an explanation (Guo et al., 2021b;
Cheng et al., 2024; Amir & Amir, 2018) where they respectively use an RNN, masks, and a self-
proposed rule to find critical states. In contrast, we formulate a bilevel optimization problem to learn
a weight vector that indicates critical tasks.

Explainable meta-learning. There are three works on explainable meta-learning where (Woźnica &
Biecek, 2021) proposes to learn important features that lead to a specific meta model decision using
Friedman’s H-statistic (Friedman & Popescu, 2008), and (Shao et al., 2022; 2023) use structural
causal model to model the causal relations between the features and the model decision. While
these works explain why a decision is made, we explain why certain tasks are poorly adapted.

Task selection of meta learning. Task selection has been studied in meta-learning. (Zhan & Ander-
son, 2024; Chen et al., 2022) focus on task efficiency and propose to select a subset of training tasks
that are most representative or informative so that training on fewer tasks (the selected subset) can
achieve performance comparable to training on the whole training tasks. In contrast, our method has
a different focus, i.e., it does not aim to used fewer training tasks to achieve similar performance but
aims to select and focus on critical tasks so as to improve performance. (Luna Gutierrez & Leonetti,
2020; Zhang, 2024) propose to select training tasks such that the meta-prior can perform the best on
a certain test task. However, they assume the ability to evaluate on a test set. In contrast, our method
does not assume access to a test set and our goal is not to perform well on a specific test set.

Unsupervised environment design. Unsupervised environment design (Jiang et al., 2021; Jackson
et al., 2023) adaptively and progessively generates more complex tasks for the agent to solve in order
to improve the agent’s generalization ability. However, our paper does not generate or require new
tasks to improve generalization. In contrast, we identify “critical tasks” from the existing training
tasks and augment these critical tasks to improve generalization.

C ALGORITHM TO FIND THE CRITICAL TASKS

Recall from Section 3 that we aim to learn a weight vector ω by solving the problem (2) where
each component ωi of the weight vector captures the importance of the corresponding training task
T tr
i . The higher the weight value ωi is, the more important the corresponding training task T tr

i is.
Therefore, the top N cri training tasks with highest weight values are the N cri critical tasks we aim to
identify. The problem (2) is as follows:

max
ω

L(θ∗(ω), {T poor
i }N

poor

i=1 ) s.t. θ∗(ω) = argmax
θ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ)).

We use Algorithm 2 to solve this problem where at each iteration k̄, we first solve the lower-level
problem in (2) to get θ∗(ω) and then solve the upper-level problem (2) via gradient ascent.
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Algorithm 2 Identifying the critical tasks

Input: Training tasks {T tr
i }N

tr

i=1, poorly adapted tasks {T poor
i }N poor

i=1 , and initial weight vector ω.
Output: Learned weight vector ωK̄ .

1: for k̄ = 0, · · · , K̄ − 1 do
2: Solve the lower-level problem via gradient ascent to get θ∗(ω).
3: Compute the hyper-gradient gωk̄

in Lemma 3 and update the weight ωk̄+1 = ωk̄ + αk̄gωk̄
.

4: end for

Solve the lower-level problem. We use gradient ascent to solve the lower-level problem where the
gradient is

∑N tr

i=1 ωi∇θJ
tr
i (π

tr
i (θ)) and the expression of ∇θJ

tr
i (π

tr
i (θ)) can be found in Appendix

H.1.

Solve the upper-level problem. To solve the upper-level problem, we need to compute the hyper-
gradient gω .

Lemma 3. The hyper-gradient is:

gω =

−
[
∇ω

Ntr∑
i=1

ωi∇θJ
tr
i (πtr

i (θ
∗(ω)))

][ Ntr∑
i=1

ωi∇2
θθJ

tr
i (πtr

i (θ
∗(ω)))

]−1[Npoor∑
i=1

∇θJ
poor
i (πpoor

i (θ∗(ω)))
]
,

where the derivation is in Appendix C.1.

We use K̄-step gradient ascent ωk̄+1 = ωk̄ + αk̄gωk̄
to solve the problem (2) to get the learned

weight ωK̄ . Each component ωK̄,i captures the importance of the corresponding training task T tr
i .

We pick the top N cri training tasks with the highest weight value as the critical tasks.

C.1 PROOF OF LEMMA 3

Since θ∗(ω) = argmaxθ
∑N tr

i=1 ωiJ
tr
i (π

tr
i (θ)), then ∇θ

∑N tr

i=1 ωiJ
tr
i (π

tr
i (θ

∗(ω))) = 0. Take gradient
w.r.t. ω on both sides, we have that

∇2
ωθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω))) +
(
∇ωθ

∗(ω)
)⊤[

∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]
= 0,

⇒ ∇ωθ
∗(ω) =

[
∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]−1[

∇2
θω

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]
. (7)

Therefore, we have that

∇ωL(θ
∗(ω), {T poor

i }N
poor

i=1 ) =
(
∇ωθ

∗(ω)
)⊤

∇θL(θ
∗(ω), {T poor

i }N
poor

i=1 ),

(a)
=

[
∇2
ωθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
][
∇2
θθ

N tr∑
i=1

ωiJ
tr
i (π

tr
i (θ

∗(ω)))
]−1

∇θL(θ
∗(ω), {T poor

i }N
poor

i=1 ),

where (a) follows (7).

D EXPRESSION OF THE AUGMENTED STATE-ACTION STATIONARY
DISTRIBUTION

This section provides the expression of the augmented stationary state distribution ρ̄π,λi(·) and aug-
mented stationary state-action distribution ρ̄π,λi(·, ·). The expression of the augmented stationary
state distribution is ρ̄π,λi(s̄) ≜ ρπ(s̄) +

∫
s,s′∈S 1{λis+ (1− λi)s

′ = s̄}ρπ(s)ρπ(s′)dsds′ and the
expression of the augmented state-action stationary distribution is ρ̄π,λi(s̄, ā) = ρ̄π,λi(s̄)π(ā|s̄).
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E DERIVATION OF THE CONDITIONAL MUTUAL INFORMATION

I(θ; {T̄ cri
i (λi ∼ P (λ))}N

cri

i=1|{T cri
i }N

cri

i=1),

(a)
=

∫
P (θ, {T̄ cri

i (λi ∼ P (λ))}N
cri

i=1, {T cri
i }N

cri

i=1)·

log
P (θ, {T̄ cri

i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T̄ cri
i (λi ∼ P (λ))}N cri

i=1|{T cri
i }N cri

i=1)
(dθ)(d{T̄ cri

i (λi ∼ P (λ))}N
cri

i=1)(d{T cri
i }N

cri

i=1),

=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N

cri

i=1)P (λ)P ({T cri
i }N

cri

i=1)·

log
P (θ, {T̄ cri

i (λi)}N
cri

i=1|{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N cri

i=1)
(dθ)(d{T̄ cri

i (λi)}N
cri

i=1)(d{T cri
i }N

cri

i=1),

=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N

cri

i=1)P (λ)P ({T cri
i }N

cri

i=1)·

log
P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)
(dθ)(dλi)(d{T cri

i }N
cri

i=1),

(b)
=

∫
P (θ|{T̄ cri

i (λi)}N
cri

i=1)P (λ)P ({T cri
i }N

cri

i=1) log
P (θ|{T̄ cri

i (λi)}N
cri

i=1)

P (θ|{T cri
i }N cri

i=1)
(dθ)(dλi)(d{T cri

i }N
cri

i=1),

= E
λi∈[0,1],λi∼P (λ),θ∼P (·|{T̄ cri

i (λi)}Ncri
i=1 )

[
log

P (θ|{T̄ cri
i (λi)}N

cri

i=1)

P (θ|{T cri
i }N cri

i=1)

]
,

where (a) follows the definition of conditional mutual information (Wyner, 1978) and (b) follows
the fact that P (θ|{T̄ cri

i (λi)}N
cri

i=1, {T cri
i }N cri

i=1) = P (θ|{T̄ cri
i (λi)}N

cri

i=1) because the meta-parameter is
trained on the augmented critical tasks {T̄ cri

i (λi)}N
cri

i=1.

F DERIVATION OF THE POSTERIOR DISTRIBUTION (5)

Figure 2: How the distribution of θ is computed.

Figure 2 shows how the distribution of the meta-parameter θ is computed. At the beginning, we
have the original critical tasks {T cri

i }N cri

i=1, however, the distribution of θ is not directly trained over
the original critical tasks. Instead, we augment the original critical tasks to the augmented critical
tasks {T̄ cri

i (λi)}N
cri

i=1 and train the distribution of θ over the augmented critical tasks. Since θ is
directly trained on the augmented critical tasks {T̄ cri

i (λi)}N
cri

i=1, the posterior distribution of θ given
the augmented critical tasks can be computed by solving the distributional optimization problem:
P ∗(·|{T̄ cri

i (λi)}N
cri

i=1) = argmaxϕEpϕ(θ)

[
L(θ, {T̄ cri

i (λi)}N
cri

i=1, {T tr
i }

N tr−N cri

i=1 )
]
.

However, we cannot use the same way to formulate a distributional optimization problem to compute
the posterior distribution P ∗(·|{T cri

i }N cri

i=1) because the meta-parameter θ is not directly trained over
the original critical tasks {T̄ cri

i (λi)}N
cri

i=1. We can obtain this posterior distribution by marginalizing
over {T̄ cri

i (λi)}N
cri

i=1:

P ∗(θ|{T cri
i }N

cri

i=1) =

∫
λi

P ∗(θ, {T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N

cri

i=1)dλi,

=

∫
λi

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1, {T cri
i }N

cri

i=1)P ({T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N

cri

i=1)dλi,

(a)
=

∫
λi

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1)P ({T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N

cri

i=1)dλi,
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(b)
=

∫
λi

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1)P (λi)dλi,

= Eλi∈[0,1],λi∼Pϕλ
(λ)

[
P ∗(·|{T̄ cri

i (λi)}N
cri

i=1)
]
,

where (a) follows the fact that P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1, {T cri
i }N cri

i=1) = P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1) because θ is
directly trained on {T̄ cri

i (λi)}N
cri

i=1, and (b) follows the fact that P ({T̄ cri
i (λi)}N

cri

i=1|{T cri
i }N cri

i=1) = P (λi)

because {T̄ cri
i (λi)}N

cri

i=1 is a random variable following the distribution of λi if {T cri
i }N cri

i=1 is given.

G PROOF OF LEMMA 1

Recall from (4) that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= E
λi∈[0,1],λi∼Pϕλ

(λ),θ∼P∗(·|{T̄ cri
i (λi)}Ncri

i=1 )

[
log

P ∗(θ|{T̄ cri
i (λi)}N

cri

i=1)

P ∗(θ|{T cri
i }N cri

i=1)

]
.

Since P
ϕ∗({λ

ζ̄j
i }Ncri

i=1 )
(θ) is Gaussian distribution, we have that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= Eλi,θ

[
log

exp(− 1
2 (θ−µ

∗({λζ̄
i }

Ncri
i=1 ))

⊤(Σ∗({λζ̄
i }

Ncri
i=1 ))

−1(θ−µ∗({λζ̄
i }

Ncri
i=1 )))√

|(σ∗({λζ̄
i }Ncri

i=1 ))
⊤σ∗({λζ̄

i }Ncri
i=1 )|

Eλi

[
exp(− 1

2 (θ−µ∗({λζ̄
i }Ncri

i=1 ))
⊤(Σ∗({λζ̄

i }Ncri
i=1 ))

−1(θ−µ∗({λζ̄
i }Ncri

i=1 )))√
|(σ∗({λζ̄

i }Ncri
i=1 ))

⊤σ∗({λζ̄
i }Ncri

i=1 )|

]],
= Eλi,θ

[
log

exp(− 1
2 (θ − µ∗({λζ̄i }N

cri

i=1))
⊤(Σ∗({λζ̄i }N

cri

i=1))
−1(θ − µ∗({λζ̄i }N

cri

i=1)))√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]

− Eθ

[
logEλi

[exp(− 1
2 (θ − µ∗({λζ̄i }N

cri

i=1))
⊤(Σ∗({λζ̄i }N

cri

i=1))
−1(θ − µ∗({λζ̄i }N

cri

i=1)))√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]]
,

(a)
= Eζ∼N (0,I)

{
Eλi

[
log

exp(− 1
2ζ

⊤ζ)√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]

− logEλi

[ exp(− 1
2ζ

⊤ζ)√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|

]}
,

= Eλi

[
log

1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
− logEλi

[ 1√
|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
(8)

where (a) follows the fact that θ = µ∗({λζ̄i }N
cri

i=1) + σ∗({λζ̄i }N
cri

i=1) ◦ ζ. Since we sample N ζ̄ sets
of mixing coefficients {{λζ̄i }N

cri

i=1}N
ζ̄

j=1 from Pϕλ
(λ), the conditional mutual information can be esti-

mated by

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

=
1

N ζ̄

N ζ̄∑
j=1

log
1√

|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|
− log

1

N ζ̄

N ζ̄∑
j=1

1√
|(σ∗({λζ̄ji }N cri

i=1))
⊤σ∗({λζ̄ji }N cri

i=1)|
.

Therefore, we can get the gradient:

∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N

cri

i=1|{T cri
i }N

cri

i=1),

17
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=

∑N ζ̄

j=1 ∇ϕλ
σ∗({λζ̄ji }Ncri

i=1 )

||
∑N ζ̄

j=1 σ
∗({λζ̄ji }Ncri

i=1 )||
− 1

N ζ̄

N ζ̄∑
j=1

∇ϕλ
σ∗({λζ̄ji }Ncri

i=1 )

||σ∗({λζ̄ji }Ncri

i=1 )||
.

To get ∇ϕλ
σ∗, we know that ϕ∗ = argmaxEPϕ(θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )], there-

fore, we have that ∇σEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )] = 0. Then we have that

d

dϕλ
∇σEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= ∇σϕλ
EPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]

+∇σσEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]∇ϕλ
σ∗ = 0,

⇒ ∇ϕλ
σ∗ = −

[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

·

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )].

H GRADIENTS

This section provides all the gradients needed in this paper.

H.1 META-GRADIENTS FOR MAJOR MRL METHODS

Recall the problem formulation (1) of MRL as follows where we omit the superscript for simplicity:

max
θ

L(θ, {Ti}Ni=1) =
1

N

N∑
i=1

Ji(πi(θ)), s.t. πi(θ) = Alg(πθ, Ti).

The meta-gradient is the gradient of the upper-level objective w.r.t. θ, i.e., ∇θL(θ, {Ti}Ni=1). The
meta-gradient is different for different algorithms because different algorithms use different ways to
compute the task specific adaptations πi(θ). Here, we provide the meta-gradients for several major
MRL algorithms, including MAML (Finn et al., 2017; Fallah et al., 2021), iMAML (Rajeswaran
et al., 2019), and context-based MRL (e.g., CAVIA (Zintgraf et al., 2019a)).

Lemma 4. The meta-gradients for MAML, iMAML, and CAVIA are respectively:

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

[I + α∇2
θθJi(πθ)]∇θiJi(πθi), (MAML)

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

[1 +
1

λ̄
∇2
ψψJi(πθ′i)]

−1∇θiJi(πθi), (iMAML)

∇θL(θ, {Ti}Ni=1) =
1

N

N∑
i=1

∇θJi(πθ(·|·, ψ′′
i )), (CAVIA)

where α is a step size, θi = θ+α∇θJi(πθ), ∇θiJi(πθi) = E(s,a)∼ρπθi [∇θi log πθi(a|s)A
πθi
i (s, a)],

∇2
θθJi(πθ) = E(s,a)∼ρπθ

[∑∞
t=0 γ

t∇θE(s,a)∼ρπθ [log πθ(a|s)Qπθ
i (s, a)](∇θ log πθ(a|s))⊤ +

∇2
θθE(s,a)∼ρπθ [log πθ(a|s)Qπθ

i (s, a)]
]
, λ̄ is a hyper-parameter, θ′i = argmaxψ Ji(πψ) +

λ̄
2 ||ψ −

θ||2, πθ(·|·, ψ′′
i ) is a context-based policy where ψ′′

i = ψ0 + α∇ψJi(πθ(·|·, ψ0)) is the context.

Proof. MAML computes the task-specific adaptation via one-step gradient ascent. Specifically,
suppose the task-specific adaptation is πθi = πi(θ), and thus θi = θ + α∇θJi(πθ). Therefore,
the meta-gradient is ∇θL(θ, {Ti}Ni=1) = 1

N

∑N
i=1 ∇θJi(πθi) = 1

N

∑N
i=1(∇θθi)

⊤∇θiJi(πθi) =
1
N

∑N
i=1[I + α∇2

θθJi(πθ)]∇θiJi(πθi). From (Fallah et al., 2021), we can get that the
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policy gradient is ∇θiJi(πθi) = E(s,a)∼ρπθi [∇θi log πθi(a|s)A
πθi
i (s, a)] and the Hessian

is ∇2
θθJi(πθ) = E(s,a)∼ρπθ

[∑∞
t=0 γ

t∇θE(s,a)∼ρπθ [log πθ(a|s)Qπθ
i (s, a)](∇θ log πθ(a|s))⊤ +

∇2
θθE(s,a)∼ρπθ [log πθ(a|s)Qπθ

i (s, a)]
]
.

iMAML solves the optimization problem to get the task-specific adaptation πθ′i such that θ′i =

argmaxψ Ji(πψ) +
λ̄
2 ||ψ − θ||2 where λ̄ is a hyper-parameter. Since θ′i is the optimal parameter

of the problem maxψ Ji(πψ) +
λ̄
2 ||ψ − θ||2, we know that ∇ψJi(πθ′i) + λ̄(θ′i − θ) = 0. Take

gradient w.r.t. θ on both sides, we can get that (∇θθ
′
i)

⊤∇2
ψψJi(πθ′i)+ λ̄(∇θθ

′
i− I) = 0 ⇒ ∇θθ

′
i =

[1 + 1
λ̄
∇2
ψψJi(πθ′i)]

−1. Therefore, the meta-gradient is ∇θL(θ, {Ti}Ni=1) =
1
N

∑N
i=1 ∇θJi(πθi) =

1
N

∑N
i=1(∇θθi)

⊤∇θiJi(πθi) =
1
N

∑N
i=1[1 +

1
λ̄
∇2
ψψJi(πθ′i)]

−1∇θiJi(πθi).

CAVIA learns a context-based policy πθ(a|s, ψ′′
i ) and uses MAML-like method to update

ψ′′
i = ψ0 + α∇ψJi(πθ(·|·, ψ0)). Therefore, the meta-gradient is ∇θL(θ, {Ti}Ni=1) =

1
N

∑N
i=1 ∇θJi(πθ(·|·, ψ′′

i )).

H.2 OTHER GRADIENTS

This part provides the expressions of ∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )] and

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )] needed in Lemma 1.

Lemma 5. We have the following expressions:

∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇2
σσJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji ) +

N tr−N cri∑
i=1

∇2
σσJ

tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇ϕλ
λj

∫
(sjj′ ,ajj′ )∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
·

Ājj′ + ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′

]
,

where the expression of the second-order term ∇2
σσJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), λi) can be found in Lemma
4.

Proof. Recall that ϕ∗ = (µ∗, σ∗), θ = µ+ σ ◦ ζ, and ζ ∼ N (0, I). Therefore, we have that

∇σEPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)[∇σL(µ
∗ + σ∗ ◦ ζ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇σJ̄
cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λi) +
N tr−N cri∑
i=1

∇σJ
tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
. (9)

Therefore, we can get the Hessian:

∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇2
σσJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji ) +

N tr−N cri∑
i=1

∇2
σσJ

tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

where the expression of the second-order term ∇2
σσJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), λi) can be found in Lemma
4. Similarly, we can get that

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],
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= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), λζ̄ji ) +

N tr−N cri∑
i=1

∇2
σϕλ

J tr
i (π

tr
i (µ

∗ + σ∗ ◦ ζ))]
]
,

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j)
]
.

Now we need to derive the expression of ∇2
σϕλ

J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j). Suppose
we use MAML, and thus the first-order gradient ∇σJ̄

cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j) =
[I + α∇2

σσJ̄i(πµ∗+σ∗◦ζ , µλ + σλζ̄j)]∇θi J̄i(πθi , µλ + σλζ̄j)] where θi = µ∗ + σ∗ ◦ ζ +
α∇θJ̄i(πµ∗+σ∗◦ζ , µλ+σλζ̄j) and θ = µ∗+σ∗◦ζ. Following the first-order MAML method in (Fal-
lah et al., 2020), we use the gradient ∇σJ̄

cri
i (πcri

i (µ∗+σ∗◦ζ), µλ+σλζ̄j) = ∇σJ̄i(πθi , µλ+σλζ̄j)].
To get the term ∇2

σϕλ
J̄ cri
i (πcri

i (µ∗ + σ∗ ◦ ζ), µλ + σλζ̄j), we derive ∇θiϕλ
J̄i(πθi , µλ + σλζ̄j).

∇2
ϕλ,θi

J̄i(πθi , µλ + σλζ̄j) = ∇ϕλ
E

(sjj′ ,ajj′ )∼ρ̄
πθi,λj [∇θi log πθi(ājj′ |s̄jj′)Ājj′ ],

= ∇ϕλ

∫
(sjj′ ,ajj′ )∈S×A

ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′dajj′dsjj′ ,

= ∇ϕλ

∫
(sjj′ ,ajj′ )∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′

]
dajj′dsjj′ ,

= ∇ϕλ
λj ·

∫
(sjj′ ,ajj′ )∈S×A

∇λj

[
ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)Ājj′

]
dajj′dsjj′ ,

(a)
= ∇ϕλ

λj ·
∫
(sjj′ ,ajj′ )∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
Ājj′

+ ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′ ,

where (a) follows the fact that ∇λi
ρ̄πθi,λj (sjj′ , ajj′) = 0 and ∇θa log πθi(ājj′ |s̄jj′) because they

include indicator functions. Therefore, we have that

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

= Eζ∼N (0,I)

[ 1

N tr [

N cri∑
i=1

∇ϕλ
λj

∫
(sjj′ ,ajj′ )∈S×A

[
ρ̄πθi,λj (sjj′ , ajj′)

(
∇θis log πθi(ājj′ |s̄jj′)(sj − sj′)

)
·

Ājj′ + ρ̄πθi,λj (sjj′ , ajj′)∇θi log πθi(ājj′ |s̄jj′)(A
πθi
i (sj , aj)−A

πθi
i (sj′ , aj′)))

]
dajj′dsjj′

]
.

I PROOF OF THEOREM 1

This section first prove that the conditional mutual information I(θ; {T̄ cri
i (λi ∼

Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is CI -Lipschitz continuous and C̄I -smooth where CI and C̄I are
positive constants in Claim 1, and then prove that Algorithm 1 converges at the rate of O(1/

√
K).

Claim 1. The conditional mutual information is CI -Lipschitz continuous and C̄I -smooth where CI
and C̄I are positive constants.

Proof. From (8), we know that

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= Eλi

[
log

1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
− logEλi

[ 1√
|(σ∗({λζ̄i }N

cri

i=1))
⊤σ∗({λζ̄i }N

cri

i=1)|

]
,

where λζ̄i = µλ + σλζ̄i and ζ̄i ∼ N (0, 1). Therefore, we can get the gradient

∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N

cri

i=1|{T cri
i }N

cri

i=1),
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=
Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1 )]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1 )]||
− Eζ̄∼N (0,1)

[∇ϕλ
σ∗({λζ̄i }N

cri

i=1 )

||σ∗({λζ̄i }N
cri

i=1 )||
]
]
. (10)

Now, we consider the Hessian

∇2
ϕλϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N
cri

i=1|{T cri
i }N

cri

i=1),

= ∇ϕλ

Eζ̄∼N (0,1)[∇ϕλ
σ∗({λζ̄i }N

cri

i=1 )]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1 )]||
− Eζ̄∼N (0,1)

[
∇ϕλ

[∇ϕλ
σ∗({λζ̄i }N

cri

i=1 )

||σ∗({λζ̄i }N
cri

i=1 )||
]
]]
, ,

=
Eζ̄∼N (0,1)[∇2

ϕλϕλ
σ∗({λζ̄i }N

cri

i=1 )]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1 )]||

−
Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1 )](Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1 )])
⊤Eζ̄∼N (0,1)[∇ϕλ

σ∗({λζ̄i }N
cri

i=1 )]

||Eζ̄∼N (0,1)[σ
∗({λζ̄i }N

cri

i=1 )]||3

− Eζ̄∼N (0,1)

[∇2
ϕλϕλ

σ∗({λζ̄i }N
cri

i=1 )

||σ∗({λζ̄i }N
cri

i=1 )||
− ∇ϕλ

σ∗({λζ̄i }N
cri

i=1 )(σ
∗({λζ̄i }N

cri

i=1 ))
⊤∇ϕλ

σ∗({λζ̄i }N
cri

i=1 )

||σ∗({λζ̄i }N
cri

i=1 )||3

]
.

(11)

From (10), we know that if we can lower bound ||σ∗|| and upper bound ||∇ϕλ
σ∗||, the norm of

the gradient ∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is bounded. From (11), we know that if
we can lower bound ||σ∗|| and upper bound ||∇ϕλ

σ∗|| and ||∇2
ϕλϕλ

σ∗||, the norm of the Hessian

||∇2
ϕλϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ

(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| is bounded. Note that λ ∈ [0, 1] is bounded
within a compact set. Therefore, as long as we can prove that σ∗, ∇ϕλ

σ∗, and ∇2
ϕλϕλ

σ∗ are con-
tinuous in λ, their norms are both upper bounded and lower bounded. To show that σ∗, ∇ϕλ

σ∗,
and ∇2

ϕλϕλ
σ∗ are continuous in λ, we can show that they are differentiable w.r.t. λ. Since ϕλ is

differentiable w.r.t. λ, we only need to show that σ∗, ∇ϕλ
σ∗, and ∇2

ϕλϕλ
σ∗ are differentiable w.r.t.

ϕλ. This suffices to show that ∇ϕλ
σ∗, ∇2

ϕλϕλ
σ∗, and ∇3

ϕλϕλϕλ
σ∗ exist.

From Lemma 1, we know that ∇ϕλ
σ∗ exists and

∇ϕλ
σ∗ = −

[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

·

∇2
σϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )].

Since log πθ is smooth in θ (Assumption 1), we can see that L(θ, {T̄ cri
i (λ

ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 )

is also smooth in θ. Since θ is smooth in σ, L(θ, {T̄ cri
i (λ

ζ̄j
i )}Ncri

i=1 , {T tr
i }N

tr−Ncri

i=1 ) is also smooth in
σ. Similarly, we can derive

∇2
ϕλϕλ

σ∗ =
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

·

∇3
σσϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]·[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

−
[
∇2
σσEPϕ∗ (θ)[L(θ, {T̄ cri

i (λ
ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )]
]−1

·

∇3
σϕλϕλ

EPϕ∗ (θ)[L(θ, {T̄ cri
i (λ

ζ̄j
i )}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )],

and similarly we can derive the expression of ∇3
ϕλϕλϕλ

σ∗. Therefore, we can see that ||σ∗||,
||∇ϕλ

σ∗||, and ||∇2
ϕλϕλ

σ∗|| are both lower bounded and upper bounded, and thus there exists pos-

itive constants CI and C̄I such that ||∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| ≤ CI and
||∇2

ϕλϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ
(λ))}N cri

i=1|{T cri
i }N cri

i=1)|| ≤ C̄I .
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For simplicity, we denote f(ϕλ,k) = I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Claim 1 shows
that f(ϕλ,k) is C̄I -smooth, therefore, we have that

f(ϕλ,k+1) ≥ f(ϕλ,k) + ⟨∇ϕλ
f(ϕλ,k), ϕλ,k+1 − ϕλ,k⟩ −

C̄I
2
||ϕλ,k+1 − ϕλ,k||2,

(a)
= f(ϕλ,k) + β||∇ϕλ

f(ϕλ,k)||2 −
C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2,

(b)⇒ β||∇ϕλ
f(ϕλ,k)||2 ≤ f(ϕλ,k+1)− f(ϕλ,k) +

C̄IC
2
Iβ

2

2

(c)⇒ ||∇ϕλ
f(ϕλ,k)||2 ≤ C̄I

√
K

2
[f(ϕλ,k+1)− f(ϕλ,k)] +

C2
I√
K
,

⇒ 1

K

K−1∑
k=0

||∇ϕλ
f(ϕλ,k)||2 ≤ C̄I

2
√
K

[f(ϕλ,K)− f(ϕλ,0)] +
C2
I√
K
,

where (a) follows the fact that ϕλ,k+1 = ϕλ,k + β∇ϕλ
f(ϕλ,k), (b) follows the fact that

||∇ϕλ
f(ϕλ)|| ≤ CI , and (c) follows the fact that β = 2

C̄I

√
K

.

J PROOF OF THEOREM 2

This section proves Theorem 2 via two steps. Step (i): we prove that I(θ; {T̄ cri
i (λi ∼

Pϕλ,k
(λ))}N cri

i=1|{T cri
i }N cri

i=1) is monotonically increasing in Claim 2. Step (ii): we provide that
I(θ; {T̄ cri

i (λi ∼ Pϕλ,K
(λ))}N cri

i=1|{T cri
i }N cri

i=1) > 0.

Claim 2. If β < 2
C̄I

, the conditional mutual information is monotonically increasing, i.e.,

I(θ; {T̄ cri
i (λi ∼ Pϕλ,k+1(λ))}N

cri

i=1|{T cri
i }N cri

i=1) ≥ I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1), and
is strictly increasing if ||∇ϕλ

I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1)|| > 0.

Proof. For simplicity, we denote f(ϕλ,k) = I(θ; {T̄ cri
i (λi ∼ Pϕλ,k(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Therefore,
we have that

f(ϕλ,k+1)
(a)

≥ f(ϕλ,k) + ⟨∇ϕλ
f(ϕλ,k), ϕλ,k+1 − ϕλ,k⟩ −

C̄I
2
||ϕλ,k+1 − ϕλ,k||2,

(b)
= f(ϕλ,k) + β||∇ϕλ

f(ϕλ,k)||2 −
C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2,

⇒ f(ϕλ,k+1)− f(ϕλ,k) ≥
2β − C̄Iβ

2

2
||∇ϕλ

f(ϕλ,k)||2 ≥ 0 (12)

where (a) follows the fact that f(ϕλ) is C̄I -smooth (Claim 1), (b) follows the fact that ϕλ,k+1 =
ϕλ,k + β∇ϕλ

f(ϕλ,k). from (12), we can see that f(ϕλ,k+1) ≥ f(ϕλ,k). Moreover, f(ϕλ,k+1) >
f(ϕλ,k) if ||∇ϕλ

f(ϕλ,k)||2 > 0.

From Claim 2, we know that I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) ≥ I(θ; {T̄ cri
i (λi ∼

Pϕλ,0(λ))}N
cri

i=1|{T cri
i }N cri

i=1). The only situation where I(θ; {T̄ cri
i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) =

I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1) is that ∇ϕλ
I(θ; {T̄ cri

i (λi ∼ Pϕλ,0(λ))}N
cri

i=1|{T cri
i }N cri

i=1) =
0, i.e., the initialization is a stationary point, which is of zero probability. Therefore, we know that
I(θ; {T̄ cri

i (λi ∼ Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1). Since
conditional mutual information is always nonnegative (Wyner, 1978), we know that I(θ; {T̄ cri

i (λi ∼
Pϕλ,K(λ))}N cri

i=1|{T cri
i }N cri

i=1) > I(θ; {T̄ cri
i (λi ∼ Pϕλ,0(λ))}N

cri

i=1|{T cri
i }N cri

i=1) ≥ 0.

K THE TASK INFORMATION OF THE NON-CRITICAL TASKS STORED IN THE
META-PARAMETER DOES NOT CHANGE AFTER THE TASK AUGMENTATION

This section shows that the task information of the non-critical tasks stored in the meta-parameter
does not change after the task augmentation. In brief, we prove that the mutual information between
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the meta-parameter and the non-critical tasks remains unchanged even if the mutual information
between the meta-parameter and the critical tasks increases after task augmentation (i.e., the condi-
tional mutual information is positive).

Suppose we augment the critical tasks {T cri
i }N cri

i=1 to {T̄ cri
i }N cri

i=1. Note that the difference be-
tween {T cri

i }N cri

i=1 and {T̄ cri
i }N cri

i=1 is that they have different distributions, i.e., P ({T cri
i }N cri

i=1) and
P ({T̄ cri

i }N cri

i=1). Therefore, we use A to generally represent the critical tasks (either before augmen-
tation or after augmentation), and use P (A = {T cri

i }N cri

i=1) and P (A = {T̄ cri
i }N cri

i=1) to respectively
denote that A follows the distribution of {T cri

i }N cri

i=1 and A follows the distribution of {T̄ cri
i }N cri

i=1. We
now quantify the change of the mutual information between the meta-parameter and the non-critical
tasks {T tr

i }
N tr−N cri

i=1 :

I(θ; {T tr
i }N

tr−N cri

i=1 |{T̄ cri
i }N

cri

i=1)− I(θ; {T tr
i }N

tr−N cri

i=1 |{T cri
i }N

cri

i=1),

(a)
=

∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T̄ cri
i }N

cri

i=1)·

log
P (θ, {T tr

i }
N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1)

P (θ|{T̄ cri
i }N cri

i=1)P ({T tr
i }

N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1 )(d{T̄ cri
i }N

cri

i=1)

−
∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T cri
i }N

cri

i=1)·

log
P (θ, {T tr

i }
N tr−N cri

i=1 |{T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)P ({T tr
i }

N tr−N cri

i=1 |{T cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1 )(d{T cri
i }N

cri

i=1)

=

∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T̄ cri
i }N

cri

i=1) log
P (θ|{T tr

i }
N tr−N cri

i=1 , {T̄ cri
i }N cri

i=1)

P (θ|{T̄ cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1 )(d{T̄ cri
i }N

cri

i=1)

−
∫
P (θ, {T tr

i }N
tr−N cri

i=1 , {T cri
i }N

cri

i=1) log
P (θ|{T tr

i }
N tr−N cri

i=1 , {T cri
i }N cri

i=1)

P (θ|{T cri
i }N cri

i=1)
dθ(d{T tr

i }N
tr−N cri

i=1 )(d{T cri
i }N

cri

i=1),

(b)
=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1 )P (A = {T̄ cri
i }N

cri

i=1)·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1 )(dA)

−
∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1 )P (A = {T cri
i }N

cri

i=1)·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1 )(dA),

=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1 )
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)

P (θ|A)
dθ(d{T tr

i }N
tr−N cri

i=1 )(dA),

=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1 )
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log
P (θ|{T tr

i }
N tr−N cri

i=1 , A)∫
P (θ|{T tr

i }
N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1 )(d{T tr
i }

N tr−N cri

i=1 )
dθ(d{T tr

i }N
tr−N cri

i=1 )(dA),

(c)
=

∫
P (θ|{T tr

i }N
tr−N cri

i=1 , A)P ({T tr
i }N

tr−N cri

i=1 )
[
P (A = {T̄ cri

i }N
cri

i=1)− P (A = {T cri
i }N

cri

i=1)
]
·

log 1dθ(d{T tr
i }N

tr−N cri

i=1 )(dA),

= 0, (13)

where (a) follows the definition of conditional mutual information (Wyner, 1978), (b) follows the
fact that the critical tasks and the non-critical tasks are independent (i.e., P (θ, {T tr

i }
N tr−N cri

i=1 , A) =
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P (θ|{T tr
i }

N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1 , A) = P (θ|{T tr
i }

N tr−N cri

i=1 , A)P ({T tr
i }

N tr−N cri

i=1 )P (A)), and
(c) follows the fact that the non-critical tasks {T tr

i }
N tr−N cri

i=1 are given and thus P ({T tr
i }

N tr−N cri

i=1 ) = 1.

From (13), we can see that I(θ; {T tr
i }

N tr−N cri

i=1 |{T̄ cri
i }N cri

i=1) − I(θ; {T tr
i }

N tr−N cri

i=1 |{T cri
i }N cri

i=1) = 0, and
thus the information of the non-critical tasks stored in the meta-parameter does not change after the
task augmentation.

L PROOF OF LEMMA 2

In this section, we prove that the learned augmentation Pϕλ,K
(λ) imposes a quadratic regulariza-

tion on the original meta-objective. Let’s first consider J̄ cri
i (πcri

i (θ), λi). We use ϕi to denote the
parameter of the task-specific adaptation, i.e., πϕi = πcri

i (θ). Since we use MAML to compute the
task-specific adaptation, we know that ϕi = θ − α∇θJ

cri
i (πθ). We use s̄(λ) to represent s̄ to high-

light the mixing coefficient λ. Note that the action ā indirectly depends on λ because λ will affect
s̄ and s̄ will affect the distribution of πϕi(·|s̄). However, we do not need to directly reason about
how λ affects ā because we can capture this relation by analyzing how s̄ affects the distribution
πϕ(·|s̄). Therefore, we still use the notation ā instead of ā(λ). The RL objective of the augmented
task T̄ cri

i (λi) is:

Eλi∼N (µλ,K ,σ2
λ,K)

[
J̄ cri
i (πcri

i (θ), λi)
]
,

= E(s,a),(s′,a′)∼ρπϕi ,λi∼N (µλ,K ,σ2
λ,K)

[
log πϕi

(ā|s̄(λi))A
πϕi
i (s̄(λi), ā)

]
.

Let xi = 1− λi and Fi(xi) = log πϕi
(ā|s̄(λi))A

πϕi
i (s̄(λi), ā), therefore, the second-order approx-

imation of Fi(xi) is:

Fi(xi) ≈ Fi(0) + F ′
i (0)xi +

1

2
F ′′
i (0)x

2
i . (14)

We now derive the expression of F ′
i (0) and F ′′

i (0).

F ′
i (xi) =

∂Fi(xi)

∂s̄(λi)

∂s̄(λi)

∂xi
,

=
[
∇s log πϕi

(ā|s̄(λi)) ·A
πϕi
i (s̄(λi), ā) + log πϕi

(ā|s̄(λi)) · ∇sA
πϕi
i (s̄(λi), ā)

]⊤
(s′ − s)

⇒ F ′
i (0) =

[
∇s log πϕi

(a|s) ·Aπϕi
i (s, a) + log πϕi

(a|s) · ∇sA
πϕi
i (s, a)

]⊤
(s′ − s). (15)

We now reason about the second-order derivative:

F ′′
i (xi) =

∂

∂xi

[
∇s log πϕi(ā|s̄(λi)) ·A

πϕi
i (s̄(λi), ā) + log πϕi(ā|s̄(λi)) · ∇sA

πϕi
i (s̄(λi), ā)

]
(s′ − s)

= (s′ − s)⊤
[
∇2
ss log πϕi

(ā|s̄(λi)) ·A
πϕi
i (s̄(λi), ā) + 2(∇s log πϕi

(ā|s̄(λi)))⊤ · ∇sA
πϕi
i (s̄(λi), ā)

+ log πϕi
(ā|s̄(λi)) · ∇2

ssA
πϕi
i (s̄(λi), ā)

]
(s′ − s),

⇒ F ′′
i (0) = (s′ − s)⊤

[
∇2
ss log πϕi

(a|s) ·Aπϕi
i (s, a) + 2(∇s log πϕi

(a|s))⊤∇sA
πϕi
i (s, a)

+ log πϕi
(a|s)∇2

ssA
πϕi
i (s, a)

]
(s′ − s). (16)

By plugging (15)-(16) into (14), we have that

Fi(xi) ≈ log πϕi
(a|s)Aπϕi

i (s, a)

+
[
∇s log πϕi

(a|s) ·Aπϕi
i (s, a) + log πϕi

(a|s) · ∇sA
πϕi
i (s, a)

]⊤
(s′ − s)(1− λi)

+ (s′ − s)⊤
[
∇2
ss log πϕi

(a|s) ·Aπϕi
i (s, a) + 2(∇s log πϕi

(a|s))⊤∇sA
πϕi
i (s, a)

+ log πϕi
(a|s)∇2

ssA
πϕi
i (s, a)

]
(s′ − s)(1− λi)

2,
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= log πϕi
(a|s)Aπϕi

i (s, a) + Cλi
(s, a) + (s′ − s)⊤A

πϕi
i (s, a)

[
∇2
ss log πϕi

(a|s))
]
(s′ − s)(1− λi)

2,

(17)

where Cλi
(sj , aj) =

[
∇s log πϕi

(a|s) · Aπϕi
i (s, a) + log πϕi

(a|s) · ∇sA
πϕi
i (s, a)

]⊤
(s′ − s)(1 −

λi)+(s′−s)⊤
[
2(∇s log πϕi

(a|s))⊤∇sA
πϕi
i (s, a)+ log πϕi

(a|s)∇2
ssA

πϕi
i (s, a)

]
(s′−s)(1−λi)2.

Now we take a look at the term ∇2
ss log πϕi

(aj |sj). Recall that the softmax policy parameterization

πϕi(a|s) = eϕ
⊤
i f(s,a)∑

a′∈A eϕ
⊤
i

f(s,a′) , therefore we have that

∇2
ss log πϕi

(a|s) = ∇2
ss

[
ϕ⊤i f(s, a)− log

∑
a′∈A

eϕ
⊤
i f(s,a

′)
]
,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′) + ϕ⊤i (∇sf(s, a
′))(∇sf(s, a

′))⊤eϕ
⊤
i f(s,a

′)ϕi∑
a′∈A e

ϕ⊤
i f(s,a

′)

+
(
∑
a′∈A ϕ

⊤
i ∇sf(s, a

′)eϕ
⊤
i f(s,a

′))2

(
∑
a′∈A e

ϕ⊤
i f(s,a

′))2
,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)

− ϕ⊤i

[ [∑a′∈A(∇sf(s, a
′))(∇sf(s, a

′))⊤eϕ
⊤
i f(s,a

′)](
∑
a′∈A e

ϕ⊤
i f(s,a

′))− (
∑
a′∈A ∇sf(s, a

′)eϕ
⊤
i f(s,a

′))2

(
∑
a′∈A e

ϕ⊤
i f(s,a

′))2

]
ϕi,

= ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)
− ϕ⊤i H(s, a)ϕi, (18)

whereH(s, a) =
[
∑

a′∈A(∇sf(s,a
′))(∇sf(s,a

′))⊤eϕ
⊤
i f(s,a′)](

∑
a′∈A eϕ

⊤
i f(s,a′))−(

∑
a′∈A ∇sf(s,a

′)eϕ
⊤
i f(s,a′))2

(
∑

a′∈A eϕ
⊤
i

f(s,a′))2
≻

0 by Cauchy-Schwartz inequality. By plugging (18) in to (17), we have that

Fi(xi) ≈ log πϕi(a|s)A
πϕi
i (s, a) + Cλi(s, a) +A

πϕi
i (s, a)(s′ − s)⊤·[

ϕ⊤i ∇2
ssf(s, a)−

∑
a′∈A ϕ

⊤
i ∇2

ssf(s, a
′)eϕ

⊤
i f(s,a

′)∑
a′∈A e

ϕ⊤
i f(s,a

′)
− ϕ⊤i H(s, a)ϕi

]
(s′ − s)x2i ,

= log πϕi
(a|s)Aπϕi

i (s, a) + C̄λi
(s, a)− ϕ⊤i H̄

cri
λi
(s, a)ϕi,

(d)
= log πϕi

(a|s)Aπϕi
i (s, a) + C̄λi

(s, a)− (θ − α∇θJ
cri
i (πθ))

⊤H̄cri
λi
(s, a)(θ − α∇θJ

cri
i (πθ)),

= log πϕi(a|s)A
πϕi
i (s, a) + C̃λi(s, a)− θ⊤H̄cri

λi
(s, a)θ, (19)

where (d) follows the fact that ϕi = θ − α∇θJ
cri
i (πθ), C̄λi(s, a) = Cλi(s, a) +

A
πϕi
i (s, a)(s′ − s)⊤

[
ϕ⊤i ∇2

ssf(s, a) −
∑

a′∈A ϕ⊤
i ∇2

ssf(s,a
′)eϕ

⊤
i f(s,a′)∑

a′∈A eϕ
⊤
i

f(s,a′)

]
(s′ − s)x2i , H̄cri

λi
(s, a) =

A
πϕi
i (s, a)H(s, a)(s′ − s)x2i ≻ 0 given that H(s, a) ≻ 0, and C̃λi(s, a) = C̄λi(s, a) −

α2(∇θJ
cri
i (πθ))

⊤H̄cri
λi
(s, a)(∇θJ

cri
i (πθ)).

Therefore, we have that

J̄ cri
i (πcri

i (θ), λi) = E(s,a),(s′,a′)∼ρπϕi [Fi(xi)]

(e)
= E(s,a)∼ρπϕi

[
log πϕi(a|s)A

πϕi
i (s, a) + C̃λi(s, a)− θ⊤H̄cri

λi
(s, a)θ

]
,

= J cri
i (πcri

i (θ)) + C̃λi − θ⊤H̄cri
λi
θ,

where (e) follows (19), C̃λi
= E(s,a)∼ρπϕi [C̃λi

(s, a)], and H̄cri
λi

= E(s,a)∼ρπϕi [H̄
cri
λi
(s, a)] ≻

0 given that H̄cri
λi
(s, a) ≻ 0. If we only consider the second-order term, we

can see that J̄ cri
i (πcri

i (θ), λi) ≈ J cri
i (πcri

i (θ)) − θ⊤H̄cri
λi
θ. Therefore, we have that
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L(θ, {T̄ cri
i (λi)}N

cri

i=1 , {T tr
i }N

tr−Ncri

i=1 ) ≈ L(θ, {T tr
i }Ntr

i=1)−θ⊤(
∑N cri

i=1 H̄
cri
λi
)θ where (

∑N cri

i=1 H̄
cri
λi
) ≻ 0

given that H̄cri
λi

≻ 0. Thus we have that Eλi∼Pϕλ,K
(λ)[L(θ, {T̄ cri

i (λi)}N
cri

i=1 , {T tr
i }N

tr−Ncri

i=1 )] ≈

L(θ, {T tr
i }Ntr

i=1)− θ⊤(
∑N cri

i=1 H̄
cri
i )θ where H̄cri

i = Eλi∼Pϕλ,K
(λ)[H̄

cri
λi
] ≻ 0 given that H̄cri

λi
≻ 0.

M EXPERIMENT DETAILS

To update the meta-parameter, we need to sample 20 trajectories for each task and we use data
mixup augmentation to generate another 20 trajectories for the critical tasks. For a fair comparison,
the baselines use 40 sampled trajectories for the critical tasks to update the meta-parameter.

M.1 FEASIBILITY OF THE AUGMENTED STATE

Recall that the augmented state s̄ = λis+(1−λi)s′ is a convex combination of the two states s and
s′. These two states (s, s′) are both valid states because they are visited by the policy. Therefore,
their convex combination s̄ will always be a feasible state in the state space if the state space is
convex. In our experiments, the state spaces are all convex and thus the augmented state s̄ is always
a feasible state.

M.2 HOW TO FIND POORLY ADAPTED TASKS

The poorly adapted tasks are neither the training tasks nor the testing tasks, but a third kind of
tasks: validation tasks. Specifically, we have three kind of tasks: training tasks, validation tasks,
and testing tasks. The original meta-policy π0 is trained on the training tasks, and we find poorly
adapted validation tasks. We then identify the critical training tasks to explain these poorly adapted
tasks, augment the critical tasks, and retrain a meta-policy on the augmented critical tasks and the
other training tasks. The generalization is evaluated on the testing tasks. The poorly adapted tasks
are automatically selected, and we discuss how to select the poorly adapted tasks in Appendix M.3,
M.4, and M.5. Take the MuJoCo experiment as an example, we randomly sample 50 validation tasks
and compute the cumulative reward of the meta-policy π0 after adaptation. We pick the top 20%
tasks with the smallest cumulative reward as the poorly adapted tasks.

M.3 DRONE NAVIGATION WITH OBSTACLES

We cannot run the meta-learning algorithm directly on the physical AR.Drone 2.0 because during
training, the drone needs to interact with the environment and can be damaged due to collision with
the obstacle and the wall. Therefore, we build a simulator in Gazebo (Figure 3) that mimics the
physical environment with the scale of 1 : 1. We run the meta-learning algorithm on the simulated
drone in the simulator. By using the simulator, we can avoid damage of the physical drone. Once
we obtain a learned policy that has good performance in the simulator, we implement the policy on
the physical drone and count the successful rate.

Figure 3: Simulator

Discussion of the sim-to-real problem. In some cases, the policy that has
good performance in the simulator may not have good performance in the
real world due to the discrepancy between the simulator and the real world.
However, in our case, the sim-to-real issue is not significant because of two
reasons: (i) the simulated drone is built according to the dynamics of a real
Ar. Drone 2.0 (Huang & Sturm, 2014); (ii) the states and actions in our case
are just the coordinates of the location and the heading direction of the drone
instead of some low-level control such as the motor’s velocity, rotation direc-
tion, etc. Given that Vicon can monitor precise pose of the physical drone and
the simulator is built on the 1 : 1 scale, if a learned trajectory can succeed
in the simulator, it can succeed in the real world as long as that the low-level
control of both the simulated and physical drones can strictly follow the ac-
tions.

In this experiment, the state of the drone is its 3-D coordinate (x, y, z) and the
action of the drone is also a 3-D coordinate (dx, dy, dz) which captures the heading direction of the
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drone. We fix the length of each step as 0.1 and thus the next state is (x+ dx

10
√

(dx)2+(dy)2+(dz)2
, y+

dy

10
√

(dx)2+(dy)2+(dz)2
, z + dz

10
√

(dx)2+(dy)2+(dz)2
). In this experiment, we do not need the drone

to change its height so that we usually fix the value of z and set dz = 0. The goal is an 1 × 1
square. Denote the coordinate of the center of the goal as (xgoal, ygoal), then for all the different
tasks, xgoal ∈ (0.5, 7.5) and ygoal ∈ (8, 11). The obstacle is a 3× 1 square. Denote the coordinate of
the lower left corner of the obstacle as (xobstacle, yobstacle), then for different tasks, xobstacle ∈ (0, 4)
and yobstacle ∈ (4, 5).

Figure 4: Task visu-
alization

We first sample 50 training tasks to learn a meta-policy. We then randomly
sample 10 tasks and find the top 3 tasks where the meta-policy adapts with the
worst performance. These 3 tasks are the poorly adapted tasks. We run our
algorithm on the 50 training tasks to find critical tasks and improve general-
ization. To evaluate the generalization performance, we randomly sample 100
test tasks. In Figure 4, the red points and orange points are the goals of the
50 training tasks. The green points are the goals of the top 3 poorly adapted
test tasks. The five orange points are the identified critical training tasks. We
can see that the green points are far from the red points and thus are poorly
adapted. The identified critical tasks are the training tasks whose goals are
closest to the goals of the poorly adapted test tasks.

M.4 STOCK MARKET

We use the real-world data of 30 constitute stocks in Dow Jones Industrial Average from 2021-
01-01 to 2022-01-01. The 30 stocks are respectively: ‘AXP’, ‘AMGN’, ‘AAPL’, ‘BA’, ‘CAT’,
‘CSCO’, ‘CVX’, ‘GS’, ‘HD’, ‘HON’, ‘IBM’, ‘INTC’, ‘JNJ’, ‘KO’, ‘JPM’, ‘MCD’, ‘MMM’,
‘MRK’, ‘MSFT’, ‘NKE’, ‘PG’, ‘TRV’, ‘UNH’, ‘CRM’, ‘VZ’, ‘V’, ‘WBA’, ‘WMT’, ‘DIS’, ‘DOW’.

The state of the stock market MDP is the perception of the stock market, including the open/close
price of each stock, the current asset, and some technical indices (Liu et al., 2021). The action
has the same dimension as the number of stocks where each dimension represents the amount of
buying/selling the corresponding stock. The detailed formulation of the MDP can be found in FinRL
(Liu et al., 2021).

The turbulence index is a technical index of stock market and is included as a dimension of the
state (Liu et al., 2021). The turbulence index measures the price fluctuation of a stock. If the
turbulence index is high, the corresponding stock has a high fluctuating price and thus is risky to
buy. Therefore, an investor unwilling to take risks has a relatively low turbulence threshold. The
function p2 is defined as the amount of buying the stocks whose turbulence index is larger than the
turbulence threshold. Therefore, the more the target investor buys the stocks whose turbulence index
is larger than the turbulence threshold, the larger p2 will be and thus the smaller reward the target
investor will receive. For different tasks, we randomly sample the turbulence threshold between 45
and 50.

We first sample 50 training tasks to learn a meta-policy. We then randomly sample 10 tasks and
find the top 3 tasks where the meta-policy adapts with the worst performance. These 3 tasks are the
poorly adapted tasks. We run our algorithm on the 50 training tasks. To evaluate the generalization
performance, we randomly sample 100 test tasks.

M.5 MUJOCO

The target velocity problem of MuJoCo is a standard problem for MRL (Finn et al., 2017; Fallah
et al., 2021). We follow the standard setting in (Finn et al., 2017) to study the target velocity prob-
lem of two MuJoCo robots: HalfCheetah and Ant, where the episode length is 200. In the original
HalfCheetah environment, the reward function is forward reward-ctrl cost where the forward re-
ward is the velocity of the robot. In the target velocity task, we do not change ctrl cost and we
change forward reward as −|v − vtarget| where v is the current robot velocity and vtarget is the target
velocity. In the original Ant environment, the reward function is healthy reward+forward reward-
ctrl cost-contact cost, and we only change forward reward as −|v − vtarget|. Following (Finn et al.,
2017), we choose the target velocity range of HalfCheetah as [0, 2] and the target velocity range
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of Ant as [0, 3]. For both HalfCheetah and Ant scenarios, we sample 100 training tasks. We find
10 poorly adapted tasks and run our algorithm on the 100 training tasks to find critical tasks and
improve generalization. To evaluate the generalization performance, we randomly sample 200 test
tasks.

M.6 COMPUTATION TIME AND STATISTICAL SIGNIFICANCE TEST

We provide computation time below. The code was run on a Windows 10 laptop whose CPU is Intel
Core i9 12900k. The computation time comparison between our method (XMRL) and the three
baselines (TW, MA, MR) is a fair comparison. We first explain why it is a fair comparison and then
introduce how we accelerate our pipeline.

Our method is a post-training of the base MRL (e.g., MAML) algorithm where we assume that
there is already a meta-policy π0. In the experiment, this meta-policy π0 is first computed by the
baseline MAML. Our pipeline includes three steps to improve this π0: finding poorly adapted task,
finding critical tasks as the explanation, and learning an augmentation. The computation time of our
method reported in Appendix M.5 includes the time for these steps but does not include the time for
computing the meta-policy π0. For a fair comparison, the other three baselines uses π0 as an initial
policy and does not include the computation time for π0. Therefore, the comparison is fair because
both our method and the three baselines start from π0 and do not include the computation time for
π0.

We next explain how we accelerate our pipeline. The first step (i.e., finding poorly adapted tasks) is
very fast because we just randomly sample 10-50 tasks (depending on different experiments), adapt
π0 to each task, and pick the top 20% tasks with the lowest cumulative reward. This step takes less
than 10 minutes. The time-consuming part is the last two steps where we need to solve two bilevel
optimization problems where problem (2) is to find the critical tasks and problem (3) is to learn
an augmentation and corresponding meta-policy. The traditional double-loop algorithm (e.g., the
one used in TW) is time-consuming because it uses two nested loops where at each iteration in the
outer loop, it first fully solves the lower-level problem in the inner loop and then partially solves the
upper-level problem via one-step gradient descent. In contrast, we use a single-loop algorithm which
only has one loop. At each iteration, we partially solve both the upper-level and lower-level problem
via one-step gradient descent. We can see that the single-loop algorithm can be significantly faster
because it avoids the nested-loop structure.

Table 2: Computation time.

MAML MAML+XMRL MAML+TW MAML+MA MAML+MR

Drone 2h33min 4h05min 3h58min 3h29min 2h55min
Stock Market 3h51min 5h06min 5h15min 4h39min 4h48min
HalfCheetah 6h47min 8h22min 9h53min 7h37min 7h28min

Ant 7h28min 9h27min 10h32min 8h38min 9h15min

We provide statistical significance test below. Table 3 shows the p-values. We choose the sig-
nificance value α = 0.05. The results in Table 3 demonstrate that our method (MAML+XMRL)
significantly outperforms MAML in all the four scenarios while the other three baseline methods do
not significantly outperform MAML.

Table 3: P-values from paired t-tests comparing each method to MAML (α = 0.05).

MAML+XMRL MAML+TW MAML+MA MAML+MR

Drone 6.3× 10−8 1.0000 0.0071 0.0071
Stock Market 0.00032 0.7870 0.0203 0.7540
HalfCheetah 5.5× 10−6 0.2060 0.0770 0.0174

Ant 3.2× 10−5 0.7890 0.0574 0.2230
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M.7 MINOR DEGRADATION ON FEW TASKS

Focusing on the critical tasks can potentially degrade some tasks that originally perform well, how-
ever, the statistical performance over the task distribution improves (shown in Table 1). Here we
conduct an evaluation to separately report (i) the performance on the original poorly adapted tasks,
(ii) the performance on the original non-poorly adapted tasks, (iii) the percentage of tasks with
degradation in the original non-poorly adapted tasks, and (iv) performance drop for degraded tasks.
For example, if the performance of a non-poorly adapted task drops from 100 to 90, then the perfor-
mance drop is 10%. We report the average performance drop over all degraded tasks.

MAML Our method (MAML+XMRL)

Drone
poorly adapted tasks 0.55 0.93

non-poorly adapted tasks 0.95 0.98
percentage of degradation N/A 0%

performance drop for degraded tasks N/A N/A

Stock market
poorly adapted tasks 71.05 381.33

non-poorly adapted tasks 431.15 431.08
percentage of degradation N/A 5%

performance drop for degraded tasks N/A 3.8%

HalfCheetah
poorly adapted tasks -162.09 -55.00

non-poorly adapted tasks -45.59 -42.10
percentage of degradation N/A 2.5%

performance drop for degraded tasks N/A 2.7%

Ant
poorly adapted tasks 39.68 99.67

non-poorly adapted tasks 115.88 124.02
percentage of degradation N/A 5%

performance drop for degraded tasks N/A 2.0%

The above results demonstrate that (i) the average performance on the poorly adapted tasks signif-
icantly improves, (ii) the average performance on the non-poorly adapted tasks does not degrade,
(iii) only a very small portion (less or equal to 5%) of non-poorly adapted tasks degrade, (iv) even
for degraded tasks, the performance drop is minor (less than 4%).

M.8 ABLATION STUDY ON THE NUMBER OF CRITICAL TASKS N CRI

In this section, we study how the number of critical tasks N cri affects the generalization perfor-
mance. In specific, we vary the number of critical tasks and plot the corresponding generalization
performance in Figure 5. Since the numbers of training tasks are different for different scenarios,
the x-axis in Figure 5 is the percentage of critical tasks in the training tasks instead of the number of
critical tasks. Note that the percentage of critical tasks must be less than 50%. The reason is that, if
the critical tasks are the majority (i.e., more than 50%), the meta-policy will overfit over the critical
tasks and perform well on the tasks similar to critical tasks. Recall that the definition of critical tasks
is the tasks that are most important to perform well on poorly adapted tasks, which is a contradiction.

(a) Drone (b) Stock Market (c) HalfCheetah (d) Ant

Figure 5: Ablation study on the number of critical tasks.

Figure 5 shows that the optimal percentage of critical tasks is different for different tasks. The
optimal percentage is 10% for drone, 30% for Stock Market, and 10% for HalfCheetah and Ant.
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Moreover, we can see that the generalization performance will becomes worse if the number of
critical tasks is too large. The reason is that there are “false positives” in the critical tasks. Take the
Drone experiment as an example, after solving the problem (2), we find that there are only 12 training
tasks whose corresponding weights are larger than 1 and the rest trainng tasks have weights smaller
than 1, i.e., only 12/50 = 24% training tasks are really helpful to improve the poorly adapted tasks
and the rest training tasks are not helpful. However, if we still include those non-helpful tasks as
critical tasks, those non-helpful tasks may prevent the meta-policy from generalizing well to tasks
similar to the poorly adapted tasks. Note that even if augmenting the “false positives” tasks can
lead to a decline of generalization performance, the generalization performance is still better than
MAML where no tasks are augmented.

M.9 ABLATION STUDY ON THE AUGMENTATION METHOD

In this section, we include an ablation study to show the effectiveness of our augmentation method.
In specific, the previous data mixup augmentation methods (Yao et al., 2021; Wang et al., 2020;
Zhang et al., 2018) use a predefined Beta distribution P (λ) = Beta(α, α) where α = 1 to sam-
ple λi. In contrast, we propose to optimize the distribution P (λ) by solving the problem (6). To
show the effectiveness of our method, we compare to a method that uses the predefined distribution
P (λ) = Beta(1, 1) to augment the critical tasks, we refer to this method as “predefined augmenta-
tion”. We also choose different number of critical tasks N cri to find the case where the predefined
augmentation method performs the best. We find that the optimal number of critical tasks of the
predefined augmentation method is same as the one of our method.

Table 4: Comparison of augmentation methods.

Experiment Drone Stock market HalfCheetah Ant

Ours 0.97± 0.01 421.13± 12.11 −44.67± 4.35 119.15± 4.02
Predefined augmentation 0.93± 0.02 394.16± 16.85 −58.53± 4.82 109.62± 5.47

Table 4 shows that our method significantly outperforms the method that uses the predefined distri-
bution P (λ) = Beta(1, 1) to augment the critical tasks.

M.10 EVALUATION OF THE EXPLANATION

This section evaluates the fidelity and usefulness of the explanation.

Evaluation of fidelity. Fidelity means the correctness of the explanation. Recall that the explanation
(i.e., the critical tasks) aims to identify the most important training tasks to achieve high cumulative
reward on the poorly adapted tasks. To evaluate the fidelity, we train a meta-policy on the critical
tasks and evaluate the performance of the meta-policy on the poorly adapted tasks. We introduce
two baselines for comparison. The first baseline is the “original meta-policy” that trains on all the
training tasks. We refer to this baseline as “original”. The second baseline is that we randomly pick
N cri training tasks and train a meta-policy over the N cri training tasks. We refer to this baseline as
“random”. Note that we chose N cri as the optimal number of critical tasks (shown in Figure 5), i.e.,
10 for Drone, 15 for Stock Market, and 10 for HalfCheetah and Ant. We compare the performance
on the poorly adapted tasks with these two baselines.

Table 5: Fidelity comparison.

Experiment Drone Stock market HalfCheetah Ant

Ours 0.97± 0.02 442.29± 12.79 −37.14± 5.15 132.62± 5.15
Original 0.68± 0.16 296.27± 35.16 −104.79± 12.72 62.47± 11.03
Random 0.71± 0.08 284.97± 29.85 −96.78± 9.24 65.25± 3.10

Table 5 shows that our explanation has high fidelity because the meta-policy trained on our expla-
nation significantly outperforms the two baselines on the poorly adapted tasks.
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Evaluation of usefulness. Usefulness means whether the explanation can indeed help improve
generalization. Table 1 already shows that our method (XMRL) can significantly improve MAML.
However, this might be the effect of the task augmentation method. To evaluate whether the critical
tasks help improve generalization. We randomly pickN cri training tasks and use the same algorithm
(Algorithm 1) to augment these critical tasks. The choice of N cri is same as the one we use to
evaluate the fidelity. We refer to this method as random, and we compare the generalization of our
method with this random method.

Table 6: Usefulness comparison.

Experiment Drone Stock market HalfCheetah Ant

MAML 0.87± 0.01 359.13± 18.63 −68.89± 4.36 100.64± 3.63
Ours 0.97± 0.01 421.13± 12.11 −44.67± 4.35 119.15± 4.02

Random 0.89± 0.02 365.16± 11.07 −71.12± 5.09 104.98± 3.65

Table 6 shows that our explanation has high usefulness because randomly pick N cri training tasks
and augment can only slightly improve the generalization, while our method can significantly im-
prove generalization.

M.11 META-WORLD EXPERIMENT

In this section, we conduct an experiment on ML10 of Meta-World. We first validate our observation
that ”π0 adapts well to some tasks but poorly to others”. In particular, we first use MAML to train a
meta-policy π0 and evaluate π0 on the test tasks of ML10. We report the results below:

Table 7: MAML generalization on ML10 test tasks (success rate).

door close drawer open level pull shelf place sweep into average

0.86 0.35 0.26 0.00 0.00 0.29

Table 7 validates that the imbalanced generalization indeed exists where π0 adapt well to the task
of “door close” but adapts poorly to the tasks of “shelf place” and “sweep into”. We next evaluate
our method MAML+XMRL and the baselines (MAML+TW, MAML+MA, and MAML+MR) on
ML10. In addition, we compare with two state-of-the-art MRL algorithms: SDVT (Lee et al., 2023)
and ECET (Shala et al., 2025).

Table 8: Performance to ML10 test tasks (success rate).

door close drawer open level pull shelf place sweep into average

MAML 0.86 0.35 0.26 0.00 0.00 0.29
MAML+XMRL 0.85 0.38 0.25 0.09 0.26 0.37

MAML+TW 0.72 0.29 0.28 0.00 0.24 0.31
MAML+MA 0.82 0.38 0.22 0.00 0.02 0.29
MAML+MR 0.87 0.33 0.26 0.04 0.00 0.30

SDVT 0.08 0.65 0.01 0.00 0.90 0.33
ECET 0.58 0.26 0.24 0.04 0.46 0.32

The results in Table 8 demonstrate that our method can significantly outperform MAML by more
than 20% (in terms of average success rate), and outperform the other baselines. Note that while
MAML+XMRL outperforms MAML in terms of average success rate, its success rates on “door
close” and “level pull” are slightly lower than MAML. This is reasonable because it is not expected
that MAML+XMRL can outperform MAML on every task according to no free lunch theorem.

Statistical significance test. We provide p-values from paired t-tests below where we choose the
significance value α = 0.05.
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Table 9: P-values from paired t-tests comparing each method to MAML on ML-10 (α = 0.05).

door close drawer open level pull shelf place sweep into average

MAML+XMRL 0.0209 0.0095 0.1192 0.0065 0.0000 0.0081
MAML+TW 0.0001 0.0039 0.1945 0.2589 0.0000 0.2551
MAML+MA 0.0041 0.0183 0.0340 0.4784 0.2850 0.5765
MAML+MR 0.0490 0.3747 0.0159 0.0010 0.4469 0.9293

SDVT 0.0000 0.0000 0.0000 0.7373 0.0000 0.1087
ECET 0.0000 0.0007 0.0021 0.0097 0.0000 0.0586

The results in Table 9 demonstrate that our method MAML+XMRL significantly outperforms
MAML in terms of average success rate as its p-value is under the significance threshold. Among the
other five baselines, only the p-value of ECET is close to but still above the significance threshold.

Ablation study on the number of critical tasks N cri. We vary the number of critical tasks and
record the corresponding success rates of MAML+XMRL below. Similarly as in Appendix M.8,
we report the performance against the percentage of critical tasks. Please refer to Appendix M.8 for
design details.

Table 10: Average success rates against percentages of critical tasks on ML10

Percentage of critical tasks 0% 10% 20% 30% 40% 50%

Success rate 0.29 0.33 0.37 0.32 0.28 0.20

The results in Table 10 demonstrate that our method achieves the highest performance when the
critical task are 20% of the training tasks.

Ablation study on the augmentation method. To demonstrate the effectiveness of our learned
augmentation method, we compare our method to a predefined augmentation distribution P (λ) =
Beta(1, 1). Please refer to Appendix M.9 for design details.

Table 11: Comparison of augmentation methods on ML10.

door close drawer open level pull shelf place sweep into average

Our method 0.85 0.38 0.25 0.09 0.26 0.37
Predefined augmentation 0.83 0.37 0.24 0.00 0.09 0.31

The results in Table 11 validate the effectiveness of our learned augmentation as it outperforms a
predefined augmentation distribution.

Evaluation of the explanation. We follow the setup in Appendix M.10 and evaluate the fidelity and
usefulness of our method below. Please refer to Appendix M.10 for definitions of fidelity, usefulness,
and the comparison baselines.

Table 12: Fidelity and usefulness comparison on ML10.

Fidelity Usefulness
Ours Original Random MAML Ours Random

0.24 0.00 0.02 0.29 0.37 0.31

The results in Table 12 demonstrate that our explanation has high fidelity and high usefulness.
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N LIMITATIONS

Despite the benefits of our proposed algorithms, the limitation of our method is that we require to
interact with the environment to collect augmented data, which makes it infeasible for offline RL
cases. We will explore how to extend our method to the offline RL case in future works.

O THE USE OF LLMS

We use LLMs to help polish paragraphs in the introduction.
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