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Abstract

User modeling is of great importance in personalization services. Many existing
methods treat users as interaction sequences to capture users’ evolving interests.
Another line of research models each user as a user graph in which the users’ inter-
actions are modeled as nodes. Nodes (interactions) in user graphs are connected
via edges that reflect certain relations such as item similarity. The graph-based user
modeling can flexibly store item relationships. In this work, we introduce a novel
user representation, Heterogeneous User Graph (HUG), which unifies sequence-
and graph-based user modeling to take advantage of both methods. A HUG is
associated with two types of edges: sequential edges that preserve the order of
interactions and collaborative edges that connect collaboratively similar items
(i.e., items interacted by similar sets of users). To learn latent user representations
for recommendation tasks, we propose a multi-head attention-based architecture
called Heterogeneous User Graph Transformer (HUGT). HUGT is developed on
the basis of SASRec and can concurrently capture the sequential pattern and graph
topology encoded in HUGs. We conduct experiments on four real-world datasets
from three different application domains. Experimental results show that (1) jointly
modeling users as sequences and graphs with HUG provides better recommenda-
tion performance over sequence-only and graph-only user modeling; (2) HUGT is
effective in learning user latent representations from HUGs; (3) HUGT outperforms
the baselines by up to 10% on datasets with long sequences and aligns with the
state-of-the-art performance on datasets with short sequences.

1 Introduction

As internet services grow fast, users are facing a vast amount of information and products in their
daily life. Recommender systems play a critical role in filtering information and presenting relevant
content that matches users’ interests. Due to the dynamic nature and complexity of users’ interests,
learning patterns in users’ interaction history and encoding them into the users’ latent representations
for recommendation have been a prevalent research topic.

There has been a surge of methods that model users by their sequences of item interactions and
apply sequential models such as RNNs [9] and Transformers [22] to learn user representations
[17, 8, 13, 20, 3]. These methods demonstrated that encoding item transition patterns in users’
latent representations helps capture users’ evolving interests and improves recommendation accuracy.
Another line of research advocates modeling users as user graphs in which the users’ interacted items
are modeled as nodes, and certain item-item relations are modeled as edges [27, 1, 25]. The item
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relations are usually similarity or item co-occurrence patterns extracted from user-item interaction
matrices or item meta-data. Graph neural networks (GNNs) [15, 5] have been a popular choice for
encoding topology from such graphs into latent user representations. Most of the existing literature
on recommender systems focuses on sequence-only or graph-only user modeling. It is underexplored
whether a joint sequence-graph user modeling provides better recommendation performance than a
standalone-modality user modeling.

In this work, we propose a method to link the two worlds by jointly modeling users as sequences
and graphs to encode both sequential patterns and graph topology. A HUG is a graph of user-
interacted items, in which nodes are connected by two types of edges: sequential edges that preserve
the sequential ordering of interactions (e.g., chronological precedence) and collaborative edges
that characterize item-item collaborative similarity, i.e., a measure of similarity in regards users’
preference on the items. On the basis of SASRec [13], we design a transformer model to concurrently
fuse and encode the sequential patterns and the graph topology into latent user representations for
recommendation. We call our method Heterogeneous User Graph Transformers (HUGT).

We summarize our contributions as the following: First, we propose HUG, an effective data structure
that jointly encapsulates sequential patterns and collaborative graph topology for user modeling.
Secondly, we design HUGT to efficiently learn user representations from their HUGs. We propose
two variants of HUGT: HUGT-SE which learns graph structure with spatial encoding, and HUGT-MP
which computes a sparse attention matrix to simulate message passing in GNNs. Finally, we conduct
comprehensive experiments on four real-world datasets from three different domains. We empirically
demonstrate that jointly modeling users as sequences and graphs via HUGs outperforms standalone
sequence modeling or graph modeling of the users, HUGT is effective in concurrently fusing and
encoding the sequence and graph aspects of HUG, and HUGT achieves state-of-the-art performance
in sequential recommendation on the four baseline datasets.

2 Related Works

2.1 Sequence-based User Modeling

Sequential signal is important in user modeling and can improve recommendation performance.
Traditional sequential recommendation models [18, 6, 21] usually rely on factorization methods (e.g.,
Factorized Item Similarity Models [12]) to capture users’ general tastes and Markov Chains (MCs) to
learn the sequential signal. This class of methods holds the Markov assumption that the next action is
dependent on the previous few interactions and cannot capture complex and long sequential patterns.
Moreover, the performance of these methods is limited by the capacity of the factorization models.

In the past decade, researchers developed RNN-based approaches to model users’ interaction tra-
jectories. Hidasi et al. [8] proposed GRU4Rec that leverages a variant of RNNs, gated recurrent
units (GRU), to capture sequential patterns in sessions. Ma et al. [17] successfully built real-world
commercial recommender systems based on hierarchical RNNs. The authors of [29] combined RNNs
with CNNs to capture long- and short-term sequential patterns, respectively. Despite the success
stories, RNN-based recommendation models suffer from data efficiency (they require a lot of training
data to perform well) and data sparsity issues.

2.2 Graph-based User Modeling

Graph-based user modeling is a rising direction that models users as graphs in which their in-
teracted items are nodes. Nodes in these graphs are usually connected via edges that indicate
transition/similarity relations [27, 1, 25]. Methods that fall into this class usually use graph neural
networks (GNNs) to encode the graph-structured information into item embeddings and use a learn-
able function to readout user embeddings for recommendation. Although this class of methods can
effectively capture graph topology, they usually overlook sequential patterns which are important for
recommendation accuracy.

2.3 Transformer and Self-Attention Mechanism

Self-attention mechanism and the Transformer architecture have demonstrated their superior ability
for sequence modeling and have become the default methodology in natural language processing
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Figure 1: Construction of a heterogeneous user graph from a user’s interaction sequence.

tasks [22, 4]. In the recommendation community, the self-attention mechanism is widely adopted
for sequential user modeling [13, 20, 26, 11, 16]. He et al [7] propose to augment BERT4Rec by
enforcing items in sequences to attend to sequentially close items to reinforce the influence of local
items. Chen et al [2] propose to learn a sparse mask over the attention matrix to reduce the influence
of noisy items. In our work, we propose a formulation that allows a more flexible design of inductive
bias in self-attention-based recommendation models.

Recently, transformers have been applied to and have shown great potential in graph learning. In
[24], the authors show that the self-attention mechanism is a special form of graph convolutions.
The authors of [30] generalize the definition of self-attention by directed graphs. Ying et al. [28]
successfully apply transformers on graph prediction tasks and outperform major GNN variants by
augmenting transformers with graph structural knowledge. Hu et al. [10] applied transformers to
learn from heterogeneous web-scale large graphs. These works motivate us to use Transformer as the
backbone to concurrently learn sequential patterns and collaborative graph topology from HUGs.

3 Heterogeneous User Graph

We introduce heterogeneous user graph (HUG), a data structure that stores both sequence patterns
and graph topology for user modeling. A HUG G = (V, {Eseq, Esim}) is constructed from an user’s
interaction sequence. We define the nodes V in the HUG as the interacted items in the sequence.
With the heterogeneity of HUGs, there could be various types of edges to encode different transition
patterns. In this paper, we construct two types of edges, sequential edges Eseq and collaborative edges
Esim, to capture sequential signal and collaborative similarity, respectively.

Sequential Edges. The sequential edges are to store the chronological order of each pair of items.
For i, j ∈ V , (i, j) ∈ Eseq if ti < tj where ti denotes the position of i in the sequence.

Collaborative Edges. Collaborative edges encode collaborative similarity, a measure of similarity in
regard to the users’ preference patterns on the items. In order to measure collaborative similarities
among items, we conduct a truncated singular value decomposition (SVD) on the user-item interaction
matrix R ∈ {0, 1}|U|×|I| to obtain a set of low-dimensional item embeddings V ∈ Rd×|I|. We
compute the cosine similarity between the embedding of each item in the HUG (i ∈ V) with its
predecessors {j|j ∈ V, tj ≤ ti}. Each item is connected to its k-nearest predecessors.

We show the overall construction process in Figure 1. Note that the collaborative edge can be easily
generalized to capture other types of item-item relations as well.

4 Heterogeneous User Graph Transformer

In this section, we present heterogeneous user graph transformer (HUGT) that learns from HUGs to
concurrently encode sequential signal and graph topology into latent user representations.
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Figure 2: Computation flow of Heterogeneous User Graph Transformer (HUGT). The attention heads
of the transformer are split into two groups. One group learns sequential patterns from the sequential
edges while the other group learns graph topology from the collaborative edges.

4.1 Generalized Self-Attention Mechanism

In the standard self-attention, the item at each position aggregates weighted information from all
items in the sequence to selectively build the context. Generalized self-attention (GSA) mechanism
generalizes the standard self-attention by allowing each item to attend to any subset of the positions
in the sequence and enlarges the design space of self-attention.

Let H = [h1,h2, · · · ,hn] ∈ Rd×n be the latent representation of a sequence S from the previous
layer, where n and d denotes the length of the sequence and the dimension, respectively. GSA
computes the representation of an item i as

GSA(hi) =
∑

j∈N (i)

exp (πij)∑
j′∈N (i) exp (πij′)

vj

q = Wqh, k = Wkh, v = Wvh, and πij = qT
i kj/

√
d,

(1)

where Wq , Wk, and Wv are learnable parameters that map the input embedding to query, key, and
value domain, respectively. N (i) denotes the set of items that item i attends to. When N (i) = S , the
GSA fully recovers the standard self-attention. In unidirectional attention with causal masking (i.e.,
each item can only attend to its precedents) used in SASRec [13], N (i) = {j|tj < ti}.

4.2 User Modeling with Multi-head Self-Attention

Embedding Layer. We use a learnable embedding table E ∈ Rd×|I| to convert discrete item
ids [i1, i2, · · · , in] to a matrix representation, X = [ei1 , ei2 , · · · , ein ] ∈ Rd×n where d is the
dimensionality of the embeddings and n is the maximum sequence length that the model can take.
The latent representation is fed into a stack of self-attention blocks to generate user embeddings.

Self-Attention Block. A self-attention block (SAB) consists of a generalized self-attention (GSA)
layer that is introduced in Section 4.1 and a feed-forward layer (MLP) that adds non-linearity and
considers interactions between latent dimensions, i.e.,

MLP(hi) = W2ReLU (W1hi + b1) + b2, (2)

A SAB takes the output from the previous SAB as input, and passes the result to the next block, i.e.,

h
(l+1)
i = SAB(h(l)

i ) = MLP(GSA(h
(l)
i )), (3)

where h
(l)
i denotes the output of the l-th SAB block, and h

(0)
i = ei is the output of the initial

embedding layer. Following [13], we use layer normalization to accelerate training and residual
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connections to preserve low-level information. We stack L SABs and use the output embedding at
the last position of the last SAB as the final user representation for recommendation, i.e., hu = h

(L)
n .

4.3 Sequential Modeling with Relative Positional Encoding

In contrast to RNNs that rely on recurrent operations to capture sequential signals, Transformers use
positional encoding to break the order equivariance. We use an embedding table P ∈ Rd×n to map
the positions to continuous representations [p1,p2, · · · ,pn]. The positional embedding table could
be either learnable or pre-computed by a set of sinusoid functions. In this paper we follow [13] and
use learnable positional embeddings.

There are two major ways to incorporate the positional embeddings into self-attention, adding them to
the input item features at the corresponding positions (absolute positional encoding) [22] and adding
a relative score computed by the two embeddings of the corresponding positions to the attention score
computed in Equation 1 (relative positional encoding) [19], i.e.,

πij =
qT
i kj√
d

+ ψ(pti ,ptj ),

where ψ(·, ·) is a learnable function. Empirically, we found that relative positional encoding outper-
forms absolute positional embedding in sequential recommendation tasks.

4.4 Graph Modeling

Message Passing. Graph neural networks that rely on message passing along graph edges have
shown their ability to encode graph topology into latent node/graph embeddings. Note that, Equation
1 could be viewed as a message passing operation on a graph G = (V, Esim) by setting i ∈ V and
N (i) = {j|(i, j) ∈ Esim}. In fact, Equation 1 is a special implementation of graph attention networks
(GAT). We skip the details of GAT and refer the readers to [23] for more information.

In this paper, we directly apply GSA on the collaborative edges in HUGs as one way to encode graph
structural information. With such formulation, each node adaptively aggregates information from
its graph neighbors and updates its representation. The stacked SABs allow nodes to accumulate
information that is several hops away and encode graph topology into their latent representations.

Graph Spatial Encoding. The standard self-attention allows each item to attend to all items in
the sequence. This brings the advantage of a global receptive field, but also raises the challenge
of encoding graph structural information into item representations. We tackle this challenge by
pre-extracting graph-related properties and learning to incorporate the properties into the computation
of self-attention.

In this paper, we first compute the length of the shortest-path sij ∈ Z+ between each pair of nodes
i, j ∈ V via collaborative edges to measure the spatial distance between the two nodes. We encode
this information via a learnable mapping ϕ : Z+ 7→ R that converts the distance to a real scalar
ϕ(sij) and directly adds this value to the attention base, i.e., πij = qT

i kj/
√
d+ ϕ(sij). We clip the

shortest-path length to an upper bound S, i.e., a length larger than S will be set to S. The clipping
enables the model to generalize to unseen lengths during training, controls the model size, and
provides encoding for disconnected item pairs.

4.5 Information Fusion with Multi-head Attention

Recall that in Equation 1, the input matrix H to each layer is mapped to a key K, query Q, and
value V domain for the computation of self-attention. In a multi-head self-attention mechanism,
H is mapped by multiple sets of projection matrices to several key-query-value spaces (each space
corresponds to one attention head) to compute self-attention in parallel. The resulting representation
from all attention heads is concatenated and projected to be the final representation, i.e.,

h = WoConcat
(
h1,h2, · · · ,hm

)
, (4)

where m is the number of heads, Wo ∈ Rd×(d×m) is a projection matrix, hi is the output of the i-th
attention head.

5



The multi-head formulation allows each item to aggregate information from different attention paths
in one attention block. This provides flexibility to cope with the heterogeneity of HUGs. In each
attention block, We separate the attention heads into two groups, the sequential modeling heads which
learn from the sequential edges, and the graph modeling heads which learn from the collaborative
edges. The two groups of attention heads adopt different mechanisms to capture the two sources
of information. By stacking such multi-head attention blocks, we can effectively fuse and encode
information from the two types of edges into user representations.

4.6 Prediction and Model Training

With the learned user representation at position t, i.e. ht
u, the final prediction ŷtui of an item i is

computed by

ŷtui = wT
i h

t
u + bi, (5)

where wi and bi are decoder weight and bias for item i. We notice that the model generalizes better
by sharing weights of the input embedding table with the item decoder.

We train the model by optimizing the cross-entropy loss

L = −
∑
u∈B

∑
1≤t≤n

log

(
exp (ŷtui)∑

j∈Ct
u
exp

(
ŷtuj
)) , (6)

where B is a batch of users and Ct
u is a set of candidate items for user u at t. n is the maximum length

of the sequence.

4.7 Complexity Analysis

Let G be an user HUG with n nodes. The time and space complexity of a m-head HUGT is the
same as the standard Transformer, i.e., O(mn2). In the pre-processing steps, we apply a truncated
SVD on a sparse user-item interaction matrix which costs O((|U| + |I|)d2 + Td) where T is the
cost of a sparse matrix-vector multiplication and d is the dimension. When applying HUGT-SE,
pre-computing the shortest path between each pair of nodes costs O(n3). Since these steps only need
to be applied once and could be computed in parallel, they are not efficiency barriers to our method.

5 Experiments

In this section, we carefully design experiments to investigate three research questions in regard of
the HUG modeling of users and the HUGT:

• RQ1: How does HUGT perform in sequential recommendation compared to the state-of-
the-art methods?

• RQ2: Is jointly modeling users as graphs and sequences better than a standalone se-
quence/graph user model?

• RQ3: Is a concurrent sequence-graph model better than modeling a user as a graph first and
then a sequence?

5.1 Experimental Setup

5.1.1 Datasets

We experiment with four benchmark datasets, ML1M, Netflix, Steam, Taobao, that fall into three
different application domains, movie recommendation, game recommendation, and E-commerce. The
datasets are different in regard to their size, shape, density, and sequence length. The detailed statistics
of the datasets are shown in Table 1. For all the datasets, we convert the ratings/reviews/interactions
to implicit feedback (i.e., existing entries are assumed positive while missing entries are treated as
negative signals).
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Table 1: Statistics of the datasets

Dataset # Users # Items # Interactions Density Avg. Len.

ML1M 6040 3398 997923 4.86% 165.11
Netflix 376076 17673 31324749 0.47% 83.29
Steam 1198725 13055 6419630 0.04% 5.36
Taobao 40023 205495 3933299 0.05% 98.28

Table 2: Performance comparison of the two HUGT variants, Message Passing (MP) and Spatial
Encoding (SE), against baselines on the four datasets. In each row, we highlight the best performance
in boldface.

ML1M Netflix Steam Taobao
Metric HR@10 N@10 HR@10 N@10 HR@10 N@10 HR@10 N@10

Pop 0.0117 0.0054 0.0197 0.0112 0.1029 0.0565 0.0024 0.0012
Fossil 0.0778 0.0314 0.0639 0.0258 0.2253 0.095 0.0027 0.001
GRU4Rec 0.2112 0.1164 0.2684 0.1615 0.1459 0.0811 0.1559 0.0942

SR-GNN 0.1516 0.0819 0.2253 0.1302 0.1059 0.0562 0.0921 0.0573

SASRec 0.1432 0.0599 0.2154 0.1143 0.2715 0.1985 0.1046 0.064
FISSA 0.0911 0.0387 0.1405 0.0711 0.1665 0.0899 - -
BERT4Rec 0.153 0.0764 0.2462 0.1431 0.2979 0.2504 0.1342 0.0805

SASRec-Ours 0.2052 0.1039 0.3267 0.2028 0.3027 0.2581 0.1612 0.095
HUGT-MP 0.2233 0.1218 0.3286 0.2043 0.3028 0.2585 0.1734 0.1032
HUGT-SP 0.2225 0.1191 0.3333 0.2085 0.3022 0.2573 0.172 0.1048

Improv. 5.73% 4.64% 2.02% 2.81% 0.03% 0.15% 7.57% 10.32%

5.1.2 Baselines and Implementation Details

We compare the performance of HUGT with state-of-the-art sequential recommendation base-
lines that fall into the categories of factorization-based methods (Fossil [6]), RNN-based methods
(GRU4Rec [8]), GNN-based methods (SR-GNN [27]), and Self-Attention-based methods (FISSA
[16], BERT4Rec [20], and SASRec [13]).

For Fossil 1 and FISSA 2, we use the implementation associated with the original paper. For GRU4Rec,
we use the implementation from [17], and we use a PyTorch implementation of BERT4Rec3. We
implement SASRec using PyTorch an we find that our implementation greatly outperforms the original
SASRec implementation. In our experiments, we select the hidden dimensions from {50, 300}. For
Markov chain(MC)-based methods, we consider the MC order from {1, 2, 3, 4, 5}. For attention-
related methods such as SASRec and BERT4Rec, we choose the number of attention heads from
{1, 2, 3, 4}. For batch size and optimization related hyper-parameters, we follow the instructions
from the original paper if provided. Otherwise, we set the batch size to 128 and optimize the model
using the Adam [14] optimizer with a learning rate of 0.001.

The maximum length for each dataset is set to be able to cover the average sequence lengths of the
dataset. We choose 200 for ML1M, 100 for Netflix and Taobao, and 50 for Steam. For constructing
collaborative edges in HUG, we consider the k value from {5, 10, 20, 30, 50, 70} for ML1M, Netflix,
and Taobao. For the Steam dataset, we only consider {2, 3} since its average sequence length is 5.
When computing the ranking objective in Equation 6, we use all the items as candidate items for
ML1M, Netflix, and Steam. Since the Taobao dataset has a large number of items, we compute the
loss on a randomly selected 0.5

√
|I| candidate items to reduce GPU memory consumption. We use

the Adam algorithm to optimize the parameters of HUGT with a learning rate of 0.001. We set the
batch size for ML1M, Netflix, and Steam to 128, and Taobao to 32. In our experiments, we set the
number of attention heads to be 4 and consider different combinations of sequence heads and graph
heads.

1https://drive.google.com/file/d/0B9Ck8jw-TZUEeEhSWXU2WWloc0k/view?usp=sharing
2http://csse.szu.edu.cn/staff/panwk/publications/Code-FISSA.zip
3https://github.com/jaywonchung/BERT4Rec-VAE-Pytorch
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5.2 Experimental Settings

We use the first 90% of the interactions of each user as the training set and the last 10% of the interac-
tions for evaluation purposes. We follow an auto-regressive manner in evaluating the recommendation
models, i.e., we compute a user’s state/representation from her current interaction sequence, make
a prediction (a ranked list of items) for the next interaction, evaluate the recommendation list with
the ground truth item, append the ground truth item to the tail of her sequence, and update the user’s
state/representation for next prediction. We validate on 30% of the users for model selection and
early stopping and report test performance on the remaining 70% of the users.

We train HUGT and all the baselines on the training set and evaluate their performance on the
validation set after each training epoch. We stop training if the validation score does not decrease
in ten epochs or the number of training epochs reaches 100. We report the test performance of the
checkpoint that performs the best on the validation set.

5.2.1 Evaluation Metrics

In this paper, we use HR@k and NDCG@k to evaluate the performance of the models. HR@k and
NDCG@k compute the proportion of cases when the ground truth item is in the top-k prediction
list. HR equally weighs the hit items while NDCG weighs the hit items decreasingly by their
corresponding rank in the top-k list.

5.3 Recommendation Performance (RQ1)

Table 3: Necessity of concurrent modeling of se-
quences and graphs. G-S denotes the model archi-
tecture that asynchronously encodes graph topol-
ogy and then sequential signal. S-G denotes the
architecture that reverses the above order. Concur
is the default HUGT that learns sequential signal
and graph topology concurrently.

Dataset Model G-S S-G Concur

ML1M HR@10 0.2179 0.2136 0.2206
NDCG@10 0.1184 0.1158 0.1196

Netflix HR@10 0.3217 0.3219 0.3286
NDCG@10 0.1991 0.1991 0.2043

Steam HR@10 0.3020 0.3023 0.3020
NDCG@10 0.2578 0.2580 0.2582

Taobao HR@10 0.1679 0.1503 0.1734
NDCG@10 0.1007 0.0904 0.1032

We compare recommendation performance of
the proposed HUGT with the state-of-the-art se-
quential recommendation methods on the four
benchmark datasets. The overall performance
is shown in Table 2. We observe that our pro-
posed HUGT significantly outperforms all the
baselines on ML1M, Netflix, and Taobao while
its performance on Steam is similar to SASRec.
This provides evidence that the collaborative
graph topology is helpful for user modeling and
our HUGT can effectively capture this signal to
improve recommendation performance. Note
that, the ML1M, Netflix, and Taobao datasets
have an average sequence length of 165, 83,
and 98, respectively, while the average length
of Steam is 5. This shows that our proposed
method works well in settings where the inter-
action sequences are long. When the sequences
are generally short, our method performs on par
with SASRec.

We observe that the two graph learning schemes,
message passing (MP) and spatial encoding (SE), show advantages in different datasets. This
demonstrates that some datasets could benefit from the global receptive field of the SE method while
others may enjoy the local structure of the MP scheme.

5.4 HUG vs. Standalone User Modeling (RQ2)

In this section, we design experiments to investigate the necessity of the unified sequence-graph user
representation and the graph learning scheme. For each dataset, we train five HUGT-MP models
that each has four attention heads. The five HUGT-MP models have a number of sequential heads
ranging from zero to four while the rest of the heads are graph heads. We show the recommendation
performance of the models in Figure 3. We observe a performance drop on all the datasets when
we set the number of sequence heads to zero. This shows the importance of sequence patterns in
user modeling. On the three datasets with long sequences (ML1M, Netflix, Taobao), we observe
a performance drop when we set the number of graph heads to zero. This demonstrates that the
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Figure 3: Recommendation performance with different combinations of sequential heads and graph
heads on ML1M.

collaborative graph topology is important in a long sequence setting and the graph learning schemes
that we proposed are effective in capturing this information. On the Steam dataset that has short
sequence lengths, the recommendation performance is not influenced by cutting the graph heads.
This suggests that the transition patterns in short sequence settings are not very sophisticated and
could be very well captured by a naive sequential model.

5.5 Importance of Concurrent Modeling (RQ3)

In a HUGT block, to incorporate the heterogeneity of HUG, we split multiple attention heads to
sequence heads and graph heads to concurrently encode sequential patterns and graph topology. In
this section, we conduct experiments to answer the question that whether this formulation is better
than its asynchronous alternatives. We design two architectures that process the sequence heads
and the graph heads sequentially. One that applies an HUGT with only graph heads on the HUG to
encode only graph topology into the item embeddings then applies an HUGT with only sequence
heads on the HUG whose initial node embeddings are the output of the previous graph-only HUGT
to mix graph topology and sequential patterns. The second architecture is similar but applies a
sequence-only HUGT first and then a graph-only HUGT. The recommendation performance of the
default HUGT and the two alternative architectures are shown in Table 3. We observe that on the
three datasets with long sequences (ML1M, Netflix, Taobao), concurrent modeling of sequences
and graphs outperforms the asynchronous alternatives. This demonstrates the effectiveness of the
heterogeneous graph modeling of users and the proposed Transformers. On the Steam dataset, there
is no significant performance difference between the three architectures.

6 Conclusion

We introduce a novel heterogeneous user graph (HUG) that jointly models users as sequences and
graphs to encode item transition patterns and complex item relations. To leverage the item transition
patterns and graph topology stored in HUGs for recommendation tasks, we develop heterogeneous
user graph transformer (HUGT) that extends the standard self-attention for concurrent sequence
learning and graph learning. Experimental results show that the unified sequence-graph user modeling
is better than either sequence-only modeling or graph-only modeling and HUGT achieves state-of-
the-art performance on all benchmarks.

HUG and HUGT provide a flexible framework for future research to incorporate complex item
relations into user modeling. A valuable direction to explore is the choice of graphs for user modeling.
We demonstrated that the collaborative similarity graph could provide extra context information for
user modeling. There remain a lot of choices such as item temporal graph, or item feature similarity
graph. We leave them as future works.
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