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Figure 1: Results on diverse domain datasets using our end-to-end regression-based framework.
Trained exclusively on a large synthetic dataset, our model generalizes effectively to unseen ob-
ject categories across multiple real-world domains, including daily-life scenes, autonomous driving,
robotic manipulation, and egocentric video data.

ABSTRACT

Estimating an object’s 6D pose, size, and shape from visual input is a fundamen-
tal problem in computer vision, with critical applications in robotic grasping and
manipulation. Existing methods either rely on object-specific priors such as CAD
models or templates, or suffer from limited generalization across categories due
to pose–shape entanglement and multi-stage pipelines. In this work, we propose
a unified, category-agnostic framework that simultaneously predicts 6D pose,
size, and dense shape from a single RGB-D image, without requiring templates,
CAD models, or category labels at test time. Our model fuses dense 2D fea-
tures from vision foundation models with partial 3D point clouds using a Trans-
former encoder enhanced by a Mixture-of-Experts, and employs parallel decoders
for pose–size estimation and shape reconstruction, achieving real-time inference
at 28 FPS. Trained solely on synthetic data from 149 categories in the SOPE
dataset, our framework is evaluated on four diverse benchmarks SOPE, ROPE,
ObjaversePose, and HANDAL, spanning 300+ categories. It achieves state-of-
the-art accuracy on seen categories while demonstrating remarkably strong
zero-shot generalization to unseen real-world objects, establishing a new stan-
dard for open-set 6D understanding in robotics and embodied AI.

1 INTRODUCTION

Estimating the pose, size, and shape of objects from visual input is a fundamental challenge in
computer vision, underpinning robotic grasping Cheang et al. (2022); Sun et al. (2023); Zhang et al.
(2023; 2024a); Irshad et al. (2022a) and manipulation Lin et al. (2023; 2022); Wang et al. (2024);
Wen et al. (2023); Huang et al. (2025b;a), as shown in Fig. 1. Yet despite decades of progress, current
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systems remain limited in their ability to scale beyond carefully curated settings. Instance-level 6D
pose methods often rely on reference images, templates, or object-specific CAD models Labbé et al.
(2022); Wen et al. (2024); Nguyen et al. (2022), which provide strong priors but are rarely available
in open-set, and real-world environments. Category-level approaches relax these constraints by
leveraging canonical supervision across classes Wang et al. (2019b); Jung et al. (2024), but they
inherit two persistent bottlenecks: (i) pose–shape entanglement due to large intra-class variations
and partial observations, and (ii) dependence on multi-stage Labbé et al. (2022); Wen et al. (2024);
Nguyen et al. (2022); Lee et al. (2025); Wen et al. (2023) or diffusion-based pipelines Zhang et al.
(2023; 2025a), which restrict efficiency and real-time deployment.

This gap highlights a central open question: Can we unify pose, size, and shape estimation into a
single, real-time framework that generalizes to unseen categories without requiring test-time priors?

To address these limitations, we present a more scalable and practical approach to category-level
pose and size estimation. Our model is trained using category-level canonical supervision, but is
able to perform category-agnostic inference from a single RGB-D image—without requiring CAD
models, reference views, or category labels at test time. This design preserves category-level con-
sistency during training, while its category-agnostic inference enables generalization to previously
unseen categories, facilitating open-set 6D understanding without reference priors.

In this work, we answer this question affirmatively. We introduce a scalable, category-agnostic
framework that infers an object’s full 6D pose, size, and shape from a single RGB-D image without
templates, CAD models, or category labels at test time. Our design marries dense 2D features from
vision foundation models with partial 3D point clouds, processed through a Transformer encoder
augmented by a Mixture-of-Experts (MoE) for scalable specialization across diverse shape distri-
butions. Two lightweight decoders jointly predict the 6D pose–size estimate and reconstruct object
shape, achieving unified reasoning in a single forward pass at 28 FPS. This simplicity contrasts
sharply with cascaded or iterative pipelines Labbé et al. (2022); Wen et al. (2024); Nguyen et al.
(2022); Lee et al. (2025); Wen et al. (2023); Zhang et al. (2023; 2025a), making the approach both
robust and practical.

Trained purely on synthetic data from 149 SOPE categories Zhang et al. (2025b), our model is
evaluated across four diverse benchmarks: SOPE Zhang et al. (2025b), ROPE Zhang et al. (2025b),
ObjaversePose, and HANDAL Guo et al. (2023), spanning 300+ categories and synthetic-to-real
transfer. It not only achieves state-of-the-art accuracy on seen categories, but also demonstrates
remarkably strong zero-shot generalization to novel real-world objects, substantially outperforming
prior category-level methods as well as reference-based novel object pose estimators as in Fig. 3.
These results position our framework as a decisive step toward open-set 6D understanding: real-
time, category-agnostic perception that is both scalable and robust in the complexity of the world.

Contributions. Our contributions are fourfold. First, we propose the first unified, category-
agnostic framework that simultaneously estimates an object’s 6D pose, size, and shape from a
single RGB-D image—without requiring CAD models, templates, or category labels at test time.
Second, we design a scalable architecture that fuses 2D foundation-model features with 3D point
clouds via a Transformer encoder enhanced by a Mixture-of-Experts, enabling efficient specializa-
tion across diverse shape distributions and real-time inference at 28 FPS through a single forward
pass. Third, we demonstrate extensive generalization and state-of-the-art performance: trained
exclusively on synthetic SOPE data, our model achieves leading accuracy on SOPE, ROPE, Ob-
javersePose, and HANDAL benchmarks spanning 300+ categories, while delivering remarkably
strong zero-shot transfer to unseen real-world objects. Finally, we introduce ObjaversePose, a
synthetic dataset built from Objaverse CAD models under the SOPE canonical convention, render-
ing photorealistic RGB-D from 20 views per object to provide greater geometric and semantic
diversity for category-agnostic 6D estimation.

2 RELATED WORK

Category-Level 6D Pose Estimation. Category-level methods aim to generalize pose estimation
across unseen object instances within a category Wang et al. (2019b; 2022); Jung et al. (2024).
Early works such as NOCS Wang et al. (2019b) introduced the notion of canonical space to en-
able pose alignment without requiring CAD models. Follow-up approaches Lin et al. (2022); Liu
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et al. (2023); Chen et al. (2021); Zhang et al. (2023) leveraged point cloud geometry and symmetry-
aware losses to improve generalization. Some methods further incorporate shape reasoning Tian
et al. (2020); Irshad et al. (2022b) to jointly predict object size and shape. While these methods
remove the need for object-specific models, most are limited to seen categories and are trained on
relatively small sets of object types, restricting generalization to novel classes. Recent works have
attempted to scale category-level 6D learning using large-scale datasets Zhang et al. (2025b); Krish-
nan et al. (2024), but inference-time generalization remains a challenge. Diffusion-based methods
such as GenPose Zhang et al. (2023) and GenPose++ Zhang et al. (2025a) model pose and size as a
multi-modal distribution, but require iterative sampling, auxiliary scoring networks, and multi-stage
training. In contrast, our method offers a unified, one-pass framework that regresses pose, size,
and shape in real time, while generalizing to unseen object categories under a category-agnostic
inference setting.

Instance-Level Novel Object Pose Estimation. Another line of work targets zero-shot pose es-
timation for novel instances using CAD models Labbé et al. (2022); Nguyen et al. (2024), single
or multi-view references Lee et al. (2025); Liu et al. (2025); He et al. (2022a). These approaches
often reconstruct object geometry—either explicitly via 3D modeling Liu et al. (2022); Li et al.
(2023) or implicitly through image-based retrieval He et al. (2022b); Nguyen et al. (2022). Foun-
dationPose Wen et al. (2024) supports either CAD or reference images, combining model-based
and model-free paradigms. However, such methods generally require additional inputs at inference
time and rely on alignment with specific object instances. Unlike these methods, we do not as-
sume access to any object-specific references. Our model is trained entirely on synthetic data using
category-level canonical supervision, and performs category-agnostic inference from a single RGB-
D image—without requiring CAD models, reference views, or category information at test time.
This makes our method more deployable in open-set, real-world scenarios.

3 METHOD

Architecture Overview. Given an RGB image patch I ∈ RH×W×3 and a partially observed point
cloud P ∈ RN×3, our goal is to simultaneously estimate the object’s 6D pose {R, t} ∈ SE(3), its
3D size s ∈ R3, and the complete shape Pdense ∈ RNd×3 of the object in the camera frame. Here,
R ∈ SO(3) represents the 3D rotation, while t ∈ R3 denotes the 3D translation. The groups SE(3)
and SO(3) refer to 3D rigid transformations and 3D rotations, respectively.

Motivation. Given a partial point cloud and a single-view RGB image, we obtain limited surface
information about an object’s shape. In practical robotic manipulation, recovering the complete
object shape is crucial for generating accurate grasp poses, particularly for multi-fingered dexterous
hands. Motivated by this, our framework jointly infers an object’s 6D pose, size, and full shape
from partial observations. This process mirrors human perception: even from a single viewpoint,
humans can mentally reconstruct an object’s complete geometry by leveraging visual cues and prior
knowledge of familiar shapes encountered in daily life. We detail our method in the following
sections.

3.1 FEATURE EXTRACTION

Our goal is to learn a category-agnostic representation that enables universal estimation of object
shape, pose, and size. So we leverage the foundation model RADIOv2.5 Heinrich et al. (2025),
which extracts generalizable and category-agnostic local features as the prior. RADIOv2.5 distills
knowledge from several powerful 2D vision models Ravi et al. (2024); Oquab et al. (2023); Radford
et al. (2021); Fang et al. (2023), combining the dense feature extraction capability of SAM Ravi
et al. (2024) with the SE(3)-consistent semantic features of DINOv2 Oquab et al. (2023). As shown
in Zhang et al. (2024b;c), DINOv2 captures SE(3)-consistent local features that are particularly
useful for establishing semantic correspondences across objects of varying shapes and poses, which
aligns well with the SE(3)-invariant nature of NOCS coordinates. Given an RGB image patch I ∈
RH×W×3, we use the RADIOv2.5 encoder ERADIO(·) to extract semantic feature maps Frgb ∈
Rh×w×1024:

Frgb = Concate(ERADIO(I)i), (1)

3
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Figure 2: Framework Overview. Given a cropped RGB image and its corresponding segmented
point cloud, the model first extracts dense 2D features using RADIOv2.5 Heinrich et al. (2025),
which are concatenated with 3D point coordinates. A DGCNN processes the fused input to produce
keypoint-aware features, forming object tokens. These tokens are passed through a Transformer
encoder with a Mixture-of-Experts (MoE) module to produce a global object representation. Two
parallel decoder branches predict (i) the 6D pose and size via direct regression, and (ii) the object
shape in two stages: a coarse shape prediction followed by refinement using fused points. The entire
pipeline is fully end-to-end and operates in real time.

where i ∈ {8, 16, 23} denotes the transformer layers used for feature extraction, following Heinrich
et al. (2025). Outputs from these layers are concatenated to enrich the semantic features.

Next, we fuse these RGB features with the corresponding input point cloud in a point-wise manner,
following the design in DenseFusion Wang et al. (2019a). The resulting feature-enriched points are
then passed through a Dynamic Graph Convolutional Neural Network (DGCNN) encoder EGCN(·),
which produces fused embeddings Ffuse ∈ Rn×d to be used as input tokens for the transformer
encoder:

Ffuse = EGCN({Pi ⊙ Frgb}), i = 1, · · · , N, (2)

where ⊙ denotes concatenation, n = 128 is the number of tokens, and d = 256 is the feature
embedding dimension.

3.2 TRANSFORMER ENCODING WITH MOE

Given a point cloud enriched with semantic RGB features, we first extract fused input embeddings
using a DGCNN backbone, following Yu et al. (2021). These embeddings are subsequently pro-
cessed by a stack of Transformer blocks with multi-head self-attention Vaswani et al. (2017), in the
spirit of Yu et al. (2021; 2023).

To enhance modeling capacity while maintaining computational efficiency, we replace the standard
feed-forward layers in each Transformer block with Mixture-of-Experts (MoE) layers, inspired by
the success of MoE architectures in large language models Du et al. (2022); Fedus et al. (2022); Liu
et al. (2024). Each MoE layer employs a lightweight routing mechanism to select among n = 8
expert networks, activating only 2 experts per forward pass. This design enables the model to spe-
cialize across diverse object types and shape patterns, improving performance with minimal over-
head. Finally, the output features are aggregated via global pooling to produce a compact global
representation for downstream 6D pose, size, and shape estimation.

3.3 MULTI-TASK HEADS

We leverage a large-scale, diverse dataset covering hundreds of object categories and shapes, allow-
ing our model to implicitly acquire a rich shape prior across varied shape distributions. To jointly
capture object pose, size, and shape, we employ a multi-task decoding head that regresses all three
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quantities directly from the global feature representation, enabling unified reasoning in a single for-
ward pass.

Shape Reconstruction. From the extracted global feature vector, we first regress a coarse complete
object shape Pcoarse ∈ R512×3 using a lightweight MLP. Recognizing that the input partial point
cloud P contains complementary geometric cues, we concatenate Pcoarse with P to form a combined
point set, which is then processed through another MLP with a Sigmoid activation to produce a
confidence score for each point. This allows the network to select the most reliable points for fusion,
producing the refined fused point cloud Pfuse ∈ R512×3. Finally, each point in Pfuse is augmented
with the global feature vector and passed through a final MLP to regress the dense, high-resolution
point cloud Pdense ∈ R2048×3, representing the predicted complete object shape. This confidence-
guided fusion mechanism effectively integrates partial observations with learned priors, enabling
robust shape reconstruction even under severe occlusion.

Pose and Size Estimation. Supervised by the shape reconstruction head, the transformer encoder
learns global features that encode comprehensive shape, pose, and size information from a single
camera view. To explicitly predict object pose and size, we introduce a dedicated decoding branch
that regresses rotation, translation, and scale directly from the global feature vector. For rotation, we
adopt the continuous 6D representation Zhou et al. (2019), which uses the first two columns of the
rotation matrix R ∈ SO(3) and reconstructs a valid matrix via orthogonalization, improving training
stability and prediction accuracy. By jointly learning shape, pose, and size in a unified framework,
our model captures inter-dependencies between geometry and spatial configuration, enhancing both
robustness and generalization to unseen categories.

3.4 LOSS FUNCTIONS

Reconstruction Loss. For the point cloud reconstruction task, we adopt the Chamfer Distance
with L1 norm, following the approach in Yu et al. (2021), to supervise both the coarse and dense
point cloud outputs. Specifically, we define two separate reconstruction losses: one for the coarse
predicted point cloud Pcoarse and another for the final dense reconstruction Pdense. The Chamfer
Distance measures the average closest-point distance between the predicted and ground truth point
sets, encouraging accurate shape recovery at different stages of the pipeline.

The reconstruction losses are formulated as follows:

Lrecon1 = Chamfer(Pcoarse,P
gt
coarse), (3)

Lrecon2 = Chamfer(Pdense,P
gt
dense). (4)

Here, Pgt
{·} denotes the ground truth complete point cloud. These losses jointly guide the model to

generate increasingly accurate shapes from coarse to fine resolution.

Pose and Size Regression Loss. For the pose estimation component, we use the Smooth L1 loss
instead of the standard L2 loss, as our empirical results show that L2 loss leads to suboptimal perfor-
mance in this task. In addition, when computing the loss for predicted rotation matrices, we account
for object symmetries to reduce ambiguity, following the strategy in Zhang et al. (2025b). Specifi-
cally, for each of the axes, we categorize an object’s symmetry as one of the following: no symmetry,
90-degree rotational symmetry, 180-degree rotational symmetry, or arbitrary-angle rotational sym-
metry. Based on this classification, we generate a set of valid ground truth rotation matrices and
compare the predicted rotation against all candidates. The loss is computed with respect to the
closest ground truth rotation. The pose and size estimation losses are defined as:

Lrot = min
Rgt

i ∈GR

SmoothL1(R1,2, (R
gt
i )1,2), (5)

Ltrans = SmoothL1(t, tgt), (6)

Lsize = SmoothL1(s, sgt). (7)

where R, t, s denote the predicted rotation matrix, translation, and size respectively, tgt, sgt are the
corresponding ground truth values. R1,2 denotes the first two columns of R. GR = {Rgt

i | i ∈
{1, 2, . . . ,M}} is the set of symmetric-equivalent ground truth rotation matrices, where M denotes
the total number of valid rotations derived from the object’s symmetry type. The predicted rotation
is compared against each candidate in GR, and the loss is computed using the closest match.
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All Losses. Our final objective function integrates losses from both point cloud reconstruction and
6D pose and size estimation. It is defined as the sum of the individual loss terms:

L = Lrecon1 + Lrecon2 + Lrot + Ltrans + Lsize. (8)

In practice, we found that simply setting all loss coefficients to 1 yields stable training and strong
performance, without requiring additional balancing. By jointly optimizing these components, the
model learns to reconstruct accurate 3D shapes while simultaneously estimating precise object poses
and sizes. This unified objective enhances both the accuracy and robustness of the overall system.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. We evaluate our method on four benchmarks: SOPE, ROPE, ObjaversePose, and HAN-
DAL. SOPE is a large-scale synthetic dataset with 5,000 instances across 149 categories and sim-
ulated depth. ROPE provides real-world scans of 580 objects with dense 6D pose annotations
across diverse materials and backgrounds. ObjaversePose, built from Objaverse CAD models un-
der SOPE’s canonical convention, renders photorealistic RGB and depth from 20 views per object,
offering higher geometric and semantic diversity. For evaluating zero-shot generalization, we use
the HANDAL dynamic onboarding subset, which contains novel categories absent from SOPE with
high-quality RGB-D scans and pose/size annotations, serving as a challenging test for category-
agnostic 6D estimation. See Appendix 7.3 for details.

Evaluation Metric. We evaluate our method using complementary metrics that jointly assess pose
accuracy, size alignment, and shape reconstruction. For pose–size alignment, we report the Area
Under the Curve (AUC) of 3D bounding box IoU Zhang et al. (2025a) at thresholds of 25, 50, and
75, which directly measures the consistency between predicted and ground-truth transformations.
As a geometry-based criterion, 3D IoU offers a reliable and category-agnostic measure across both
seen and unseen settings. To capture both rotational and translational precision, we adopt the Vol-
ume Under Surface (VUS) metric Zhang et al. (2025a) and report VUS@5°2cm, VUS@5°5cm,
VUS@10°2cm, and VUS@10°5cm, quantifying the proportion of predictions within joint error
thresholds; we further report mean rotation and translation errors over all test instances to comple-
ment these success rates. Finally, we evaluate reconstruction quality using the L1 Chamfer Distance
(CDL1) Yu et al. (2021), which measures the geometric fidelity of predicted shapes.

Figure 3: Radar chart comparing our method
with baselines across four evaluation settings.

Experimental Setup. All baselines are trained
on the SOPE training split, except Foundation-
Pose and Any6D, which are evaluated from their
released checkpoints. Evaluation spans four test
sets: SOPE (synthetic, seen categories), ROPE
(real-world, seen), ObjaversePose (synthetic, un-
seen), and HANDAL dynamic onboarding (real-
world, novel), covering instance- and category-
level generalization across synthetic and real do-
mains. We adopt complementary metrics: on
SOPE and ObjaversePose, we report AUC of 3D
IoU, VUS, and mean rotation/translation errors;
on ROPE and HANDAL, we report AUC of 3D IoU at thresholds 25/50/75 for comparison with
reference-based methods. To assess robustness under occlusion, ObjaversePose is evaluated at vary-
ing visibility levels, simulating realistic single-view challenges.

4.2 RESULTS

Category-level results on SOPE and ROPE. We evaluate on synthetic SOPE and real-world ROPE
to test generalization within seen categories across domains (Table 1). On SOPE, which matches
the training distribution, our model surpasses GenPose++ across all metrics, achieving higher AUC,
lower rotation/translation errors, and slightly better VUS. On ROPE, which contains real scans of

6
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Table 1: Quantitative comparison of category-level pose estimation on the ROPE and SOPE datasets
(seen categories, unseen instances). ‘-’ indicates: (i) GenPose does not predict object scale; (ii)
NOCS metrics are omitted due to large errors. * indicates our model with the shape head removed
for fair FPS measurement.

Dataset Method AUC ↑ VUS ↑ Mean error ↓ FPS ↑IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm rot(◦) trans(cm)

ROPE

NOCS Wang et al. (2019b) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 5
SGPA Chen & Dou (2021) 10.5 2.0 0.0 4.3 6.7 9.3 15.0 60.2 2.81 6
IST-Net Liu et al. (2023) 28.7 10.6 0.5 2.0 3.4 5.3 8.8 78.4 3.40 35

HS-Pose Zheng et al. (2023) 31.6 13.6 1.1 3.5 5.3 8.4 12.7 63.3 3.02 50
GenPose Zhang et al. (2023) – – – 6.6 9.6 13.1 19.3 42.2 2.05 6

GenPose++ Zhang et al. (2025a) 39.0 19.1 2.0 10.0 15.1 19.5 29.4 30.7 1.28 4

Ours 44.9 26.1 4.9 10.1 14.4 20.0 29.1 27.7 1.25 28∗

SOPE

NOCS Wang et al. (2019b) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - - 5
SGPA Chen & Dou (2021) 13.3 3.2 0.0 7.7 10.1 15.0 20.4 33.8 2.09 6
IST-Net Liu et al. (2023) 36.5 16.9 1.4 3.6 5.1 8.6 11.4 60.4 3.72 35

HS-Pose Zheng et al. (2023) 40.1 21.7 3.2 6.3 8.0 13.6 17.3 39.9 2.46 50
GenPose Zhang et al. (2023) – – – 11.9 14.4 21.2 26.3 26.1 1.62 6

GenPose++ Zhang et al. (2025a) 50.1 31.9 6.4 18.4 23.0 31.9 40.2 19.9 1.14 4

Ours 56.4 39.8 12.7 18.4 22.1 32.8 40.1 16.0 0.99 28∗

Table 2: ObjaversePose (unseen categories) under varying occlusion: 3D IoU evaluates shape accu-
racy without relying on canonical pose.

Method
No Occlusion 25% Occlusion 50% Occlusion 75% Occlusion

IoU25 IoU50 IoU75 IoU25 IoU50 IoU75 IoU25 IoU50 IoU75 IoU25 IoU50 IoU75

NOCS Wang et al. (2019b) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IST-Net Liu et al. (2023) 15.5 5.2 0.5 13.2 4.0 0.3 12.5 3.5 0.1 8.1 1.5 0.0
HS-Pose Zheng et al. (2023) 17.0 6.6 0.9 14.5 5.0 0.7 13.7 4.4 0.3 8.9 1.9 0.1
GenPose++ Zhang et al. (2025b) 21.3 9.4 1.8 18.1 7.2 1.3 17.1 6.3 0.6 11.1 2.7 0.1
Ours 42.2 23.1 3.6 37.3 17.6 2.0 31.3 12.2 1.0 19.1 4.7 0.2

novel instances, our method generalizes well despite the domain gap, again outperforming Gen-
Pose++ in AUC and mean errors, and showing strong shape completion on depth-missing objects
from reflective/transparent surfaces 4. Although GenPose++ is stronger on some VUS thresholds
(e.g., 5°5 cm), our model excels on others (e.g., 5°2 cm, 10°5 cm), yielding competitive overall accu-
racy. We attribute these gains to two design choices: (1) integrating DGCNN-based local geometry
encoding with Transformer-based global context aggregation, which capture both fine-grained ge-
ometry and global context, and (2) a unified end-to-end pipeline that predicts pose, size, and shape
simultaneously, avoiding error accumulation across stages. Compared to the multi-network design
of GenPose++, our approach is simpler, faster (28 FPS vs. 4 FPS), and more accurate.
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Figure 4: Some specular and transparent objects
from ROPE(Top) and SOPE (Bottom).

Category-agnostic generalization on Obja-
versePose. Table 2 reports AUC of 3D bound-
ing box IoU on ObjaversePose under varying oc-
clusion, evaluating generalization to unseen cat-
egories and robustness to partial observations.
Our method consistently surpasses all baselines
across all occlusion levels. At 0% occlusion,
it achieves 42.2 AUC@IoU25, nearly doubling
the best baseline GenPose++ (21.3). Even un-
der 75% occlusion, it retains a clear margin.
The gap further widens at stricter thresholds, re-
flecting stronger pose–size consistency. We at-
tribute these gains to combining dense founda-
tion features with geometry-aware point tokens
and Transformer reasoning, which capture both global semantics and local shape cues.

Comparison with Reference-Based Novel Object Pose Estimation Methods. We compare our
method against three state-of-the-art approaches for novel object pose estimation: Any6D Lee et al.
(2025), a model-free method that supports both single-reference and reference-free inference, and
FoundationPose Wen et al. (2024), a reference-based approach that takes either CAD models or
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Figure 5: Qualitative results on ROPE. We show the input RGB image, ground-truth pose, poses
from GenPose++ and ours, and a comparison between the predicted and ground-truth shapes.

reference images, and GenPose++ Zhang et al. (2025a), the strongest category-agnostic baseline
prior to our work. We evaluate under two conditions: (1) Single-reference, where each method is
given one RGB-D reference at test time. (2) Reference-free, where only Any6D and GenPose++ is
applicable. Our method is reference-free in both settings.

Table 3: Quantitative comparison on the ROPE
and HANDAL datasets (seen
categories, unseen instances). Metrics:
AUC based on 3D bounding box IoU.

Dataset Method AUC ↑
IoU25 IoU50 IoU75

ROPE

FoundationPose (1 ref) 35.0 18.0 3.1
Any6D (1 ref) 37.2 19.4 3.5
Any6D (0 ref) 22.5 8.1 0.3
Ours 44.9 26.1 4.9

HANDAL
Any6D (0 ref) 14.5 3.8 0.0
GenPose++ (0 ref) 16.7 4.3 0.1
Ours 33.0 10.6 0.2

As in Table 3, our approach outperforms
both Any6D and FoundationPose under the
single-reference setting, and substantially sur-
passes Any6D in the reference-free setting.
On HANDAL, where we additionally compare
against GenPose++, our method achieves con-
sistently higher accuracy, demonstrating stronger
category-level generalization. We also find that
reference-based methods are sensitive to recon-
struction quality: for small or irregularly shaped
objects, single-view reconstructions often de-
grade pose predictions. In contrast, by jointly
learning pose and shape directly from RGB-D
input, our method delivers more robust perfor-
mance across diverse unseen objects. See Fig. 6
for qualitative results.

Any6D

Ours

GT

Figure 6: Qualitative results on HANDAL. We
compare the ground-truth 3D bounding boxes
with those predicted by Any6D and our method.

Shape Reconstruction Performance on
SOPE. Table 4 shows that our method achieves
the lowest Chamfer-L1 error on SOPE, sur-
passing shape-specific baselines such as
AdaPointr Yu et al. (2023), Pointr Yu et al.
(2021), and FoldingNet Yang et al. (2018).
Unlike these approaches, which rely solely on
shape reconstruction and complex Transformer
decoders, our lightweight MLP decoder yields
better results. We attribute this to two factors:
(i) combining RGB and depth cues for enhanced

appearance–geometry representation, and (ii) unifying pose and shape estimation to introduce
inherent structural constraints. These design choices lead to more complete and coherent shape
reconstructions.

Ablation Study. We conduct a series of ablation experiments on the ROPE dataset to evaluate the
contribution of each major component in our framework. Results are in Table 5.
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Table 5: Ablation study on pose estimation and shape completion (ROPE).

Setting AUC ↑ VUS ↑ FPS ↑
IoU25 IoU50 IoU75 5◦5cm 10◦5cm

Full Model 44.9 26.1 4.9 10.1 20.0 23.7
Depth Only 32.5 15.2 1.8 6.0 13.1 29.5
w/o MoE 41.0 24.0 3.9 8.7 17.8 19.2
w/o Shape Completion 38.5 22.2 3.3 7.9 16.0 27.8

(1) RGB–Depth Fusion. To assess the importance of RGB guidance, we remove the RADIO encoder
and use only the point cloud as input. This leads to a substantial drop in performance across all
metrics, particularly in scenarios where depth observations are noisy or incomplete. This confirms
dense semantic features from RGB play a crucial role in robust single-view 6D estimation. We also
observe cases where RGB cues compensate for missing geometry in partial point clouds, enabling
more accurate reconstruction of object shapes that would otherwise be ambiguous.

Table 4: Shape reconstruction on SOPE.

Method Chamfer-L1
(×10−3) ↓

FoldingNet Yang et al. (2018) 62.72
Pointr Yu et al. (2021) 29.87

AdaPointr Yu et al. (2023) 24.41
Ours 5.93

(2) MoE. We evaluate effects of MoE by replacing
it with a standard Transformer feed-forward net-
work of comparable capacity. Even with matched
parameters, the model without MoE shows con-
sistently lower accuracy, and inference becomes
slower. This demonstrates that expert specializa-
tion not only improves accuracy in modeling ob-
ject diversity but also accelerates inference with-
out additional cost.

(3) Shape Supervision. Removing the shape reconstruction branch reduces overall accuracy and
slows convergence, indicating that shape prediction serves as a strong auxiliary signal for learning
robust object representations. Further analysis in Appendix 7.4 shows that our coarse-to-fine refine-
ment and point selection mechanism also contribute positively to shape quality and pose accuracy.

These ablations validate our key design choices: RGB–depth fusion for rich visual grounding, MoE-
enhanced Transformer encoding for scalable representation, and multi-task learning for improved
generalization—all while maintaining real-time efficiency.

5 CONCLUSION

We present an end-to-end framework for joint 6D pose, size, and shape estimation from a sin-
gle RGB-D image, without relying on CAD models, reference views, or category labels at infer-
ence. Our approach fuses dense semantic features from a vision foundation model with geometric
point cloud data, and employs a Transformer encoder with Mixture-of-Experts (MoE) layers to im-
prove capacity while maintaining efficiency. A multi-branch decoder enables coarse-to-fine shape
reconstruction and direct pose–size regression, supporting fast and accurate 6D understanding. Our
method is trained entirely on synthetic data and evaluated across four benchmarks SOPE, ROPE,
ObjaversePose, and HANDAL, covering both synthetic and real-world domains, as well as seen and
unseen object categories. It achieves state-of-the-art accuracy on seen instances and demonstrates
strong generalization to novel objects. These results support the value of unified, reference-free
inference pipelines for 6D estimation tasks.

Future Work While our model generalizes across diverse object types, its performance is still
bounded by the coverage of training categories and may degrade on long-tail or atypical shapes
underrepresented in synthetic data. Moreover, reconstructed geometries can miss fine-grained de-
tails, and the current design does not account for articulated or deformable objects. Future direc-
tions include scaling to richer corpora such as ObjaverseXL, advancing articulation and deformation
modeling, and extending toward truly open-world, task-driven 6D understanding in robotics and em-
bodied AI.

Broader Impact. We show that efficient regression-based models enhanced by foundation features
and MoE scaling can offer strong generalization and fast inference for our 6D tasks. By eliminating
the need for category priors or inference-time references, our approach may facilitate deployment in
broader settings, such as robotics, augmented reality, and embodied intelligence systems.
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6 RECOMMENDED STATEMENT

According to ICLR policy, this section is excluded from the page limit.

Ethics Statement. This work complies with the ICLR Code of Ethics. It does not involve human
subjects or sensitive personal data. All datasets used are either publicly available or synthetically
generated, and any proprietary assets are properly licensed. We are not aware of any foreseeable
negative societal impact or potential misuse of the proposed method.

Reproducibility Statement. We are committed to ensuring the reproducibility of our results.
Comprehensive details of the model architecture, training procedure, evaluation metrics, and dataset
preprocessing steps are provided in the main paper, as well as in Appendix 7.1, Appendix 7.2, and
Appendix 7.3. Although we do not release code at submission time, all essential implementation
details are included to support independent reproduction. We also commit to releasing the code and
pretrained models publicly upon publication.
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7 APPENDIX

7.1 IMPLEMENTATION DETAILS

The proposed model jointly estimates 6D object pose, size, and shape from a single RGB-D input.
For the RGB modality, we use a frozen, pre-trained RADIO-V2.5-L network to extract semantic
features. Specifically, we retrieve intermediate feature maps from layers 8, 16, and 23, each with
1024 channels and a spatial resolution of 14 × 14. These feature maps are fused using learnable
weights and processed by a lightweight convolutional block, yielding a unified 1024-channel fea-
ture map. For each 3D point, we assign a corresponding RGB feature by indexing into this fused
feature map based on its 2D projection, following a strategy similar to that in Wang et al. (2019a).
The input point cloud consists of 1024 points, each represented by its 3D coordinates and a 1024-
dimensional RGB feature, resulting in fused inputs of shape (B, 1024, 1027). These inputs are fed
into a DGCNN-based encoder with two downsampling stages (1024 → 512 → 128), where each
stage includes graph convolutions and feature aggregation. The resulting 128 tokens are then passed
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through a geometry-aware transformer inspired by Yu et al. (2021), where the initial layer augments
self-attention with a KNN-based geometric attention module. Global features are obtained via max
pooling and passed through three parallel MLP heads to predict object rotation (in 6D represen-
tation), translation, and size. Additionally, the model regresses a set of candidate points from the
global feature and concatenates them with a subset of the input point cloud. The ranking module
selects the top 512 most confident points to form a coarse point cloud. Each coarse point is then
expanded into four fine-grained points via local folding, resulting in a dense reconstruction of 2048
points.

7.2 TRAINING DETAILS

Our model is trained for a total of 50 epochs with a batch size of 128, using the AdamW optimizer.
The initial learning rate is set to 1e-4, with a weight decay of 5e-4. A LambdaLR scheduler decays
the learning rate by a factor of 0.9 every 8 epochs, with a minimum ratio of 2% of the initial value.
We also apply a BatchNorm momentum scheduler, reducing the momentum from 0.9 by a factor
of 0.5 every 3 epochs, with a lower bound of 0.01, to progressively stabilize feature normalization.
All experiments are conducted on a workstation with 4× NVIDIA RTX 4080 GPUs (16 GB), an
AMD EPYC 7402 24-core CPU, and 128 GB RAM. We use PyTorch 2.4 with CUDA 12.4, and
enable automatic mixed-precision (AMP) and DistributedDataParallel training with synchronized
BatchNorm.

7.3 OBJAVERSEPOSE DATASET CONSTRUCTION

To support large-scale category-level estimation of object pose, size, and shape, we construct Obja-
versePose, a synthetic RGB-D dataset derived from high-quality CAD models in ObjaverseDeitke
et al. (2022). While Objaverse contains over 800,000 models, many are unsuitable for pose-related
tasks due to issues such as non-watertight geometry, lack of texture, multi-object compositions, or
lack a meaningful canonical orientation. We curate a clean and diverse subset through multi-stage
filtering and manual processing.

Figure 7: Examples from the Rendered ObjaversePose Dataset

7.3.1 CAD MODEL SELECTION AND CANONICAL ALIGNMENT

We construct our dataset from Objaverse by intersecting two curated subsets: (1) the high-quality
models filtered by LGM Tang et al. (2024), which remove low-quality geometry through caption-
based and texture-based heuristics, and (2) the models with LVIS annotations, which enable fine-
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grained category grouping. We further discard categories with fewer than 15 high-quality instances,
yielding 184 categories and 3,355 CAD models.

Each model is manually aligned to a canonical coordinate frame: the object is centered at the origin,
the x-axis points forward, and the y-axis points upward, consistent with the SOPE canonical stan-
dard. In addition, we compute and annotate object-level symmetries for use in both evaluation and
learning.

To assess generalization, we designate 154 tabletop-scale categories (e.g., household and office
items), comprising 2,354 instances, as a held-out test set. These categories are both diverse and
structurally coherent, making them well-suited for evaluating generalization.

7.3.2 PHYSICALLY-BASED RENDERING WITH SAPIEN

We use the SAPIEN simulator to render photorealistic RGB-D data. For each model, 500 camera
viewpoints are uniformly sampled from the upper hemisphere, with small perturbations added to
increase diversity. Cameras are oriented toward the object center, with the z-axis pointing inward
and the x-axis aligned with the ground. For evaluation, we select 20 canonical views that avoid
extreme top-down or side angles, ensuring consistent and balanced comparison across objects.

RGB images are rendered via ray tracing, and depth maps are generated using a physically based
sensor model calibrated to the Intel RealSense D415, including matched intrinsics. From the RGB-D
pairs, we compute point clouds and ground-truth object poses based on known camera–object trans-
formations. Object textures are preserved, while ground plane textures are randomly sampled from
a diverse material set. Lighting is provided by a fixed overhead point light, enriching appearance
variation without introducing bias.Leveraging GPU acceleration in SAPIEN, we render 1M images
in 13 hours using 8× RTX 2080 Ti GPUs. Examples are shown in Fig. 7.

We will release the full dataset—including CAD models, canonical transforms, rendered RGB-D
data, and camera parameters—to support future research and benchmarking.

7.4 MORE ABLATION STUDY RESULTS.

Table 6: Consolidated ablation study results. We summarize three sets of experiments: (1) number
of activated experts, (2) choice of pre-trained visual backbones, and (3) contributions of the shape
reconstruction branch, coarse-to-fine strategy, and selection step.

Setting AUC IoU25 AUC IoU50 AUC IoU75 VUS 5◦2cm VUS 10◦2cm Chamfer-L1 (×10−3)

Full implementation

Ours 44.9 26.1 4.9 10.1 20.0 5.93

Choice of Activated Experts

MoE (2 in 4) 42.8 24.0 3.2 8.7 17.3 –
MoE (2 in 12) 43.0 24.1 3.2 8.9 17.8 –
MoE (1 in 8) 40.9 22.5 2.7 8.1 16.4 –
MoE (4 in 8) 43.1 24.4 3.2 9.2 18.3 –
MoE (8 in 8) 44.2 25.4 3.7 9.9 19.5 –

Different Pre-Trained Backbones

Replace with DINOv2 43.8 25.2 4.6 9.7 19.6 –
Replace with CLIP 43.1 24.6 4.3 9.4 19.1 –

Shape Reconstruction Branch, Coarse-to-Fine, and Selection

w/o selection 44.5 25.8 4.5 9.8 19.6 6.18
w/o coarse-to-fine 41.7 23.7 3.5 8.9 18.2 7.05
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Genpose++ OursRGB Ours(pcd)GT

Figure 8: Qualitative examples from ROPE
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Table 6 reports a comprehensive summary of our ablation studies, covering three key aspects of
our framework: (1) the number of activated experts in the MoE module, (2) the choice of pre-
trained visual backbones, and (3) the contributions of the shape reconstruction branch, coarse-to-fine
refinement, and selection step.

Choice of Activated Experts. Varying the number of activated experts shows that performance re-
mains relatively stable across most configurations. Using only a single expert (1 in 8) leads to a clear
drop in accuracy, indicating insufficient model capacity. At the other extreme, activating all experts
(8 in 8) slightly improves results but incurs significantly higher computational cost. Intermediate
settings (e.g., 2 in 4, 2 in 12, or 4 in 8) achieve comparable accuracy without offering clear benefits.
To balance efficiency and performance, we adopt the 2-in-8 configuration, which achieves strong
results with moderate computation.

Pre-Trained Visual Backbones. Replacing the RADIO encoder with DINOv2 or CLIP results in
only minor performance degradation. This demonstrates that our framework is not tightly coupled
to a specific backbone, and that the main performance gains arise from our core design rather than
the choice of encoder. We therefore retain RADIO as our default backbone but note that the method
remains robust with widely used alternatives.

Shape Reconstruction, Coarse-to-Fine Strategy, and Selection. Finally, we examine the effect of
three architectural components. Removing the shape reconstruction branch degrades performance
across all metrics, confirming its importance for learning shape-aware features. Eliminating the
coarse-to-fine strategy produces the largest drop, with AUC IoU50 falling from 26.1 to 23.7 and
Chamfer-L1 increasing from 5.93 to 7.05, suggesting that direct dense prediction fails to capture
fine-grained geometry. Similarly, omitting the selection step slightly reduces accuracy and increases
Chamfer-L1 due to the influence of outliers. Together, these results highlight that all three compo-
nents play important and complementary roles in ensuring robust shape learning and accurate pose
prediction.

7.5 ADDITIONAL QUALITATIVE RESULTS

We provide additional qualitative examples in Fig. 8. Each example includes the input RGB im-
age, ground-truth annotations, predictions from the state-of-the-art baseline (GenPose++), and our
model’s predictions for comparison.

7.6 LLM USAGE.

We used ChatGPT (GPT-5) for grammar and wording refinement; all research ideas and results are
by the authors.
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