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ABSTRACT

As artificial intelligence (AI) systems play an increasingly prominent role in human
decision-making, challenges surface in the realm of human-AI interactions. One
challenge arises from the suboptimal AI policies due to the inadequate consideration
of humans disregarding AI recommendations, as well as the need for AI to provide
advice selectively when it is most pertinent. This paper presents a sequential
decision-making model that (i) takes into account the human’s adherence level (the
probability that the human follows/rejects machine advice) and (ii) incorporates a
defer option so that the machine can temporarily refrain from making advice. We
provide learning algorithms that learn the optimal advice policy and make advice
only at critical time stamps. Compared to problem-agnostic reinforcement learning
algorithms, our specialized learning algorithms not only enjoy better theoretical
convergence properties but also show strong empirical performance.

1 INTRODUCTION

Artificial intelligence (AI) has achieved remarkable success across various aspects of everyday life.
However, it is crucial to acknowledge that many of AI’s accomplishments have been developed as
fully automatic systems (Mnih et al., 2015; Silver et al., 2017). In several important domains like
AI-assisted driving (Balachandran et al., 2021) and AI-assisted healthcare (Shaheen, 2021), AI is
faced with the challenge of interacting with humans (Mozannar and Sontag, 2020; De et al., 2021),
introducing a more intricate and demanding dynamic. This interaction between AI and humans gives
rise to two significant issues. Firstly, it is common for humans to reject following AI’s advice, and
if AI assumes humans’ perfect adherence to its advice, the advice generated under this assumption
may not be optimal. Secondly, humans may prefer AI to refrain from constant advice-giving, opting
for AI intervention only when necessary. They may value their autonomy when performing well
but expect AI guidance during critical moments or when they encounter situations in which they are
typically less proficient. These considerations underscore the importance of comprehending human
behavior and preferences to develop effective and adaptable AI systems for human-AI interactions.

To address the mentioned challenges, in this paper, we provide a decision-making model for human-
AI interactions. For the first challenge, the model takes into account the human’s adherence level,
defined as the probability that the human takes the AI’s advice. This allows the machine to account
for variations in human adherence level when making advice. For the second challenge, the AI model
features an action named defer, which refrains from giving advice to humans. This feature recognizes
that there are instances when humans prefer autonomy and only seek AI guidance during critical
moments or situations where they typically struggle. By integrating the adherence level and action
deferral into our model, we formulate these challenges as a decision-making problem.

To cater to this specialized decision-making model, we have developed tailored learning algorithms
that are both provably convergent and empirically efficient. These algorithms are specifically designed
to effectively handle the unique characteristics and challenges of the human-AI interaction setting.
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1.1 RELATED WORK

Human-AI interactions. Human-AI interactions have long been studied in fields such as robotics.
Methods for modeling human behaviors and collaborating with robots (Bobu et al., 2020; Laidlaw
and Dragan, 2022; Carroll et al., 2019) have achieved strong empirical performance. Similar to
our definition of adherence level, a stream of literature (Chen et al., 2018; Williams et al., 2023)
integrates trust (Khavas et al., 2020) as latent factors into the human-AI model and solves Partially
Observable Markov Decision Process (POMDP) to get policies with strong empirical outcomes.
Our work primarily centers on modeling and establishing theoretical foundations for the human-AI
interaction model and the associated learning problems, thereby complementing the existing body of
human-AI interaction literature.

Modeling human-AI interactions. On the modeling side, Grand-Clément and Pauphilet (2022)
propose the decision-making model that incorporates the adherence level and illustrates that when
the adherence level is low, the optimal advice can be different from the optimal decision. Also, see
Sun et al. (2022) for an applied setting of interacting with different adherence levels, Shani et al.
(2019) for the relationship between the model and the exploration-conscious RL setting, and Jacq
et al. (2022) for the so-called lazy-MDP that features an action similar to defer in our setting.

Machine learning in human-AI interactions. Although there has been no literature associated
with learning the decision-making model similar to Grand-Clément and Pauphilet (2022) and Jacq
et al. (2022), other machine learning approaches have been put forward (Bastani et al., 2021; Meresht
et al., 2020; Straitouri et al., 2021; Okati et al., 2021; Chen et al., 2022; Hong et al., 2023; Mao et al.,
2023; Mohri et al., 2023) with different human-AI interaction settings.

Theoretical reinforcement learning. Our first proposed algorithm is an optimism-based re-
inforcement learning method that learns the optimal advice policy. This approach is inspired by
the theoretical online reinforcement learning literature (Jaksch et al., 2010; Lattimore and Hutter,
2014; Dann and Brunskill, 2015; Azar et al., 2017; Dann et al., 2017; Zanette and Brunskill, 2019;
Domingues et al., 2021). Instead of directly applying the upper confidence bound in the literature,
we customize the learning algorithm so that it leverages special properties in our decision-making
model, resulting in advantages in theoretical properties and empirical performance. Our second
algorithm adopts a reward-free exploration (RFE) approach (Jin et al., 2020), which first explores the
environment for a given number of episodes, and then becomes capable of outputting near-optimal
policy for any bounded reward functions. We find this approach works well for learning algorithms
that make pertinent advice. See Zhang et al. (2020); Kaufmann et al. (2021); Ménard et al. (2021);
Miryoosefi and Jin (2022) for the follow-up works in RFE.

Our contribution is twofold:

First, we propose a decision-making model for advice-giving that incorporates human’s adherence
level and an option for the AI to defer the advice and trust the human. This is a comprehensive
modeling framework for effective human-AI interactions, where the optimal decision-making not
only considers human adherence level but also makes advice/recommendations only at critical states.

Second, based on this decision-making model, we develop tailored learning algorithms that output
near-optimal advice policies and know when to make pertinent advice. Compared to the state-of-the-
art problem-agnostic RL algorithms, our algorithm features tighter sample complexity bound and
stronger empirical performance.

2 MODEL SETUP

Consider a human decision-maker that takes sequential actions under an episodic Markov decision
process (MDP) described by the tuple MH = (S,A, H, p, r). The superscript H emphasizes the
human’s involvement in this MDP, S denotes the set of states, A denotes the set of actions, H is the
horizon of each episode (different from the superscript H), p denotes a deterministic time-dependent
transition kernel so that ph(s′|s, a) is the transition probability from state s ∈ S to state s′ ∈ S under
the action a ∈ A at time h, and r denotes a time-dependent reward function where rh(s, a) ∈ [0, 1].
Let S = |S| and A = |A| denote the cardinality of S and A, respectively.
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Suppose the human follows a fixed (suboptimal) policy πH such that the probability of taking action
a at state s and time h is πH

h(a|s). Alongside the human, an intelligent machine makes advice as
decision support to improve the reward collected under πH

h. In other words, the machine does not seek
to change human policy but rather improve its final outcome given its suboptimality. Specifically,
upon the arrival at each state, the machine can choose to make advice aM ∈ A to the human (the
superscript M stands for the machine), or to trust the human and defer the action to the human, denoted
by aM = defer. If the machine chooses to defer, the human follows its default policy πH. If the
machine chooses to advise, the human takes the machine’s advice with probability θ(s, aM) ∈ [0, 1],
where θ(·, ·) is the adherence level of the human, and is defined as follows.

Definition 1 The human’s adherence level θ : S × A → [0, 1] is the probability of human adopt-
ing/adhering to the machine’s certain advice at a certain state.

Given the setup, the human takes action aH according to the following law:

Ph(a
H = a|s, aM) =


πH
h(a|s), if aM = defer,

θ(s, aM), if aM ̸= defer and a = aM (adhere),

(1− θ(s, aM)) ·
πH
h(a|s)

1− πH
h(a

M|s)
, if aM ̸= defer and a ̸= aM (not adhere).

(1)
To summarize, under the human-machine interaction, the underlying dynamic becomes

sh
machine makes advice−−−−−−−−−−−→ aM

aH ∼ Ph(·|sh, aM)−−−−−−−−−−→ aH
sh+1 ∼ ph(·|sh, aH)−−−−−−−−−−−−→ sh+1.

At each time h, the machine first makes the advice aM upon the state sh and the human incorporates
the machine advice into a final action aH, and then transit to the next state sh+1.

The machine’s MDP. From the machine’s perspective, the MDP is slightly different from the MDP
faced by human. It can be described byMM =

(
S, Ā, H, pM, rM

)
. This MDP shares the same state

space S and horizon H as the human MDPMH. The action space is augmented to include the defer
option Ā = A ∪ {defer}. In the machine’s perspective, the transition can be viewed as a direct
consequence of making advice aM ∈ Ā (i.e, sh → aM → sh+1), and the transition kernel becomes

pMh(s
′|s, aM) =

∑
aH∈A

ph(s
′|s, aH) · Ph(a

H|s, aM), (2)

where ph is the transition kernel of the MDPMH, and the probability Ph(·|s, a) is specified by the
adherence dynamics (1). In parallel, we define the reward by marginalizing human’s action

rMh(s, a
M) =

∑
aH∈A

rh(s, a
H) · Ph(a

H|s, aM).

Denote π = {πh}h∈[H] the machine’s policy where πh : S → Ā. The value function then becomes

V π
h0
(s) = E

[
H∑

h=h0

rMh(sh, ah)
∣∣∣sh0

= s

]
, where ah = πh(sh) and sh+1 ∼ pMh(·|sh, ah),

and let V π
H+1(s) = 0 for any s ∈ S. The optimal value V ∗ and the optimal policy π∗ are defined by

V ∗
h (s) = max

π∈Π
V π
h (s), π∗ = argmax

π∈Π
V π
1 (s)

where Π consists of all deterministic non-anticipating Markov policies. Similarly, we define the
corresponding Q functions to be

Qπ
h(s, a) = rMh(s, a)+

∑
s′∈S

pMh(s
′|s, a)V π

h+1(s
′), and Q∗

h(s, a) = rMh(s, a)+
∑
s′∈S

pMh(s
′|s, a)V ∗

h+1(s
′).

Human-centric system. The theme of the formulation and all our following results is a human-
centric decision system where the machine acknowledges the suboptimal behavior of the human and
makes advice on critical states to improve the reward. So the learning and optimization of our paper
take the perspective of the machine (solvingMM) and do not seek to change the underlying human
policy πH.
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3 THE LEARNING PROBLEM

Now we discuss learning problems associated with the above human-machine adherence model. We
consider two learning environments for the problem:

E1 (Environment 1 – partially known): the environment’s state transition kernel p, the reward r, and
the human’s behavior policy πH, are known; the human’s adherence level θ is unknown.

E2 (Environment 2 – fully unknown): the environment’s state transition kernel p, the reward r, the
human’s behavior policy πH, and the human’s adherence level θ are unknown.

For E1, the goal is simply to learn the optimal policy under the unknown adherence level θ. We develop
a learning algorithm that outputs ϵ-optimal advice policy and features better sample complexity
compared to the vanilla application of problem-agnostic RL methods on MM. For E2, we know
neither the environment nor the human’s policy. Thus the learning problem entails learning the
dynamics of both the environment and the human policy. We develop a provably convergent learning
algorithm that outputs the optimal policy, and in addition, the learned advice policy only gives advice
when necessary (choosing to defer for non-critical steps).

Our investigations on these two learning formulations highlight three points. First, the inherent
structure of the human-machine interaction allows more sample-efficient algorithms (than the vanilla
application of the off-the-shelf RL algorithms) both theoretically and empirically. Second, the
knowledge of the underlying environment (E1 compared against E2) significantly, also unsurprisingly,
reduces the sample complexity of the learning algorithm. Third, we establish a close connection be-
tween the formulation of the human-machine interaction with the problems of reward-free exploration
(Jin et al., 2020) and constrained MDPs (Altman, 2021).

3.1 MAIN RESULTS

We first state the technical results and then present the detailed algorithms and analyses in the
subsequent section.

Theorem 1 (Environment E1, informal) For environment E1, Algorithm 1 finds an ϵ-optimal advice
policy with a PAC sample complexity O(H2S2A/ϵ2) with high probability.

Under environment E1, Theorem 1 gives a PAC sample complexity for the UCB-type (Upper-
Confidence-Bound-type) Algorithm 1. We remark that applying the existing problem-agnostic
algorithms can only achieve a suboptimal order of sample complexity on the problem: O(H3S2A/ϵ2)
via the model-based algorithm (Dann and Brunskill, 2015) and O(H4SA/ϵ2) via the model-free
algorithm (Jin et al., 2018)1. Specifically, the bound in Dann and Brunskill (2015) gives an additional
factor of H compared to the bounds in the original setting, where stationary transition density is
assumed; this is due to the fact that though the adherence level θ is stationary, the transition becomes
non-stationary when compounding θ and underlying transition of the human’s underlying MDP. Also,
we note that such an improvement on H is not due to a reduction in the number of unknown parameters
because the adherence level θ has a dimensionality of SA. Indeed, the key to the improvement is
the intrinsic structure of the human-machine problem enables a more sample-efficient design of the
UCB algorithm (See Section 4.1 for details). Moreover, we also provide another algorithm that finds
an ϵ-optimal advice policy with a sample complexity of O(H3SA/ϵ2) for E2 (See Algorithm 3 in
appendix A.3 for details).

For environment E2, we assume no prior knowledge at all, and this makes the machine’s problem no
different than a generic RL problem. Thus we consider a slight twist of the machine’s MDP with the
notion of pertinent advice. This twisted formulation enables richer analytical structures and draws
interesting connections with several existing frameworks. Specifically, consider a new machine’s
MDPMM

β ∈
(
S, Ā, H, pM, rMβ

)
which inherits everything fromMM ∈

(
S, Ā, H, pM, rM

)
except for

the reward

rMh,β(s, a) = rMh(s, a)− β · I{a ̸= defer}, (3)

1The authors obtain a regret bound instead of PAC sample complexity bound. However, they convert the
regret bound to a PAC sample complexity bound in (Jin et al., 2018, Section 3.1)
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where the I{·} is the indicator function and β > 0 is a constant. UnderMM
β , we denote V π

β and
V ∗
β the value functions of π and the optimal value function, respectively, and the optimal policy

π∗
β ∈ argmaxπ V

π
β . The new reward function enforces a penalization of β for making advice and

thus regularizes the number of machine advices throughout the horizon. In practice, providing advice
to human at every step can be annoying in applications such as gaming, driving, or sports. Hence, it is
crucial to prioritize and selectively deliver advice based on its criticalness – which we term informally
as pertinent advice. For example, when the human is an expert and already achieves near-optimal
performance, there is no need to give advice; also, when the human is under-performing, and the
adherence level is low, there is also no need to give advice because it is unlikely to be taken.

Proposition 1. For all s ∈ S and h ∈ [H] such that π∗
h,β(s) ̸= defer, we have

Q∗
h(s, π

∗
h,β(s))− V πH

h (s) ≥ β.

The proposition says that if the machine takes π∗
h,β(s) and sticks with the optimal policy afterward,

the reward will be at least β more than that if the machine chooses to defer all the way till the end.
In this light, we can rank the criticalness of making advice at different states by solvingMM

β with
different β which gives a better interpretation of this human-machine system.

Theorem 2 (Environment E2, informal) For E2, Algorithm 2 outputs a family of ϵ-optimal policies
{π̂β}β>0 for {MH

β}β>0 with O(H5SA/ϵ2) episodes such that the following inequality

V ∗
1,β(s1)− V

π̂β

1,β (s1) ≤ ϵ (4)

holds uniformly for all β > 0 with high probability.

Theorem 2 gives the sample complexity of Algorithm 2 which learns a near-optimal policy for all
the models {MH

β}β≥0 simultaneously. Such joint learning not only provides a family of policies for
the human to customize β according to her/his performance but also gives us a handle to understand
which are the critical states where the human’s policy can be significantly improved.

4 ALGORITHMS AND ANALYSES

In this section, we present the algorithms and analyses that achieve the results mentioned previously.

4.1 UCB-BASED ALGORITHM FOR E1

Under E1, the machine works with a human with unknown adherence level θ. An important property
of θ is as follows. Basically, it states that the team of human and machine achieves a higher optimal
reward if the human has a higher adherence level. To emphasize the dependence on θ, we write

V π
h (s|θ) = E

[
H∑

h′=h

rMh′(sh′ , ah′)
∣∣∣sh = s, adherence parameter θ

]
and V ∗

h (s|θ) = max
π∈Π

V π
h (s|θ).

Proposition 2 (Monotonicity property). Suppose θ1 ≥ θ2 holds entry-wise, then the following
inequality holds for all s ∈ S and h ∈ [H]

V ∗
h (s|θ1) ≥ V ∗

h (s|θ2).

Proposition 2 implies that finding an upper bound for the optimal value function reduces to finding
an upper bound for θ. Algorithm 1 follows this implication and maintains an optimistic estimate θ̄t

for the true parameter θ. For each episode, it generates the policy π̂t pretending the θ̄t as true, and
rolls out the episode according to π̂t. Then it updates the estimate with the new observations. The
optimistic estimate θ̄t takes the form of a standard UCB form with a careful choice of the confidence
width and we defer more details to Appendix A.2. The algorithm shares the same intuition as other
UCB-based algorithms that, with more and more observations, the confidence bound θ̄t will shrink to
the true θ, and so does the value functions.

Theorem 1 establishes an (ϵ, δ)-PAC result for Algorithm 1.
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Algorithm 1 UCB-ADherence (UCB-AD)

1: Input: Target probability level δ.
2: Initialize t = 1, Dt−1 = ∅, and the optimistic estimate θ̄t = 1.
3: for t = 1, 2, · · · do
4: Solve the advice policy π̂t = argmaxπ V

π(·|θ̄t) given the current optimistic estimate θ̄t

5: Sample a new episode zt =
{
st1, a

M,t
1 , aH,t1 , rt1, · · · , stH , aM,tH , aH,tH , rtH

}
following policy π̂t

6: Update Dt ← Dt−1 ∪ {zt}
7: Update the optimistic estimate θ̄t → θ̄t+1 based on Dt and δ
8: end for

Theorem 1. For any δ ∈ (0, 1), ϵ ∈ (0, 1], and T ∈ N+, the number of policies among {π̂t}Tt=1 from

Algorithm 1 that are not ϵ-optimal, i.e., V ∗
1 (s1)− V π̂t

1 (s1) > ϵ, is bounded by Õ
(

H2S2A
ϵ2 · log 1

δ

)
with probability 1− δ.

The proof of the theorem mimics the analysis of Dann and Brunskill (2015). One caveat in the
analysis is that the original analysis of Dann and Brunskill (2015) focuses on a stationary setting
where transition probabilities depend solely on state and action, remaining independent of the time
horizon. However, even when the adherence level θ remains the same over time, the machine’s MDP
is non-stationary. An direct adoption is to enlarge the state space to incorporate the horizon step h,
yet this will result in a sample complexity of O(H3S2A/ϵ2), a worse dependency on H . The key is
to reduce the upper bound analysis to the adherence level space and utilize Proposition 2 to convert
that into a suboptimality gap with respect to the value function. This treatment gives the desirable
bound in Theorem 1 which also outperforms the bound from a direct application of results from Azar
et al. (2017) to non-stationary MDPs.

4.2 REWARD-FREE EXPLORATION ALGORITHM FOR E2

E2 has more unknown parameters than E1 and thus it naturally entails more intense exploration.
Moreover, the learning objective becomes more complex: we aim not only to learn the near-optimal
policy but also to discern the pertinent advice.

Algorithm 2 is based on the concept of reward-free exploration (RFE) (Jin et al., 2020). Specifically,
RFE algorithms usually consist of an exploration phase and a planning phase. During the exploration
phase, the algorithm collects trajectories from an MDPM without a pre-specified reward function.
In the planning phase, it can compute near-optimal policies ofM, given any deterministic reward
functions that are bounded.

In our human-machine model, the machine observes sh → aM → aH → sh+1, and the trajectory for
episode t is zt = {st1, a

M,t
1 , aH,t1 , rt1, s

t
2, a

M,t
2 , aH,t2 , rt2, · · · , stH , aM,tH , aH,tH , rtH}, where aM,th = πt(sth),

aH,th ∼ Ph(·|sth, a
M,t
h ), and sth+1 ∼ ph(·|sth, a

H,t
h ). We denote p̂M,th and r̂M,th the empirical estimation

for pM and rMh, and nt
h(s, a) =

∑t
i=1 I

{(
sih, a

M,i
h

)
= (s, a)

}
the number of times the machine gives

advice a at time h and state s in the first t episodes. The key quantity in Algorithm 2 is

W t
h(s, a) = min

(
H, 16H2ϕ(n

t
h(s, a), δ)

nt
h(s, a)

+

(
1 +

1

H

)∑
s′

p̂M,th (s′|s, a)max
a′

W t
h+1(s

′, a′)

)
,

(5)
where W t

H+1(s, a) = 0 for (s, a) ∈ S ×A, and ϕ(n, δ) grows at the order of O(log(n) + log(1/δ))
and is specified in Theorem 2.

Now we formally introduce our Algorithm 2. The algorithm iteratively minimizes an upper bound
defined by (5) which measures the uncertainty of a state-action pair, and the upper bound shrinks as
the number of visits for the state-action pair increases. The algorithm stops when the upper bound is
less than a pre-specified threshold. This algorithm is inspired by the RF-Express algorithm (Ménard
et al., 2021), and there is a slight difference in the definition of W t

h(s, a), ϕ(n, δ) and the stopping
rule. In our application, the reward rM is stochastic and we need to take care of the estimation error;
while in Ménard et al. (2021), the algorithm does not need to deal with the reward at all.

6



Published as a conference paper at ICLR 2024

Algorithm 2 : RFE-β

1: Input: ϵ, δ, and user-specified {βi}i∈I , where I could be any set where βi ∈ [0, H)
2: Stage 1: Reward-free exploration
3: Initialize t = 1 and W t

h(s, a) = H for all (s, a) ∈ S ×A
4: Compute πt so that πt

h(s) = argmaxa∈A W t
h(s, a) (see (5))

5: while W t
1(s1, π

t(s1)) + 4e
√
W t

1(s1, π
t(s1)) > ϵ/H do

6: Sample trajectory zt = {st1, a
M,t
1 , aH,t1 , rt1, · · · , stH , aM,tH , aH,tH , rtH} following πt

7: update t← t+ 1, D ← D ∪ {zt}, p̂M,th (s′|s, a), r̂M,th (s, a), and W t
h(s, a)

8: end while
9: Stage 2: Policy identification

10: Use planning algorithms to output optimal advice policy {π̂τ
βi
}i∈I for

{(
S, Ā, H, p̂M, r̂Mβi

)}
i∈I

Theorem 2. For δ ∈ (0, 1), ϵ ∈ (0, 1], and ϕ(n, δ) = 6 log(4HSA/(ϵδ)) + S log(8e(n+ 1)), with
probability 1− δ, Stage 1 of Algorithm 2 stops in τ episodes and

τ ≤ C1
H5SA

ϵ2
(6 log(4HSA/(ϵδ)) + S) ,

where C1 = Õ(log(HSA)). Moreover, {π̂τ
β}β>0 have the following property

P
(
V ∗
1,β(s1)− V

π̂τ
β

1,β (s1) ≤ ϵ uniformly for all β ∈ [0, H)
)
> 1− δ.

Theorem 2 ensures that Algorithm 2 provides sample estimation for the underlying MDP such that
all the policy {π̂τ

β}β∈[0,H) for pertinent advice are near optimal. The proof is a direct application
of the RF-Express (Ménard et al., 2021), except that we have to take care of the estimation error in
r̂M. Although Algorithm 2 has the uniform convergence property for any number of bounded reward
functions, it can also be used the same way as Algorithm 1, to find the ϵ-optimal policy forMM if
provided with the non-penalized reward function r̂M. In this context, we can modify RFE-β so that
with high probability, it solvesMM with a sample complexity of O(H3SA/ϵ2) (See Algorithm 3 in
Appendix A.3 for details).

CMDP for pertinent advice. The algorithm RFE-β solves a class of problems {MM
β}β>0 simultane-

ously for all the β’s and it measures the pertinence of advice by β. However, sometimes humans lack
a quantitative view of how large a β value should be considered as pertinent. Here, we introduce a
different perspective on how the human should rank the importance of advice, framing it as “in H
steps, I want advice no more than D times”, and formulate this as a CMDP problem

max
π

Eπ

[
H∑

h=1

rM(sh, ah)

]
s.t. Eπ

[
H∑

h=1

I{ah ̸= defer}

]
≤ D, (6)

where D ∈ (0, H). From the standard primal-dual theorem, this formulation is closely related to the
penalty β in (3), for the reason that we can treat β as a dual variable for the constraint D. We refer
the reader to the proof of Corollary 1 in Appendix A.3 for details.

Now we present the CMDP method for pertinent advice. After stage 1 of RFE-β, we solve

max
π

Êπ

[
H∑

h=1

r̂M,τ (sh, ah)

]
s.t. Êπ

[
H∑

h=1

I{ah ̸= defer}

]
≤ D, (7)

where Ê is the expectation with the underlying transition being p̂M,τ . The next corollary states that
π̂τ
D, the solution for (7), is a near-optimal policy for the CMDP (6).

Corollary 1. In the same setting of Theorem 2, for δ ∈ (0, 1) and ϵ ∈ (0, 1], with probability 1− δ,
for all D ∈ (0, H), π̂τ

D is a near-optimal solution for the original CMDP (6) such that

V
π̂τ
D

1 (s1) ≥ V
π∗
D

1 (s1)− 2ϵ, and Eπ̂τ
D

[
H∑

h=1

I{ah ̸= defer}

]
≤ D + ϵ (8)

where π∗
D is the optimal solution for (6).
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Corollary 1 also implies that RFE-β can compute near-optimal policies of CMDP (6) for all the
constraints D ∈ [0, H), with a sample complexity of O(H5SA/ϵ2). Compared to other CMDP
learning algorithms (for example, O(H2S3A/ϵ2) in Kalagarla et al. (2021)), the sample complexity
of Corollary 1 features a lower order in S. Moreover, the near-optimal result holds for all constraints
D ∈ [0, H), and for other CMDP learning algorithms, the result only holds for a pre-specified D.

5 NUMERICAL EXPERIMENT

We perform numerical experiments under two environments: Flappy Bird (Williams et al., 2023) and
Car Driving Meresht et al. (2020). Both Atari game-like environments are suitable and convenient
for modeling human behavior while retaining the learning structure for the machine. We focus on the
flappy bird environment here and defer the car driving environment to Appendix B.

Flappy Bird Environment. We consider a game map of a 7-by-20 grid of cells. Each cell can be
empty, contain a star, or act as a wall. The goal is to navigate the bird across the map from left to
right and collect as many stars as possible. However, colliding with a wall or reaching the (upper and
lower) boundaries leads to the end of the game. An example map is displayed in Figure 1, which
splits into three phases: the first phase contains almost only stars and no walls, the second phase
contains almost only walls and very few stars, and the third phase contains both stars and walls.

Figure 1: Flappy Bird environment: player needs to navigate the bird to avoid walls and collect stars.

We define the state space as the current locations of the bird on the grid, represented by coordinates
(x, y) ∈ Z2, with a total of 7 × 20 = 140 states. Regarding the action space, we define it as
A = {Up, Up-Up, Down}. Each action causes the bird to move forward by one cell. In addition, the
“Up” action moves the bird one cell upwards, the “Up-Up” action moves it two cells upwards, and the
“Down” action moves it one cell downwards. The MDP has a reward as a function of state only. We
will get a reward of 1 when the current state (location) has a star and otherwise 0. To model human
behavior, we consider two sub-optimal human policies: Policy Greedy, which prioritizes collecting
stars in the next column, and Policy Safe, which focuses on avoiding walls in the next column. If
there is no preferred action available, both policies maintain a horizontal zig-zag line by alternating
between “Up” and “Down”. For adherence level θ, we assume for all s ∈ S and h = 1, ...,H , the
human will adhere to the advice with probability 0.9 except the aggressive advice “Up-up” (which
moves too fast vertically) with adherence level 0.7. We compare the following algorithms:

• UCB-ADherence (UCB-AD): Algorithm 1 that finds the ϵ-optimal advice policy.

• RFE-ADvice (RFE-AD): Algorithm 3, a variant of RFE-β that finds the ϵ-optimal policy.

• RFE-β: Algorithm 2 that outputs pertinent advice policy by exploring then planning.

• RFE-CMDP: A variant of RFE-β that solves the CMDP (7) after exploring.

Figure 2a and 2b present the results for the two algorithms UCB-AD and RFE-AD for the environment
E1. It also includes the state-of-the-art algorithm EULER (Zanette and Brunskill, 2019) that achieves
a generic minimax optimal regret. From the regret plot, UCB-AD outperforms both RFE-AD and
EULER. This advantage is attributed to UCB-AD’s effective utilization of the information and
structure of the underlying MDP. These results also show that our tailored algorithms UCB-AD
and RFE-AD are much more efficient than directly applying problem-agnostic RL algorithms in
the adherence model. We further test UCB-AD with different θ’s: with θ1, θ(a, s) ≡ 0.8 and with
θ2, θ(a, s) ≡ 0.4. Figure 2c shows the relationship between the regret of UCB-AD and θ: for both
policies, UCB-AD can achieve smaller regret with higher θ. Intuitively, a high adherence level implies
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a high probability of following the advice instead of taking πH, which will reduce the regret caused
by the suboptimality of πH.

(a) Regrets of Policy Greedy. (b) Regrets of Policy Safe. (c) Regrets of UCB-AD.

Figure 2: The regrets for learning the optimal advice for Policy Greedy and Policy Safe. Figure 2a,
2b show the regrets of RFE-AD, UCB-AD, and EULER for two policies respectively. Figure 2c
shows the regrets of UCB-AD for two policies under different θ’s.

Figure 3 summarizes results for three policies under the environment E2, namely RFE-β, RFE-
CMDP, and UC-CFH, a provably convergent CMDP algorithm (Kalagarla et al., 2021), under Policy
Safe. In Figure 3a, we see that RFE-β exhibits convergence for different β’s, and this empirically
corroborates the theoretical finding. In Figure 3b, we compare RFE-CMDP and UC-CFH under a
simpler environment with the advice budget being 1 (D = 1). We observe that RFE-CMDP shows a
marginal performance advantage over UC-CFH in terms of the convergence rate. More importantly,
Figure 3c shows by only using the estimated transition kernel after learning for D = 1 (Figure 3b),
RFE-CMDP is able to obtain near-optimal policy for problem instances with different advice budgets
(D = 2, 3, 4 and 5). However, UC-CFH fails to explore the whole transition kernel sufficiently and
can only output the near-optimal policy for the original problem instance. Moreover, RFE-CMDP
is more sample efficient with respect to the advice budget, because for UC-CFH, we have to run
multiple times with different advice budget parameters to get a near-optimal policy for all of them.

(a) Value gaps of RFE-β. (b) Value gaps w.r.t. episode. (c) Value gaps when evaluating.

Figure 3: The performances of making pertinent advice. The value gap is defined as the difference
between the value of current policy and the optimal values, with the red dashed line as the benchmark
for 0 loss of the policy. Figure 3a shows the convergence of RFE-β under difference β’s. Figure 3b
compares the convergences of RFE-CMDP and UC-CFH. Figure 3c evaluates performance of policy
learned from learning episodes in Figure 3b.

Lastly, we show that RFE-β is capable of generating pertinent advice for different policies. Figure 4
displays representative trajectories of two policies playing the game while receiving guidance from
the machine, which follows π̂β trained in the experiment of Figure 2. By setting β = 0.3, the machine
outputs a policy that only gives advice when necessary: Since Policy Greedy behaves well in the first
phase, the machine almost only gives advice in the second phase and the third phase; Similarly, the
machine almost only gives advice in the first phase and the third phase, and choose to defer most of
the time when Policy Safe is in the second phase.
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(a) Trajectory of Policy Greedy. (b) Trajectory of Policy Safe.

Figure 4: Typical trajectories of two policies’ types. The red color means the machine defers and the
green color means the machine advises.
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