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ABSTRACT

While deep learning (DL) has resulted in major breakthroughs in many appli-
cations, the frameworks commonly used in DL remain fragile to seemingly in-
nocuous changes in the data. In response, adversarial training has emerged as a
principled approach for improving the robustness of DL against norm-bounded
perturbations. Despite this progress, DL is also known to be fragile to unbounded
shifts in the data distribution due to many forms of natural variation, including
changes in weather or lighting in images. However, there are remarkably few
techniques that can address robustness to natural, out-of-distribution shifts in the
data distribution in a general context. To address this gap, we propose a paradigm
shift from perturbation-based adversarial robustness to model-based robust deep

learning. Critical to our paradigm is to obtain models of natural variation, which
vary data over a range of natural conditions. Then by exploiting these models, we
develop three novel model-based robust training algorithms that improve the ro-
bustness of DL with respect to natural variation. Our extensive experiments show
that across a variety of natural conditions in twelve distinct datasets, classifiers
trained with our algorithms significantly outperform classifiers trained via ERM,
adversarial training, and domain adaptation techniques. Specifically, when train-
ing on ImageNet and testing on various subsets of ImageNet-c, our algorithms
improve over baseline methods by up to 30 percentage points in top-1 accuracy.
Further, we show that our methods provide robustness (1) against natural, out-of-
distribution data, (2) against multiple simultaneous distributional shifts, and (3) to
domains entirely unseen during training.

1 INTRODUCTION

The last decade has seen remarkable progress in deep learning (DL), which has prompted wide-
scale integration of DL frameworks into myriad application domains (LeCun et al., 2015). In many
of these applications, and in particular in safety-critical domains, it is essential that the DL systems
are robust and trustworthy (Dreossi et al., 2019). However, it is now well-known that DL is fragile
to seemingly innocuous changes to the input data (Szegedy et al., 2013). Indeed, well-documented
examples of fragility to carefully-designed noise can be found in a variety of contexts, including
image classification (Madry et al., 2017), clinical trials (Papangelou et al., 2018), and robotics (Melis
et al., 2017). Accordingly, a number of adversarial training algorithms (Goodfellow et al., 2014b;
Wong & Kolter, 2017) as well as certifiable defenses (Raghunathan et al., 2018; Fazlyab et al.,
2019a) have recently been proposed, which have provided a rigorous framework for improving the
robustness of DL against norm-bounded perturbations (Fazlyab et al., 2019b; Dobriban et al., 2020).

Despite this encouraging progress, very recent papers have unanimously shown that DL is also frag-
ile to unbounded shifts in the data-distribution due to a wide range of natural phenomena (Djolonga
et al., 2020; Taori et al., 2020; Hendrycks et al., 2020; Hendrycks & Dietterich, 2019). For example,
in image classification, such shifts include changes due to lighting, blurring, or weather conditions
(Pei et al., 2017; Chernikova et al., 2019). However, there are remarkably few general, principled
techniques that have been shown to provide robustness against these forms of out-of-distribution,
natural variation (Hendrycks et al., 2019a). Furthermore, as these unseen distributional shifts are
arguably more common in safety-critical domains, the task of designing algorithms that generalize
to natural, out-of-distribution data is an important and novel challenge for the DL community.
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(a) Perturbation-based adversarial example. In a
perturbation-based robustness setting, an input datum
(left) is perceptually indistinguishable from a corre-
sponding adversarial example (right).

(b) Natural variation. In this paper, we study ro-
bustness with respect to natural variation. For exam-
ple, differences in weather conditions such as snow
illustrate one form of natural variation.

Figure 1: A new notion of robustness. Past work has focused on perturbation-based adversarial
examples, such as Figure 1a. In this paper, we focus on robustness with respect to natural variation,
shown in Figure 1b, which often does not obey perceptual or norm-bounded constraints.

In this paper, we propose a paradigm shift from perturbation-based adversarial robustness to model-

based robust deep learning. Our goal is to provide principled, general algorithms that can be used to
train neural networks to be robust against natural, out-of-distribution shifts in data. Our experiments
show that across a variety of challenging, naturally-occurring conditions, such as variation in light-
ing, haze, rain, and snow, and across various datasets, including SVHN, GTSRB, CURE-TSR, and
ImageNet, classifiers trained with our model-based algorithms significantly outperform standard DL
baselines, adversarially-trained classifiers, and, when applicable, domain adaptation methods.

Contributions. The contributions of this paper can be summarized as follows:
• Paradigm shift. We propose a paradigm shift from perturbation-based robustness to model-based

robust deep learning, where models of natural variation express changes due to natural conditions.
• Optimization-based formulation. We formulate a novel model-based robust training problem by

constructing a general robust optimization procedure to search for challenging natural variation.
• Models of natural variation. For many challenging forms of natural variation, we use deep

generative models to learn models of natural variation that are consistent with realistic conditions.
• Novel algorithms. We propose a family of novel robust training algorithms that exploit models

of natural variation to improve the robustness of DL against worst-case natural variation.
• Out-of-distribution robustness. We show that our algorithms are the first to consistently provide

robustness against natural, out-of-distribution shifts that frequently occur in real-world environ-
ments, including snow, rain, fog, and brightness on SVHN, GTSRB, CURE-TSR, and ImageNet.

• ImageNet-c robustness. We show that our algorithms can significantly improve the robustness
of classifiers trained on ImageNet and tested on ImageNet-c by as much as 30 percentage points.

• Robustness to simultaneous distributional shifts. We show that our methods are composable
and can improve robustness to multiple simultaneous sources of natural variation. To evaluate this
feature, we curate several new datasets, each of which has two simultaneous distributional shifts.

• Robustness to unseen domains. We show that models of natural variation can be reused on
datasets that are entirely unseen during training to improve out-of-distribution generalization.

2 PERTURBATION-BASED ROBUSTNESS: APPROACHES AND LIMITATIONS

In this paper, we consider a standard classification task in which training data (x, y) ⇠ D is
distributed according to a joint distribution D over instances x 2 Rd and labels y 2 [k] :=
{0, 1, . . . , k}. In this setting, given a finite training sample drawn i.i.d. from D, the goal of the
learning problem is to obtain a classifier fw parameterized by weights w 2 Rp such that fw can
correctly predict the labels y corresponding to new instances x drawn i.i.d. from D. In practice, one
can learn fw by approximately solving the non-convex empirical risk-minimization (ERM) problem
argminw E[`(x, y;w)] where ` is a suitable loss-function. However, neural networks trained using
ERM are known to be susceptible to adversarial attacks. This means that given a datum x with a
corresponding label y, one can find another datum xadv such that x is close to xadv in a given Eu-
clidean norm and xadv is predicted by the learned classifier as belonging to a different class c 6= y.
If such a datum xadv exists, it is called an adversarial example. This is illustrated in Figure 1a;
although these pandas look identical, they were classified differently in (Goodfellow et al., 2014b).
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(a) Models take the form G(x, �), where � is a nuisance parameter

that describes how the output image x0 := G(x, �) is varied.

(b) Input image x and corresponding
generated images for a learned model
of natural variation on ImageNet.

Figure 2: In this paper, we introduce models of natural variation to describe natural transformations.

The dominant paradigm toward improving robustness against adversarial examples relies on a ro-
bust optimization perspective wherein neural networks are trained to correctly classify worst-case
perturbations of data (Madry et al., 2017; Wong & Kolter, 2017). This can be formulated as follows:

argmin
w

E(x,y)⇠D

h
max
�2�

`(x+ �, y;w)
i

(1)

We can think of (1) as comprising two coupled optimization problems: an inner maximization prob-
lem in which we seek a challenging perturbation and an outer minimization problem in which we
seek weights that lead to strong classification performance.

Limitations of perturbation-based robustness. Despite remarkable progress toward improving the
robustness of DL against norm-bounded perturbations, there are significant limitations to adversarial
training. Notably, DL is known to be fragile to many forms of natural variation, which cannot be
described by small perturbations x 7! x+ �. In image classification, such natural variation includes
changes in weather or background color (Eykholt et al., 2018; Hendrycks et al., 2019b; Hosseini
& Poovendran, 2018), spatial transformations such as rotation or scaling (Xiao et al., 2018b; Kari-
anakis et al., 2016), and sensor-based attacks (Kurakin et al., 2016). Because such transformations
frequently arise in safety-critical domains, it is critically important for the DL community to develop
algorithms that are robust against out-of-distribution, natural variation in data. In this paper, we
specifically address this challenge by proposing a principled, optimization-based framework which
can be used in general settings to provide robustness against arbitrary sources of natural variation.

3 A NEW ROBUSTNESS PARADIGM: MODEL-BASED ROBUST DEEP LEARNING

Underlying the task of improving the robustness of neural networks against natural, out-of-
distribution data are two fundamental challenges. Firstly, unlike in the adversarial robustness com-
munity, in real-world, safety-critical environments, data can vary in unknown and highly nonlinear
ways. Thus, the first step toward building a robust training procedure must be to design a mechanism
that accurately describes how data varies in such environments. Next, assuming a suitable model of
natural variation, the second challenge is to formulate a training procedure that exploits this model
toward improving robustness. In this section, we present novel solutions to each of these challenges.

3.1 MODELS OF NATURAL VARIATION

In order to effectively model sources of natural variation in a domain-agnostic setting, we will ab-
stractly define models of natural variation. Concretely, a model of natural variation G(x, �) is a map
that describes how an input datum x can be naturally varied by a nuisance parameter � resulting in
a new datum x0 := G(x, �). Ideally, for a fixed datum x, varying the nuisance parameter � should
vary the severity of the natural conditions in the generated datum x0. An example of such a model
is shown in Figure 2, where an image x on the left (in this case, in sunny weather) can be naturally
varied by � and consequently transformed into the image x0 on the right (in snowy weather). In the
remainder of this subsection, we consider cases in which (1) a model G is known a priori, and (2) a
model G is unknown and therefore must be learned offline from data. In this second case in which
models of natural variation must be learned, we propose a method for obtaining these models.

Known models of natural variation. In many problems, a model G(x, �) is known a priori due to
intrinsic geometric structure. For example, there is underlying structure that describes how data can
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be rotated, translated, or scaled; models for rotating an image can be characterized by G(x, �) =
R(�)x where R(�) is a rotation matrix and � 2 � := [0, 2⇡). In prior work, this idea has been used
to train classifiers to be robust to rotation and scaling (Engstrom et al., 2017; Kamath et al., 2020).

Learning models of natural variation from data. In many situations, models natural variation are
not known a priori or are too costly to obtain. For example, consider Figure 2 in which a model
G(x, �) takes an image x of a street sign in sunny weather and maps it to an image x0 := G(x, �)
in snowy weather. Even though there is a relationship between the two images, obtaining a model
G relating these two domains is extremely challenging if we resort to geometric structure. For such
problems we advocate for learning the model G from data. To do so, we assume that we have
access to two unpaired domains A and B that are drawn from a common distribution. Domain A
contains the original data, such as the images with sunny weather, and domain B contains naturally
transformed data, such as images with snow. Ideally, a model of natural variation should learn
to map images from domain A to corresponding images with different levels of natural variation
captured by the images of domain B. In our experiments section, we rely on the MUNIT framework
(Huang et al., 2018), which combines two autoencoders and two generative adversarial networks
(Goodfellow et al., 2014a), to learn mappings between domains A and B. Furthermore, we note that
many choices unpaired, unconditional image-to-image translation networks satisfy our criteria for
G, and in future work we plan to investigate the efficacy of these architectures. In Appendix A, we
describe parallel experiments that we carried out with two other architectural choices for G, and we
fully characterize the MUNIT architecture used in our experiments.

3.2 MODEL-BASED ROBUST TRAINING FORMULATION

The model-based robust training paradigm that we propose retains the basic elements of adversarial
training described in Section 2. Our point of departure from the classical adversarial training formu-
lation is in the choice of the so-called adversarial perturbation. In this paper, we assume that data
can be transformed according to a model of natural variation G(x, �) by choosing different values
of � from a given nuisance space �. The goal of the model-based approach is to train a classifier
that achieves high accuracy both on a test set drawn i.i.d. from D and on more-challenging test data
that has been subjected to the source of natural variation that G models. This perspective can be
captured by the following robust optimization problem:

min
w

E(x,y)⇠D

h
max
�2�

`(G(x, �), y;w)
i
. (2)

In the inner maximization problem of this formulation, given an instance-label pair (x, y), we seek
a vector �⇤ 2 � that produces a corresponding instance x0 := G(x, �⇤) which gives rise to high loss
values `(G(x, �⇤), y;w) under the current weight w. One can think of this vector �⇤ as characterizing
the worst-case nuisance that can be generated by the model G(x, �⇤) for the original instance x.
After solving this inner problem, we solve the outer minimization problem by finding weights w that
minimize the risk against the challenging instance G(x, �⇤). By training the network to correctly
classify this worst-case data, the goal is to become invariant to the model G(x, �) for any � 2 �.

4 MODEL-BASED TRAINING ALGORITHMS

We now assume that we have access to a suitable model of natural variation G(x, �) and shift our
attention toward exploiting G in the development of novel robust training algorithms. In the empir-
ical version of (2), rather than assuming access to the full joint distribution D, we assume that we
are given given a set of i.i.d. samples Dn := {(xj , yj)}nj=1 drawn from D. Thus we have:

w? 2 argmin
w2Rp

nX

j=1

h
max
�2�

` (G (xj , �) , yj ;w)
i
. (3)

Note that when w parameterizes a neural network, (3) is a nonconvex-nonconcave min-max prob-
lem, which is difficult to solve exactly. Thus, we resort to approximate optimization techniques for
solving (3). Specifically, we propose three algorithmic variants: Model-based Adversarial Train-

ing (MAT), Model-based Robust Training (MRT), and Model-based Data Augmentation (MDA).
Pseudocode for MAT is given in Algorithm 1; pseudocode for MRT and MDA as well as further
discussion of these algorithms is given in Appendix B. At a high level, each of these methods alter-
nates between solving the outer minimization problem and the inner maximization problem. To this
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Algorithm 1 Model-based Adversarial Training (MAT)
Input: Data sample Dn = {(xj , yj)}nj=1, number of steps k, step size ↵
Output: Learned weight w

1: repeat
2: for minibatch Bm := {(x1, y1), (x2, y2), . . . , (xm, ym)} ⇢ Dn do
3: Initialize � := (�1, �2, . . . , �m) (0q, 0q, . . . , 0q)
4: for k steps do
5: g  r�

Pm
j=1 `(G(xj , �j), yj ;w)

6: �  ⇧�[� + ↵g] # ⇧� denotes projection onto the set �
7: end for
8: g  rw

Pm
j=1[`(G(xj , �j), yj ;w) + � · `(xj , yj ;w)]

9: w  Update(g, w) # Update can be SGD, Adam, Adadelta, etc.
10: end for
11: until convergence

end, each of these algorithms uses SGD to solve the outer problem; the methods differ in how they
seek solutions to the inner problem, and in what follows, we describe each of these procedures in
more detail. In each algorithm, given a datum (x, y), the solution �? to the inner problem is used to
create a new datum (G(x, �?), y) that is added to the training set before solving the outer problem.

Model-based Adversarial Training. In MAT, we seek an exact solution to the inner problem by
performing k steps of gradient ascent in � on the objective `(G(x, �), y;w). The resulting nuisance
parameter �? is one that causes `(G(x, �?), y;w) to have high loss under the current weight w.

Model-based Robust Training. In MRT, we first randomly sample �i 2 � for i 2 [k]. We then
select the i? 2 [k] such that `(G(x, �i?), y;w) is maximized. In this way, rather than exactly solving
the inner problem, MRT uses a sampling-based approach to finding challenging data G(x, �i?).

Model-based Data Augmentation. In MDA, rather than explicitly trying to solve the inner prob-
lem, we seek a diversity of naturally-varying data rather than the “worst-case.” In this way, MDA
samples �i 2 � for i 2 [k] and then appends {G(x, �i), y}ki=1 to the training dataset.

5 EXPERIMENTS

We present experiments in five different settings over twelve distinct datasets to demonstrate the
broad applicability of MBRDL. First, in Sections 5.1-5.2, we show that our algorithms are the first
to consistently provide out-of-distribution robustness across a range of challenging corruptions, in-
cluding shifts in brightness, contrast, snow, fog, frost, and haze on CURE-TSR, ImageNet, and
ImageNet-c. In Section 5.3, we curate several new datasets containing simultaneous sources of
natural variation, and we then show that models of natural variation can be composed to provide
robustness against these simultaneous shifts. In Section 5.4, we show that models of natural varia-
tion trained on a fixed dataset can be reused to provide robustness on datasets entirely unseen during
training. Finally, in Section 5.5, we assume access to unlabeled data corresponding to a fixed domain
shift, and we compare our algorithms to suitable baselines, including domain adaptation methods.
Throughout these experiments, we use the notation “source (A!B)” to denote a distributional
shift from domain A to domain B. For example, “contrast (low!high)” will denote a shift from
low-contrast to high-contrast. Images from domains A and B for each of the shifts used in this paper
are available in Appendix A. We note that our experiments contain domains with both natural and
artificially-generated variation; details concerning how we extracted non-artificial variation can be
found in Appendix D. Architecture and hyperparameter details are given in Appendix C.

5.1 OUT-OF-DISTRIBUTION ROBUSTNESS

In many applications, one might have data corresponding to low levels of natural variation, such as a
dusting of snow in images of street signs. However, it is often difficult to collect data corresponding
to high levels of natural variation, such as images taken during a blizzard. In such cases, we show
that our algorithms can be used to provide significant out-of-distribution robustness against data with
high levels of natural variation by training on data with relatively low levels of the same source of
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Table 1: Out-of-distribution robustness. In each experiment, we train a model of natural variation
to map from challenge-level 0 to challenge-level 2 data from different subsets of CURE-TSR. We
then perform model-based training using challenge-level 0 data and test on challenge-levels 3-5.

CURE-TSR
subset

Test accuracy (top-1) on levels 3, 4, and 5

ERM + Aug PGD + Aug MRT

3 4 5 3 4 5 3 4 5
Snow 86.5 74.8 60.9 82.9 77.3 61.8 88.0 77.8 70.7
Haze 55.2 54.0 47.5 83.8 63.1 53.4 83.9 79.1 70.1

Decolorization 87.9 85.1 78.8 84.7 75.2 64.9 90.5 89.6 89.4
Rain 72.7 71.7 66.9 68.9 66.4 60.5 80.7 78.7 74.8

Table 2: ImageNet to ImageNet-c robustness. In each experiment, we train a model of natural
variation to map from classes 0-9 of ImageNet to the same classes from a subset of ImageNet-c.
Next, we use this model to perform model-based training on classes 10-59 of ImageNet, and we test
each network on classes 10-59 from the same subset ImageNet-c on which the model was trained.

Model dataset
(classes 0-9)

Training dataset
(classes 10-59)

Test dataset
(classes 10-59)

Test accuracy (top-1/top-5)

ERM AugMix MDA
Snow

ImageNet

Snow 20.9 49.9 1.10 8.3 31.1 61.2
Contrast Contrast 41.1 73.4 0.72 6.76 50.0 79.5

Brightness Brightness 26.9 59.2 0.56 5.20 53.0 81.7
Frost Frost 16.3 39.0 29.5 58.4 36.0 67.2

natural variation. To do so, we use data from the CURE-TSR dataset (Temel et al., 2019), which
contains images of street signs divided into subsets according to various sources of natural variation
and corresponding severity levels. For example, for images in the “snow” subset, level 0 corresponds
to no snow, whereas level 5 corresponds to a full blizzard. Thus, for each row of Table 1, we use
unlabeled data from levels 0 and 2 to learn a model of natural variation corresponding to a given
source of natural variation in CURE-TSR. We then train classifiers using MDA with labeled level 0
data. We also train classifiers using ERM and PGD using the labeled data from levels 0 and 2. We
then test all classifiers on data from levels 3, 4, and 5. Note that while this is an unfair comparison
for our methods, given that the model-based algorithms are not given access to labeled level 2 data,
our algorithms still outperform the baselines by as much as 20 percentage points on level 5 data.

5.2 MODEL-BASED ROBUSTNESS ON THE SHIFT FROM IMAGENET TO IMAGENET-C

To demonstrate the scalability of our approach, we perform experiments on ImageNet (Deng et al.,
2009) and the recently-curated ImageNet-c dataset (Hendrycks & Dietterich, 2019). ImageNet-c
contains images from the ImageNet test set that are corrupted according to artificial transformations,
such as snow, rain, and fog, and are labeled from 1-5 depending on the severity of the corruption.
For numerous challenging corruptions, we train models to map from the classes 0-9 of ImageNet to
the corresponding classes of ImageNet-c. We then train all networks on classes 10-59 of ImageNet,
and test on the corresponding classes for various subsets of ImageNet-c. Note that in this setting, the
ImageNet classes used to train the model of natural variation are disjoint from those that are used to
train the classifier, so many techniques, including most domain adaptation methods, do not apply; to
offer a point of comparison, we include the accuracies of classifiers trained using AugMix, which is
a recently proposed method that adds known transformations to the data (Hendrycks et al., 2019a).

5.3 ROBUSTNESS TO SIMULTANEOUS DISTRIBUTIONAL SHIFTS

In practice, it is common to encounter multiple simultaneous distributional shifts. For example,
in image classification, there may be shifts in both brightness and contrast; yet while there may
be examples corresponding to shifts in either brightness or contrast in the training data, there may
not be any examples of both shifts occurring simultaneously. To address this robustness challenge,
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Table 3: Composing models of natural variation. We consider shifts in two distinct and simul-
taneous sources of natural variation. To perform model-based training, we compose two models of
natural variation trained separately on each of the two sources of natural variation.

Dataset Challenge 1
(dom. A1!dom. B1)

Challenge 2
(dom. A2!dom. B2)

Test acc. (top-1)

ERM MDA
SVHN Brightness (low!high) Contrast (low!high) 54.9 67.2

ImageNet IN-c brightness (low!high) IN-c contrast (high!low) 13.6 49.9
ImageNet IN-c brightness (low!high) IN-c snow (no!yes) 53.3 58.3
ImageNet IN-c brightness (low!high) IN-c fog (no!yes) 50.3 58.8
ImageNet IN-c contrast (high!low) IN-c fog (no!yes) 8.40 23.2

Table 4: Transferability of model-based robustness. In each experiment, we train a model of
natural variation on a given training dataset D1. Then, we use this model to perform model-based
training on a new dataset D1 entirely unseen during the training of the model.

Training
dataset D1

Test
dataset D2

Challenge
(dom. A!dom. B)

Test accuracy (top-1)

ERM PGD MRT MDA MAT

MNIST

Fashion-
MNIST Background

color
(blue!red)

69.3 67.7 81.4 80.1 76.1

Q-MNIST 87.0 79.9 98.0 98.0 98.0
E-MNIST 63.5 49.3 86.1 85.9 84.1
K-MNIST 47.9 47.7 89.1 89.3 86.8

USPS 89.9 87.4 93.3 93.4 91.9
GTSRB CURE Brightness (high!low) 47.6 43.6 73.0 72.4 67.8

ImageNet &
ImageNet-c CURE Snow (no!yes) 52.0 53.0 59.4 62.2 59.4

Brightness (low!high) 41.5 40.2 46.6 46.7 47.5

for each row of Table 3, we learn two models of natural variation G1 and G2 using unlabeled
training data corresponding to two separate shifts, which map domains A1!B1 (e.g. low- to high-
brightness) and A2!B2 (e.g. low- to high-contrast). We then compose these models to form a
new model G(x, �) = G1(G2(x, �), �) which can be used to provide robustness against both shifts
simultaneously. We then train classifiers on labeled data from A1\A2 and test on data from B1\B2.
To create the data from B1 \ B2 for the ImageNet experiments, we apply pairs of transformations
that were originally used to create the ImageNet-c datasets; more details are in Appendix D.

5.4 TRANSFERABILITY OF MODEL-BASED ROBUSTNESS

Because we learn models of natural variation offline before training a classifier, our paradigm can
be applied to domains that are entirely unseen while training the model. In particular, we show that
models can be reused on similar yet unseen datasets to provide robustness against a common source
of natural variation. For example, one might have access to two domains corresponding to the shift
from images of European street signs taken during the day to images taken at night. However, one
might wish to provide robustness against the same shift from daytime to nighttime on a new dataset
of American street signs without access to any nighttime images in this new dataset. Whereas many
techniques, including most domain adaptation methods, do not apply in this scenario, in the MBRDL
paradigm, we can simply learn a model corresponding to the changes in lighting for the European
street signs and then apply this model to the dataset of the American signs. Table 4 shows several
experiments of this stripe in which a model G is learned on one dataset D1 and then applied on
another D2; we improve robustness on unseen domains by up to 40 percentage points.

5.5 MODEL-BASED ROBUST DEEP LEARNING FOR UNSUPERVISED DOMAIN ADAPTATION

While our approach does not require labeled data from domain B, when such data is available, it is
of interest to evaluate how our approach compares to relevant methods such as domain adaptation.
In Table 5, for each shift from domain A to B, we assume access to labeled data from domain A

7



Under review as a conference paper at ICLR 2021

Table 5: In each experiment, we assume access to unlabeled data from domain B, which we use to
train a model of natural variation. We compare to suitable baselines, including domain adaptation.

Dataset Challenge
(dom. A!dom. B)

Test accuracy (top-1)

ERM PGD ADDA MRT MDA MAT
SVHN Brightness (low!high) 30.5 36.2 60.1 70.9 69.5 52.2
SVHN Contrast (low!high) 55.9 57.9 54.6 74.3 74.1 55.2

GTSRB Brightness (low!high) 40.3 34.7 27.6 50.4 48.3 64.8
GTSRB Contrast (low!high) 44.5 41.9 14.7 68.4 69.4 55.1
CURE Snow (no!yes) 52.0 53.0 16.1 74.0 74.5 72.3
CURE Haze (no!yes) 57.2 50.9 49.2 72.5 70.0 74.6
CURE Rain (no!yes) 62.6 62.3 16.5 75.2 73.7 75.3

and unlabeled data from domain B. In each row, we use unlabeled data from both domains to train
a model of natural variation. We then train classifiers using our algorithms, as well with ERM and
PGD, using data from domain A and test on data from the test set for domain B. Furthermore,
we compare to ADDA, which is a well-known domain adaptation method (Tzeng et al., 2017). In
every scenario, our model-based algorithms significantly outperform the baselines, often by 10-20
percentage points. Note that while this is one of the most commonly studied settings in domain
adaptation, it represents only one particular setting to which the MBRDL paradigm can be applied.

6 RELATED WORK

Aside from the algorithms we introduced in Section 4, we are not aware of any other algorithms
that can be used to address out-of-distribution robustness across the diverse array of tasks presented
in the previous section. However, several lines of research have sought to address this problem in
constrained settings or under highly restrictive assumptions. In the domain adaptation literature,
various methods have been proposed which rely on the restrictive assumption that unlabeled data
corresponding to a fixed distributional shift is available during training (Tzeng et al., 2017; Ajakan
et al., 2014; Ganin & Lempitsky, 2015). Unlike these approaches, our solution does not assume ac-
cess to unlabeled data from a fixed shift and can be applied to datasets that are entirely unseen during
training. Furthermore, several works have used generative models to create adversarial perturbations
(Xiao et al., 2018a; Lee et al., 2017; Wang & Yu, 2019; Samangouei et al., 2018; Jalal et al., 2017) or
perceptually-realistic images subject to relatively simple corruptions in specific application domains
(Dunn et al., 2019; Song et al., 2018; Vandenhende et al., 2019; Arruda et al., 2019). On the other
hand, our approach is broadly applicable to arbitrary and challenging sources of natural variation.

Two concurrent works formulate robust training procedures assuming that data is corrupted accord-
ing to a fixed generative architecture. Gowal et al. (2020) exploit properties specific to the StyleGAN
architecture to formulate a training algorithm that provides robustness against color-based shifts on
MNIST and CelebA. In our work, we propose a more general framework and three novel robust
training algorithms that can exploit any suitable generative network, and we show improvements on
more challenging, naturally-occurring shifts across twelve distinct datasets. Wong & Kolter (2020)
use conditional VAEs to learn perturbation sets corresponding to simple corruptions from pairs of
images. In our framework we improve robustness against more challenging, natural shifts by learn-
ing from unpaired datasets and we do not rely on class-conditioning to generate realistic images.

7 CONCLUSION

In this paper, we proposed a novel model-based robust training paradigm for deep learning that
provides robustness with respect to models of natural variation. Our notion of robustness offers a
departure from adversarial training with respect to norm-bounded data perturbations. In our exper-
iments, we show that our paradigm can provide significant out-of-distribution robustness on many
challenging distributional shifts. Furthermore, our paradigm can provide robustness against multiple
simultaneous distribution shifts and on domains that are entirely unseen while training the model,
and shows significant out-of-distribution robustness as datasets become more challenging.
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