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ABSTRACT

A common and effective human strategy to improve a poor outcome is to first
identify prior experiences most relevant to the outcome and then focus on learn-
ing from those experiences. This paper investigates whether this human strategy
can improve generalization of meta-reinforcement learning (MRL). MRL learns a
meta-prior from a set of training tasks such that the meta-prior can adapt to new
tasks in a distribution. However, the meta-prior usually has imbalanced general-
ization, i.e., it adapts well to some tasks but adapts poorly to others. We propose
a two-stage approach to improve generalization. The first stage identifies “crit-
ical” training tasks that are most relevant to achieve good performance on the
poorly adapted tasks. The second stage improves generalization by encourag-
ing the meta-prior to pay more attention to the critical tasks. We use conditional
mutual information to mathematically formalize the notion of “paying more atten-
tion”. We formulate a bilevel optimization problem to maximize the conditional
mutual information by augmenting the critical tasks and propose an algorithm to
solve the bilevel optimization problem. We theoretically guarantee that (1) the
algorithm converges at the rate of O(1/+/K) and (2) the generalization improves
after the task augmentation. We use two real-world experiments, two MuJoCo
experiments, and a Meta-World experiment to validate the algorithm.

1 INTRODUCTION

Meta-reinforcement learning (MRL) learns a meta-prior from a set of training tasks where each
training task is an RL problem and is drawn from an implicit task distribution. The predominant
approach in existing works (Beck et al. 2023) is to learn a meta-policy as the meta-prior. In this
paper, we follow this standard setting and denote the learned meta-policy by my. The goal is for 7y to
generalize effectively across the task distribution. However, both prior works (Dhillon et al.| 2019;
Nguyen et al, 2021} [Yu et al., 2020) and our empirical findings (see Appendix [M.9) indicate that
7o usually adapts well to some tasks but poorly to others. This paper proposes a method to improve
generalization of the meta-policy my. Our method is inspired by an effective strategy that humans
commonly use in daily life to improve a poor outcome, where humans first identify prior experiences
most relevant to the poor outcome and then focus on learning from these experiences to improve
the outcome. For example, if a student fails some problems in an exam, a common improvement
strategy for the student is to find similar problems from previous homework and focus more on these
problems in future study. Our approach consists of two stages. The first stage identifies “critical”
training tasks most important to the poorly adapted tasks. The second stage encourages m to focus
more on the critical tasks to improve generalization of 7y. Note that our approach operates in a post
hoc setting, i.e., after the MRL algorithm has already produced a meta-policy 7.

The first stage proposes an example-based explanation method to identify the training tasks most
relevant to the poorly adapted tasks. Example-based explanation is widely used in explainable ma-
chine learning (Caruana et al.,|1999; Sun et al.| [2024)) to explain a model’s decision through relevant
examples. It is inspired by the observation that humans usually use relevant experiences to interpret
anew thing (Crabbé et al.,|2021). In our case, we formulate a bilevel optimization problem where the
upper level learns a weight vector to weight each training task such that the corresponding weighted
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meta-policy performs best on the poorly adapted tasks and the lower level learns this weighted meta-
policy. The training tasks with highest weights are the most important/relevant tasks to achieve good
performance on the poorly adapted tasks. We refer to these training tasks as “critical” tasks.

The second stage improves generalization by encouraging the meta-policy to pay more attention to
the critical tasks. We mathematically formalize the notion of “attention” through an information-
theoretic lens. Specifically, we use the mutual information between the meta-policy and the critical
tasks to quantify the task information of the critical tasks stored in the meta-policy (Yin et al., 2019
Yao et al) [2021). An increase in mutual information indicates that the meta-policy stores more
information of the critical tasks and thus pays more attention to the critical tasks. To increase this
mutual information, we propose to augment the critical tasks by generating augmented data. The
augmented data enhances data diversity of the critical tasks and contains additional information.
Therefore, it is expected that the meta-policy trained on the augmented data stores more information
of the critical task. Data augmentation has been applied to RL (Wang et al., 20205 |[Laskin et al., [2020)
and meta-learning (Yao et al.,|2021; Rajendran et al., [2020)), but these methods use predefined rules
to augment the data. While the predefined augmentation rules can increase the task information of
the critical tasks stored in the meta-policy, they do not maximally increase such stored information.
Motivated by (Yin et al.l [2019) which improves generalization by maximizing mutual information
between the task data and meta-parameter, we formulate a bilevel optimization problem. In the upper
level, we learn how to augment the critical tasks to maximally increase the stored information. To
achieve this, we use conditional mutual information (CMI) to quantify the additional information of
the critical tasks stored in the meta-policy after the task augmentation, and learn an augmentation
method to maximize CMI. The difficulty of the upper-level optimization is to compute a distribution
of the meta-policy. Therefore, the lower level formulates a distributional optimization problem
where a meta-policy distribution corresponding to the current augmentation is learned.

We include related works in Appendix |A]and summarize our contributions as follows.

Contribution statement. This paper proposes to leverage explanation to improve generalization of
the specific meta-policy my. Our contributions are threefold:

First, we propose an example-based explanation method to identify the critical training tasks that
are most important/relevant to the poorly adapted tasks as an explanation.

Second, we introduce an information-theoretic framework and formalize the problem of leveraging
the explanation to improve generalization as a bilevel optimization problem. The upper level learns
how to augment the critical tasks to maximize the conditional mutual information, and the lower
level computes the meta-policy distribution corresponding to the current augmentation. We propose
an algorithm to solve the bilevel optimization problem.

Third, we theoretically guarantee that (i) our algorithm converges at the rate of O(1/+/K) and (ii)
the generalization improves after the task augmentation. We use two real-world experiments, two
MuJoCo experiments, and a Meta-World experiment to empirically validate that our algorithm can
improve the generalization of the meta-policy 7.

2 PRELIMINARIES

Reinforcement learning. An RL task 7; is based on a Markov decision process (MDP) M; =
(S, A,v, P;,v;,r;) which includes a state set S, an action set A, a discount factor v € (0,1), a
state transition function P;(-|-,-), an initial state distribution »;(-), and a reward function r;(-, -).
RL learns a policy 7, to maximize the cumulative reward max,, E™ [>.° o v'7;(s¢, ar)|so ~ vi].
The policy gradient is E(; o)y [V log m,(als) A} (s, a)] where AT is the advantage function
under the reward r; and policy 7, p™(s,a) = E™[> 2 7' 1{s; = s,a; = a}|so ~ v;] is the
stationary state-action distribution of the policy 7, and 1{-} is the indicator function. Based on
the policy gradient, we can formulate a surrogate objective for RL (Wang et al., 2020): J;(7) =
E(s,a)~p~ [log T(als) A7 (s, a)]. For brevity, we omit the explicit notation of the policy parameter (.

Meta-reinforcement learning. MRL aims to efficiently solve multiple RL tasks by learning a
meta-policy. The meta-policy is learned from a group of N training tasks {7 é\f:“l sampled from
an implicit task distribution P(7). It is typically assumed (Beck et al., 2023) that different tasks
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share (S, A, v) but may have different (P!, ¥f, 7\"). Here, the superscript “tr”” means that these com-
ponents belong to training tasks. Later on, we will use different superscrlpts to represent different
kinds of tasks. Current mainstream MRL works (Beck et al., [2023;; [Finn et al., 2017} [Fallah et al.,
2021; | Xu et al, 2018} [Liu et al.| |2019) have the following bilevel structure:

Nt

max L(o, {7m Y N‘r - — ZJ” 1(0)), s.tmi(0) = Alg(me, T,"), (1)

where the upper level learns a meta-policy 7y such that the corresponding task-specific adaptation
7 (f) can maximize the cumulative reward J}* (7} (6)) on each training task 7.", and the lower level
computes the task-specific adaptation 7{'(#) induced from 7. Different meta-learning methods use
different algorithms to compute the task-specific adaptation 7i(#). Here, we use Alg(my, T,") to
generally represent an algorithm that computes the task-specific adaptation.

We denote the meta-policy learned from (1) by 7y, and evaluate its generalization by sampling a set
of new tasks from P (7). For each sampled task, we perform task-specific adaptation and measure
performance using the resulting cumulative reward. However, as noted in the prior work (Yu et al.,
2020) and confirmed by our experiment (see Appendix [M.9), only a subset of the adapted policies
achieve high cumulative reward, while others perform poorly. Therefore, we can find NP°°" poorly
adapted tasks and denote them by the set {7 }¥'\". We include the details of how to find poorly
adapted tasks in Appendix [M.3]

3 EXAMPLE-BASED EXPLANATION

This section proposes an example-based explanation method. The proposed method is motivated by
the recent advances in example-based explanation for RL. For example, (Liu & Zhul |[2025)) identifies
the state-action pairs that are most important to suboptimal performance as an explanation and (Liu
et al.l 2025b) identifies the preference data that is most important to unsatisfactory responses as
an explanation. Inspired by these approaches, we extend the idea to the MRL setting and aim to
identify the training tasks that are most important for the meta-policy to achieve high cumulative
reward on the poorly adapted tasks {7} '\ (after adaptation). We refer to these training tasks
as “critical tasks” and aim to identify the top N critical training tasks as an explanation. For this
purpose, we propose to learn an importance vector w € R " where each dimension w; captures the
importance of the corresponding training task 7, for improving cumulative reward on {7,/ }V'}".
The problem is formulated as the following bilevel optimization problem:

Nlr
max L(0*(w), {TPHT), st 0% (w) = arg maxZwiJf(ﬂr(G)), (2)

w ) —
where the upper level learns how to weight each training task such that the corresponding weighted
meta-policy - (., can adapt to {7;7°*}¥"" with maximum cumulative reward, and the lower level
computes the weighted meta—pohcy T (w) corresponding to the current weight w. We include the
algorithm to solve the problem (2)) in Appendix l Bl The algorithm is single-loop where at each it-
eration, we start from the parameters in the previous iteration and only partially solve both the

upper-level and lower-level problems via one-step gradient ascent.

We denote by w* an optimal solution of the problem (2). A larger value of w; means that the
weighted meta-policy 7y« () assigns more importance to the training task 7;, indicating the high

Npour

relevance of this task to achieve high cumulative reward on {77 }/¥,". Accordingly, we define the

top N° training tasks with the highest weight values as the critical tasks denoted by {TC“ N °

4 GENERALIZATION IMPROVEMENT VIA TASK AUGMENTATION

This section uses the explanation (i.e., the critical tasks {7}V m) in Sectlonto improve general-
ization by encouraging the meta-policy 7 to pay more attentlon to the critical tasks. One may be
concerned that paying attention to the critical tasks can degrade performance on other tasks, we
include an evaluation in the experiment to demonstrate that our method only degrades very few (less
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than 5%) tasks but the average performance on all the tasks always improves. The key challenge to
encourage the meta-policy to pay more attention to the critical tasks lies in how to mathematically
formalize the notion of “paying more attention”.

A natural approach is to assign higher weights to the critical tasks. However, existing task weighting
methods (Yao et al., 2021} |Cai et al., | 2020) typically require an additional target task set to guide
how to assign the weights. As a result, these methods aim to generalize specifically to the given
target task set. In contrast, we do not have a target task set and our goal is not to generalize well to
a specific target task set. While solving the problem (2) yields a weighted meta-policy g~ that

improves generalization on {7;}\';", the generalization over the task distribution may not improve.
In Section[5] we empirically demonstrate that our method outperforms the task weighting method.

We study the notion of “attention” from an information-theoretic perspective. If the task information
of the critical tasks stored in the meta-policy increases, it means that the meta-policy pays more
attention to the critical tasks (Rajendran et al. [2020). To achieve this, we propose to augment the
critical tasks by generating augmented data. The augmented data contains additional information
and diversifies the original training data, therefore, training on the augmented critical tasks can store
more information of the critical tasks in the meta-policy (formally proved in Theorem 2)).

Inspired by the empirical success of mixup augmentation in improving generalization in supervised
learning (Zhang et al., [2018)), meta-learning (Yao et al., 2021), and RL (Wang et al., [2020), we
adopt mixup to augment the critical tasks. Recall from Section [2] that the surrogate RL objective
for a critical task T is: J{ () = E(s q)~pr [log 7(als) AT (s, a)], where p™ (s, a) is the stationary

state actlon distribution of the policy 7. We define the stationary state distribution of 7 as p™(s) =
(s,a)da. To train a policy, we collect transition tuples (s, a, T, Spext) Where s ~ p™(-), the
po%cy T selects actlon a, and the environment returns reward r and next state Spex;. Given two
sampled states s, s’ ~ p”(-), mixup generates an augmented state 5 = \;s + (1 — \;)s’ where the
mixing coefficient \; € [0, 1] of the critical task 7, is sampled from a distribution P()). In this
paper, we use A; to denote a random variable that follows the distribution P(\) and use A; to denote a
specific value sampled from P()). Note that our augmentation method assumes that the augmented
state 5 is always feasible. In practice, the augmented state is always feasible in our experiments
(explained in Appendix [M.2). The policy 7 then selects an action @ at the augmented state 3,
and executes this action to collect the augmented tuple (3,@, 7, Spext). Since the augmented state
5 is different from the original two states (s, s), the augmented tuple (5 a,,3') contains different
information from the original two tuples ((s,a, 7, Spext) and (s',a’, 7’ snext)). Therefore, adding
augmented tuples will diversify the original training tuples and contam add1t10nal information.

For a specific A;, the mixup augmentation induces an augmented stationary state-action distribution
p™Ai(+,-) whose expression is in Appendix |C| This gives rise to an augmented task 7 ();), with
the augmented surrogate objective defined as J& (7, \;) = E(5,a)~pmi [log m(a|5) AT (5,a)]. Given
the augmented critical tasks, the meta-objective (i.e., the upper-level Ob]eCtIVC) in (T) becomes:

NCI’] N[r_NCl'l
LT QRS AT 2 [ e @+ X o). o
=1

In contrast to the original meta-objective in (I), the new objective (3)) replaces the original critical
tasks {7}V with the augmented critical tasks {7,"(\;)}¥]. Since A; is a random variable
drawn from P()), the corresponding augmented task 7,(A;) is also a random variable. In the
following context, we use the notation 7 (A; ~ P())) to highlight this stochasticity.

Remark 1 (Augmentation is different from simply sampling more data). Augmentation is dif-
ferent from using the policy  to sample more data. The reason is that the additional data sampled
by m will always follow the original state-action distribution p™ and thus the RL objective remains
as the original objective J{" (). In contrast, augmentation changes the state-action distribution to
p™ N and thus leads to a different optimization objective jf”(ﬂ', Ai)-

In this section, we study the problem of “paying more attention” from the perspective of “storing
more information”. We have intuitively explained that the task augmentation is expected to store
more information of the critical tasks in the meta-policy because the augmented data diversifies the
original training data and contains additional information. In the following context, we formalize
this intuition and mathematically study the problem from an information-theoretic perspective. This
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section has two parts. The first part formulates a bilevel optimization problem to learn how to
augment the critical tasks to maximally increase the task information of the critical tasks stored in
the meta-policy. The second part proposes an algorithm to solve the bilevel optimization problem
and theoretically proves that the generalization improves after the task augmentation.

4.1 PROBLEM FORMULATION

In this part, we formulate a bilevel optimization problem that explicitly captures the goal of “pay-
ing more attention” to the critical tasks by storing more task information in the meta-policy. As
previously discussed, augmenting the critical tasks is expected to increase the amount of task in-
formation stored in the meta-policy. We now formalize this intuition by introducing the following
information-theoretic definition:

Definition 1. The additional information stored in the meta-policy 7y after the task augmentation

can be quantified by I(0; {T. " (A; ~ P(\ ))}NC“ {’TC“}NC“) which is the conditional mutual in-

formation between the meta-parameter 0 and the augmented critical tasks {T,7 (A; ~ P(\))}X,
given the original critical tasks { T }NT

In information theory (Wyner, |1978), the conditional mutual information quantifies the difference
between the information that § and {7,°"'(A; ~ P()\))}}Y, share and the information that # and
{ﬂcri}fv:clﬁ share. In other words, it quantifies the amount of addltlonal information stored in 6 by
additionally knowing {7, "1(A; ~ P()\))}ivzrl given that {7,°}\']" is already known. Therefore,
I(0; {TF (A ~ POV) Y Y T ") > 0 means that the information of the critical tasks stored

in the meta-parameter 6 increases after we augment {7}V to {7(A; ~ P(A)) I,

Our objective is to augment the critical tasks to store more information, ensuring that
I(0; {7 (A; ~ P(/\))}Nm {TC“}NC“) > 0. While the current mixup methods (Yao et al., [2021;
Wang et al., 2020) use a predetermined distribution P(\) of A; to mix the data, these methods do
not guarantee that the resulting augmentation maximally increases the stored task information. Mo-
tivated by (Yin et al.| 2019) that improves generalization by maximizing the mutual information
between the task data and meta-parameter, we propose to learn an optimal augmentation by opti-
mizing the distribution P(\) to maximize the conditional mutual information. To this end, we model
the distribution of A as a parameterized distribution P, (A) with parameter ¢5. Our objective is to
optimize the distribution parameter ¢, to maximize the following conditional mutual information:

(O {7 (Ai ~ Py Q)T )
* Tcri Ner * criy N
= By o) nps, ()0-p- ({700 | 108 PP OHTE (A0 — log PO T 1Y)
4)

where the derivation is in Appendix @ Here, P*(-|{7(A;)})) is the posterior distribution of
the meta-parameter 6 given the augmented critical tasks {7 (A;) fv c;, while P*(-[{Tei}N) is

the posterior distribution of 6 if only the orlgmal critical tasks {7 cri} N7 are known. The difference

log P*(O|{T=(As) I V1) — log P* (6] {71} NT) measures how much observmg the augmented crit-
ical tasks changes our belief about the meta -parameter § compared to observing only the original

tasks. If the augmented tasks are informative, the posterior P*(0[{7,(A;)}X C") becomes more
concentrated, yielding a larger log-likelihood for plausible values of 6; if the augmentatlon provides
no additional information, the two log-posteriors coincide and the difference becomes zero. For
simplicity, we omit the dependence on the non-critical training tasks (i.e., other training tasks that
are not critical tasks), as they remain unchanged during augmentation.

To maximize the conditional mutual information (@), we need to compute the posterior distributions

P ({7 Nm) and P*(Q|{T(A;) {V;l) Analogous to (Yin et al., 2019), we treat ¢ as a random
variable where the randomness comes from the training stochasticity. Mathematically, the posterior
distributions are (the derivation is in Appendix [E)):

PHCHTE (A} = ang max By, o) L0, (T A0}, (T,
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P*CHTEYY) = Exeponampy, o) [P*('Hﬁcri(/\i) ﬁi)]» )

where P,(6) is a distribution of 6 parameterized by ¢. The posterior P*(-[{T%(A;) f\;l) can
be straightforwardly obtained by optimizing the meta-objective because the meta-parameter 6

is directly trained over the augmented tasks. However, the posterior P*(|{7:°“}fvzcr1') cannot be
directly computed because the meta-parameter ¢ is no longer trained on the vanilla training tasks

(without augmentation). To obtain the posterior P*(-|{7;*}¥"]), we need to marglnahze over all
T(A;) YY) over all possible
mixing coefficient {A; } 1 By combining @) and . we reach the bi-level optimization problem:

the possible augmentations and thus it is an expectation of P*(-

n;sax I(0; {T"(A; ~ Py (A ))}N

{Tcri}Nm) s.t. Problem ~ (©)

The bi-level optimization in (6)) captures the interaction between choosing good augmentations and
evaluating how those augmentations influence the meta-parameter. The upper level optimizes the
augmentation distribution Py, () to find mixing coefficients that make the augmented critical tasks
contain as much additional information about the meta-parameter as possible. However, evaluating
how informative an augmentation is requires knowing how the belief over 6 changes after observing
the augmented tasks. This is handled by the lower-level problem, which computes the posterior
distributions over 6 under both the augmented critical tasks and the original tasks. In essence, the
lower level tells us what the learner would believe for a given augmentation, and the upper level uses
this feedback to adjust the augmentation distribution in order to maximize information gain. Thus,
the bi-level structure reflects that we must jointly learn (i) how to mix the tasks and (ii) how these
mixed tasks influence the meta-parameter distribution.

4.2 ALGORITHM

In this section, we develop an algorithm to improve the generalization of MRL. The algorithm
consists of two major stages: identifying critical tasks and solving the bi-level optimization problem
in (6) to improve generalization. We elaborate the algorithm as follows:

Algorithm 1 Explainable meta reinforcement learning to improve generalization (XMRL)

Input: Initial mixing coefficient distribution Py, ,(\) and meta-parameter distribution P, (6),

training tasks {7}V 1, and poorly adapted tasks {77} M)
Output: Learned mixing coefficient distribution P, , (A\) and meta-parameter distribution

I: Generate the explanation (i.e., the critical tasks {7," f\:l) using the algorithm in Appendix
2: fork=0,--- ,K—1do

3:  Lower-level optimization: Sample NV ¢ sets of coefficients { )\Ej N o 1 from Py, (X); for each
set, compute the distribution parameter ¢*({ ,\CJ' fV’l‘) such that P*(H\ {Tcri ( )\chk) Ncn) _

* cri % <7 cri

P ey (O)- Bstimate P T = o 5200 PCHTOR0)E),

4: Upper—level optimization: Compute the hyper-gradient g,, , in Lemma E] and update the
mixing coefficient distribution parameter ¢y 11 = ¢ 1 + 59@ .
5: end for

Stage 1: Identify critical tasks (line [T in Algorithm [I). We begin by generating explanations
for the original meta-policy 7 and extracting the critical tasks {7}V using the algorithm in
Appendix [B] These tasks are the ones to which the meta-policy 7y should pay more attention, and
therefore they serve as the targets for augmentation.

Stage 2: Solve the bi-level optimization problem (6) to augment critical tasks. Once the critical
tasks are identified, the algorithm solves the bi-level optimization problem (6) via lower-level and
upper-level optimization. We elaborate the lower-level and upper-level optimization as follows:
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Lower-level optimization (line [3). At iteration k, the lower-level step is to compute the posterior
distribution over 6 under both the augmented critical tasks and the original critical tasks. To ob-
tain the posterior P*(|{7 " (\;)} - C") over the augmented critical tasks, we solve the optimization
problem in (5| via gradient ascent. Specifically, we parameterize Py () as a Gaussian distribution
whose parameter ¢ = (i, Y) includes a mean vector y and a covariance matrix ¥ = oo . We
reparameterize 6 as 6 = pu + o o ¢ where ¢ ~ N(0,T) denotes a standard Gaussian distribution
and o is component-wise multiplication. The gradient of the lower-level optimization problem is
Eeno,n[Veb - VoL(0, {T(A B {T“}Nlr N and we can use N¢ samples ¢ ~N(0,I)

to estimate the gradient: g, = szzl Vb - VgL(Gj,{ﬁ“i()\i)}zN:c;,{Tr N N”) where

0; = p+ oo ;. We include the detailed expressions of the gradient in Appendlx m Recall

that the posterlor distribution P*(8|{71}N") is obtained by marginalizing P*(G\{Tcri()\i)}iv:c;)
e } NE

over {\;}]. Therefore, we sample N ¢ sets of mixing coefficients {{)\fjk , and compute

the posterior distribution P* (- |{Tcr‘(Aka) ) corresponding to each set. The posterlor under the

original critical tasks can be estimated by P*(A|{7 1N = 7 Z] L P (9|{T°“()\C’ VY.

Upper-level optimization (line ). We use gradient ascent to solve the upper-level problem. In
order to compute the the hyper-gradient, i.e., the gradient of the conditional mutual information ()
w.rt. ¢, we use a Gaussian distribution to parameterize P,, (A) where the distribution parameter
¢x = (ux, o) includes a mean p) and a standard deviation o). Therefore, we can reparameterize

each sample A7 from P, (\) via AY = iy + 05(;.; where G j ~ N(0, 1).

Lemma 1. Suppose we reparameterize the mixing coeﬁ‘iczent )\C] via )\CJ = pix +0o\G j» the hyper—

zflv@ SN N NS Voot (AT

gradient can be estimated by g = = — <F D
” 12X o (A I w7 2 llo* (LAY
where Vo, o (OHYT) = =[V2, B, o)L AT O T AT )

V2, By o[ LO AT O AT )

We include the expression of all the gradients in Appendix (Gl We solve the upper-level problem in
@ via gradient ascent ¢ 11 = Pk + B9g, , Where § is the step size.

4.3 THEORETICAL ANALYSIS

This part shows that (i) Algorithmconverges at the rate of O(1/v K), (ii) the learned augmentation
increases the task information of the critical tasks stored in the meta-policy, and (iii) the generaliza-
tion over the task distribution improves after the augmentation. We start with the assumption:

Assumptlon 1. The parameterized meta-policy wy satisfies the following: ||Vglogme(als)|| < Cy
and ||V3,logmg(als)|| < Cy for any (s,a) € S x A where Cy and Cy are positive constants.

Assumption assumes that the parameterized log-policy log 7y is Cy-Lipschitz continuous and Cj-
smooth w.r.t. the parameter 8, which is a standard assumption in RL (Liu & Zhu} 2022;|Kumar et al.,
2023 |Liu & Zhu, [2023; |Agarwal et al., 2021} |Liu & Zhu| [2024alb; Liu et al., 2025a)).

Theorem 1. Suppose Assumptwn I holds and we choose the step size f =

2
TR where

c
Cris a posmve constant whose derivation is in Appendix then Algorithm converges:
% Sico Vo I0:ATE (N ~ Py s ONHLIHTEHEDIP < O(1/VE).

Theorem guarantees that Algorithm converges at the rate of O(1/v K'). We next show that the
learned task augmentation stores more information in the meta-parameter:

Theorem 2. Suppose Assumption I holds and B < él then the output Py, . (\) of Algorithm
satisfies 1(0; {T#"' (A ~ Py, (W) HUIH T M) >

Theorem [2] guarantees that the augmented critical tasks store additional information in the meta-
parameter. Moreover, Appendix [J| guarantees that the task information of the non-critical tasks
stored in the meta-parameter does not change even if the stored task information of the critical tasks
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increases. We next quantify the generalization improvement of the learned augmentation Py, ().
In particular, we first demonstrate that the learned augmentation imposes a quadratic regulariza-
tion on the meta-parameter ¢ in Lemma 2] and then guarantee that the generalization over the task
distribution P(7") improves.

To reason about the generalization, we consider the following softmax parameterized meta-policy

07 f(sa)
. . . . o
mo(als) = SRR where f (s, a) is a feature vector. This policy parameterization is widely

adopted in RL (Sutton et al., {1999} |[Kakade, 2001} |Peters & Schaal, 2008). We consider MAML
(Finn et al.,[2017; |Fallah et al.,[2021) as the algorithm to compute the task-specific adaptation 7r§r(9),
and the task-specific adaptation is also softmax parameterized.

Lemma 2. The second-order approximation of the meta-objective (3) after the task augmenta-
tion can be expressed as: Ex,~p, . [L(0,{T(\i) N AT N)] L0, {T}N) -
07 (

cr — . — .
~em Qi1 Hi™)0 where H{™ is a positive definite matrix whose expression is in Appendlx@

Lemma 2| shows that the augmented meta-objective imposes a quadratic regularization on the
original meta-objective (I). Since we aim to maximize the meta-objective, this negative quadratic
regularization reduces the solution space and thus can lead to better generalization.

To study the generalization property of this regularization, following (Zhang & Deng, 2021} [Yao
et al.,|2021)), we consider the following softmax policy class that is closely related to the dual prob-
lem of the regularization: Fy = {mg : 0 (E;.p(1)[H;])0 < 7}. To quantify the improvement of
generalization, we denote the generalization gap by G(Fy) 2 L(0, {TF}N) — E; pm L0, T7)].
The following theorem validates improvement of generalization:
G0 f(s,a)

Za ‘e A eng( a’)
the feature vector f(s,a) is twice-differentiable and bounded for any (s,a) € S X A, then with

probability at least 1 — 6, the generalization gap satisfies |G(Fy)| < O(y/ & + 1/ logj\(,lt{é

Theorem 3. Suppose the policy is softmax parameterized (i.e., T9(als) = ) where

According to Lemma | the quadratic regularization (i.e., 0" (5 vacl HE)0) imposed by the
learned task augmentatlon encourages a smaller 7. Therefore according to Theorem 3] the learned

task augmentation will lead to a smaller generalization gap and thus improve generalization.

5 EXPERIMENT

This section uses two real-world experiments, two MuJoCo exper-
iments, and a Meta-World experiment (Appendix [M.9) to validate
the effectiveness of Algorithm [1| (XMRL). Note that XMRL is to im-
prove the performance of existing MRL algorithms, rather than being
a standalone MRL algorithm. Accordingly, our primary comparisons
are against other MRL improvement methods, rather than against .
MRL algorithms themselves. For completeness, we report compar- . A
isons with some MRL algorithms in Appendix We use MAML
as the base MRL algorithm that our method and the baselines aim to  Figure 1: Drone navigation
improve. We introduce three baselines that improve MRL generalization: (1) Task weighting (TW)
(Cai et al., [2020): This method computes the weighted meta-policy 7y« (,,). (2) Meta augmentation
(MA) (Yao et al 2021): This method uses a predefined distribution of A to mix the data of each
training task to improve generalization. (3) Meta regularization (MR) (Wang et al., 2023): This
method adds quadratic regularization to the upper level and inverted regularization to the lower level
to improve generalization. Combining the base MRL algorithm with each improvement method
results in four complete methods: MAML+XMRL, MAML+TW, MAML+MA, and MAML+MR.
Note that our method requires additional interactions with the environment to generate augmented
samples. For a fair comparison, the baselines use the same amount of samples.

Experiment I: Drone navigation with obstacles. We conduct a navigation experiment (Figure [I))
on an AR.Drone 2.0 where the drone (yellow bounding box) navigates to the goal (green bounding
box) while avoiding the obstacle (red bounding box). We use a motion capture system “Vicon” to
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Table 1: Experiment results.

Method MAML MAML+XMRL MAML+TW MAML+MA MAML+MR

Drone 0.87+£0.01 0.97+£0.01 0.87+£0.02 0.91 £0.02 0.91 £0.02
Stock Market 359.13 £18.63 421.13+£12.11 362.07£14.21 389.17 +£12.66 362.53 & 14.27
HalfCheetah @ —68.89 £4.36 —44.67+4.35 —65.144+4.26 —63.49+£4.07 —61.15+3.82

Ant 100.64 £ 3.63 119.15 £ 4.02 99.92 £ 4.56 106.44 £ 4.55 104.15+4.74

record the location of the drone. For different navigation tasks, we change the locations of the goal
and obstacle. We use success rate (i.e., the rate of successfully reaching the goal and avoiding the
obstacle) over randomly generated test tasks as the metric to evaluate generalization performance.
We record the mean and standard deviation of success rate in the second row in Table[T}

We sample 50 training tasks to learn a meta-policy. We then sample 10 tasks G
and find the top 3 tasks where the meta-policy adapts with the worst perfor- | - -
mance as poorly adapted tasks. In Figure[2] the red points and orange points
are the goals of the 50 training tasks. The green points are the goals of the top
3 poorly adapted test tasks. The five orange points are the identified critical
training tasks. We can see that the green points are far from the red points
and thus are poorly adapted. The identified critical tasks are the training tasks
whose goals are closest to the goals of the poorly adapted test tasks.

Experiment II: Stock market. RL to train a stock trading agent has been Figure 2: Task visu-
widely studied in Al for finance (Deng et al., 2016). We use the real-world alization

data of 30 constituent stocks in Dow Jones Industrial Average from 2021-01-01 to 2022-01-01. We
use “FinRL” (Liu et al.,[2021) to configure the real-world stock data into an MDP environment. We
include the details in Appendix[M.5]and the results of cumulative reward in the third row in Table[T]

Experiment III: MuJoCo. We consider the target velocity problem (Finn et al., 2017) for two
MuJoCo robots: HalfCheetah and Ant. In particular, the robots aim to maintain a target velocity in
each task, and the target velocity of different tasks is different. We include the details in Appendix
and the results of cumulative reward in the fourth and fifth rows in Table[ll

Table [I] shows that our proposed method can significantly improve the generalization of MAML
and outperform the other three baselines. For example, our method improves MAML by 35% for
HalfCheetah while the baselines’ improvements are less than 15%.

Percentage of cicl tosks.

(a) Drone (b) Stock Market (c) HalfCheetah (d) Ant

Figure 3: Ablation study on the number of critical tasks.

The ablation study on the number of critical tasks N eri We evaluate how the number of critical
tasks N affects the generalization performance of our method. We vary the number of critical tasks
and plot the corresponding generalization performance in Figure 3] The x-axis is the percentage of
critical tasks in training tasks. Figure [3| shows that the optimal percentage of critical tasks is 10%
for drone, 30% for Stock Market, and 10% for HalfCheetah and Ant. Moreover, the generalization
performance becomes worse if the number of critical tasks is too large. The reason is that at this
time, the critical tasks can include training tasks that are not helpful to improve poorly adapted tasks.
If we still include those non-helpful tasks as critical tasks, those non-helpful tasks may prevent the
meta-policy from generalizing well to tasks similar to the poorly adapted tasks. Note that even
if augmenting the “false positives” tasks can lead to a decline of generalization performance, the
generalization performance is still better than MAML where no tasks are augmented.
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Minor degradation on very few tasks. We conduct an evaluation to separately report (i) the perfor-
mance on the original poorly adapted tasks, (ii) the performance on the original non-poorly adapted
tasks, (iii) the percentage of tasks with degradation in the original non-poorly adapted tasks, and (iv)
performance drop for degraded tasks. For example, if the performance of a non-poorly adapted task
drops from 100 to 90, then the performance drop is 10%. We report the average performance drop
over all degraded tasks in Table 2] The results demonstrate that (i) the average performance on the
poorly adapted tasks significantly improves, (ii) the average performance on the non-poorly adapted
tasks does not degrade, (iii) only a very small portion (less or equal to 5%) of non-poorly adapted
tasks degrade, (iv) even for degraded tasks, the performance drop is minor (less than 4%).

Table 2: Ablation on performance improvement and performance degradation

MAML  Our method (MAML+XMRL)

poorly adapted tasks 0.55 0.93
Drone non-poorly adapted tasks 0.95 0.98
percentage of degradation N/A 0%
performance drop for degraded tasks N/A N/A
poorly adapted tasks 71.05 381.33
non-poorly adapted tasks 431.15 431.08
Stock market percentage of degradation N/A 5%
performance drop for degraded tasks N/A 3.8%
poorly adapted tasks -162.09 -55.00
non-poorly adapted tasks -45.59 -42.10
HalfCheetah percentage of degradation N/A 2.5%
performance drop for degraded tasks N/A 2.7%
poorly adapted tasks 39.68 99.67
Ant non-poorly adapted tasks 115.88 124.02
percentage of degradation N/A 5%
performance drop for degraded tasks N/A 2.0%

The ablation study on augmentation method. We aim to learn an optimal augmentation by op-
timizing this distribution P(\) to maximize the conditional mutual information @I) To show the
effectiveness of our method, we include an ablation study in Appendix [M.7| where we compare to a
method that uses the predefined distribution in (Wang et al.,[2020) to augment the critical tasks. The
results in Appendix demonstrate that our method improves generalization better.

Evaluation of the explanation. We evaluate the fidelity and usefulness of our explanation. Fidelity
is (Guo et al., 2021b}; |Cheng et al.,2024) to evaluate the correctness of the explanation. The fidelity

in our setting means whether the identified critical tasks {’7;“‘}5\7:1 are indeed the most important

training tasks to achieve high cumulative reward on the poorly adapted tasks {7;7°*}¥'|". To evalu-
ate fidelity, we train a meta-policy over the critical tasks and compare its performance on the poorly
adapted tasks with a meta-policy trained on N randomly-sampled training tasks. The usefulness
means whether our explanation helps improve generalization. To evaluate the usefulness, we ran-
domly pick N training tasks and use our augmentation method to augment these N training
tasks to train a meta-policy. We compare the generalization performance of this meta-policy with

XMRL. The results in Appendix show that our explanation has high fidelity and usefulness.

6 CONCLUSION

This paper proposes to leverage explanation to improve generalization of MRL. The proposed
method has two parts where the first part explains why the learned meta-policy does not adapt well
to certain tasks by identifying the critical training tasks that the meta-policy does not pay enough
attention to, and the second part formulates a bi-level optimization problem to learn how to augment
the critical tasks such that the meta-policy can best pay attention to the critical tasks. We theo-
retically guarantee that the learned augmentation can improve generalization over the whole task
distribution. Experimental results validate that our method improves MRL.

10
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A RELATED WORKS

Meta-Reinforcement learning. MRL has two major categories: optimization-based MRL and
black-box (or context-based) MRL. Optimization-based MRL (Finn et al., [2017} [Liu et al., 2019;
Stadie et al.l [2018)) usually includes a meta-algorithm and an adaptation algorithm. The meta-
algorithm learns a meta-prior (e.g., meta-policy) which is not specialized for each task. The adap-
tation algorithm uses data of a specific task to specialize the meta-prior to achieve high cumulative
reward on this specific task. Black-box MRL (Duan et al., 2016} Rakelly et al., 2019;|Zintgraf et al.,
2019b)) typically learns an end-to-end model that contains specialized knowledge for different tasks
in the task distribution. The data of a task is used to indicate the task so that the end-to-end model
can directly specialize to this specific task. Note that the method proposed in this paper is not classi-
fied as a MRL method. Instead, we aim to develop a method that can improve MRL and this method
can be applied to different MRL algorithms.

Meta-learning generalization improvement. There are three major ways to improve meta-learning
generalization: task weighting, regularization, and meta-augmentation. Task weighting (Nguyen
et al., 2023} [Yao et al., 2021} |Cai et al., 2020) proposes to re-weight the training tasks or reshape
the training task distribution to improve generalization. However, (Yao et al., 2021} |Cai et al.,
2020) require an additional target task set to guide how to weight the training tasks or reshape the
training task distribution, and thus the learned meta-prior can be biased towards the target task set
and may not adapt well to other tasks that are different from the target task set. Regularization-based
methods are also used to improve generalization where (Wang et al.| | 2023)) proposes to add ordinary
regularization to the upper level and inverted regularization to the lower level, and (Yin et al.| 2019)
imposes regularization to prevent memorization overfitting. The most relevant technique to our
paper is meta-augmentation which augments the data and train on the augmented data to improve
generalization. Specifically, (Rajendran et al, [2020) proposes to add noise to the data and (Yao
et al., [2021) proposes to mix data and shuffle the channels in the hidden layers. The augmentation
method has also been used in RL (Wang et al.l 2020; |Laskin et al.,|2020) to improve generalization
by generating augmented data. These augmentation methods use predefined rules to provide feasible
augmentations. In contrast, our paper formulates a bilevel optimization problem to learn how to best
augment the critical tasks.

Explainable reinforcement learning. While it lacks research works on explainable MRL, explain-
able RL (XRL) has been extensively studied to explain the decision making of the RL agents, in-
cluding learning an interpretable policy (Bastani et al., 2018}; |Bewley & Lawryl 2021} |Verma et al.,
2018), pinpointing regions in the observations that are critical for choosing certain actions (Atrey
et al.,|2019;|Guo et al.|[2021a; [Puri et al.|, 2019)), and reward decomposition (Juozapaitis et al., 2019
Lin et al.| 2020; Septon et al.,2023)). The most relevant XRL method to our explanation is to identify
the critical states that are influential to the cumulative reward as an explanation (Guo et al., [2021b;
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Cheng et al 2024} |/Amir & Amir, 2018) where they respectively use an RNN, masks, and a self-
proposed rule to find critical states. In contrast, we formulate a bilevel optimization problem to learn
a weight vector that indicates critical tasks.

Explainable meta-learning. There are three works on explainable meta-learning where (Woznica &
Biecek, [2021)) proposes to learn important features that lead to a specific meta model decision using
Friedman’s H-statistic (Friedman & Popescul 2008)), and (Shao et all 2022} [2023)) use structural
causal model to model the causal relations between the features and the model decision. While
these works explain why a decision is made, we explain why certain tasks are poorly adapted.

Task selection of meta learning. Task selection has been studied in meta-learning. (Zhan & Ander-
son, |2024;[Chen et al., 2022) focus on task efficiency and propose to select a subset of training tasks
that are most representative or informative so that training on fewer tasks (the selected subset) can
achieve performance comparable to training on the whole training tasks. In contrast, our method has
a different focus, i.e., it does not aim to used fewer training tasks to achieve similar performance but
aims to select and focus on critical tasks so as to improve performance. (Luna Gutierrez & Leonetti,
2020; |Zhang| [2024) propose to select training tasks such that the meta-prior can perform the best on
a certain test task. However, they assume the ability to evaluate on a test set. In contrast, our method
does not assume access to a test set and our goal is not to perform well on a specific test set.

Unsupervised environment design. Unsupervised environment design (Jiang et al., 2021} Jackson
et al.,|2023)) adaptively and progessively generates more complex tasks for the agent to solve in order
to improve the agent’s generalization ability. However, our paper does not generate or require new
tasks to improve generalization. In contrast, we identify “critical tasks” from the existing training
tasks and augment these critical tasks to improve generalization.

B ALGORITHM TO FIND THE CRITICAL TASKS

Recall from Section |3| that we aim to learn a weight vector w by solving the problem where
each component w; of the weight vector captures the importance of the corresponding training task
T.*. The higher the weight value w; is, the more important the corresponding training task 7;" is.
Therefore, the top N training tasks with highest weight values are the N critical tasks we aim to
identify. The problem () is as follows:

N[f
max L(6* (w), {T/° ) st 6% (w) = arg maxZwiJ;r(ﬂ;r(ﬁ)).

3
e

We use Algorithm [2]to solve this problem where at each iteration &, we first solve the lower-level
problem in (2)) to get 6*(w) and then solve the upper-level problem (2) via gradient ascent.

Algorithm 2 Identifying the critical tasks

Input: Training tasks {7;"}",, poorly adapted tasks {7,”°* }N"", and initial weight vector w.
Output: Learned weight vector wg.
1: fork=0,---,K —1do
2:  Solve the lower-level problem via gradient ascent 0z, | = 05, + oy, Zfil w; Vo J(ml (0
3:  Compute the hyper-gradient g, in Lemmaand update the weight wg,; = wy + a;; G
4: end for

))-

> &

Solve the lower-level problem. We use gradient ascent to solve the lower-level problem where the
gradient is 2511 w; Vo Ji'(m¥(0)) and the expression of Vg Ji'(7(6)) can be found in Appendix
G1

Solve the upper-level problem. To solve the upper-level problem, we need to compute the hyper-
gradient g,,.

Lemma 3. The hyper-gradient is:

G =
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Nt Ntr NPoor

[V Y Vot (0" @] [ Va0 )] [ Y et 07 w)
i=1 i=1 i=1

where the derivation is in Appendix|B.]

In  practice, we do not have 6*(w;) and thus we use the ap-

proximation 0% to approximate the hyper-gradient Jur ~

tr tr -1 poor oor oor
~ [V S @i Vo (mi (0:)| | S wiV I (x0:)] [ 2T VP (b (60p)) -

We use K-step gradient ascent wj, 11 = Wj + ajgw; to solve the problem (2) to get the learned
weight wgz. Each component wy ; captures the importance of the corresponding training task 7;".

We pick the top N training tasks with the highest weight value as the critical tasks.

B.1 PROOF OF LEMMA[3]

Since 6*(w) = arg max, vaz"l wiJi (i (0)), then Vg va:‘rl w; JJIT (7 (0* (w))) = 0. Take gradient
w.r.t. w on both sides, we have that
Nﬂ’ Nlr

Vio 2w FE 0 () + (vot (@) [V > @ @))] =0

NT Nt

= Va0 () = [V D w0 )] Vi, Y e @)]. @
i=1 =1
Therefore, we have that

oor T poor
VL (0" @ AT = (Vu (@) VoL(0" (@), {TERE),
N[l' le

?v S0 2 i (0" Hveezwz (0" @))] VL0 (@), (TR,
where (a) follows (7).

C EXPRESSION OF THE AUGMENTED STATE-ACTION STATIONARY
DISTRIBUTION

This section provides the expression of the augmented stationary state distribution p™ i (-) and aug-
mented stationary state-action distribution p™*¢ (-, -). The expression of the augmented stationary

state distribution is 5™ (5) = p™(5) + [, s T{Ais + (1 = X;)s’ = 5}p"(s)p™ (s')dsds’ and the
expression of the augmented state-action stationary distribution is p™*i (5, a) = p™ i (5)m(al3).

D DERIVATION OF THE CONDITIONAL MUTUAL INFORMATION

10 {77 (As ~ POV PE{TE ),
(a)/ (0 {Tcn(A 7)\) N“‘ Tcrl}N“‘)
P(0, {7 (A = \i) M7
POTS YD PATE (N = X) Y T )
(b)/ OHTE (A = M) AT - PUTE (A = M)

PO, (T (A = MEHTE 1Y)
POITEN D PUT (s = A} (T

(d9) (d{ T (Ai = X)) (@ T ),

{Tcn}N“") ({Tcn}N”')

log (de)(d{ﬁm(Ai - ) Nm)(d{ﬂ“ N"‘)
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D [ POHT s = 2 EE AT N - (A = M) - PUTEN):

(9 {Tcn(A _)\) N”‘ {Tcn}N“‘)
(9|{Tm NC“) ({Tcn(A _/\) NC” {Tcrl NC“)

@ / OUT (A = AT AT D) - PA = AT - PUTE YY),

log (d0) (4T (As = M) D) (@ T ),

(9 {Tcri(A =\ )}N”‘ {Tcn}N“‘)
(9|{7‘crl NC“) ({Tcn(A ,/\) NC” {7;“1 NC“)

= [ POHT (s = 2 ES AT D PUA =MD PUTE P

(d0) (d{A: = A D@ T,

PONTE(A = MW AT )
PORT )

/P ORT (A = AN PHA = M) PUT -

POHT (A = ) HYY)
PO T YY)

(d0) (d{Ai = A DT,

(d0) (d{A; = A D@ T,

oy [l PTG
A€[0,1],Ai~P(A) O~ P(-[{TE(A,)} N5 | 108 PONTENT) I

=F

where (a) follows the definition of conditional mutual information (Wyner, [1978), (b) follows the
standard chain rule of probability P(A B,C) = (A|B C)P(B|C)P(C), (c) follows the fact that

P{TE(A; = M) I HTE N = P({A; = M 3Y)) (explained in detail in Appendlx d) fol-
lows the fact that [ P({T;(A; = X)) )d( {T(A =AY = [ PUTi(A; = \) N°“) ({A =
MY m) ({7 m) because T (A; = \;) is determlmsmcally determined by 7, and \;, and (e)
follows the fact that P(0|{7(A; = \;) f\f{, {'TCU}NC“) POI{T(A; = N\) Nm) because the

meta-parameter is trained on the augmented critical tasks {7,(A; = Az)}fg

E DERIVATION OF THE POSTERIOR DISTRIBUTION ([3)

augment

Figure 4: How the distribution of 6 is computed.

@ distribution

Figure [ shows how the distribution of the meta-parameter 6 is computed. At the beginning, we
have the original critical tasks {’TC” _1, however, the distribution of 8 is not directly trained over
the original critical tasks. Instead, we sample {)\1}1]\;1 from P(\) and augment the original critical
tasks to the augmented critical tasks {7, (\;) f\;{ and train the distribution of ¢ over the augmented

critical tasks. Since 6 is directly trained on the augmented critical tasks {7;(\;)} ¥ _1, the posterior
distribution of € given the augmented critical tasks can be computed by solving the distributional op-

timization problem: P*(-[{7;()\;) fvull) = argmax, I, (g [L(@, {7 () 5\/2”1'7 {7"“}N[r Nm)

However, we cannot use the same way to formulate a distributional optimization problem to compute
the posterior distribution P*(- |{TC“}N 1) because the meta-parameter 6 is not directly trained over
the original critical tasks {7} 2¥"|. We can obtain this posterior distribution by marginalizing over

{TEi(A)

T DA,

Ay Neri
rJi=1

POHTEY) = / o PTG =AY
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T AN,

i=1

Jo
D[ PONTE = MR EDPATE (= NS T DI

Neri
=1

PTG = MRS AT ) PATE (A = M) HE

(b) % —cri cri cri cri
=/{A U PTOHTE A = A PUA = MDA,
= Exctoainmrs, 00| P CHT A0,

where (a) follows the fact that P*(0]{ T (A; = ) HY), {T ) = PHO{ T (A = Ao HYY)
because 6 is directly trained on {7_'°ri(A = \;)} Y1, and (b) follows the fact that P({7%(A; =

A IVTHTE N = P({A; = A\ }Y)) and the reason is provided as follows. For simplicity, we
first consider one task, e.g., the first critical task 7. We use A; to denote a random variable that
follows the distribution of P(\) and use \; to denote a specific value sampled from P()), e.g.,
A1 = 0.5. Therefore, ’Tfri(Al = A1 = 0.5) is a specific task because \; is a specific value. Note
that the critical task 77" is a training task that is already given, therefore, the probability of the
(random) augmented task 7" (A1) being the specific task 7™ (A1 = A; = 0.5) is the probability of
the specific value \; = 0.5 being sampled from P()). Therefore, P(T£% (A1 = Ay = 0.5)| ) =
P(Ay =X =0.5).

F PROOF OF LEMMA [1]
Recall from (@) that

({3 (A ~ Poy, )T,

* Tcri et
=F, i weri [logp (OT (A )}1 ) .
AS€[0,1], i~ Py, (X),0~ P (-[{ TR (A1)} P (O[T} N

Since P

¢ vei. (0) is Gaussian distribution, we have that
o ({07 HED)

I0; {TE(Ai ~ Py, ()T ),
exp(— 3 (0—p" (A T (2" (AN~ (0—p (ASIYT)))
VI (FASIYT) Tom ({AS Y| }
By [exp<—é<e e (LAY YD) T (B ((AGYN) 1 (0= ({AS N”‘)))}
' V(e (TASHT) Tom (AT}

= EAI.’Q [log

— By, log exp(—3(0 — p ({ASHED) T (S ({ASHED) 10 — p* ({ASHY))
. Vi (AT T (AT
*Ee{logEA [ xp(— %(9 H <{A<}Ncn N" (Z*({AC}NCH ) "HO - p ({AC Nm)))”
Vi Qasm) o (A5 ) |
(a) exp(—3 TC)
& Ec~/\/(01{ [log \/‘ q AC NN T ({ Ag Nm)}
1 exp(—3¢"¢)
log Ey, [\/| {AC ) Tor ({AC] NC“)|:|}7
[log 1 } log Ey, [ !
\/l {ASHED) T o ((ASHED)] \/| ({AS V) T ({AS )]

(®)
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where (a) follows the fact that 6 = 1 S{ASIYT) + o ({ASHY)) o ¢. Since we sample N€ sets
of mixing coefficients {{)\C r'} from P,, (A\), the conditional mutual information can be esti-
mated by

T(O:{ T (As ~ Py, O ST HE),

¢
1 1 Y 1

1 N
= — Zlog —log — Z .
NOE Ve @ me @l VT Ve 8 Te (a8 1)

Therefore, we can get the gradient:
le(@'{ﬁﬂ(Af ~ Py, (N)) NC"I{T i,
s v@ WOV 1 v, e (I
IS o (DO N (o A“ O
To get Vy, 0", we know that ¢* = argmax Ep, (9)[L(0, {ﬁcri()\f-j) N AT N Nm)], there-
fore, we have that Vo Ep, . (o) [L(6, { T (A )T {73 )] = 0. Then we have that
d
d, )
= Voo Ep,. o) [LO AT OO I AT )
+ Voo Ep,. (o) LO AT O N AT N ) Vg,07 =0,

= V(zb\ |:VO'O'EP¢* 9)[ (9 {TCH(/\CJ) glrl7{7_tr}Ntr Ncri)] _

Vo Br. o [LO AT O AT RS,

V2 4 By o) L0 AT O T AT ).

G GRADIENTS

This section provides all the gradients needed in this paper.

G.1 META-GRADIENTS FOR MAJOR MRL METHODS

Recall the problem formulation (I)) of MRL as follows where we omit the superscript for simplicity:

max LO{T}Y) =~ ZJ mi(0)), st mi(0) = Alg(me, T;).

The meta-gradient is the gradient of the upper-level objective w.r.t. 0, i.e., Vo L(0, {T:}}Y,). The
meta-gradient is different for different algorithms because different algorithms use different ways to
compute the task specific adaptations 7; (). Here, we provide the meta-gradients for several major
MRL algorithms, including MAML (Finn et al.| [2017; [Fallah et al.| [2021), iMAML (Rajeswaran
et al.,[2019)), and context-based MRL (e.g., CAVIA (Zintgraf et al.,|2019a))).

Lemma 4. The meta-gradients for MAML, iMAML, and CAVIA are respectively:

N
VoL, (THa) = 5 D0 + @V (o)} Vi i), (MAML)
VoL(0,{T:}N, NZH— =V, Ji(me)| 'V, Ji(me,),  (iMAML)
VoL(0,{T:}¥,) ZWJ (o (-] ¥!), (CAVIA)
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where o is a step size, 0; = 0+aVoJ;(mg), Vo, Ji(mg,) = E(s.a)pmoi [V, log ﬂgi(a|s)A?9i (s,a)l,
V2, Ji(mg) = E(s,q)~po {Zfio V' Vo E(s,0)~pm0 [log mg(als) Q7 (s,a)] (Vg log mo(als)) T +
V50 E (s ay~pme [log 7r9(a|s)Q?9(s,a)]}, X is a hyper-parameter, 0] = argmax,, J;(7y) + % My —

2, mo (-, Y is a context-based policy where V! = 1o + a¥ ., J;(mg(+|-,10)) is the context.

Proof. MAML computes the task-specific adaptation via one-step gradient ascent. Specifically,
suppose the task-specific adaptation is mp, = m;(6), and thus 6; = 6 + aVyJ;(mg). Therefore,

the meta-gradient is Vo L(0, {T;}Y,) = %Zi\;l Vodi(me,) = + Zfil(veei)TveiL}i(mi) =
%Zf\;[l + aV3,Ji(m)| Ve, Ji(mg,). From (Fallah et all 2021) we can get that the
policy gradient is Vo, Ji(mg,) = E( )., [Ve; logm, (a| )A; " (s,a)] and the Hessian
is Vggt]i(ﬂ-e) = E(s,a)~p”9 {Z;’iof}/ VQE(s,a)Np"G [10g7‘[’g(d| ) 7 ( 70’)](v9 IOgWQ(QIS))T
V34B(s aypro llog 7o al5) QT (5, 0)].

IMAML solves the optimization problem to get the task-specific adaptation 7y, such that 0, =
arg max,, J;(my) + 2|[¥ — 0||* where X is a hyper-parameter. Since ¢} is the optimal parameter
of the problem maxy, J;(my) + 3|t — 0]|?, we know that VyJi(mgr) + M0 — 0) = 0. Take
gradient w.r.t. 6 on both sides, we can get that (V0;) "V, Ji(mg,) + AV — I) = 0 = V0] =
1+ J%vVini(m%)]*l. Therefore, theNmeta—gradient is VoL(0,{T:;},) = + Zf\il Vodi(mg,) =
~ 2ie1(Vebi) T Vo, Ji(me,) = & iy [+ 3V, Ji(m0,)] ' Ve, Ji(m,).

CAVIA learns a context-based policy mg(als,)) and uses MAML-like method to update
O = o + aVydi(me(-|,10)).  Therefore, the meta-gradient is VoL(0,{T;}Y,) =
* S Vodilmo (1 v))- 0

G.2 OTHER GRADIENTS

This part provides the expressions of V2 Ep, . (g)[L(6, {Tcu(/\ij) Zggi7{7;tr}Nn_Nu,)] ond
vi%EPw(f’) (L6, {7—;@1()\?_7-) £V=c1n7{7'tr N N)} needed in Lemma

Lemma 5. We have the following expressions:

V2, Ep,. o) [LO AT OF )M TN,

Nt NT— N
= Bgonion |37 [0 V2o F (0" + 07 0 ), 0%) + IR CATE LT

i=1
V2 B [0, (T O (TR )

Nm

= Econo,n) [ N va /

(Sjj/,ajj/)GSX.A
Ajjr 4 p™ % (8550, a5 )V, log o, (aj50|5550 ) (A7 " (s5,a5) — A7 (s, %")))} dajj'dsjj'} )

where the expression of the second-order term V2 J¢" (75" (u* +0* o), \;) can be found in Lemma
Zl

{ﬁ”“f‘ (85575 ajr) (Veis log mg, (@;;/|5557)(sj — Sj')) :

Proof. Recall that ¢* = (u*,0*),0 = p+ oo, and ¢ ~ N (0, I). Therefore, we have that
VUEP¢* (0) [L(G, {’7;(31‘1()\51) 7]:\]:“‘1“7 {7‘tr}N r Ncm)]’

— Beonon VoL + 0% 0 C{TT OIS AT 1N ™),
Net N"— N

_ECNN(OI)[NUZV JCrl Crl(/J' +o* OC Z v, Jtr lr +J*OC))]:|~ )
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Therefore, we can get the Hessian:

V2, Ep,. o) [L0O {T O N [n NNy

N(.l‘l Nll‘ N(/l’l
= Feoton [l Vi B0 4770000 4 3 Vi 4 00
i=1

where the expression of the second-order term V2 J& (75 (u* +0*0(), ;) can be found in Lemma
[ Similarly, we can get that

V(27¢AEP¢*(9)[ (9 {TCI’I( ; ) ivclﬂ’ {,Ttr}N r N“’“)]
N“l Nt N“i
N ECNN(O 1 |:Ntr Z vtﬂzﬁ/\ ch( Crl(,u + oo C )\§] Z v(ﬂi),\ Jlr r( * + o*o C))]i| )

e

1 * * ~
Bt [ 0 V2 TG 0" 0 i+ 0n)]-
i=1
Now we need to derive the expression of VG@JZ“‘( 7 (u* + 0% o (), un + 0x(;). Suppose
we use MAML, and thus the first-order gradient V,J{"(n§"(u* + o* o (), /u + J)\Cj) =

(I + V3, Ji(Tuetoroc bn + UACJ)]VO i(To, i + 0aGj)] where 0; = p* + 0% o ( +
Vo Ji (T 4orocs i +02(j) and @ = p* +0* o (. Following the first-order MAML method in (Fal-
lah et al., 2020), we use the gradient V, J& (78 (u* +0* 0 (), a4+ 01(;) = Vo i (o, , ix +01Ej)]-
To get the term V2, J& (i (u* + 0™ 0 (), pa + 0a(;), we derive Vo, g, Ji(mo, , pux + 01 (5)-

V6. di(mo,, px + 0x(;) = Vg, E m0in; [ Vo, log m, (@50 |5550) Ajye],

(S /a /)Np PN

= Vm/ P (844, a550) Vo, log mo, (azje|5550) Ajjrdagjeds e,
(S 7,a /)ESX.A

= Vs / [P” 2 (8555 a45) Ve, log mo, (ajj]555 )Ajj’}dajj'dsjj"
(s;:7,a;.1)ESXA

=V Aj - Vi {Pﬂe i (s450,a450) Ve, log me, (@155 )Ajj'}dajj’dsjju
(s557,a;;1)ESXA

(a) o N _ _ -
= VA / {P Yt (Sjj'vajj')(veislog o, (@j5018550) (85 — Sj'))Ajj'
(s 7,a /)ESXA

. . _ _ T, o,
+ P03 (551, a55:) Vo, log g, (azy|55;0) (A7 (s5,a5) — A° (Sj'vaj')))}dajj'dsjj'v

where (a) follows the fact that V,p"% i (s;;/,a;;,) = 0 and Vg, log g, (@;;/|5;;) because they
include indicator functions. Therefore, we have that

Vion Erye o) [LOATT O AT Y,

Ncn

= E¢cn(o,1) [Ntr Z Vi A /

(85505a55

esen [ﬁm’i’” (Sjj"ajﬂ(veislogﬂei (@z501555:)(sj — Sj'))'
1)ES X

Ajjr+ P (8550, a5 )V, log g, (a50|5,50 ) (A; " (sj,a5) — A7 (s, aj’)))} dajj/dsjj'} ~

H PROOF OF THEOREM 1]

This section first prove that the conditional mutual information I(6;{T7 (), ~
Py O {TeNY) is C;-Lipschitz continuous and Cj-smooth where C; and C; are
positive constants in Clalm and then prove that Algorithm converges at the rate of O(1/V K).
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Claim 1. The conditional mutual information is C-Lipschitz continuous and Cr-smooth where Ct
and C'1 are positive constants.

Proof. From (8], we know that
1(0: T (A ~ Py, (V)Y

= E), [log

TR,

1 1
VI (O T (62 L [\/I G

where /\iE = px + o2 and §; ~ N(0,1). Therefore, we can get the gradient
Vo L0 AT (i ~ Py O))HE T ),
_ Beon[Verr (X))
1 Eemnon o™ (AT
Now, we consider the Hessian
Vanon IO AT O ~ Py, ST D),
o EanvonlVero (OSET] i
= Vg, e Beanvon [Vm
Ez a0, Lo ({2 120
:EENN(O,I)[ViMb)\ “ASHET]
1o (A
~ BenonVero SN Ee oo o SN T Eeopron) [Voro* (ATHET)]
Eznionlo* (SR
V3o (DD | Vo, o (DO (0" (ST T Va0 (D))
o (A o (A1

Vo o (AHET)
[l (DS

o | 1] (10)

Voo (A1)
Fle @z

- EE~N(0,1)[

(11
From (10), we know that if we can lower bound ||c*|| and upper bound ||V, c*||, the norm of
the gradient Vy, 1(0; {T,(A\; ~ Py, (\))} N {7 N is bounded. From , we know that if
we can lower bound ||c*|| and upper bound HV%a || and ||V3, ,, o*]|, the norm of the Hessian
V3,0, L0 {TE (N ~ Py, (V) HE A {Tm}Nm)|| is bounded. Note that A € [0, 1] is bounded
within a compact set. Therefore, as long as we can prove that 0%, Vg, 0*, and V2A 6,0 are con-
tinuous in A, their norms are both upper bounded and lower bounded. To show that o, V4,0,
and V?A $, 0 are continuous in A, we can show that they are differentiable w.r.t. A. Since ¢ is
differentiable w.r.t. A, we only need to show that o*, V4, o*, and V?A ma* are differentiable w.r.t.
éx. This suffices to show that V, 0%, V?Am o*, and ngwx o* exist.

From Lemmam we know that V, o* exists and
Vir0" = = V20 Bp,. o) LO AT O T )]
V2 o B oy L0 AT O AT RS ),

Since log 7y is smooth in 6 (Assumption , we can see that L(6, {Tcri()\gj )}f\l"l’ {7t }N“ Nc“)

is also smooth in 6. Since 6 is smooth in o, L(6, {7_?“(/\57') N, {TF};2 N Nm) is also smooth in
o. Similarly, we can derive

V00" = (V20 Bry o) [L0, (TR O HT AT )]

Vo, By L0 AT R AT )
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(V20 Ep,. o [LOAT O AT )]
— [V Bp,. o) [LOAT O AT

V2 oo B (o) L0, AT OGN ATV ),

*

and similarly we can derive the expression of V3 ,  o*. Therefore, we can see that ||o*||,
|V o *|| are both lower bounded and upper bounded, and thus there exists pos-
itive constants Cy and Cy such that ||V, I(0; {T (N ~ Ps, (N) Ncrl|{Tcrl}Ncr')|| < Cf and
1972, 6, L0 {TE (s ~ Py Q)M HTE )| < Cr O

For simplicity, we denote f(¢xx) = 1(0; {T(Ni ~ Py, x(N\) Y N

W TN m) Claimlshows
that f(¢x k) is Cr-smooth, therefore, we have that

F(Drnp41) = f(Dr k) + (Vo F(Dr k) Oakt1 — Ork) — %‘|¢A,k+l — o kll?
015

D F(par) + BIV oy Fdrn)l2 —
(b)

Vg f (éx0)l1%
C1C32
2

= BV f(dr0)lI* < F(Drnt1) = f(drr) +

CVK
2

QW F( )% < [F(Saps1) = Fldrn)] +

ZH% Fon0)IP < Sl 0na0) — Fonall + L

where (a) follows the fact that ¢y 11 = érk + BV, f(drk), (b) follows the fact that
[V, f(6x)]] < Cr, and (c) follows the fact that 3 = C‘I?/E‘

Lo
Vs

I PROOF OF THEOREM

This section proves Theorem [2| via two steps. Step (i): we prove that I(0; {7\~
Py, () HE TN is monotonically increasing in Claim Step (ii): we provide that
L0 {TE (s~ Py e O T >

Claim 2. If 8 < C‘%’ the conditional mutual information is monotonically increasing, i.e.,
LOAT N~ Py et WDIHTEED) > 10 AT (N ~ Py k(W) HE T YY), and
is strictly increasing if ||V 4, 1(0; {7?’1()\1 ~ Py kW) HTEND)|| > 0.

Proof. For simplicity, we denote f (¢ x) = I(0; {TF (A ~ Py, (M) I { T 1Y), Therefore,
we have that

(a) C
F(@rn+1) = f(Dan) + (Voo F(dak), dakt1 — dak) — 7I||¢A,k+1 -
Clﬁ

)

D F(ak) + BlIVgr F(drn)lI? -

28 -C

= Flénirn) - F(ors) 2 %nvmﬂmw >0 (12
where (a) follows the fact that f(¢y) is C7-smooth (Claim, (b) follows the fact that ¢y y4+1 =
Oak + BV, f(drk). from , we can see that f(¢x ky1) > f(dak). Moreover, f(dx k+1) >
F(oa) if [V, f(drr)]]> > 0. O

Vo f(or0)I1%,

From Claim [2| we know that I(0; {7 (N ~ Py, x (M) TH{TENTY) > 1(0; {T (N
Py, oA {TE1N)). The only situation where 1(6; {7 (\s ~ Py, (W)} { T 1Y) =

2
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(0 AT (N ~ Py o)) MY T ) s that Vi, T(0: { T (s ~ Py o AT =
0, i.e., the initialization is a stationary point, which is of zero probability. Therefore, we know that
IO AT O ~ Poy ik ODHEHTEED) > 10 AT ~ Poy oW {TE ). Since
conditional mutual information is always nonnegative (Wyner, |1978), we know that I (6; {7;“‘()\ ~
Py ik OV HETHTE D) > 10 AT (i ~ Py o WM HTEHE) 2 0.

J  THE TASK INFORMATION OF THE NON-CRITICAL TASKS STORED IN THE
META-PARAMETER DOES NOT CHANGE AFTER THE TASK AUGMENTATION

This section shows that the task information of the non-critical tasks stored in the meta-parameter
does not change after the task augmentation. In brief, we prove that the mutual information between
the meta-parameter and the non-critical tasks remains unchanged even if the mutual information
between the meta-parameter and the critical tasks increases after task augmentation (i.e., the condi-
tional mutual information is positive).

Suppose we augment the critical tasks {71}V o {Tei Y “I. Note that the difference be-
tween {Tf“}N Crll and {71} is that they have different distributions, i.e., P({7 1} m) and
P{Te fil) Therefore, we use A to generally represent the critical tasks (elther before augmen-
tation or after augmentation), and use P(A = {7}V ") and P(A = {7 to respectively

denote that A follows the distribution of {7}V * and A follows the distribution of {7 o
now quantify the change of the mutual informat10n between the meta-parameter and the non- crltlcal

tasks {77}V N
(0 {7-1r}N" Ned {Tcn N“") (9 {7-1r}N“ Ne
(a)/P 9 {7—1r}N“ Ner {ﬁcn N‘“)
POATEYE YT )
T PUTI Y KT D)
= [ POATETS T
POAT N T )
(9‘{7‘&1 NC") ({TTr Nt — NC"|{7‘crl NC“)
POTEYT N T
(9|{7’cr] N”‘)

7-1r Nlr Ned Tcrl Ner (9'{7‘& N“" {Tcrl}i\f“l‘
/ AT AT o T

{Tcrl N eri )

do(d{ TN AT )

Ao T TN )T

POATE RN AT log b N T

)de(d{arir}N" N”')(d{Tcrl}N“‘)

2 [ POUTEYETY, HPUTYTNT)PA = (T2

PONTE N A)
P(0]4)

= [ POHTETY  APUTIET P = (TN

PONTTIETN", 4)
P(0]4)
/ POHT VTN A)PUTERITN™) [P(A = () — P(A = (T 1Y) |-

PORT N
(9|A)

dO(d{ TN TN (dA)

log

dO(d{ TN ) (dA),

A g 7YV dA),
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/ PONT TN, A)PUTENTY ™) [P(A = (T 1) — P(A = (T

(€|{7'tr N — Nt A)
fP 9|{’T‘r}1\7lr Nm AP ({7‘tr}N" NL")(d{7~tr}N" NL‘")

= / PONTVET Y APUT YY) [PA = (T — P(A = {T)5))-

log 1d0(d{ T} NN (dA),
=0, (13)

do(d{ T NT)(dA),

where (a) follows the definition of conditional mutual information (Wyner, [1978), (b) follows the
fact that the critical tasks and the non-critical tasks are mdependent (i.e., P(0, {T‘r NN " A) =

PORTYE N APATNETYT ) = POUTHEN, A)PUTE N‘“) P(A), and
(¢) follows the fact that the non- crltlcal tasks {7, };_ N ~N" are given and thus P ({7'Tr N m) =1

From (13), we can see that I(6; (TN NCH\{TC“}NC”) 160 {7 N NCH\{TCH}N”') =0, and
thus the information of the non-critical tasks stored in the meta-parameter does not change after the
task augmentation.

K PROOF OF LEMMA

In this section, we prove that the learned augmentation Py, , (A\) imposes a quadratic regulariza-
tion on the original meta-objective. Let’s first consider J&(7(6), \;). We use ¢; to denote the
parameter of the task-specific adaptation, i.e., 7y, = 75" (6). Since we use MAML to compute the
task-specific adaptation, we know that ¢; = 6 — aVJ" (). We use 5()) to represent 3 to high-
light the mixing coefficient A. Note that the action @ indirectly depends on A because A\ will affect
5 and 5 will affect the distribution of 7y, (-|5). However, we do not need to directly reason about
how \ affects a because we can capture this relation by analyzing how 5 affects the distribution
74 (+|5). Therefore, we still use the notation a instead of a(\). The RL objective of the augmented

task 7.(\;) is
Ej, ~N(px k0% k) Jm( g (0), )‘i):|7
= E(s,a))(s/ﬂ/)wp“% >)‘i~N(H’)\,K,U§,K) [log T; ((_llg()\z))A:% (E(Al), (_1) .

Let2; = 1 — \; and F(;) = log 7y, (@|5(\i)) A ** (5()\;), @), therefore, the second-order approx-
imation of F;(x;) is:

1
Fy(wi) = Fy(0) + F{(0)z; + 5 F/'(0)a7. (14)
We now derive the expression of F(0) and F)’(0).
85(&) ox; ’

= [Vlog g, (@l5(0) - AT (5(3). ) + log o, @5(A)) - VAT (5(0).3)] (s~ 9)

K2

= F{(0) = [V.log g, (als) - AT (s.0) + og e, (als) - Vo AT (s,0)] (' =5). (15
‘We now reason about the second-order derivative:
Fl ) = 5= [V logm (@l5(00)) - AT (500, ) +log ma als(0) - VAT (500). )] (+ )
=(s'—s)" [Vﬁs log 7y, (al5(A:)) - A7* (5(Xi), @) +2(Vs log g, (als(X))) T - VAT (5(N), @)

+log s, (als(0)) - V2AT* (5(0), @) | (' = 9),

26



Published as a conference paper at ICLR 2026

= F/(0) = (s = )7 [V, logmy, (als) - AT (s,0) + 2(V, log w5, (als)) VLA™ (s,)
+log my, (als) VEAT* (5, a)] (s = s). (16)

By plugging (I3)-(T6) into (T4), we have that
Fy(x;) ~ logmy, (a|s)A;* (s, a)

.
+ [Vs log 7y, (als) - A7 % (s,a) + log 7y, (als) - Vs A; (s,a)} (s —s)(1—N)
+ (s —s)7 {st log 7y, (a]s) - A7 % (s,a) + 2(Vslogmy, (als)) TV A; % (s,a)
+10g 7, (als) V2,A7 (5, )] (5" = $)(1 = \i)2,

— log 7, (al) A7 (5,0) + Cx,(5,0) + (5" = 5)TAT* (s,0) [ V2, log g, (als)) | (5" = 5)(1 = As)2,
a7

.
where C), (sj,a;) = {Vs log 7y, (als) - A; % (s,a) + logmy, (als) - VA, (s, a)} (s" —s)(1 —
N)+ (5" = 8)T |2V, log o, (als)) TV, AT (s,0) +1og s, (als) V2, AT (5,a) (5' = )(1 = Ai)2,

Now we take a look at the term V2, log 4, (a;|s;). Recall that the softmax policy parameterization
®] f(s,a)
evi

T therefore we have that

g, (als) =
a’eA €

V2 log e, (als) = V2. |¢ f(s,a) —lo i f(s.a”)
ss 108 T, ss ¢z f ) ) g )
a’eA
Za’EA ¢;V§sf(3a a/)ed):f(s,a’) + (sz(v‘?f(Sv a’))(Vsf(s, a/))Ted):f(s’a,)Qbi
S area 10

= ¢;rv§sf(87a) -

(ZaleA Qb;vsf(S’ a')e¢;rf(s,a'))2
(Cpeqe Fa0)2

S wen b8 V2, [ (s, a’)edl ()
Za/GA e®i f(s,a’)

T [Za/EA(vsf(37 a/))(vsf(s, a/))Te¢:f(s’a/)](Za,€A ed’z‘Tf(&a/)) — (Za/eA st(s’ a/)ezﬁjf(s,a/))g

)

=] Vi.f(s.a) -

o (Cweac” JE)? .
Swendl V3 f(s,a)et S
= d);rvgsf(s’ a’) - EAE 6¢Tf(s a/) - ¢:H(S,G)¢“ (18)
aedC T
where H(s,a) = [Sarea(Vel (500 (Ve f(5:0)) Tt SN (50 g T 1) (e g Vo (500t 1CD)2

T ’
(Za’GA % f(s;a ))2

0 by Cauchy-Schwartz inequality. By plugging (I8) in to (I7), we have that
Fy(x;) = log g, (als)A] % (s,a) + Cy, (s,a) + A7 % (s,a) (s’ —s)T-

Swea 1 Vi (5,0)e? 100
Sen e 1)

= log 7, (als) A7 (s,a) + Ch,(s,0) — ¢ HS(5,0);,

D tog s, (als) AT (5, @) + O, (5,0) — (0 — AV TS ()T HSH (5, @)(0 — AV I (7)),

= log s, (als)A] " (s,a) + C, (s,a) — 0T (s, )b, (19)

b, V2. f(s,a) — —¢; H(s, a)@} (s" = s)a3,

where (d) follows the fact that ¢; = 6 — aVeJ&i(m), Cx(s,a) = Oy (s,a) +

) wea $1 V2 f(s,a)eti Fa Freri
A ) = T[T VS o0) = B ] — e B =
a’c A
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AT (s,a)H(s,a)(s' — s)z? = 0 given that H(s,a) > 0, and Cy,(s,a) = Ci,(s,a) —

K3 4 i ’ i

a*(VoJ§t(mg)) " HS (s, a) (VoS5 (mp)).
Therefore, we have that
T (EH(0), X0) = B 0y (5r,aympmes [Fi ()]

© B a)mp: [log 7y, (a|s)A] % (s,a) + Ch, (s, a) — GTI_ﬁ?(s, a)f|,

— Jcn( cn(a)) +C~’/\i _ GTH&TH,
where (e) follows , Cy, = E Chy, (s, a)], and H§ = Els a)mpmos [HS(s,a)] >

0 given that Hﬁ\?(s,a) = 0. If we only consider the second-order term, we
can see that JT(m{(0),N\;) ~ J&(nii(0)) — OTHG.  Therefore, we have that
L0 AT O AT ™) ~ L0 AT ) —0T (1 A5H)0 where () A5 = 0
given that 5% ~ 0. Thus we have that Ey,p, _n[L(0, {T (A DI AT &
L(O,{T ) — GT(Z?:: H)0 where HS = ExinPyy () [H§] > 0 given that H§? > 0.

sayp7on |

L PROOF OF THEOREM[3]

We start with standard uniform deviation bound based on Rademacher complexity (Bartlett &
Mendelson, 2002).

Claim 3 ((Bartlett & Mendelson, 2002)). Let the sample {z1,- - ,zn} be drawn i.i.d. from a dis-
tribution P over Z and let F be a function class on Z mapping from Z to a bounded set. Then

for & > 0, with probability at least 1 — 0, it holds that sup;,, IF= Zf\il f(zi) = E.wp[f(2)]l]]| <

2R(F, 21, y2n)+1/ %, where R(F, z;,- -+ , 2N ) is the Rademacher complexity of the func-
tion class F.

log(1/0
From C1a1ml we know that the generalization gap |G(F,)| < R(F5, T, -+, T + %,
where F”v £ {Ji(mg) : mg € F5}. Therefore, we can compute the Rademacher complexity:

N[f
i ' o) = tr
R(Fy, T, T = m[Jsng N‘fZU“] (0 }
< sup  Ji(mi(9)),
wo~Fx,i~P(T)
= sup Eﬂ¢q‘, oy [log T, (a‘S)A:%, (S, a)]’
mo~TFs i~ P(T) (s,a)~p %i
= sup E’ (¢, f(s,a) —log ST H5@)) 4™ (5. )],
mo~TFs i~ P(T) (s, a)~p b5 a%

where o; is a random variable with equal probability of choose 1 and —1. Recall that ¢; =
0—aVgJ;(mg) and ||V Ji(mp)|| is bounded. Moreover, A7 * (s, a) is also bounded given that the re-
ward value is bounded, and the chosen feature vector f(s, a) is also bounded. Therefore, there exists

a constant C; such that R(F5, T\, -+, Tr,) < \/cl\l[—“ SUD g . inP(T) E(sdja)Np"dn [0 ;] where

hhi = E;..p(1)[H;]. Therefore, we have that R(F5, T\", - - - , i) < Ca+/ 7 where Cs is a pos-
itive constant. Therefore, we have that |G(F,)| < 2Cs %—H/logfvﬂ =O0(\/ 7= +1/ log](\,%).

M EXPERIMENT DETAILS

To update the meta-parameter, we need to sample 20 trajectories for each task and we use data
mixup augmentation to generate another 20 trajectories for the critical tasks. For a fair comparison,
the baselines use 40 sampled trajectories for the critical tasks to update the meta-parameter.
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M.1 PRACTICAL CONSIDERATION OF ALGORITHM 1]

In practice, we use warm start to accelerate Algorithm At each iteration &k,
the upper-level update produces a new mixing-coefficient distribution Py, , ()). The

lower level samples a set {/\Zk}f\’;1 of mixing coefficients to augment the critical
tasks and computes the posterior P*(0|{7(\;x)}) by solving the optimization prob-

lem ¢*({Ax) = argmax, By, o) L0 AT M) AT in () where

Py ins k}Nm)(Q) = P*(0{T"(\ix)}). The most straightforward way to solve the optimiza-
ik Si=1

tion problem in () at each iteration k is that, we randomly initialize ¢ and solve the optimization

problem until convergence to get ¢* ({\; ivzl) However, it requires many gradient-ascent steps

which can be computationally expensive. To address this issue, we use warm start. Specifically, in-
stead of randomly initializing ¢, we initialize ¢ in iteration k& with the parameter ¢({\; x_1}~ ;)
learned from the previous iteration k¥ — 1 and use one-step gradient ascent to obtain the new
parameter ¢({\; f\il) The warm start can significantly reduce the number of gradient-ascent
steps because it provides a good initialization. Note that the mixing coefficient parameters in two
consecutive iterations k¥ — 1 and k are close because they are only different in one-step gradient

Ok — Gak—1 = Bgak—1 where § is a small learning rate and gy ;_; is the gradient. There-

fore, it is expected that their corresponding lower-level optimal parameters ¢*({\; x ;N:l) and

qb*({/\i,k_l}ﬁ\fli) are also close. Note that we only use one-step gradient ascent to update ¢ and
thus ¢({ i k-1 fV:ll) and ¢*({ i k-1 f\f{) are different, however, qﬁ({/\i,k_l}f\[:{) is updated to-
wards ¢* ({\; k—1 fil) and QS({/\lk}f\'zl) is initialized from gb({)\lk_l}f\;l) and updated towards
¢* ({ Xk }Y)). Intuitively, it is expected that ¢({\; ,}Y)) will approach ¢*({A; x}Y) and fi-
nally become (b*({)\lk}f\g;) when £ increases. In fact, it has been theoretically guaranteed that
¢*({ ik 1)) will finally reach ¢* ({/\zk}f\f{) when k increases (Hong et al., [2023).

M.2 FEASIBILITY OF THE AUGMENTED STATE

Recall that the augmented state 5 = \;s+ (1 — \;)s’ is a convex combination of the two states s and
s'. These two states (s, s") are both valid states because they are visited by the policy. Therefore,
their convex combination § will always be a feasible state in the state space if the state space is
convex. In our experiments, the state spaces are all convex and thus the augmented state 5 is always
a feasible state.

M.3 HOW TO FIND POORLY ADAPTED TASKS

The poorly adapted tasks are neither the training tasks nor the testing tasks, but a third kind of
tasks: validation tasks. Specifically, we have three kind of tasks: training tasks, validation tasks,
and testing tasks. The original meta-policy mq is trained on the training tasks, and we find poorly
adapted validation tasks. We then identify the critical training tasks to explain these poorly adapted
tasks, augment the critical tasks, and retrain a meta-policy on the augmented critical tasks and the
other training tasks. The generalization is evaluated on the testing tasks. The poorly adapted tasks
are automatically selected, and we discuss how to select the poorly adapted tasks in Appendix
and[M.6] Take the MuJoCo experiment as an example, we randomly sample 50 validation tasks
and compute the cumulative reward of the meta-policy 7y after adaptation. We pick the top 20%
tasks with the smallest cumulative reward as the poorly adapted tasks.

M.4 DRONE NAVIGATION WITH OBSTACLES

We cannot run the meta-learning algorithm directly on the physical AR.Drone 2.0 because during
training, the drone needs to interact with the environment and can be damaged due to collision with
the obstacle and the wall. Therefore, we build a simulator in Gazebo (Figure E]) that mimics the
physical environment with the scale of 1 : 1. We run the meta-learning algorithm on the simulated
drone in the simulator. By using the simulator, we can avoid damage of the physical drone. Once
we obtain a learned policy that has good performance in the simulator, we implement the policy on
the physical drone and count the successful rate.
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Discussion of the sim-to-real problem. In some cases, the policy that has good performance in
the simulator may not have good performance in the real world due to the discrepancy between the
simulator and the real world. However, in our case, the sim-to-real issue is not significant because
of two reasons: (i) the simulated drone is built according to the dynamics of a real Ar. Drone
2.0 (Huang & Sturm| 2014); (ii) the states and actions in our case are just the coordinates of the
location and the heading direction of the drone instead of some low-level control such as the motor’s
velocity, rotation direction, etc. Given that Vicon can monitor precise pose of the physical drone
and the simulator is built on the 1 : 1 scale, if a learned trajectory can succeed in the simulator, it
can succeed in the real world as long as that the low-level control of both the simulated and physical
drones can strictly follow the actions.

In this experiment, the state of the drone is its 3-D coordinate (x, y, z) and the
action of the drone is also a 3-D coordinate (dz, dy, dz) which captures the
heading direction of the drone. We fix the length of each step as 0.1 and thus

h . dz dy
the next state is (z + 10V (@) + (g @) Y+ 10y/(@) 7 +H(dy)P 1+ (d2)? z+

)2). In this experiment, we do not need the drone to

dz

104/(dz)2+(dy)2+(dz
change its height so that we usually fix the value of z and set dz = O.
The goal is an 1 x 1 square. Denote the coordinate of the center of the
goal as (Zgoal, Ygoat), then for all the different tasks, zqou € (0.5,7.5) and
Yool € (8, 11). The obstacle is a 3 x 1 square. Denote the coordinate of the
lower left corner of the obstacle as (Zobstacle s Yobstacle )» then for different tasks,
Lobstacle S (07 4) and Yobstacle € (4a 5)

Figure 5: Simulator

M.5 STOCK MARKET

Al for finance (Ke et al., [2025) has been receiving increasing attention. We use the real-world
data of 30 constitute stocks in Dow Jones Industrial Average from 2021-01-01 to 2022-01-01. The
30 stocks are respectively: ‘AXP’, ‘AMGN’, ‘AAPL’, ‘BA’, ‘CAT’, ‘CSCO’, ‘CVX’, ‘GS’, ‘HD’,
‘HON’, ‘IBM’, ‘INTC’, ‘INJ’, ‘KO’, ‘JPM’, ‘MCD’, ‘MMM’, ‘MRK’, ‘MSFT’, ‘NKE’, ‘PG’,
‘TRV’, 'UNH’, ‘CRM’, ‘VZ’, V’, “‘WBA’, ‘WMT’, ‘DIS’, ‘DOW’.

The state of the stock market MDP is the perception of the stock market, including the open/close
price of each stock, the current asset, and some technical indices (Liu et al. [2021). The action
has the same dimension as the number of stocks where each dimension represents the amount of
buying/selling the corresponding stock. The detailed formulation of the MDP can be found in FinRL
(Liu et al.,[2021). In addition to the applications to finance, Al has been applied to multiple domains,
including graph (Ouyang et al.| [2024), job shop scheduling (Wang et al., |2025)), natural language
(Lan et al., 2025]), and robotics |Qiao et al.|(2023)).

The RL agent trades stocks on every stock market opening day in order to maximize profit as well as
avoid taking risks. The reward function is defined as p; —p2 where p; is the profit which is the money
earned from trading stocks subtracting the transaction cost, and p, models the preference of whether
willing to take risks. In specific, py is positive if the investor buys stocks whose turbulence indices
are larger than a certain turbulence threshold, and zero otherwise. The value of p, depends on the
type and amount of the trading stocks. The turbulence index measures the risk of buying a stock (Liu
et al., 2021), and a lower turbulence threshold means that the RL agent is less willing to take risks.
The turbulence thresholds for different RL tasks are different. The turbulence index is a technical
index of stock market and is included as a dimension of the state (Liu et al., |2021)). The turbulence
index measures the price fluctuation of a stock. If the turbulence index is high, the corresponding
stock has a high fluctuating price and thus is risky to buy. Therefore, an investor unwilling to take
risks has a relatively low turbulence threshold. The function p- is defined as the amount of buying
the stocks whose turbulence index is larger than the turbulence threshold. Therefore, the more the
target investor buys the stocks whose turbulence index is larger than the turbulence threshold, the
larger po will be and thus the smaller reward the target investor will receive. For different tasks, we
randomly sample the turbulence threshold between 45 and 50.

We first sample 50 training tasks to learn a meta-policy. We then randomly sample 10 tasks and
find the top 3 tasks where the meta-policy adapts with the worst performance. These 3 tasks are the

30



Published as a conference paper at ICLR 2026

poorly adapted tasks. We run our algorithm on the 50 training tasks. To evaluate the generalization
performance, we randomly sample 100 test tasks.

M.6 MulJoCo

The target velocity problem of MuJoCo is a standard problem for MRL (Finn et al.l 2017} |[Fallah
et al} 2021). We follow the standard setting in (Finn et al., 2017) to study the target velocity prob-
lem of two MuJoCo robots: HalfCheetah and Ant, where the episode length is 200. In the original
HalfCheetah environment, the reward function is forward_reward-ctrl_cost where the forward re-
ward is the velocity of the robot. In the target velocity task, we do not change ctri_cost and we
change forward_reward as —|v — vmgel| where v is the current robot velocity and vy 18 the target
velocity. In the original Ant environment, the reward function is healthy_reward+forward_reward-
ctrl_cost-contact_cost, and we only change forward_reward as —|v — Ugreee|. Following (Finn et al.,
2017), we choose the target velocity range of HalfCheetah as [0, 2] and the target velocity range
of Ant as [0, 3]. For both HalfCheetah and Ant scenarios, we sample 100 training tasks. We find
10 poorly adapted tasks and run our algorithm on the 100 training tasks to find critical tasks and
improve generalization. To evaluate the generalization performance, we randomly sample 200 test
tasks.

M.7 ABLATION STUDY ON THE AUGMENTATION METHOD

In this section, we include an ablation study to show the effectiveness of our augmentation method.
In specific, the previous data mixup augmentation methods (Yao et al., 2021} [Wang et al.l 2020;
Zhang et al.l [2018) use a predefined Beta distribution P(A\) = Beta(o, o) where o = 1 to sam-
ple A;. In contrast, we propose to optimize the distribution P(\) by solving the problem @ To
show the effectiveness of our method, we compare to a method that uses the predefined distribution
P()\) = Beta(1, 1) to augment the critical tasks, we refer to this method as “predefined augmenta-
tion”. We also choose different number of critical tasks N°" to find the case where the predefined
augmentation method performs the best. We find that the optimal number of critical tasks of the
predefined augmentation method is same as the one of our method.

Table 3: Comparison of augmentation methods.

Experiment Drone Stock market HalfCheetah Ant

Ours 0.97£0.01 421.13+12.11 —44.67+4.35 119.15+4.02
Predefined augmentation 0.93 +0.02 394.16 +£ 16.85 —58.53 +£4.82 109.62 £ 5.47

Table [3| shows that our method significantly outperforms the method that uses the predefined distri-
bution P(\) = Beta(1, 1) to augment the critical tasks.

M.8 EVALUATION OF THE EXPLANATION

This section evaluates the fidelity and usefulness of the explanation.

Evaluation of fidelity. Fidelity means the correctness of the explanation. Recall that the explanation
(i.e., the critical tasks) aims to identify the most important training tasks to achieve high cumulative
reward on the poorly adapted tasks. To evaluate the fidelity, we train a meta-policy on the critical
tasks and evaluate the performance of the meta-policy on the poorly adapted tasks. We introduce
two baselines for comparison. The first baseline is the “original meta-policy” that trains on all the
training tasks. We refer to this baseline as “original”. The second baseline is that we randomly pick
N training tasks and train a meta-policy over the N training tasks. We refer to this baseline as
“random”. Note that we chose N as the optimal number of critical tasks (shown in Figure , ie.,
10 for Drone, 15 for Stock Market, and 10 for HalfCheetah and Ant. We compare the performance
on the poorly adapted tasks with these two baselines.
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Table 4: Fidelity comparison.

Experiment Drone Stock market HalfCheetah Ant

Ours 0.97£0.02 442.29 +£12.79 —37.14+£5.15 132.62 £ 5.15
Original 0.68£0.16 296.27 +35.16 —104.79£12.72 62.47+11.03
Random 0.71£0.08 284.97 +29.85 —96.78 £ 9.24 65.25 + 3.10

Table 4| shows that our explanation has high fidelity because the meta-policy trained on our expla-
nation significantly outperforms the two baselines on the poorly adapted tasks.

Evaluation of usefulness. Usefulness means whether the explanation can indeed help improve
generalization. Table|l|already shows that our method (XMRL) can significantly improve MAML.
However, this might be the effect of the task augmentation method. To evaluate whether the critical
tasks help improve generalization. We randomly pick N training tasks and use the same algorithm
(Algorithm [1)) to augment these critical tasks. The choice of N is same as the one we use to
evaluate the fidelity. We refer to this method as random, and we compare the generalization of our
method with this random method.

Table 5: Usefulness comparison.

Experiment Drone Stock market HalfCheetah Ant

MAML 0.87£0.01 359.13+18.63 —68.89+4.36 100.64 £ 3.63
Ours 0.97+£0.01 421.13+12.11 —-44.67+4.35 119.15+£4.02
Random 0.89£0.02 365.16+11.07 —71.12+5.09 104.98 £ 3.65

Table [5| shows that our explanation has high usefulness because randomly pick N training tasks
and augment can only slightly improve the generalization, while our method can significantly im-
prove generalization.

M.9 META-WORLD EXPERIMENT

In this section, we conduct an experiment on ML10 of Meta-World. We first validate our observation
that 7o adapts well to some tasks but poorly to others”. In particular, we first use MAML to train a
meta-policy 7y and evaluate 7y on the test tasks of ML10. We report the results below:

Table 6: MAML generalization on ML10 test tasks (success rate).

door close drawer open level pull shelf place sweepinto average
0.86 0.35 0.26 0.00 0.00 0.29

Table [6] validates that the imbalanced generalization indeed exists where 7y adapt well to the task
of “door close” but adapts poorly to the tasks of “shelf place” and “sweep into”. We next evaluate
our method MAML+XMRL and the baselines (MAML+TW, MAML+MA, and MAML+MR) on
ML10. In addition, we compare with two state-of-the-art MRL algorithms: SDVT (Lee et al.| [2023)
and ECET (Shala et al., [2025).
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Table 7: Performance to ML10 test tasks (success rate).

door close drawer open level pull shelf place sweep into average

MAML 0.86 0.35 0.26 0.00 0.00 0.29
MAML+XMRL 0.85 0.38 0.25 0.09 0.26 0.37
MAMLA+TW 0.72 0.29 0.28 0.00 0.24 0.31
MAML+MA 0.82 0.38 0.22 0.00 0.02 0.29
MAML+MR 0.87 0.33 0.26 0.04 0.00 0.30
SDVT 0.08 0.65 0.01 0.00 0.90 0.33
ECET 0.58 0.26 0.24 0.04 0.46 0.32

The results in Table [7] demonstrate that our method can significantly outperform MAML by more
than 20% (in terms of average success rate), and outperform the other baselines. Note that while
MAML+XMRL outperforms MAML in terms of average success rate, its success rates on “door
close” and “level pull” are slightly lower than MAML. This is reasonable because it is not expected
that MAMLA+XMRL can outperform MAML on every task according to no free lunch theorem.

Statistical significance test. We provide p-values from paired t-tests below where we choose the
significance value o = 0.05.

Table 8: P-values from paired t-tests comparing each method to MAML on ML-10 (a = 0.05).

door close drawer open level pull shelf place sweepinto average

MAML+XMRL 0.0209 0.0095 0.1192 0.0065 0.0000 0.0081
MAMLA+TW 0.0001 0.0039 0.1945 0.2589 0.0000 0.2551
MAML+MA 0.0041 0.0183 0.0340 0.4784 0.2850 0.5765
MAML+MR 0.0490 0.3747 0.0159 0.0010 0.4469 0.9293

SDVT 0.0000 0.0000 0.0000 0.7373 0.0000 0.1087
ECET 0.0000 0.0007 0.0021 0.0097 0.0000 0.0586

The results in Table [8| demonstrate that our method MAML+XMRL significantly outperforms
MAML in terms of average success rate as its p-value is under the significance threshold. Among the
other five baselines, only the p-value of ECET is close to but still above the significance threshold.

Ablation study on the number of critical tasks N, We vary the number of critical tasks and
record the corresponding success rates of MAML+XMRL below. Similarly as in Appendix ??, we
report the performance against the percentage of critical tasks. Please refer to Appendix ?? for
design details.

Table 9: Average success rates against percentages of critical tasks on ML10

Percentage of critical tasks 0% 10% 20% 30% 40% 50%
Success rate 029 033 037 032 0.28 0.20

The results in Table [0 demonstrate that our method achieves the highest performance when the
critical task are 20% of the training tasks.

Ablation study on the augmentation method. To demonstrate the effectiveness of our learned
augmentation method, we compare our method to a predefined augmentation distribution P(\) =
Beta(1, 1). Please refer to Appendix for design details.
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Table 10: Comparison of augmentation methods on ML10.

door close drawer open level pull shelf place sweepinto average

Our method 0.85 0.38 0.25 0.09 0.26 0.37
Predefined augmentation 0.83 0.37 0.24 0.00 0.09 0.31

The results in Table [T0] validate the effectiveness of our learned augmentation as it outperforms a
predefined augmentation distribution.

Evaluation of the explanation. We follow the setup in Appendix and evaluate the fidelity and
usefulness of our method below. Please refer to Appendix [M.8|for definitions of fidelity, usefulness,
and the comparison baselines.

Table 11: Fidelity and usefulness comparison on ML10.

Fidelity Usefulness
Ours Original Random \ MAML Ours Random
0.24 0.00 002 | 029 0.37 0.31

The results in Table[IT]demonstrate that our explanation has high fidelity and high usefulness.

N LIMITATIONS

Despite the benefits of our proposed algorithms, the limitation of our method is that we require to
interact with the environment to collect augmented data, which makes it infeasible for offline RL
cases. We will explore how to extend our method to the offline RL case in future works.

O THE USE OF LLMS

We use LLMs to help polish paragraphs in the introduction.
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