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Abstract

Parallelization techniques have become ubiquitous for accelerating inference and
training of deep neural networks. Despite this, several operations are still performed
in a sequential manner. For instance, the forward and backward passes are executed
layer-by-layer, and the output of diffusion models is produced by applying a
sequence of denoising steps. This sequential approach results in a computational
cost proportional to the number of steps involved, presenting a potential bottleneck
as the number of steps increases. In this work, we introduce DeepPCR, a novel
algorithm which parallelizes typically sequential operations in order to speed up
inference and training of neural networks. DeepPCR is based on interpreting a
sequence of L steps as the solution of a specific system of equations, which we
recover using the Parallel Cyclic Reduction algorithm. This reduces the complexity
of computing the sequential operations from O(L) to O(log2 L), thus yielding a
speedup for large L. To verify the theoretical lower complexity of the algorithm,
and to identify regimes for speedup, we test the effectiveness of DeepPCR in
parallelizing the forward and backward pass in multi-layer perceptrons, and reach
speedups of up to 30× for the forward, and 200× for the backward pass. We
additionally showcase the flexibility of DeepPCR by parallelizing training of
ResNets with as many as 1024 layers, and generation in diffusion models, enabling
up to 7× faster training and 11× faster generation, respectively, when compared to
the sequential approach.

1 Introduction

Neural Networks (NNs) have proven very effective at solving complex tasks, such as classification
[26, 14], segmentation [5, 30], and image or text generation [26]. Training NNs, however, is a
computationally demanding task, often requiring wall-clock times in the order of days, or even weeks
[35, 18], before attaining satisfactory results. Even inference in pre-trained models can be slow,
particularly when complex architectures are involved [4]. To reduce training times, a great effort has
been invested into speeding up inference, whether by developing dedicated software and hardware [7,
22, 23], or by investigating algorithmic techniques such as (early) pruning [28, 40, 20, 27, 43, 9].

Another possibility for reducing wall-clock time, and the one we focus on in this work, consists in par-
allelizing computations that would otherwise be performed sequentially. The most intuitive approach
to parallelization involves identifying sets of operations which are (almost entirely) independent,
and executing them concurrently. Two paradigms that follow this principle are data-parallelization,
where multiple datapoints are processed simultaneously in batches; and model-parallelization, where
the model is split among multiple computational units, which perform their evaluations in parallel [1].

Still, certain operations which are key for training and inference in NNs have a sequential struc-
ture. The forward and backward pass of a NN are examples of such operations, where activations
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Figure 1: DeepPCR allows executing sequential
operations, such as denoising in latent diffusion, in
O(log2 L) time, as opposed to the O(L) needed
for the traditional approach (L being the number
of steps). In our experiments, DeepPCR achieves a
11.2× speedup for image generation with latent
diffusion with respect to the sequential baseline,
with comparable quality in the recovered result.

(or gradients) are computed sequentially, one
layer at a time. Moreover, some generative mod-
els suffer from similar shortcomings: in diffu-
sion models (DMs), for example, the output im-
age is generated through a sequence of denoising
steps [36]. Sequential operations such as these
require a computational effort which grows lin-
early with the sequence length L (that is, with
the number of layers, or denoising steps), which
represents a bottleneck when L is large. Given
the prevalence of these operations, any effort
towards their acceleration can result in notice-
able speed gains, by drastically reducing training
and inference time. Further, faster computations
may allow exploration of configurations which
were previously unfeasible due to the excessive
time required to perform these operations se-
quentially: for example, extremely deep NNs,
or diffusion over tens of thousands of denoising
steps.

In this work we introduce DeepPCR, a novel
method which provides a flexible framework for turning such sequential operations into parallel ones,
thus accelerating operations such as training, inference, and the denoising procedure in DMs.

The core idea behind DeepPCR lies in interpreting a sequential operation of L steps as the solution
of a system of L equations, as illustrated in Sec. 2. DeepPCR assumes the output of each step only
depends on that of the previous one, that is, the sequence satisfies the Markov property. If this holds,
we can leverage the specific structure of the resulting system to tackle its solution in parallel, using the
Parallel Cyclic Reduction algorithm (PCR) [10, 2]. This algorithm, described in Sec. 3, guarantees
the recovery of the solution in O(log2 L) steps, rather than the O(L) steps required for its sequential
counterpart. In our test, this translates into inference speedups of up to 30× for the forward pass and
200× for the backward pass in certain regimes, and 11.2× speedup in image generation via diffusion,
as shown in Fig. 1. The reduced computational complexity comes in exchange for higher memory and
computational intensity. Therefore, in Sec. 4.1 we investigate in detail regimes for speedup, as well
as the trade-off between our method and the sequential approach, considering as model problems the
forward and backward passes through multi-layer perceptrons (MLPs) of various sizes. In Sec. 4.2 we
then observe how this translates into speedups when training ResNet architectures. Finally, in Sec. 4.3
we showcase how DeepPCR can be applied to accelerate other types of sequential operations as well,
choosing as example the denoising procedure in DMs.

Previous Work The idea of parallelizing forward and backward passes through a DNN was
spearheaded in [13, 32, 24, 31, 41], under the concept of layer-parallelization. For the most part,
these approaches have been limited to accelerating the training of deep ResNets [15], since they rely
on the interpretation of a ResNet as the discretization of a time-evolving differential equation [6],
whose solution is then recovered in a time-parallel fashion [11].

More closely resembling our approach is the work in [39], where the authors start by interpreting
a sequential operation as the solution of a large system of equations, which is then targeted using
parallel solvers. They too focus on accelerating forward and backward passes on ResNets, but also
consider some autoregressive generative models (specifically, MADE [12] and PixelCNN++ [38]),
similarly to what is done in [44]. The main difference between our approach and the one in [39]
lies in the solvers used for tackling the target system in parallel. They rely on variations of Jacobi
iterations [34], which are very cost-efficient, but “fall short when the computational graph [of the
sequential operation considered] is closer to a Markov chain” [39]: we can expect the convergence
of Jacobi to fall to O(L) in that case, thus providing no speedup over the sequential approach. By
contrast, our method specifically targets Markov sequences, solving them with complexityO(log2 L),
and is in this sense complementary to theirs. We point out that a similar theoretical foundation for our
method was proposed in [33], however it was not verified experimentally, nor has it been considered
for applications other than forward and backward passes acceleration.
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Main Contributions The main contributions of this work can be summarized as follows:

i) We propose DeepPCR, a novel algorithm for parallelizing sequential operations in NN training
and inference, reducing the complexity of these processes from O(L) to O(log2 L), L being the
sequence length.

ii) We analyze DeepPCR speedup of forward and backward passes in MLPs, to identify high-
performance regimes of the method in terms of simple architecture parameters, and we discuss
the trade-offs between memory consumption, accuracy of the final solution, and speedup.

iii) We showcase the flexibility of DeepPCR applying it to accelerate training of deep ResNet [15]
on MNIST [8], and generation in Diffusion Models trained on MNIST, CIFAR-10 [25] and
CelebA [29]. Results obtained with DeepPCR are comparable to the ones obtained sequentially,
but are recovered up to 7× and 11× faster, respectively.

2 Turning sequential operations into systems of equations

Our approach is rooted in casting the application of a sequence of L steps as the solution of a system
of L equations, which we then proceed to solve all at once, in parallel. In this section, we illustrate
a general framework to perform this casting and recover the target system. Specific examples for
the applications considered in our work (namely forward and backward passes, and generation in
diffusion models) are described in appendix A. The algorithm for the parallel solution of the recovered
system is outlined in Sec. 3.

Consider a generic sequence of steps in the form zl = fl(zl−1), for l = 1, . . . , L, starting from
z0 = f0(x). The various fl could represent, for example, the application of layer l to the activations
zl−1 (if we are considering a forward pass), or the application of the l-th denoising step to the partially
recovered image zl−1 (if we are considering a diffusion mechanism). Notice we are assuming that
the output of each step zl depends only on that of the previous step zl−1 and no past ones: that is, we
are considering sequences that satisfy the Markov property (a discussion on the limitations related to
this assumption, and possible workarounds to relax it, is provided in appendix B). We can collate this
sequence of operations into a system of equations for the collated variable z = [zT

0 , . . . ,z
T
L, ]

T , and
obtain:

F(z) =




z0 − f0(x)
z1 − f1(z0)

...
zL − fL(zL−1)


 =




I
−f1(·) I

. . . . . .
−fL(·) I







z0

z1

...
zL


−




f0(x)
0
...
0


 = 0.

(1)
Notice that, to better highlight the structure of the operator involved, we are abusing matrix notation
and considering that the “multiplication” of fl(·) with zl−1 results in its application fl(zl−1), although
fl is generally a nonlinear operator. To tackle the nonlinearity (when present), we use Newton’s
method [34]. In more detail, denoting with a superscript k the Newton iteration, we start from an
initial guess for iteration k = 0, namely z = z0, and iteratively update the solution zk+1 = zk+δzk

by solving the linearized system
JF |zk δz

k = −F(zk), (2)
until we reach convergence. JF |zk denotes the Jacobian of the global sequential operation F(z)
evaluated at the current iteration zk. This Jacobian defines the target system we need to solve, and
obeys a very specific structure: taking the derivative of (1) with respect to z, and expanding (2), we
see that

(2)⇐⇒




I
− Jf1 |zk

0
I

. . . . . .
− JfL |zk

L−1
I







δzk
0

δzk
1

...
δzk

L


 =




f0(x)− zk
0

f1(z
k
0)− zk

1
...

fL(z
k
L−1)− zk

L


 , (3)

that is, the system is block bidiagonal. This structure is a direct consequence of the Markovian nature
of the sequential operation: since each step relates only two adjacent variables zl−1 and zl, only two
diagonals appear. The core of DeepPCR lies in applying a specialized parallel algorithm for solving
systems with this very structure, as described in Sec. 3.
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3 Parallel Cyclic Reduction for NNs

The solution of a block bidiagonal system is usually obtained via forward substitution: once zl is
known, it is used to recover zl+1 and so on, in increasing order in l. This procedures is efficient, but
inherently sequential, and as such might represent a bottleneck for large L. Interestingly, there exist
alternative algorithms for the solution of such systems, which trade-off more complex instructions
and extra memory consumption for a higher degree of parallelization. One such algorithm, and the
one our method is based on, is Parallel Cyclic Reduction (PCR) [19]. Originally, PCR was devised to
parallelize the solution of tridiagonal systems; in this work, we describe its adaptation for bidiagonal
systems such as (3). In a nutshell, PCR works by combining the equations of a system to progressively
reduce its dimension, until it becomes easily solvable. Pseudo-code for the adapted algorithm is
reported in Alg. 1, and a schematic of how the reduction is performed is outlined in Fig. 2. More
details on its functioning are provided next.

We start by noting that systems like (3) can be compactly represented as a set of equations involving
only two adjacent variables δzl−1, δzl:

δzl − Jfl |zl−1︸ ︷︷ ︸
=:A0

l

δzl−1 − (fl(zl−1)− zl)︸ ︷︷ ︸
=:r0

l

= 0, l = 1, . . . , L, (4)

with δz0 = f0(x)− zk
0 known. The 0 superscripts in the operators A0

l and vectors r0l defined above
refer to the current (0-th) PCR step. As a first step for PCR, we substitute the (l− 1)-th equation into
the l-th, for each l in parallel, recovering

δzl −A0
lA

0
l−1︸ ︷︷ ︸

=:A1
l

δzl−2 −
(
r0l −A0

l r
0
l−1

)
︸ ︷︷ ︸

=:r1
l

= 0, l = 2, . . . , L.
(5)

Notice that the original structure is still preserved, but now the equations relate variables l to l − 2.
In other words, the even and the odd variables have become separated, and we have split the
original system into two independent subsystems: one involving variables δz0, δz2, . . . , the other
δz1, δz3, . . . At the next step, we substitute equations l − 2 into l, to recover:

δzl −A1
lA

1
l−2︸ ︷︷ ︸

=:A2
l

δzl−4 −
(
r1l −A1

l r
1
l−2

)
︸ ︷︷ ︸

=:r2
l

= 0, l = 5, . . . , L,
(6)

so that now only variables at distance 4 are related. Ultimately, at each step of PCR, we are splitting
each subsystem into two independent subsystems. If we iterate this procedure for log2 L steps, we
finally obtain L systems in one variable, which are trivially solvable, thus recovering the solution to
the original system.

Algorithm 1: PCR for block bidiagonal systems
/* Initialisation: */

1 Set sub-diagonal operators Al;
2 Set right-hand sides rl;
/* PCR steps (sequential) */

3 for i = 1 to L do
/* Reduction steps (parallel) */

4 parfor l = i+ 1 to L do
5 Update rl ← rl −Alrl−i ;
6 Update Al ← −AlAl−i ;
7 i← 2i;
8 Return solution rl;

. . .
Al−1 I

Al I

Al+1 I

. . .
zl−2 zl−1 zl zl+1







×
−Al

+

×
−Al+2

+

×
−Al−1

+

×
−Al+1

+

System of even
unknowns z2l

System of odd
unknowns z2l−1

z4l z4l+2 z4l+1 z4l+3

Figure 2: Left: pseudo-code for PCR algorithm. Right: schematic of row reductions in PCR: green
rows are combined pairwise to obtain a system of equations in even unknowns; at the same time, blue
rows are combined to obtain a system in odd unknowns only. The result is two independent systems
with half the original number of unknowns. The procedure is then repeated for log2 L steps.
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3.1 Limitations of DeepPCR

The main advantage of using DeepPCR for solving (1) lies in the fact that it requires only O(log2 L)
sequential steps, as opposed to the O(L) necessary for traditional forward substitution. However,
some conditions must be verified for this procedure to be effective in achieving speedups. We discuss
next some recommendations and limitations associated with DeepPCR.

Effective speedup for deep models While PCR requires fewer sequential steps overall, each
step is in principle more computationally intensive than its sequential counterpart, as it requires
multiple matrix-matrix multiplications to be conducted concurrently (by comparison, one step of
the sequential case requires applying the step function fl(z)), as per line 6 in Alg. 1. If this cannot
be done efficiently, for example because of hardware limitations, then we can expect performance
degradation. Moreover, the difference between the linear and logarithmic regimes becomes useful
only for large L. Both these facts are investigated in Sec. 4.1.

Controlling Newton iterations Whenever (1) is nonlinear, the complexity actually becomes
O(cN log2 L), where cN identifies the number of Newton iterations necessary for convergence. On
the one hand, it is important for cN to remain (roughly) constant and small, particularly with respect
to L, for the logarithmic regime to be preserved and speedups to be attained; on the other hand, there
is a positive correlation between cN and the accuracy of the solution recovered by the Newton solver.
Implications of this trade-off are discussed in Sec. 4.4. We also point out that, in general, Newton’s
method provides no guarantees on global convergence (unlike Jacobi’s in [39], which reduces to the
sequential solution in the worst-case scenario). Even though in our experiments the method never
fails to converge, it is worth keeping in mind that ultimately the solver performance is dependent both
on the regularity of the target function (1), and on the initialization choice. In particular, the effect of
the latter is investigated in appendix F, but already the simple heuristics employed in our experiments
(such as using the average of the train set images as initialization for the output of our DMs) have
proven to be effective in providing valid initial guesses for Newton.

Benefits from larger memory To apply DeepPCR, it is necessary to store the temporary results
from the equation reductions (most noticeably, the operators Al in line 6 in Alg. 1). The associated
memory requirements scale linearly in the number of steps L and quadratically in the dimension of
each step output z. This results in an increase in memory usage with respect to classical approaches
(roughly 2× as much for forward passes in MLPs, as measured and reported in appendix C.2).
We point out that the additional memory requirements of DeepPCR may limit its applications to
some distributed training settings where memory is already a bottleneck. Moreover, one can expect
additional communication overhead to arise in these settings.

4 Results

In this section, we set out to demonstrate the applicability of DeepPCR to a variety of scenarios. We
start by investigating the performance characteristics of DeepPCR when applied to the forward and
backward passes through a Multi-Layer Perceptron (MLP). Experimenting with this model problem
is mostly aimed at identifying regimes where DeepPCR achieves speedup. Specifically, in Sec. 4.1
we show that, when applied to the forward pass, DeepPCR becomes effective in architectures with
more than 27 layers. For the backward pass, this regime is reached earlier, in architectures with 25

layers. Next, we explore the effects of applying DeepPCR to speedup the whole training procedure,
considering ResNets architectures: in Sec. 4.2 we verify not only that the speedups measured for
the single forward and backward passes carry over to this scenario, achieving a 7× speedup over
the sequential implementation, but also that training with DeepPCR results in equivalent models
than using sequential passes. In Sec. 4.3, we showcase the flexibility of DeepPCR by using it to
speedup another type of sequential operation: the denoising procedure employed by diffusion models
in image generation. We consider applications to latent diffusion, and find speedups of up to 11.2×,
with negligible error with respect to the sequential counterpart. Lastly, in Sec. 4.4 we focus on the
role of the Newton solver in the DeepPCR procedure, establishing that the method remains stable
and recovers satisfactory results even by limiting the number of Newton iterations, thus allowing to
trade-off additional speedup for an increased approximation error with respect to sequential solutions.

5



All the experiments in this section were conducted on a V100 GPU with 40GB of RAM; our models
are built using the PyTorch framework, without any form of neural network compilation.

4.1 Speeding up forward and backward passes in MLPs: identifying performance regimes

Our first goal is to identify under which regimes DeepPCR can effectively provide a speedup. To this
end, we consider a single forward pass through a randomly initialized MLP with a constant number
of hidden units (namely, its width w) at each layer, and profile our algorithm for varying w and NN
depth, L. Notice that these two parameters directly affect the size of (3): L determines the number of
equations, while w the unknowns in each equation; as such, they can be used as indication of when to
expect speedups for more complex problems.

Timing results for these experiments are reported in Fig. 3. The leftmost column refers to the
sequential implementation of forward (top) and backward (bottom) pass, and clearly shows the linear
complexity in L of such operations: the curves flatten on a line of inclination 1. Conversely, the
graphs in the middle column illustrate DeepPCR’s performance, and trace a logarithmic curve for the
most part, confirming the theoretical expectations on its O(log2 L) complexity. Notice this reduces
the wall-clock time for a single forward pass from 0.55s to 0.015s, and for a backward pass from
589ms to 2.45ms, corresponding to speedups of > 30× and 200×, respectively, at least for the
most favorable architectures - and this despite the fact that there has been more than 20 years of
optimization into extracting the best performance from the current GPU hardware when running the
sequential forward and backward pass. This result is encouraging as our proposed algorithm can gain
from further optimization in each of its steps.

As the MLP grows in width, however, the logarithmic regime is abandoned in favour of a linear
regime. This performance degradation is due to the fact that the reductions in line 6 necessary for PCR
cannot be performed concurrently anymore. Notice that w relates directly to the size of the Jacobian
blocks in (3), so we can expect similar problems whenever the Jacobian size grows past a given
threshold. This issue is caused by hardware limitations, and can be addressed by using dedicated
hardware or by optimizing the implementation: evidence of this claim is provided in appendix C.1,
where we measure how the threshold for abandoning the logarithmic regime shifts as we use GPUs
with different amounts of dedicated memory. Finally, the rightmost graphs in Fig. 3 show the ratio of
timings for the sequential versus parallel implementation: any datapoint above 1 indicates effective
speedup. The break-even point between the two methods lies around L ≈ 27 for the forward pass.
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Figure 3: Time to complete a single forward pass (top) and backward pass (bottom), for MLPs of
varying depths L and widths w, with ReLU activation function. Each datapoint reports the minimum
time over 100 runs. The left, center, and right columns refer to the sequential implementation, the
DeepPCR implementation, and the ratio between the timings of the two, respectively.
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mentation (center), and ratio between the two (right), for ResNets of varying depths L, with w = 24,
skip connection of length 4, and ReLU activation function. Each datapoint is an average over 100
optimization steps, and the shaded area spans to ±1 standard deviation.

Results for backward pass are qualitatively comparable, but achieve break-even at L ≈ 25: this gain
is due to the fact that the backward pass is a linear operation, and as such does not require Newton
iterations. For a more in-depth analysis of the role of the Newton solver, we refer to Sec. 4.4.

4.2 Speeding up training of ResNets

The results in Sec. 4.1 identify regimes where one can expect to achieve speedup using DeepPCR,
but they only refer to a single forward and backward pass through a freshly initialized model. The
results in this section aim to verify that DeepPCR can be used to accelerate forward and backward
passes for the whole training procedure, and that the speedup is maintained throughout. To this end,
we train a deep ResNet model composed of only fully-connected layers. Each ResNet block consists
of 4 layers of width 24 and the ReLU activation function. The models are trained on a classification
task on MNIST [8], both using the sequential approach and DeepPCR. We train for 8 epochs using
an SGD optimizer with a learning rate of 10−3 without a scheduler. We perform training runs with
various seeds but report results from only one for readability: the others are comparable, and we show
their statistics in appendix D. In Fig. 4 we report the evolution of the wall-clock time measurements
for the forward pass throughout the training procedure. We can notice these remain roughly constant,
confirming that the speedup achieved by DeepPCR is preserved during training. Notice that using
DeepPCR translates into a speedup of 7× over the sequential implementation: over the whole course
of training, this entails a wall-clock time difference of 3.2h versus 30min, even without including
the gains from the backward pass.

As mentioned in Sec. 3.1, we remind the reader that DeepPCR uses Newton in order to solve (1).
Being Newton an approximate solver, one may wonder whether we are accumulating numerical errors
with respect to the sequential solution, how does it affect the evolution of the parameters, and what is
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Figure 5: Loss evolution during training with forward and backward passes computed sequentially
(left), with DeepPCR (center), and difference between the two (right), for ResNets of varying depths
L, with w = 24, skip connection of length 4, and ReLU activation function. Each datapoint is an
average over 100 optimization steps, and the shaded area spans ±1 standard deviation.
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Figure 6: Results from applying DeepPCR to speedup image generation in latent diffusion trained on
MNIST, for various latent space dimensions w and number of denoising steps L. Left: timings using
sequential and DeepPCR approaches (average over 100 runs). Middle: violin plots of speedups distri-
bution (ratio of sequential/DeepPCR timings for 100 runs). Right: difference between Wasserstein-2
distances to test distribution of latents recovered sequentially and using DeepPCR.

the impact on the quality of the final trained model. In our experiments, we measure such impact by
comparing the evolution of the loss curves for the models trained sequentially and in parallel with
DeepPCR. These are reported in Fig. 5, which shows that, for our experiments, the evolutions are
practically equivalent. To further confirm this, we report the accuracy evolution on the test set in
appendix D: in both cases, it sits around 94% at the end of training. The effects of the Newton solver
on performance are further discussed in Sec. 4.4.

4.3 Speeding up image generation in Diffusion Models

The experiments in this section showcase the flexibility of DeepPCR in accelerating more general
definitions of sequential operations. As an example, we apply DeepPCR to speedup image generation
via latent-space diffusion models [37]. Note that we are interested in parallelizing the whole denoising
procedure, rather than the single forward pass through the denoiser: we refer to appendix A.4 for
the specifics on how this operation falls within the DeepPCR framework. We consider the size of
the latent space and the number of denoising steps as the two main parameters which can impact
the effectiveness of DeepPCR, and measure how the performance of our method varies according to
them. Notice that, in determining the size of system (3), these two parameters cover the same role as
w and L in Sec. 4.1, respectively, so we identify them using the same notation. Our latent diffusion
model considers a simplification of the KL-AutoEncoder introduced by [37] as an encoder, and a
custom MLP with residual connections as denoiser: see appendix E for details.

In Fig. 6 (left) we report the average time1 for completing the diffusion procedure, either sequentially
or using DeepPCR, for 100 runs on architectures trained on MNIST with various values of w and
L. Notice how even in this case the time for the sequential approach grows linearly with respect
to the number of denoising steps, while for DeepPCR the growth is logarithmic for the most part.
Increasing w past ∼ 26, though, results in a speedup reduction for the largest L = 210, matching
what is observed in Fig. 3: similarly, this is related to hardware limitations, and we refer again to
appendix C.1 for an analysis of the phenomenon. The distributions of the associated speedups are
also plotted in Fig. 6 (middle), where we can see that DeepPCR manages to generate images up
to 11× faster, reducing the required time from 1.3s to 0.12s for certain configurations. To ensure
the quality of the resulting images, we follow the FID score [16] and measure the Wasserstein-2
distance between the latent distribution of the original test set and the latent distribution of the images
recovered, either sequentially or using DeepPCR. The difference of these distances is also reported in
Fig. 6, and is consistently close to 0, hinting that using either method results in images of similar
qualities. Some examples images generated sequentially or using DeepPCR can be seen in Fig. 18,
to further confirm that they are hardly distinguishable. We also experimented with diffusion in
pixel-space: the corresponding timings can be found in Tab. 2, and their behavior mimics what was
observed for latent diffusion.

1We point out that the timings in Fig. 6 and 7 are a proxy, evaluated assuming perfect parallelizability of the
Jacobian assembly operation necessary to initialize system (3). We could not measure exact wall-clock time
due to incompatibilities between the vmap and autograd functionalities provided in PyTorch. Nonetheless, this
proxy is reasonably accurate, as the time required to assemble the Jacobians is negligible with respect to that for
the PCR reduction (see appendix E.2, and particularly Fig. 17 for details).
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Figure 7: Results from applying DeepPCR to speedup image generation in latent diffusion, for
various latent space dimensions w and number of denoising steps L. The timings compare sequential
(baseline) and DeepPCR approaches, reporting an average over 100 runs, for models trained over the
CIFAR-10 (left) and CelebA (right) datasets.

Finally, in order to provide empirical evidence of the capability of DeepPCR to provide speedup also
for other datasets, we experiment with latent diffusion on CIFAR-10 [25] and CelebA [29] as well.
The corresponding timings results are reported in Fig. 7. We limit ourselves to w > 26 due to the
difficulty of training VAEs for these datasets on smaller latent dimensions. Nonetheless, the timing
results are comparable to the ones measured for MNIST in Fig. 6, and even in this case we manage to
recover speedups of 8× and 9× for CIFAR-10 and CelebA, respectively. We can see that also for
these more complex datasets the performance of DeepPCR starts degrading for w > 27, similarly to
what is observed in Fig. 6. This observation further confirms that the speedup attained by DeepPCR
is influenced by the problem parameters w and L, but is otherwise dataset-independent.

4.4 Accuracy/Speedup trade-off: analysis on Newton convergence

As outlined in Sec. 2, when system (1) is nonlinear, DeepPCR relies on a Newton solver. This is
an iterative solver, which only recovers an approximate solution, correct up to a fixed tolerance.
The experiments in the previous sections were conducted with a tolerance of 10−4, as we were
interested in recovering a solution which would closely match the sequential one. The tolerance of
the solver, however, grants us a degree of freedom in trading off accuracy for additional speedup. In
this section we investigate in detail the properties of the Newton method when used for the solution
of the problems considered in Sec. 4.1 and 4.2.

As a first result, we show that Newton can indeed recover high-quality solutions, within a number
of iterations cN which is small and roughly independent of the configuration considered. To this
purpose, we report in Fig. 8 the values of cN recorded for the experiments in Sec. 4.1 and 4.2. In all
configurations considered, they remained bounded below cN ≤ 6, and practically independent on
the system configuration, particularly of L. In Fig. 8 (first on the left), we see that the performance
of the Newton solver is indeed impacted by the type of activation function used in the layers of
the MLP: using ReLUs generally requires more iterations for convergence than using a smoother
counterpart such as sigmoid. This is in line with the properties of the Newton method which assumes
differentiability of the underlying function for fast convergence.

Additionally, for the same set-up, we show (second plot in Fig. 8) the error between the solution
recovered via Newton with DeepPCR and the traditional solution, recovered sequentially. This error
is expressed in terms of the L2 difference of the NN output (for the experiments in Sec. 4.1) and in
terms of the L∞ difference of the parameters evolution (for the experiments in Sec. 4.2), to better
reflect the relevant metrics of the two experiments. The former sits almost always around machine
precision, confirming that sequential and DeepPCR solutions are extremely close. For the latter, we
see that small numerical errors eventually accumulate throughout the training procedure. Still, the
discrepancies are bounded, and this does not affect the final performance of the trained model (as
shown also in Fig. 5, and appendix D).

Finally, we conduct an ablation study on the effect of reducing the accuracy of the recovered solution.
To this end, we consider again the framework in Sec. 4.2, but this time we fix the number of Newton
iterations for solving the forward pass to increasingly small values, and check at which stage training
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Figure 8: Newton solver analysis for forward pass through MLP (left), and ResNet training (right).

of the ResNets fails. The results reported in appendix F.1 show that, for the problem considered,
stopping Newton at cN = 3 still results in successful training. This translates into an additional
2× speedup with respect to the ResNet times reported in Fig. 4, for a total of up to 14× speedup.
For more general problems, we can expect that fine-tuning the Newton solver would play a relevant
role in the final speedup attained. Particularly, choosing the correct initial guess for the system and
identifying the most apt tolerance level.

5 Conclusion, Limitations, and Future Work

We introduced DeepPCR, a method for parallelizing sequential operations which are relevant in
NN training and inference. The method relies on the target sequence being Markovian: if this
is satisfied, the sequential operation can be interpreted as the solution of a bidiagonal system of
equations. The system is then tackled using Parallel Cyclic Reduction, combined with Newton’s
method. We investigated the effectiveness and flexibility of DeepPCR by applying it to accelerate:
i) forward/backward passes in MLPs, ii) training of ResNets, and iii) image generation in diffusion
models, attaining speedups of up to 30×, 7×, and 11× for the three problems, respectively. We
identified regimes where the method is effective, and further analyzed trade-offs in terms of speedup,
accuracy, and memory consumption.

The main bottleneck for our DeepPCR implementation is represented by the decay in performance
associated with the growth in size of the Jacobian blocks in (3). While this can be curbed by using
hardware with larger memory and/or better parallelization capabilities, investigating alternative ways
to circumvent this issue would greatly benefit the applicability of DeepPCR. Another potential issue
is related to the reliance of DeepPCR on a Newton solver for recovering the solution to the target
system. While Newton proved to be reasonably robust for the target applications we investigated,
in order to achieve best performance one might have to perform ad-hoc adjustments to the solver,
depending on the specific sequential operation considered.

Future work will focus on relaxing the limitations outlined above, but also on investigating the appli-
cability of DeepPCR to speedup forward and backward passes through more complex architectures,
as well as to speedup different types of sequential operations. In particular, text generation in large
language models [4] could be a suitable candidate. Overall, DeepPCR represents a promising method
for speeding up training and inference in applications where reducing wall-clock time is critical,
and additional computational power is available for parallelization. Furthermore, DeepPCR has the
potential to unlock architectures which were not previously experimented upon, due to the long
computational time required to perform inference on them.

10



Acknowledgements

The authors would like to thank Barry Theobald, David Grangier and Ronan Collobert for their effort
and help in proofreading the paper, and Nicholas Apostoloff and Jerremy Holland for supporting
this work. The work by Federico Danieli was conducted as part of the AI/ML Residency Program in
MLR at Apple.

References
[1] Ben-Nun, T. and Hoefler, T. Demystifying parallel and distributed deep learning: An in-

depth concurrency analysis. ACM Comput. Surv., 52(4), aug 2019. ISSN 0360-0300. doi:
10.1145/3320060. URL https://doi.org/10.1145/3320060.

[2] Bini, D. and Meini, B. The cyclic reduction algorithm: from Poisson equation to stochastic
processes and beyond. Numerical Algorithms, 51:23–60, 2008.

[3] Brock, A., Donahue, J., and Simonyan, K. Large scale gan training for high fidelity natural
image synthesis. In International Conference on Learning Representations, 2019.

[4] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in
neural information processing systems, 33:1877–1901, 2020.

[5] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs.
IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[6] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential
equations. In Neural Information Processing Systems, 2018.

[7] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., and Shelhamer, E.
cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[8] Deng, L. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[9] Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. Pruning neural networks at initializa-
tion: Why are we missing the mark? In International Conference on Learning Representations,
2021.

[10] Gander, W. Golub, G. H. Cyclic reduction – history and applications. In Luk, F. T. and
Plemmons, R. J. (eds.), Workshop on Scientific Computing, New York, 1997. Springer Verlag.

[11] Gander, M. J. 50 years of time parallel time integration. In Carraro, T., Geiger, M., Körkel, S.,
and Rannacher, R. (eds.), Multiple Shooting and Time Domain Decomposition Methods, pp.
69–113, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23321-5.

[12] Germain, M., Gregor, K., Murray, I., and Larochelle, H. Made: Masked autoencoder for
distribution estimation. In International conference on machine learning, pp. 881–889. PMLR,
2015.

[13] Günther, S., Ruthotto, L., Schroder, J. B., Cyr, E. C., and Gauger, N. R. Layer-parallel training
of deep residual neural networks. SIAM Journal on Mathematics of Data Science, 2(1):1–23,
2020. doi: 10.1137/19M1247620. URL https://doi.org/10.1137/19M1247620.

[14] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[15] He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.
doi: 10.1109/CVPR.2016.90.

11

https://doi.org/10.1145/3320060
https://doi.org/10.1137/19M1247620


[16] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R.
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
8a1d694707eb0fefe65871369074926d-Paper.pdf.

[17] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. In Advances in Neural
Information Processing Systems, 2020.

[18] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[19] Hockney, R. W. A fast direct solution of Poisson’s equation using Fourier analysis. J. ACM,
12(1):95–113, jan 1965. ISSN 0004-5411. doi: 10.1145/321250.321259. URL https:
//doi.org/10.1145/321250.321259.

[20] Horton, M., Jin, Y., Farhadi, A., and Rastegari, M. Layer-wise data-free CNN compression.
2022. URL https://arxiv.org/pdf/2011.09058.pdf.

[21] Huang, X. and Belongie, S. Arbitrary style transfer in real-time with adaptive instance normal-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 1501–1510,
2017.

[22] Jouppi, N. P., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L., Patil, N., Subramanian, S.,
Swing, A., Towles, B., et al. Tpu v4: An optically reconfigurable supercomputer for machine
learning with hardware support for embeddings. arXiv preprint arXiv:2304.01433, 2023.

[23] Kenyon, C. and Capano, C. Apple silicon performance in scientific computing. In 2022 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–10. IEEE, 2022.

[24] Kirby, A., Samsi, S., Jones, M., Reuther, A., Kepner, J., and Gadepally, V. Layer-parallel
training with GPU concurrency of deep residual neural networks via nonlinear multigrid. In
2020 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7, 2020. doi:
10.1109/HPEC43674.2020.9286180.

[25] Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[26] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

[27] Lee, N., Ajanthan, T., and Torr, P. H. S. SNIP: single-shot network pruning based on connection
sensitivity. In International Conference on Learning Representations, 2019.

[28] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. Pruning filters for efficient
ConvNets. In International Conference on Learning Representations, 2017.

[29] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild. In ICCV, pp.
3730–3738. IEEE Computer Society, 2015.

[30] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–
3440, 2015.

[31] Massaroli, S., Poli, M., Sonoda, S., Suzuki, T., Park, J., Yamashita, A., and Asama, H. Differen-
tiable multiple shooting layers. ArXiv, abs/2106.03885, 2021.

[32] Moon, E. and Cyr, E. C. Parallel training of GRU networks with a multi-grid solver for long
sequences. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=N1WI0vJLER.

[33] Naumov, M. Parallel complexity of forward and backward propagation. CoRR, abs/1712.06577,
2017. URL http://arxiv.org/abs/1712.06577.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1145/321250.321259
https://doi.org/10.1145/321250.321259
https://arxiv.org/pdf/2011.09058.pdf
https://openreview.net/forum?id=N1WI0vJLER
https://openreview.net/forum?id=N1WI0vJLER
http://arxiv.org/abs/1712.06577


[34] Ortega, J. M. and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Vari-
ables. Society for Industrial and Applied Mathematics, 2000. doi: 10.1137/1.9780898719468.
URL https://epubs.siam.org/doi/abs/10.1137/1.9780898719468.

[35] Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell,
A., Mishkin, P., Clark, J., et al. Learning transferable visual models from natural language
supervision. In International conference on machine learning, pp. 8748–8763. PMLR, 2021.

[36] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image
synthesis with latent diffusion models. In Computer Vision and Pattern Recognition, 2022.

[37] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image syn-
thesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684–10695, 2022.

[38] Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. Pixelcnn++: Improving the pix-
elcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint
arXiv:1701.05517, 2017.

[39] Song, Y., Meng, C., Liao, R., and Ermon, S. Accelerating feedforward computation via parallel
nonlinear equation solving. In International Conference on Machine Learning (ICML), 2021.

[40] Suau, X., Zappella, L., Palakkode, V., and Apostoloff, N. Principal filter analysis for guided
network compression. In Winter Conference on Applications of Computer Vision, 2020.

[41] Sun, Q., Dong, H., Chen, Z., Dian, W., Sun, J., Sun, Y., Li, Z., and Dong, B. Penalty
and augmented Lagrangian methods for layer-parallel training of residual networks. ArXiv,
abs/2009.01462, 2020.

[42] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[43] Wang, C., Zhang, G., and Grosse, R. B. Picking winning tickets before training by preserving
gradient flow. In International Conference on Learning Representations, 2019.

[44] Wiggers, A. and Hoogeboom, E. Predictive sampling with forecasting autoregressive models.
In III, H. D. and Singh, A. (eds.), Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 10260–10269. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.press/v119/wiggers20a.html.

13

https://epubs.siam.org/doi/abs/10.1137/1.9780898719468
https://proceedings.mlr.press/v119/wiggers20a.html


A Specialization of target system for selected applications

In Sec. 2, we introduced a generic framework for the application of DeepPCR, illustrating how
performing a sequential operation can be equivalently recast into solving a block bidiagonal system
such as (3). In this section, we further specialize this target system, explicitly recovering its form for
the applications considered in our work. Notice that this amounts to prescribing a formula for the
step operations fl(z) in (1), and recovering their Jacobians Jfl |z appearing in (3).

A.1 Forward pass in MLPs

The forward pass through a NN can be interpreted as a sequential operation whose l-th step fFP
l (zl−1)

corresponds to the application of layer l, to recover activations zl. Considering an MLP for simplicity,
the corresponding formula for this operation reads

{
z0 = fFP

0 (x) = W0x+ b0,

zl = fFP
l (zl−1) = Wlσl(zl−1) + bl for l = 1, . . . , L,

(7)

for various weights and biases (Wl, bl), and nonlinear activation functions σl(·). From (7), we can
recover the Jacobian of each step:

JfFP
l

∣∣∣
z
= Wl Sl|z , (8)

where in turn Sl|z identifies the Jacobian of σl(·) evaluated at z. Since the activation functions are
applied element-wise, this reduces to the diagonal matrix

Sl|z = diag
i
{σ′

l ([z]i)} . (9)

Similar considerations can be extended to the forward pass through more complex layers, such as
convolutional layers, normalization layers, attention layers, and so on. In those cases, an explicit for-
mula such as (8) for the Jacobian calculations might not be readily available, but one can nonetheless
recover it efficiently using autograd functionalities.

A.2 Backward pass in MLPs

The backward pass can also be re-cast as a sequential operation through the layers of a NN, as we
illustrate here. The purpose of the backward pass is finding the gradients of a target cost function
c(y, ȳ) with respect to the hidden variables zl, which we can then use to recover the gradients with
respect to the network parameters. Considering again a MLP for simplicity, we have that gradients of
c(y, ȳ) with respect to weights and biases at each layer can be recovered as

∇Wl
c = ∇zl

c⊗ σl(zl−1), and ∇bl
c = ∇zl

c, (10)

with a⊗ b = a · bT denoting the outer product operator. The gradients∇zl
c, in turn, are given by

applying the chain rule and solving

∇zl−1
c = JfFP

l

∣∣∣
T

ẑl−1

∇zl
c, for l = 1, . . . , L (11)

backwards, starting from ∇zL
c, which can be evaluated directly from the output y. This is the

target sequential operation that we aim to parallelize. Notice that ẑl represents the activations at

layer l recovered during the forward pass, and that JfFP
l

∣∣∣
T

ẑl−1

is the transpose of the same operator

appearing in (8). Notice moreover that (11) already represents a sequence of linear operations, and as
such we can solve it by applying PCR directly, without needing Newton iterations. More explicitly,
the target system is given by



I

− JfFP
L

∣∣∣
T

ẑL−1

I

. . . . . .

− JfFP
1

∣∣∣
T

ẑ0

I







∇zL
c

∇zL−1
c

...
∇z0

c


 =




∇zL
c

0
...
0


 . (12)

This property is not limited to MLPs: indeed, backward passes through any architecture are linear by
default.
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A.3 Forward and backward passes in ResNets

ResNets are characterized by skip connections which relate activations from layers at a specific
distance s. As such, they break the Markovian assumption that DeepPCR relies on: in fact, the step
function representing the application of a layer has form zl = fRN

l (zl−1, zl−s) for l%s = 0 (where
% denotes the modulo operation), meaning it depends both on the activations at the previous layer
and those s layers prior. Nonetheless, we can still apply the DeepPCR procedure, if we collapse all
layers in-between a skip connection into a single one. This amounts to considering the following step
function:

zl = fRN
l (zl−1, zl−s) = fRN

l (fRN
l−1 (zl−2), zl−s)

= · · · = fRN
l (fRN

l−1 ◦ · · · ◦ fRN
l−s+1(zl−s), zl−s) := f̂RN

l (zl−s),
(13)

where ◦ stands for function composition. Notice that, after this modification is done, one can
apply DeepPCR to the reduced system composed only of unknowns z =

[
zT
0 , z

T
s , z

T
2s, . . .

]
. In

our experiments, we consider MLPs as intermediate layers, and simple residual addition as a skip
connection layer. This can be denoted as

fRN
l =

{
Wlσl(zl−1) + bl if l%s ̸= 0

Wlσl(zl−1) + bl + zl−s else.
(14)

The Jacobians of the resulting collapsed forward pass is then given by

Jf̂RN
l

∣∣∣
zl

= I +

s−1∏

i=0

JfRN
l−i

∣∣∣
zl−i

, (15)

and JfRN
l−i

shares the same form as JfFP
l−i

in (8). A similar reasoning can be applied to the backward
pass.

A.4 Denoising procedure in diffusion models

Also image generation in a diffusion model is, at its heart, the result of a sequential operation: an
image is extracted from random noise by having it undergo a sequence of denoising steps. As such,
this operation too is a target for parallelization by DeepPCR. Following [36], the step function in this
case is defined by

zl = fDM
l (zl−1) =

1√
αl

(
zl −

1− αl√
1− ᾱl

g(zl−1, l)

)
+

√
βlN (0, 1), (16)

where zl denotes a partially denoised image (which underwent l denoising steps),N (0, 1) is a Normal
sample, while αl, βl, and ᾱl are parameters of the noise scheduling. Notice that the particularity of
this step function is that it hides a NN application inside of it: g(z, l) identifies the action of the NN
trained to predict the noise in image z at step l. Once again, we only need the Jacobians in order to
assemble the target system, which implies that we need to compute the Jacobian of the NN output
with respect to its input. We have in fact

JfDM
l

∣∣∣
zl

=
I√
αl
− 1− αl√

1− ᾱl
Jg|(zl−1,l)

(zl−1, l). (17)

Luckily, Jg|(zl−1,l)
can be efficiently calculated using autograd functionalities, at a cost comparable

of that of applying g(z, l).

Notice this applies equivalently to diffusion mechanisms acting in pixel and latent space: in the
former, zl denotes an actual (noisy) image; in the latter, zl denotes a (noisy) representation of an
image, according to a given encoder [37].

B Relaxing the Markovian assumption

When introducing our method, in Sec. 2 we remark on the fact that, for DeepPCR to be applicable,
we must be tackling a Markovian sequence zl = fl(zl−1). Indeed, this automatically guarantees
the block bidiagonal structure of system (3), upon which the PCR routine relies. In this section,
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we comment on the validity of the Markov assumption in applications involving common NN
architectures, and provide some workarounds to still guarantee the applicability of DeepPCR in some
cases where this assumption does not hold.

As it turns out, many architectures automatically obey the Markovian property: vanilla Feed-forward,
Convolutional, and Graph NN all consist in a sequence of layers whose application only depends
on the result of the previous layer. This is also the case for uni-directional Recurrent NN; while
for bi-directional ones, both the forward and the backward legs, considered separately, are still
Markovian. In general, autoregressive models whose state depends only on the previous one (such as
the Diffusion Model considered in our experiments), all give rise to Markov sequences which can
then directly be tackled by DeepPCR. The main breakdown cases we identified which invalidate
the Markovian assumption are twofold: (i) when residual connections are present, and (ii) when
considering autoregressive models whose state depends on a history of previous states. Even in these
cases, though, often one can leverage the available flexibility in defining both the states zl and the
step functions fl composing the sequence, so to revert back to the Markov case, and still recover a
sequence which can be tackled by DeepPCR. In the following, we discuss how this can be achieved
for some relevant applications.

Presence of residual connections Residual connections break the Markovian assumption because
they introduce dependencies between states far away from each other along the target sequence, so
that a certain state zl ends up becoming a function of multiple previous states zl = fl(zl−1, zl−s)
(see also (14)). Depending on how these connections are distributed, however, different workarounds
are available to recover a Markovian sequence:

• If the skip connections length is short with respect to the number of layers (s ≪ L), one
can simply collapse together the states inside each skip, and consider only the sequence
composed by the states connected by the skips. This is precisely the approach we utilized in
our ResNets applications, so we refer to appendix A.3 for more details on how this can be
implemented.

• Conversely, if the skip length is comparable to that of the whole sequence, one can consider
applying DeepPCR to parallelize the application of the layers within the skip. Notice
however that this severely caps the potential for parallelization offered by our method.

• If multiple skip connections are nested within each other, that is if we have zl =

fl(zl−1, zl−s) and z l̂ = fl̂(z l̂−1, z l̂−ŝ) for two (or more) given pairs l− s < l̂− ŝ < l̂ < l,
then the whole sequence can be cut between l̂ − ŝ and l̂ and split into two parts. Since
the residuals originating from the “left” part are not involved in the generation of the left
sequence, and similarly for the “right” part, the two parts are Markovian when taken indi-
vidually. Notice this occurs in UNets, where images at the corresponding resolution level
during down- and up-sampling are connected together.

• The failure case for DeepPCR is when each layer is connected to every other, as it happens
for DenseNets. In this framework, in fact, the target system (3) would be fully lower-
triangular, and it is not possible to leverage any sparsity pattern thereof to return to the
bidiagonal (Markovian) case.

Autoregressive models whose state depends on a history of previous states If the model relies
on a window of s states to produce the next output in the generating sequence (as is the case,
for example, with PixelCNN [38]), then we are considering a non-Markovian sequence where
zl = fl(zl−1, zl−2, . . . ,zl−s). To revert to the Markovian case, we can instead consider the collation
of states ẑl−1 =

[
zT
l−1, z

T
l−2, . . . ,z

T
l−s

]T
and notice that indeed we can write ẑl = f̂l(ẑl−1). Note

that this results in a Jacobian with larger blocks (by a factor s), but if the interdependence between the
states is limited, it will still present a sparse structure, thus reducing the complexity of the necessary
PCR reduction operations.

While the ones outlined in this section are all feasible workarounds to apply DeepPCR when the
Markovian assumption is broken, we would like to point out that the solutions proposed should only
be treated as indications, since only some of them have been tested in our work. Moreover, as we are
shifting away from the Markovian case, the Jacobi approach investigated in [39] should also become
competitive: a comparison with DeepPCR within this framework, and a more in-depth investigation
of the solutions outlined here is matter of future research.
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Figure 9: Time to complete a single forward pass (top) and backward pass (bottom), for MLPs of
varying depths L and widths w. Same configuration as Fig. 3, but using tanh activation functions.
Each datapoint reports the minimum time over 100 runs. The left, center, and right columns refer to
the sequential implementation, the DeepPCR implementation, and the ratio between the timings of
the two, respectively.

C Additional results for single pass in MLPs

In this section, we expand on the results from the application of DeepPCR to accelerate forward and
backward passes through MLPs.
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Figure 10: Time to complete a single forward pass (top) and backward pass (bottom), for MLPs of
varying depths L and widths w. Same configuration as Fig. 3, but using sigmoid activation functions.
Each datapoint reports the minimum time over 100 runs. The left, center, and right columns refer to
the sequential implementation, the DeepPCR implementation, and the ratio between the timings of
the two, respectively.
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left column refers to classical sequential implementation, the center column to the parallel implemen-
tation using DeepPCR, the right column reports the ratio between the two. Same configuration as
Fig. 3, but the results are reported as a function of width, rather than depth.

In Fig. 9 and 10, we report the results from the same experiments in Sec. 4.1, but using tanh and sig-
moid as activation functions, respectively. Notice the overall behaviour is basically indistinguishable
from that observed in Fig. 3, proving that DeepPCR manages to speedup the forward pass in MLPs
regardless of the nonlinearity considered. Notice moreover that the break-even point for achieving
speedup in these cases occurs earlier than with ReLU: at L closer to 26 than 27. This is also in line
with what observed in Sec. 4.4, that is that the Newton solver generally requires fewer iterations to
reach convergence, when the underlying nonlinearity is smoother.

C.1 DeepPCR falling to linear regime

In Sec. 4.1, we point out how increasing the values of the parameters w and L past a certain threshold
negatively affects the performance of DeepPCR: the middle graph in Fig. 3 shows how, under certain
configurations, DeepPCR abandons the logarithmic regime, falling onto a linear one. This is a first
indication that the reduction operations in Alg. 1 stop being conducted in parallel, and start being
serialized instead. Here we show evidence that this phenomenon is linked to memory limitations in
the hardware used for our experiments.

In Fig. 11 we report the same timing results as in Fig. 3, but expressed as a function of the MLPs
width w instead. This is to better highlight failure conditions for DeepPCR: since its complexity is
only a function of L, timings should not be affected by changes in w, and hence the curves in Fig. 11
should be constant. This is however not the case, and particularly from the right plot in Fig. 11 we can
infer that it is the value of w2L that determines when performance drops. To better highlight this, we
include in the graph an isoline of w2L: notice how the threshold after which DeepPCR performance
drops has the same inclination. The quantity w2L is directly related to the size of the system in (3):
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Figure 12: Timings for forward pass through MLP of various sizes w, L (same configurations as in
Fig. 3), for two different GPUs: V100 (left) and A100 (middle), and ratio between the two (right).
The ratios cluster around two values: 1.1 (showing the GPUs behave comparably for configurations
where DeepPCR is still in logarithmic regime), or 0.65 (when DeepPCR falls to linear regime: the
factor of 2 difference stems from the A100 managing to preserve the logarithmic regime for longer).
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Figure 13: Time to complete a single forward pass, for MLPs of varying depths L and widths w, with
ReLU activation function. Analogously to Fig. 3, each datapoint reports the minimum time over 100
runs, and the left, center, and right columns refer to the sequential implementation, the DeepPCR
implementation, and the ratio between the timings of the two, respectively. The sole difference is that
the experiments reported here are conducted on a 80GB A100 GPU.

w2 determines the size of each Jacobian block appearing in the system, while L defines how many
blocks there are in total. This hints at the fact that the issue is due to memory limitations. To further
verify this, we run the same experiments in Sec. 4.1 on two different Graphical Processing Units
(GPUs): an NVIDIA Tesla V100, with 40GB of available memory, and an NVIDIA Tesla A100, with
80GB. We observe that indeed the GPU with larger memory manages to delay the decay of DeepPCR
to linear regime by a factor of 2 in the w2L configuration of the MLP considered. Particularly, this is
illustrated in the right plot of Fig. 12, which reports the ratio of the timings for the experiments in
Sec. 4.1, conducted with the two GPUs. Notice that the ratios sit around ∼ 1.1 for the configurations
where DeepPCR performance is preserved, and fall to half that value,∼ 0.65, when DeepPCR regime
falls to linear, further confirming our hypothesis.

For completeness, in Fig. 13 we also report the comparison result of DeepPCR against the sequential
baseline (equivalent to the experiment in Fig. 3) on the 80GB A100 GPU: the overall behaviour is
comparable to that on the 40GB V100 GPU.

C.2 Memory consumption in DeepPCR

In Sec. 3.1 we mention the additional memory requirements of DeepPCR, and how these are mostly
related to the need of storing intermediate operators Al resulting from the row reductions in line 6
of Alg. 1. From (4), we can see how these operators have the same size as the Jacobian of the step
function fl(z) of the target sequence considered for parallelization via DeepPCR. When applied
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Figure 14: GPU memory allocation for forward pass through MLP: ratio between baseline and
DeepPCR for MLPs of varying depths L and widths w. Same configurations as in Fig. 3, maximum
over 100 runs.
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of various depths L. Same configuration as in Fig. 5.

to parallelize the forward pass through a MLP, as in our experiments in Sec. 4.1, these Jacobians
have size w2, exactly as the weight matrices Wl in the network. Since in our experiments storing the
model itself is the most memory-consuming operation, we can expect the total memory required by
DeepPCR to be roughly twice as much as that required in the sequential approach. This is verified in
Fig. 14, where we report the ratio of the maximum memory allocated when performing a forward
pass, using the sequential approach and DeepPCR. The ratio sits consistently around 0.6: in other
words, DeepPCR requires slightly less than twice the amount of memory, as expected.

For more general application, one can expect the extra memory requirements of DeepPCR to grow as
w2L, w being the size of the Jacobians of the step function fl(z) considered, and L the total number
of steps to parallelize over.

D Additional results for training of ResNets

In this section, we complement the results in Sec. 4.2, stemming from the applications of DeepPCR
to speedup training of ResNets.

In Fig. 15 we report the evolution of the accuracy throughout the training procedure, for the same NN
considered in Sec. 4.2. This serves as an additional confirmation that training sequentially or using
DeepPCR results in comparable performance for the NN: in both cases, the accuracy hits 94%, and
their difference is consistently close to 0.

Additionally, in Fig. 16 we report similar training results stemming from different initializations.
Regardless of the seed chosen, the behaviour of both loss and accuracy curves remain consistent, and
in particular training sequentially or with DeepPCR still provides comparable results.
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E Additional results on generation in Diffusion Models

In this section we provide more information regarding the results reported in Sec. 4.3: we describe
in detail the architecture of the diffusion models employed, elaborate on how the timings were
conducted, and include additional results from pixel-space diffusion, which was not described in the
main paper.

E.1 Choice of architectures and training configuration

To set-up the latent-space diffusion model used for the experiments in Sec. 4.3, we follow Rombach
et al. [37] and first train an autoencoder on MNIST by minimizing the loss

LAE = ||x−G(E(x))||22 + β ·KL(E(x),N (0, 1)) + λ ·D(G(E(x))), (18)

where E is an encoder, G is a generator/decoder, and D is an adversarial discriminator. We set β to
10−6 and λ to 0.5 [37]. Differently from Rombach et al. [37], we do not include a perceptual loss for
training the autoencoder. Since we are training on MNIST, we also simplify the architectures of E,
G, and D, which consist of 4 convolutional layers and produce a 1-dimensional latent space, rather
than maintaining the image topology. We experiment with different latent space sizes: 16, 32, 64,
and 128. Note that similarly to what is done with a variational autoencoder, the latents obtained from
the encoder are sampled using the reparameterization trick. Details on the architectures are displayed
in Tables 1a and 1b.

Once the autoencoder is trained, we freeze its weights and train a diffusion process on top of the latent
vectors produced by applying the encoder on the data. Here, instead of following Rombach et al. [37],
we apply the process described in Appendix A.4. Since the latents produced by our autoencoder are
1-dimensional, we use a residual MLP instead of the UNet used by Rombach et al. [37]. See Table 1d
for details on the MLP architecture. Finally, we generate new samples by running a diffusion process
on randomly sampled latents as in Section 4.3, and generate the final images by applying the decoder
just once on the resulting latents. To condition the diffusion model on the current timestep and class,
we first embed these two values with a sinusoid positional encoding [42], project them with a 2-layer
MLP [37], add them (only if we are conditioning on the class), and pass the result through a linear
layer to predict each of the elementwise affine coefficients of the AdaLayerNorm [21] layers of the
diffusion MLP.

The models are trained with AdamW with a batch size of 4096 and a constant learning rate of 10−4

for 400 epochs. Following [3], we train the discriminator with the hinge loss and double the learning
rate of the generator. We trained all models on a single A100 GPU with 80G of vRAM.

We also experiment with diffusion in pixel space. To this purpose, we train a UNet to recognize the
noise in a given image, using MSE as a loss function, following [17]. The training procedure uses
AdamW with a constant learning rate of 10−4 as optimizer, and runs for 500 epochs with a batch
size of 512. Conditioning with this model is performed in the same way as with the latent-diffusion
model, by adding the sinusoidal embedding of time and class. Additional details on the architecture
of the network are reported in Tab. 1e.

E.2 Remarks on profiling for diffusion experiments

Timing of Jacobian evaluations One of the main sub-tasks in the application of DeepPCR for
parallelizing the denoising procedure consists in the assembly of the Jacobians of the corresponding
step functions (16), and in particular the Jacobians of the NN g(z, l) used as denoiser. This requires
assembling one Jacobian per denoising step l: a task which is perfectly parallelizable over l. To
perform this parallelization, we attempted to combine the functionalities provided by vmap and
autograd, which are however a recent addition in PyTorch, and still under development. Indeed,
after some testing with this implementation, we noticed that the memory usage during this phase
was order of magnitudes higher than actually required, effectively causing the program to crash due
to lack of available memory. After some investigation, we suspect the issue is associated with a
suboptimal implementation of vmap for our target application, which ends up spawning unnecessary
copies of the NN, thus rapidly occupying all available memory. To circumvent this issue, and still
report a reasonable measure for the performance of DeepPCR, in our experiments we conduct the
actual computation of the Jacobians sequentially, and then correct the DeepPCR timing accordingly,
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Table 1: Description of latent and pixel diffusion model components. 3× 3 specifies the convolution
kernel size. ConvDown is a convolution layer with stride 2, thus reducing spatial resolution by
a factor of 2. ConvUp is a convolution layer followed by a nearest-neighbor upsample operation,
thus increasing spatial resolution by a factor of 2. AdaLayerNorm corresponds to the 1d version of
adaptive instance normalization [21], which re-scales the input based on the diffusion time embedding
and an optional class-conditional embedding, following Rombach et al. [37]. We also use Swish
activations according to [37]. The input/output dimensionalities in and out are reported for each
layer as in→ out. |Z| denotes the latent space dimensionality

(a) Image Encoder (E)

Grayscale Image x ∈ R32×32

3× 3 ConvDown 1 → 16, ReLU
3× 3 ConvDown 16 → 32, ReLU
3× 3 ConvDown 32 → 64, ReLU
3× 3 ConvDown 64 → 128, ReLU

Reshape R4×4×128 → R2048

Linear 2048 → 256
µ, σ = Linear 256 → 2 ∗ |Z|

z ∼ N (µ, σ)

(b) Image decoder/generator (G)

Latent vector z ∈ R|Z|

Linear |Z| → 256
Linear 256 → 2048

Reshape R2048 → R4×4×128

3× 3 ConvUp 128 → 64, ReLU
3× 3 ConvUp 64 → 32, ReLU
3× 3 ConvUp 32 → 16, ReLU
1× 1 Conv 16 → 1, ReLU

Tanh

(c) Image discriminator (D)

Grayscale Image x ∈ R32×32

3× 3 ConvDown 1 → 16, ReLU
3× 3 ConvDown 16 → 32, ReLU
3× 3 ConvDown 32 → 64, ReLU
3× 3 ConvDown 64 → 128 ReLU

1× 1 ConvDown 128 → 1

(d) Residual MLP

Latent code z ∈ R|Z|

Linear |Z| → 2048

AdaLayerNorm, Swish, Linear 2048 → 2048
×3AdaLayerNorm, Swish, Linear 2048 → 2048

Residual

LayerNorm, Swish, Linear 2048 → |Z|

(e) UNet

Grayscale Image x ∈ Rw

3× 3 Conv 1 → 16

3× 3 Conv c → c, ReLU, BatchNorm

×2
3× 3 Conv c → c, ReLU, BatchNorm

3× 3 ConvDown c → 2c
Residual

3× 3 Conv c → c, ReLU, BatchNorm

×2
3× 3 Conv c → c, ReLU, BatchNorm

3× 3 ConvUp c → c/2
Residual

3× 3 Conv 16 → 1

assuming perfect parallelization. By doing this, we are slightly favoring DeepPCR, as we cannot
expect perfect parallelization to hold in practice: there will necessarily be some overhead associated
with this operation; however, it is reasonable to assume this overhead to be negligible with respect
to the actual assembly of the Jacobians. Moreover, the whole Jacobians assembly operation (which
itself can be considered as an overhead associated with the application of DeepPCR) is negligible
with respect to the time required to perform the PCR reductions. We report a comparison of these
timings in Fig. 17, for the latent diffusion experiments described in Sec. 4.3.

Ensuring consistency in sequential and DeepPCR denoising procedure Looking at (16), we can
see that denoising procedure is a stochastic process: at each step, random Gaussian noise is added to
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Figure 17: Comparison of the times required for the assembly of the Jacobians (17), and for the
complete DeepPCR routine, for the latent diffusion experiments. Setup as in Fig. 6 (left). From
this we can infer that overall, the main bottleneck in the application of DeepPCR remains the PCR
reduction operations in line 6 of Alg. 1.

the image; this is generally done to ensure variability in the output generated. In our experiments
we are interested in matching the results from applying (16) sequentially and those recovered by
parallelizing this procedure using DeepPCR. To ensure this, for each generated image we simply
pre-sample the noise to include at each step, and feed the same sample to both the sequential and
DeepPCR procedures.

E.3 Additional results on application of DeepPCR to diffusion

In Tab. 2 we expand on the results on latent diffusion in Fig. 6, by reporting numerical values for the
timings and speedups recovered, as well as the average number of Newton iterations to convergence
and L∞ norm of the error at convergence. Moreover, we include results from the application of
DeepPCR to pixel-space diffusion. Overall, also in this case the convergence error remains small,
and the Newton iterations remain bounded, confirming what we observed for Sec. 4.1 and 4.2 as well.
Notice however the increase in Newton iterations for the models with the largest sizes, which also
has an effect on the speedup recovered: this is investigated more in detail in appendix F.

In Fig. 18 we also show some examples of the images generated by the latent diffusion process
trained on MNIST. We put side-by-side the ones recovered using the baseline sequential procedure
and those using DeepPCR, to further showcase their similarity.

Figure 18: Example images generated by the diffusion models used for the experiments in Fig. 6.
The images generated sequentially and using DeepPCR are put side-by-side, and show no visible
difference.
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Table 2: Times to complete diffusion generation in latent-space and pixel-space (minimum over 100
trials). dim(x0) refers to the input dimensions, L is the total number of diffusion steps, SEQUENTIAL
is the amount of time inference takes in a sequential fashion, ADJ. DEEPPCR is the amount of time
inference takes with DeepPCR: notice this is an estimate, and has been adjusted for parallelism in
the Jacobian computation: see details in appendix E.2. We also report the average Newton iterations
required (NEWTON ITS.), and the convergence error expressed as the L∞ norm between the generated
image using the sequential model and DeepPCR.

dim(x0) L dim(zl) SEQUENTIAL
ADJ.

DEEP-
PCR

SPEED-
UP

NEWTON
ITS.

L∞

ERROR

L
A

T
E

N
T-

S
PA

C
E

32×32 256 16 0.3063 s 0.0554 s 5.53× 7.05 it 0.00195
32×32 512 16 0.5997 s 0.0721 s 8.32× 9.06 it 0.00304
32×32 1024 16 1.2241 s 0.1091 s 11.22× 13.40 it 0.00523

32×32 256 32 0.3092 s 0.0547 s 5.65× 6.67 it 0.00252
32×32 512 32 0.6358 s 0.0757 s 8.40× 8.90 it 0.00298
32×32 1024 32 1.2543 s 0.1143 s 10.98× 14.06 it 0.00608

32×32 256 64 0.3093 s 0.0556 s 5.56× 6.43 it 0.00283
32×32 512 64 0.6175 s 0.0748 s 8.25× 9.24 it 0.00324
32×32 1024 64 1.2509 s 0.1420 s 8.81× 17.35 it 0.00271

32×32 256 128 0.3151 s 0.0481 s 6.55× 6.09 it 0.00282
32×32 512 128 0.6303 s 0.0669 s 9.42× 9.08 it 0.00364
32×32 1024 128 1.2390 s 0.2033 s 6.09× 18.54 it 0.00248

P
IX

E
L

-S
PA

C
E

4 × 4 256 16 0.6629 s 0.0974 s 6.85× 6.44 it 0.00069
4 × 4 512 16 1.3610 s 0.1323 s 10.37× 8.22 it 0.00143
4 × 4 1024 16 2.6695 s 0.1884 s 14.25× 12.33 it 0.00247

8 × 8 256 64 0.6971 s 0.1070 s 6.55× 6.89 it 0.00094
8 × 8 512 64 1.3112 s 0.1175 s 11.18× 7.89 it 0.00276
8 × 8 1024 64 2.8571 s 0.1792 s 15.95× 11.11 it 0.00418

16×16 256 256 0.6942 s 0.2018 s 3.46× 11.33 it 0.00126
16×16 512 256 1.3752 s 0.3940 s 3.79× 15.78 it 0.00235
16×16 1024 256 2.8357 s 1.1594 s 2.48× 27.33 it 0.02638

F Dependence of Newton solver on configuration details

As we have seen, a key step of DeepPCR lies in using Newton’s method to solve the system of
equations (2). In this section we analyze more in detail how changing the Newton solver configuration
affects the results in Sec. 4. In particular, we focus on the impact on the solver performance of
changing the maximum number of Newton iterations, as well as the choice of initial guess.

F.1 Changing the maximum number of Newton iterations

Throughout the main text of our paper, we configure the Newton solver with the parameters shown
in Tab. 3. From there, we can see that the chosen tolerance is tight, since our aim is to be as
accurate as possible, verifying that DeepPCR achieves a solution that differs little from the sequential
implementation. One can reasonably expect that decreasing these tolerances will produce a noisier,
less-accurate final solution. However, both the stochastic gradient descent algorithm generally used
for training NNs, and the denoising procedure used to generate images in diffusion, have a built-in
noisy component in their design. We can then consider the approximate results stemming from an
early-stopped Newton solver as yet another source of noise.

Table 3: Newton solver parameters and description, along with default values for forward pass
computation and diffusion generation.

PARAMETER DESCRIPTION FORWARD PASS DIFFUSION

NUMBER OF ITERATIONS cN
Maximum number of Newton iterations the solver
will apply. 15 30

ABSOLUTE THRESHOLD Infinity-norm of the Newton solver residual. 10−4 10−4

RELATIVE THRESHOLD
Infinity-norm of the Newton solver residual
normalized by the infinity-norm of the first iteration
residual.

10−4 10−4
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In the following subsections, we verify the impact of reducing the tolerance in the Newton solver. To
this end, we ablate the number of iterations the Newton solver is allowed to take in order to establish
whether it is possible to successfully use DeepPCR with a noisier solution for (2): first for ResNets
training, and then for diffusion generation.

Effects on ResNets training For these experiments, we set the Newton solver to only stop once
the specified number of iterations has been reached cN ∈ {1, 2, 3, 5, 8, 13}, independently of the
absolute or relative errors of the residual.

Our results in Fig. 19 show that it is possible to train a ResNet of up to 1024 layers, each layer with
a width of 16, and a residual connection every 4 layers, with just 3 Newton iterations for solving
each forward pass. This is only half of the 6 iterations we reported in Sec. 4.2 to keep low error with
respect to the sequential baseline, and as such represent a potential further 2× speedup with respect
to the reported one.

Effects on Diffusion generation In Fig. 20 and 21 we show convergence L∞ error as a function of
the number of Newton iterations, for Diffusion models of 256, 512 and 1024 denoising steps, acting
both in latent- and pixel-space. For the former, we consider latent dimension of w = 16, 32, 64, 128,
while for the latter we consider images of sizes w = 4× 4, 8× 8, 16× 16. Each marker in the plots
corresponds to a measurement with the maximum number of iterations limited to a certain value.

Notice that, for the most part, the L∞-norm of the error falls below 0.1 very quickly (in fewer than
15 iterations regardless of image size). This value already represents a very reasonable convergence,
considering that in pixel space the images are scaled within [−1, 1]. Moreover, the convergence
behaviour is similar regardless of the parameters of the denoising procedure: the convergence curves
share similar inclinations.

One exceptions to this is the latent-diffusion model with the most denoising steps in Fig. 20: for the
first few Newton iterations there is no improvement of the solution, and convergence starts relatively
late in the process. This hints at the fact that a better strategy for initialization might be beneficial
in this case (see also appendix F.2). Another exception is in pixel-space diffusion: for the model
with largest L in Fig. 20, the Newton solver stalls after reaching 10−1 error. While this still results
in reasonably good solutions, it might represent a bottleneck for scaling the method to pixel-space
diffusion in larger dimensions. Further investigation is required in order to identify the causes of this
behavior.

F.2 Changing the initial guess for the Newton solver

Choosing a suitable initial guess z0 for (2) can also have a relevant impact on the performance of
the Newton solver. In conducting our experiments, we investigated also this aspect of the solver
configuration, and tried to identify ways to initialize the Newton solver which could best leverage the
available information. Notice that this additional optimization is only available because DeepPCR
resorts to an iterative method to recover the target solution: even if reasonable guesses on the solution
are provided, using the sequential approach we cannot, in general, leverage them.
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Figure 19: Accuracy of ResNets training using a fixed number of Newton iteration. Lines represent
mean accuracy over 5 runs, with shaded area spanning two standard deviations. Notice how, for the
curves corresponding to cN ≥ 3, the accuracy evolution is basically indistinguishable.
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Figure 20: Convergence error in L∞ norm as a function of the Newton iterations, for latent-space
diffusion with models using different latent-space dimensions w and number of denoising steps L.

Our choices for the initial guess z0 for the three sets of experiments considered in Sec. 4 are discussed
next.

Forward pass through MLPs For the set of experiments in Sec. 4.1, Newton is aimed at recovering
the results from the forward pass: namely, the unknowns in z are the activations at each layer. Not
much information is available to kickstart the method: as initial guess we simply copy the results
from the application of the first layer, but the results (not reported here) are comparable to picking
a random initialization. Notice that the backward pass, being a linear operation, does not require
Newton iterations, as per the discussion in appendix A.2.

Training of ResNets Also for the set of experiments in Sec. 4.2 we are aiming at recovering
the results from the forward pass, but this time this operation is repeated throughout the training
procedure: as such, we can reuse information from the previous optimization step to initialize Newton.
For the experiments considered, as z0 we use a batch-average of the activations resulting from the
forward pass at the previous optimization step. The rationale behind this choice is as follows: at each
step of the training procedure, the NN parameters are perturbed only slightly (the SGD update is
proportional to the learning rate); moreover, the datapoints in the batches are chosen uniformly, so on
average the inputs at each optimization step should be comparable. From these facts, it follows that
also the activations should be, on average, comparable.

This choice seems to make for an effective initial guess: in Fig. 22 we measure its impact on the
solver convergence, comparing it with zero and random initialization for z0. For the model, we use
a similar setup as for Sec. 4.2, with a ResNet network 1024 layers deep, each layer being 16 units
wide, with residual connections every 4 layers. The results in Fig. 22 show that we need more than
5 Newton iterations with the zero and random initial guesses, while only 3 suffice when picking as
initial guess the average of the activations at the previous optimization step.

Diffusion generation For the set of experiments in Sec. 4.3, the Newton solver is used to recover
the noisy images (or their encodings) resulting from each step of the denoising procedure. We can
expect the procedure to recover images that are similar to the ones seen during train time, since the
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Figure 21: Convergence error in L∞ norm as a function of the Newton iterations, for pixel-space
diffusion with models using different image sizes w and number of denoising steps L.
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Figure 22: Training dynamics of a 1024 layer ResNet with DeepPCR, different initial guesses, and a
fixed set of Newton iterations. Left plot shows shows behaviour when initial guess of the Newton
solver is the batch-mean of the activations at the previous optimization step. Middle plot shows the
training dynamics when the initial guess is a random guess from a normal distribution. Right plot
shows training dynamics when the initial guess is all zeros.

denoiser has been trained for this very purpose. As such, as an initial guess z0 for these noisy images,
we pick the average of the train set (either in pixel- or in latent-space).

When considering conditional diffusion, we can further fine-tune the initial guess by taking averages
over the images in the train test which belong to the same class. We found that this can generally
boost the performance of the Newton solver even further. Results from this comparison are reported
in Fig. 23, where we compare the speedup achieved with the conditional and unconditional diffusion
models, using their respective initial guesses, for various images sizes. Notice that the conditional
models consistently achieve better speedup, thanks to the better initialization for the Newton method.
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Figure 23: Measured speedup for various pixel diffusion models, as a function of the image size.
Notice how conditional models achieve larger speedup due to a more fine-tuned initialization of the
Newton method.
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