Sequence-Graph Duality: Unifying User Modeling
with Self-Attention for Sequential Recommendation

Zeren Shui Ge Liu Anoop Deoras
University of Minnesota AWS Al AWS Al
shuix007@umn. edu gliua@amazon.com adeoras@amazon.com
George Karypis
AWS Al

gkarypis@amazon.com

Abstract

User modeling is of great importance in personalization services. Many existing
methods treat users as interaction sequences to capture users’ evolving interests.
Another line of research models each user as a user graph in which the users’ inter-
actions are modeled as nodes. Nodes (interactions) in user graphs are connected
via edges that reflect certain relations such as item similarity. The graph-based user
modeling can flexibly store item relationships. In this work, we introduce a novel
user representation, Heterogeneous User Graph (HUG), which unifies sequence-
and graph-based user modeling to take advantage of both methods. A HUG is
associated with two types of edges: sequential edges that preserve the order of
interactions and collaborative edges that connect collaboratively similar items
(i.e., items interacted by similar sets of users). To learn latent user representations
for recommendation tasks, we propose a multi-head attention-based architecture
called Heterogeneous User Graph Transformer (HUGT). HUGT is developed on
the basis of SASRec and can concurrently capture the sequential pattern and graph
topology encoded in HUGs. We conduct experiments on four real-world datasets
from three different application domains. Experimental results show that (1) jointly
modeling users as sequences and graphs with HUG provides better recommenda-
tion performance over sequence-only and graph-only user modeling; (2) HUGT is
effective in learning user latent representations from HUGs; (3) HUGT outperforms
the baselines by up to 10% on datasets with long sequences and aligns with the
state-of-the-art performance on datasets with short sequences.

1 Introduction

As internet services grow fast, users are facing a vast amount of information and products in their
daily life. Recommender systems play a critical role in filtering information and presenting relevant
content that matches users’ interests. Due to the dynamic nature and complexity of users’ interests,
learning patterns in users’ interaction history and encoding them into the users’ latent representations
for recommendation have been a prevalent research topic.

There has been a surge of methods that model users by their sequences of item interactions and
apply sequential models such as RNNs [9]] and Transformers [22] to learn user representations
(L7, 18, [13) 20, 3]]. These methods demonstrated that encoding item transition patterns in users’
latent representations helps capture users’ evolving interests and improves recommendation accuracy.
Another line of research advocates modeling users as user graphs in which the users’ interacted items
are modeled as nodes, and certain item-item relations are modeled as edges [27, 1} 25]. The item

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

relations are usually similarity or item co-occurrence patterns extracted from user-item interaction
matrices or item meta-data. Graph neural networks (GNNs) [[L5} 5] have been a popular choice for
encoding topology from such graphs into latent user representations. Most of the existing literature
on recommender systems focuses on sequence-only or graph-only user modeling. It is underexplored
whether a joint sequence-graph user modeling provides better recommendation performance than a
standalone-modality user modeling.

In this work, we propose a method to link the two worlds by jointly modeling users as sequences
and graphs to encode both sequential patterns and graph topology. A HUG is a graph of user-
interacted items, in which nodes are connected by two types of edges: sequential edges that preserve
the sequential ordering of interactions (e.g., chronological precedence) and collaborative edges
that characterize item-item collaborative similarity, i.e., a measure of similarity in regards users’
preference on the items. On the basis of SASRec [[13]], we design a transformer model to concurrently
fuse and encode the sequential patterns and the graph topology into latent user representations for
recommendation. We call our method Heterogeneous User Graph Transformers (HUGT).

We summarize our contributions as the following: First, we propose HUG, an effective data structure
that jointly encapsulates sequential patterns and collaborative graph topology for user modeling.
Secondly, we design HUGT to efficiently learn user representations from their HUGs. We propose
two variants of HUGT: HUGT-SE which learns graph structure with spatial encoding, and HUGT-MP
which computes a sparse attention matrix to simulate message passing in GNNs. Finally, we conduct
comprehensive experiments on four real-world datasets from three different domains. We empirically
demonstrate that jointly modeling users as sequences and graphs via HUGs outperforms standalone
sequence modeling or graph modeling of the users, HUGT is effective in concurrently fusing and
encoding the sequence and graph aspects of HUG, and HUGT achieves state-of-the-art performance
in sequential recommendation on the four baseline datasets.

2 Related Works

2.1 Sequence-based User Modeling

Sequential signal is important in user modeling and can improve recommendation performance.
Traditional sequential recommendation models [18} 16}, 21]] usually rely on factorization methods (e.g.,
Factorized Item Similarity Models [12]]) to capture users’ general tastes and Markov Chains (MCs) to
learn the sequential signal. This class of methods holds the Markov assumption that the next action is
dependent on the previous few interactions and cannot capture complex and long sequential patterns.
Moreover, the performance of these methods is limited by the capacity of the factorization models.

In the past decade, researchers developed RNN-based approaches to model users’ interaction tra-
jectories. Hidasi et al. [8] proposed GRU4Rec that leverages a variant of RNNs, gated recurrent
units (GRU), to capture sequential patterns in sessions. Ma et al. [[17]] successfully built real-world
commercial recommender systems based on hierarchical RNNs. The authors of [29] combined RNNs
with CNNs to capture long- and short-term sequential patterns, respectively. Despite the success
stories, RNN-based recommendation models suffer from data efficiency (they require a lot of training
data to perform well) and data sparsity issues.

2.2 Graph-based User Modeling

Graph-based user modeling is a rising direction that models users as graphs in which their in-
teracted items are nodes. Nodes in these graphs are usually connected via edges that indicate
transition/similarity relations [27,[1}25]. Methods that fall into this class usually use graph neural
networks (GNNs) to encode the graph-structured information into item embeddings and use a learn-
able function to readout user embeddings for recommendation. Although this class of methods can
effectively capture graph topology, they usually overlook sequential patterns which are important for
recommendation accuracy.

2.3 Transformer and Self-Attention Mechanism

Self-attention mechanism and the Transformer architecture have demonstrated their superior ability
for sequence modeling and have become the default methodology in natural language processing

Chronological order < |:> @ @ @ @ @

o< ho<ls < < \
Y G2

Userk ‘ o)

A E N OO 00
i1 2 i3 iy is /

i 1y 13 4 U5

& i Heterogeneous User Graph
<K =(> al [[] ,:(>@ &) G =V, {Eucqs Esim})

{viva, v} e []
is L]

SVD on user-item interaction matrix

2-nearest neighbor
R~ USVT in predecessors

Figure 1: Construction of a heterogeneous user graph from a user’s interaction sequence.

tasks [22,4]. In the recommendation community, the self-attention mechanism is widely adopted
for sequential user modeling [13} 20} 26,11, 116]]. He et al [7] propose to augment BERT4Rec by
enforcing items in sequences to attend to sequentially close items to reinforce the influence of local
items. Chen et al [2] propose to learn a sparse mask over the attention matrix to reduce the influence
of noisy items. In our work, we propose a formulation that allows a more flexible design of inductive
bias in self-attention-based recommendation models.

Recently, transformers have been applied to and have shown great potential in graph learning. In
[24], the authors show that the self-attention mechanism is a special form of graph convolutions.
The authors of [30]] generalize the definition of self-attention by directed graphs. Ying et al. [28]]
successfully apply transformers on graph prediction tasks and outperform major GNN variants by
augmenting transformers with graph structural knowledge. Hu et al. [10]] applied transformers to
learn from heterogeneous web-scale large graphs. These works motivate us to use Transformer as the
backbone to concurrently learn sequential patterns and collaborative graph topology from HUGs.

3 Heterogeneous User Graph

We introduce heterogeneous user graph (HUG), a data structure that stores both sequence patterns
and graph topology for user modeling. A HUG G = (V, {&sq, &sim }) is constructed from an user’s
interaction sequence. We define the nodes V in the HUG as the interacted items in the sequence.
With the heterogeneity of HUGsS, there could be various types of edges to encode different transition
patterns. In this paper, we construct two types of edges, sequential edges E.q and collaborative edges
Esim, to capture sequential signal and collaborative similarity, respectively.

Sequential Edges. The sequential edges are to store the chronological order of each pair of items.
Fori,j €V, (i,7) € Ewq if t; < tj where t; denotes the position of 4 in the sequence.

Collaborative Edges. Collaborative edges encode collaborative similarity, a measure of similarity in
regard to the users’ preference patterns on the items. In order to measure collaborative similarities
among items, we conduct a truncated singular value decomposition (SVD) on the user-item interaction
matrix R € {0, 1}4/XIZ] to obtain a set of low-dimensional item embeddings V € R¥*IZI. We
compute the cosine similarity between the embedding of each item in the HUG (@ € V) with its
predecessors {j|j € V,t; < t;}. Each item is connected to its k-nearest predecessors.

We show the overall construction process in Figure[I] Note that the collaborative edge can be easily
generalized to capture other types of item-item relations as well.

4 Heterogeneous User Graph Transformer

In this section, we present heterogeneous user graph transformer (HUGT) that learns from HUGs to
concurrently encode sequential signal and graph topology into latent user representations.

Multihead Self-attention Block in HUGT

VR] HUGT-MP
s AT

MatMul

Message Passing
I (sparse attention)

R G

MatMul Spatial Encoding ¢(s;;) } ‘ ‘
Adjacencymatrix

: E@é@ Sjv dorproouct
@O
sot 2 o e) P

{ei,} Relative positional encoding J]

Unidirectional
causal mask

Shortestpath | ¢
(Floyd Warshall) | ™

...... D]]] Input embeddings
€iy

€ €iy

Figure 2: Computation flow of Heterogeneous User Graph Transformer (HUGT). The attention heads
of the transformer are split into two groups. One group learns sequential patterns from the sequential
edges while the other group learns graph topology from the collaborative edges.

4.1 Generalized Self-Attention Mechanism

In the standard self-attention, the item at each position aggregates weighted information from all
items in the sequence to selectively build the context. Generalized self-attention (GSA) mechanism
generalizes the standard self-attention by allowing each item to attend to any subset of the positions
in the sequence and enlarges the design space of self-attention.

Let H = [hy, hy,--- , h,] € R?*™ be the latent representation of a sequence S from the previous
layer, where n and d denotes the length of the sequence and the dimension, respectively. GSA
computes the representation of an item ¢ as

exp (mi;) v
J
ien 2eren(exXP (Tijt) o
q=W,h, k=W;h, v=W,h, and m;; = q! k;/Vd,

where W, Wy, and W, are learnable parameters that map the input embedding to query, key, and
value domain, respectively. A/ (7) denotes the set of items that item ¢ attends to. When N (i) = S, the
GSA fully recovers the standard self-attention. In unidirectional attention with causal masking (i.e.,
each item can only attend to its precedents) used in SASRec [13], N'(¢) = {j|t; < t;}.

GSA(h;) =

4.2 User Modeling with Multi-head Self-Attention

Embedding Layer. We use a learnable embedding table E € R**|Z| to convert discrete item
ids [i1,42, - ,%,] to a matrix representation, X = [e;,,e;,, - ,e;,] € RY™ where d is the
dimensionality of the embeddings and n is the maximum sequence length that the model can take.
The latent representation is fed into a stack of self-attention blocks to generate user embeddings.

Self-Attention Block. A self-attention block (SAB) consists of a generalized self-attention (GSA)
layer that is introduced in Section[d.T]and a feed-forward layer (MLP) that adds non-linearity and
considers interactions between latent dimensions, i.e.,

A SAB takes the output from the previous SAB as input, and passes the result to the next block, i.e.,
h{"™" = sAB(h!") = MLP(GSA(h")), 3)

where hgl) denotes the output of the I-th SAB block, and hgo) = e, is the output of the initial

embedding layer. Following [[13]], we use layer normalization to accelerate training and residual

connections to preserve low-level information. We stack L SABs and use the output embedding at

the last position of the last SAB as the final user representation for recommendation, i.e., h,, = h%L).

4.3 Sequential Modeling with Relative Positional Encoding

In contrast to RNNGs that rely on recurrent operations to capture sequential signals, Transformers use
positional encoding to break the order equivariance. We use an embedding table P € R%*™ to map
the positions to continuous representations [p1, P2, - - - , P»). The positional embedding table could
be either learnable or pre-computed by a set of sinusoid functions. In this paper we follow [[13] and
use learnable positional embeddings.

There are two major ways to incorporate the positional embeddings into self-attention, adding them to
the input item features at the corresponding positions (absolute positional encoding) [22] and adding
a relative score computed by the two embeddings of the corresponding positions to the attention score
computed in Equation [I] (relative positional encoding) [19], i.e.,

_a'k
Tl'ij = \/a

where ¢ (-, -) is a learnable function. Empirically, we found that relative positional encoding outper-
forms absolute positional embedding in sequential recommendation tasks.

+ 1/’(pf” ptj)a

4.4 Graph Modeling

Message Passing. Graph neural networks that rely on message passing along graph edges have
shown their ability to encode graph topology into latent node/graph embeddings. Note that, Equation
could be viewed as a message passing operation on a graph G = (V, &) by setting ¢ € V and
N (i) = {j|(i,) € Em}. In fact, Equation|l]is a special implementation of graph attention networks
(GAT). We skip the details of GAT and refer the readers to [23] for more information.

In this paper, we directly apply GSA on the collaborative edges in HUGs as one way to encode graph
structural information. With such formulation, each node adaptively aggregates information from
its graph neighbors and updates its representation. The stacked SABs allow nodes to accumulate
information that is several hops away and encode graph topology into their latent representations.

Graph Spatial Encoding. The standard self-attention allows each item to attend to all items in
the sequence. This brings the advantage of a global receptive field, but also raises the challenge
of encoding graph structural information into item representations. We tackle this challenge by
pre-extracting graph-related properties and learning to incorporate the properties into the computation
of self-attention.

In this paper, we first compute the length of the shortest-path s;; € Z* between each pair of nodes
1,7 € V via collaborative edges to measure the spatial distance between the two nodes. We encode
this information via a learnable mapping ¢ : Z* +— R that converts the distance to a real scalar
¢(si;) and directly adds this value to the attention base, i.e., 7;; = ql k;/v/d + ¢(s;;). We clip the
shortest-path length to an upper bound S, i.e., a length larger than .S will be set to S. The clipping
enables the model to generalize to unseen lengths during training, controls the model size, and
provides encoding for disconnected item pairs.

4.5 Information Fusion with Multi-head Attention

Recall that in Equation |1} the input matrix H to each layer is mapped to a key K, query Q, and
value V domain for the computation of self-attention. In a multi-head self-attention mechanism,
H is mapped by multiple sets of projection matrices to several key-query-value spaces (each space
corresponds to one attention head) to compute self-attention in parallel. The resulting representation
from all attention heads is concatenated and projected to be the final representation, i.e.,

h = W,Concat (h',h? --- 'h"™), “)

where m is the number of heads, W, € R**(#*™) i a projection matrix, h’ is the output of the i-th
attention head.

The multi-head formulation allows each item to aggregate information from different attention paths
in one attention block. This provides flexibility to cope with the heterogeneity of HUGs. In each
attention block, We separate the attention heads into two groups, the sequential modeling heads which
learn from the sequential edges, and the graph modeling heads which learn from the collaborative
edges. The two groups of attention heads adopt different mechanisms to capture the two sources
of information. By stacking such multi-head attention blocks, we can effectively fuse and encode
information from the two types of edges into user representations.

4.6 Prediction and Model Training

With the learned user representation at position ¢, i.e. h!, the final prediction ¢/, of an item i is
computed by

gty =wlhl +b;,)

where w; and b; are decoder weight and bias for item 7. We notice that the model generalizes better
by sharing weights of the input embedding table with the item decoder.

We train the model by optimizing the cross-entropy loss

_ o exp (Jui)

wEB 1<t<n ject, XP (y

where B is a batch of users and C/, is a set of candidate items for user u at t. n is the maximum length
of the sequence.

4.7 Complexity Analysis

Let G be an user HUG with n nodes. The time and space complexity of a m-head HUGT is the
same as the standard Transformer, i.e., O(mn?). In the pre-processing steps, we apply a truncated
SVD on a sparse user-item interaction matrix which costs O((|U| + |Z|)d? + Td) where T is the
cost of a sparse matrix-vector multiplication and d is the dimension. When applying HUGT-SE,
pre-computing the shortest path between each pair of nodes costs O(n?). Since these steps only need
to be applied once and could be computed in parallel, they are not efficiency barriers to our method.

S Experiments

In this section, we carefully design experiments to investigate three research questions in regard of
the HUG modeling of users and the HUGT:

* RQ1: How does HUGT perform in sequential recommendation compared to the state-of-
the-art methods?

* RQ2: Is jointly modeling users as graphs and sequences better than a standalone se-
quence/graph user model?

* RQ3: Is a concurrent sequence-graph model better than modeling a user as a graph first and
then a sequence?

5.1 Experimental Setup

5.1.1 Datasets

We experiment with four benchmark datasets, ML1M, Netflix, Steam, Taobao, that fall into three
different application domains, movie recommendation, game recommendation, and E-commerce. The
datasets are different in regard to their size, shape, density, and sequence length. The detailed statistics
of the datasets are shown in Table|l} For all the datasets, we convert the ratings/reviews/interactions
to implicit feedback (i.e., existing entries are assumed positive while missing entries are treated as
negative signals).

Table 1: Statistics of the datasets

Dataset # Users #Items # Interactions Density Avg. Len.

MLIM 6040 3398 997923 4.86% 165.11
Netflix 376076 17673 31324749 047% 83.29
Steam 1198725 13055 6419630 0.04% 5.36

Taobao 40023 205495 3933299 0.05% 98.28

Table 2: Performance comparison of the two HUGT variants, Message Passing (MP) and Spatial
Encoding (SE), against baselines on the four datasets. In each row, we highlight the best performance
in boldface.

MLIM Netflix Steam Taobao
Metric HR@10 N@10 HR@I10 N@l0 HR@10 N@10 HR@I10 N@10
Pop 0.0117 0.0054 0.0197 0.0112 0.1029 0.0565 0.0024 0.0012
Fossil 0.0778 0.0314 0.0639 0.0258 0.2253 0.095 0.0027 0.001
GRU4Rec 0.2112 0.1164 0.2684 0.1615 0.1459 0.0811 0.1559 0.0942
SR-GNN 0.1516 0.0819 0.2253 0.1302 0.1059 0.0562 0.0921 0.0573
SASRec 0.1432 0.0599 0.2154 0.1143 0.2715 0.1985 0.1046 0.064
FISSA 0.0911 0.0387 0.1405 0.0711 0.1665 0.0899 - -
BERT4Rec 0.153 0.0764 0.2462 0.1431 0.2979 0.2504 0.1342 0.0805
SASRec-Ours 0.2052 0.1039 0.3267 0.2028 0.3027 0.2581 0.1612 0.095
HUGT-MP 0.2233 0.1218 0.3286 0.2043 0.3028 0.2585 0.1734 0.1032
HUGT-SP 0.2225 0.1191 0.3333 0.2085 0.3022 0.2573 0.172 0.1048
Improv. 5.73% 4.64% 2.02% 2.81% 0.03% 0.15% 7.57% 10.32%

5.1.2 Baselines and Implementation Details

We compare the performance of HUGT with state-of-the-art sequential recommendation base-
lines that fall into the categories of factorization-based methods (Fossil [6]]), RNN-based methods
(GRU4Rec [8]), GNN-based methods (SR-GNN [27]), and Self-Attention-based methods (FISSA
[L6], BERT4Rec [20], and SASRec [13]).

For Fossilp_-]and FISSAEL we use the implementation associated with the original paper. For GRU4Rec,
we use the implementation from [[17], and we use a PyTorch implementation of BERT4Re We
implement SASRec using PyTorch an we find that our implementation greatly outperforms the original
SASRec implementation. In our experiments, we select the hidden dimensions from {50, 300}. For
Markov chain(MC)-based methods, we consider the MC order from {1, 2, 3,4, 5}. For attention-
related methods such as SASRec and BERT4Rec, we choose the number of attention heads from
{1,2,3,4}. For batch size and optimization related hyper-parameters, we follow the instructions
from the original paper if provided. Otherwise, we set the batch size to 128 and optimize the model
using the Adam [14] optimizer with a learning rate of 0.001.

The maximum length for each dataset is set to be able to cover the average sequence lengths of the
dataset. We choose 200 for ML1M, 100 for Netflix and Taobao, and 50 for Steam. For constructing
collaborative edges in HUG, we consider the k value from {5, 10, 20, 30, 50, 70} for ML.1M, Netflix,
and Taobao. For the Steam dataset, we only consider {2, 3} since its average sequence length is 5.
When computing the ranking objective in Equation [6] we use all the items as candidate items for
MLI1M, Netflix, and Steam. Since the Taobao dataset has a large number of items, we compute the
loss on a randomly selected 0.5\/m candidate items to reduce GPU memory consumption. We use
the Adam algorithm to optimize the parameters of HUGT with a learning rate of 0.001. We set the
batch size for ML 1M, Netflix, and Steam to 128, and Taobao to 32. In our experiments, we set the
number of attention heads to be 4 and consider different combinations of sequence heads and graph
heads.

"https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2W WlocOk/view 2usp=sharing
2http://csse.szu.edu.cn/staff/panwk/publications/Code-FISS A .zip
*https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch

5.2 Experimental Settings

We use the first 90% of the interactions of each user as the training set and the last 10% of the interac-
tions for evaluation purposes. We follow an auto-regressive manner in evaluating the recommendation
models, i.e., we compute a user’s state/representation from her current interaction sequence, make
a prediction (a ranked list of items) for the next interaction, evaluate the recommendation list with
the ground truth item, append the ground truth item to the tail of her sequence, and update the user’s
state/representation for next prediction. We validate on 30% of the users for model selection and
early stopping and report test performance on the remaining 70% of the users.

We train HUGT and all the baselines on the training set and evaluate their performance on the
validation set after each training epoch. We stop training if the validation score does not decrease
in ten epochs or the number of training epochs reaches 100. We report the test performance of the
checkpoint that performs the best on the validation set.

5.2.1 Evaluation Metrics

In this paper, we use HR@k and NDCG@F to evaluate the performance of the models. HR@£ and
NDCG @k compute the proportion of cases when the ground truth item is in the top-k prediction
list. HR equally weighs the hit items while NDCG weighs the hit items decreasingly by their
corresponding rank in the top-k list.

5.3 Recommendation Performance (RQ1)

We compare recommendation performance of

the proposed HUGT with the state-of-the-art se- Table 3: Necessity of concurrent modeling of se-
quential recommendation methods on the four quences and graphs. G-S denotes the model archi-
benchmark datasets. The overall performance tecture that asynchronously encodes graph topol-
is shown in Table 2] We observe that our pro- ogy and then sequential signal. S-G denotes the
posed HUGT significantly outperforms all the architecture that reverses the above order. Concur

baselines on MLIM, Netflix, and Taobao while s the default HUGT that learns sequential signal
its performance on Steam is similar to SASRec. and graph topology concurrently.

This provides evidence that the collaborative

graph topology is helpful for user modeling and Dataset Model G-S S-G Concur
our HUGT can effectw@ly capture this signal to HR@10 02179 02136 0.2206
improve recommendation performance. Note = MLIM NDCG@10 01184 0.1158 0.1196
that, the ML1M, Netflix, and Taobao datasets ’ ’

have an average sequence length of 165, 83, Neix HR@10 0.3217 - 0.3219 0.3286
and 98, respectively, while the average length NDCG@I0 0.1991 0.1991 0.2043
of Steam is 5. This shows that our proposed HR@10 0.3020 0.3023 0.3020
method works well in settings where the inter- Steam \peG@1o 02578 0.2580 0.2582
action sequences are long. When the sequences HR@10 01679 01503 0.1734

are generally short, our method performs on par ~ Taobao \n-=a10 01007 00904 0.1032

with SASRec.

We observe that the two graph learning schemes,

message passing (MP) and spatial encoding (SE), show advantages in different datasets. This
demonstrates that some datasets could benefit from the global receptive field of the SE method while
others may enjoy the local structure of the MP scheme.

5.4 HUG vs. Standalone User Modeling (RQ2)

In this section, we design experiments to investigate the necessity of the unified sequence-graph user
representation and the graph learning scheme. For each dataset, we train five HUGT-MP models
that each has four attention heads. The five HUGT-MP models have a number of sequential heads
ranging from zero to four while the rest of the heads are graph heads. We show the recommendation
performance of the models in Figure [3] We observe a performance drop on all the datasets when
we set the number of sequence heads to zero. This shows the importance of sequence patterns in
user modeling. On the three datasets with long sequences (ML1M, Netflix, Taobao), we observe
a performance drop when we set the number of graph heads to zero. This demonstrates that the

#seq/#graph
. 4/0 e 3/1 .)2 . 1/3 m 0/4

0.25 -l—i 03 .
- I' II
o

3 1k 1 02 Pl

o
— 0.2
P B BERE
2o.10 i e | T Il
2l B B B I
0.05
0.00 0.0

ML1IM Netflix Steam Taobao ML1M Netflix Steam Taobao

Figure 3: Recommendation performance with different combinations of sequential heads and graph
heads on ML1M.

collaborative graph topology is important in a long sequence setting and the graph learning schemes
that we proposed are effective in capturing this information. On the Steam dataset that has short
sequence lengths, the recommendation performance is not influenced by cutting the graph heads.
This suggests that the transition patterns in short sequence settings are not very sophisticated and
could be very well captured by a naive sequential model.

5.5 Importance of Concurrent Modeling (RQ3)

In a HUGT block, to incorporate the heterogeneity of HUG, we split multiple attention heads to
sequence heads and graph heads to concurrently encode sequential patterns and graph topology. In
this section, we conduct experiments to answer the question that whether this formulation is better
than its asynchronous alternatives. We design two architectures that process the sequence heads
and the graph heads sequentially. One that applies an HUGT with only graph heads on the HUG to
encode only graph topology into the item embeddings then applies an HUGT with only sequence
heads on the HUG whose initial node embeddings are the output of the previous graph-only HUGT
to mix graph topology and sequential patterns. The second architecture is similar but applies a
sequence-only HUGT first and then a graph-only HUGT. The recommendation performance of the
default HUGT and the two alternative architectures are shown in Table[3l We observe that on the
three datasets with long sequences (ML1M, Netflix, Taobao), concurrent modeling of sequences
and graphs outperforms the asynchronous alternatives. This demonstrates the effectiveness of the
heterogeneous graph modeling of users and the proposed Transformers. On the Steam dataset, there
is no significant performance difference between the three architectures.

6 Conclusion

We introduce a novel heterogeneous user graph (HUG) that jointly models users as sequences and
graphs to encode item transition patterns and complex item relations. To leverage the item transition
patterns and graph topology stored in HUGs for recommendation tasks, we develop heterogeneous
user graph transformer (HUGT) that extends the standard self-attention for concurrent sequence
learning and graph learning. Experimental results show that the unified sequence-graph user modeling
is better than either sequence-only modeling or graph-only modeling and HUGT achieves state-of-
the-art performance on all benchmarks.

HUG and HUGT provide a flexible framework for future research to incorporate complex item
relations into user modeling. A valuable direction to explore is the choice of graphs for user modeling.
We demonstrated that the collaborative similarity graph could provide extra context information for
user modeling. There remain a lot of choices such as item temporal graph, or item feature similarity
graph. We leave them as future works.

References

[1] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and
Yong Li. Sequential recommendation with graph neural networks. In Proceedings of the 44th

International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 378-387, 2021.

[2] Huiyuan Chen, Yusan Lin, Menghai Pan, Lan Wang, Chin-Chia Michael Yeh, Xiaoting Li, Yan
Zheng, Fei Wang, and Hao Yang. Denoising self-attentive sequential recommendation. In
Proceedings of the 16th ACM Conference on Recommender Systems, pages 92-101, 2022.

[3] Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation.
In Fifteenth ACM Conference on Recommender Systems, pages 143—-153, 2021.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[5] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025-1035, 2017.

[6] Ruining He and Julian McAuley. Fusing similarity models with markov chains for sparse
sequential recommendation. In Data Mining (ICDM), 2016 IEEE 16th International Conference
on, pages 191-200. IEEE, 2016.

[7] Zhankui He, Handong Zhao, Zhe Lin, Zhaowen Wang, Ajinkya Kale, and Julian McAuley.
Locker: Locally constrained self-attentive sequential recommendation. In Proceedings of

the 30th ACM International Conference on Information & Knowledge Management, pages
3088-3092, 2021.

[8] Baldzs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based
recommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

[9] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

[10] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
Proceedings of The Web Conference 2020, pages 2704-2710, 2020.

[11] Mingi Ji, Weonyoung Joo, Kyungwoo Song, Yoon-Yeong Kim, and II-Chul Moon. Sequential
recommendation with relation-aware kernelized self-attention. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 4304-4311, 2020.

[12] Santosh Kabbur, Xia Ning, and George Karypis. Fism: factored item similarity models for top-n
recommender systems. In Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 659-667. ACM, 2013.

[13] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 20718
IEEE International Conference on Data Mining (ICDM), pages 197-206. IEEE, 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[16] Jing Lin, Weike Pan, and Zhong Ming. Fissa: fusing item similarity models with self-attention
networks for sequential recommendation. In Fourteenth ACM Conference on Recommender
Systems, pages 130-139, 2020.

[17] Yifei Ma, Balakrishnan Narayanaswamy, Haibin Lin, and Hao Ding. Temporal-contextual rec-
ommendation in real-time. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 2291-2299, 2020.

[18] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized
markov chains for next-basket recommendation. In Proceedings of the 19th international
conference on World wide web, pages 811-820, 2010.

10

[19] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position rep-
resentations. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers), pages 464-468, 2018.

[20] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:
Sequential recommendation with bidirectional encoder representations from transformer. In Pro-
ceedings of the 28th ACM international conference on information and knowledge management,
pages 1441-1450, 2019.

[21] Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional
sequence embedding. In Proceedings of the Eleventh ACM International Conference on Web
Search and Data Mining, pages 565-573, 2018.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998-6008, 2017.

[23] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[24] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
7794-7803, 2018.

[25] Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. Global
context enhanced graph neural networks for session-based recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 169—178, 2020.

[26] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. Sse-pt: Sequential recommenda-
tion via personalized transformer. In Fourteenth ACM Conference on Recommender Systems,
pages 328-337, 2020.

[27] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based
recommendation with graph neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 346-353, 2019.

[28] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform bad for graph representation? arXiv preprint
arXiv:2106.05234, 2021.

[29] Jiaxuan You, Yichen Wang, Aditya Pal, Pong Eksombatchai, Chuck Rosenburg, and Jure
Leskovec. Hierarchical temporal convolutional networks for dynamic recommender systems.
In The World Wide Web Conference, WWW ’19, page 2236-2246, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313747.
URL https://doi.org/10.1145/3308558.3313747.

[30] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird:
Transformers for longer sequences. In NeurIPS, 2020.

11

https://doi.org/10.1145/3308558.3313747

	Introduction
	Related Works
	Sequence-based User Modeling
	Graph-based User Modeling
	Transformer and Self-Attention Mechanism

	Heterogeneous User Graph
	Heterogeneous User Graph Transformer
	Generalized Self-Attention Mechanism
	User Modeling with Multi-head Self-Attention
	Sequential Modeling with Relative Positional Encoding
	Graph Modeling
	Information Fusion with Multi-head Attention
	Prediction and Model Training
	Complexity Analysis

	Experiments
	Experimental Setup
	Datasets
	Baselines and Implementation Details

	Experimental Settings
	Evaluation Metrics

	Recommendation Performance (RQ1)
	HUG vs. Standalone User Modeling (RQ2)
	Importance of Concurrent Modeling (RQ3)

	Conclusion

