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Abstract: Realistic long-horizon tasks like image-goal navigation involve ex-
ploratory and exploitative phases. Assigned with an image of the goal, an embod-
ied agent must explore to discover the goal, i.e., search efficiently using learned
priors. Once the goal is discovered, the agent must accurately calibrate the last-
mile of navigation to the goal. As with any robust system, switches between ex-
ploratory goal discovery and exploitative last-mile navigation enable better re-
covery from errors. Following these intuitive guide rails, we propose SLING
to improve the performance of existing image-goal navigation systems. Entirely
complementing prior methods, we focus on last-mile navigation and leverage the
underlying geometric structure of the problem with neural descriptors. With sim-
ple but effective switches, we can easily connect SLING with heuristic, reinforce-
ment learning, and neural modular policies. On a standardized image-goal naviga-
tion benchmark [1], we improve performance across policies, scenes, and episode
complexity, raising the state-of-the-art from 45% to 55% success rate. Beyond
photorealistic simulation, we conduct real-robot experiments in three physical
scenes and find these improvements to transfer well to real environments. Code
and results: https://jbwasse2.github.io/portfolio/SLING
Keywords: Embodied AI, Robot Learning, Visual Navigation, Perspective-n-
Point, AI Habitat, Sim-to-Real.

1 Introduction

Imagine you are at a friend’s home and you want to find the couch you have seen in your friend’s
photo. At first, you use semantic priors i.e. priors about the semantic structure of the world, to
navigate to the living room (a likely place for the couch). But as soon as you get the first glimpse
of the couch, you implicitly estimate the relative position of the couch, use intuitive geometry, and
navigate towards it. We term the latter problem, of navigating to a visible object or region, as last-
mile navigation.

The field of visual navigation has a rich history. Early approaches used hand-designed features with
geometry for mapping followed by standard planning algorithms. But such an approach fails to
capture the necessary semantic priors that could be learned from data. Therefore, in recent years,
we have seen more efforts and significant advances in capturing these priors for semantic navigation
tasks such as image-goal [2, 3, 4, 1, 5, 6] and object-goal navigation [7, 8, 9, 10]. The core idea
is to train a navigation policy using reinforcement or imitation learning and capture semantics. But
in an effort to capture the semantic priors, these approaches almost entirely bypass the underlying
geometric structure of the problem, specifically when the object or view of interest has already been
discovered.

One can argue that last-mile navigation can indeed be learned from data itself. We agree that, in
principle, it can be. However, we argue and demonstrate that an unstructured local policy for last-
mile navigation is either (a) sample inefficient (billions of frames in an RL framework [11]) or
(b) biased and generalize poorly when learned from offline demonstrations (due to distributional
shift [12, 13]). Therefore, our solution is to revisit the basics! We propose Switchable Last-Mile
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Figure 1: Switchable Last-Mile Image-Goal Navigation. (a) Long-horizon semantic tasks such as
image-goal navigation involves exploratory discovery of goals and exploitative last-mile navigation,
(b) An overview of SLING that allows for switching between policies from prior work and our
last-mile navigation system.

Image-Goal Navigation (SLING) – a simple yet very effective geometric navigation system and
associated switches. Our approach can be combined with any off-the-shelf learned policy that uses
semantic priors to explore the scene. As soon as the object or view of interest is detected, the
SLING switches to the geometric navigation system. We observe that SLING provides significant
performance gains across baselines, simulation datasets, episode difficulty, and real-world scenes.

Our key contributions are: (1) A general-purpose last-mile navigation system and switches, that
we connect with five diverse goal discovery methods, leading to improvements across the board.
(2) A new state-of the-art of 54.8% success i.e. a huge jump of 21.8% vs. published work [5] and
9.2% vs. a concurrent preprint [6], on the most widely-tested fold (Gibson-curved) of the AI Habitat
image-goal navigation benchmark [1]; (3) Extensive robot experiments of image-goal navigation
in challenging settings with improved performance over a neural, modular policy [1] trained on
real-world data [14].

2 Related Work
Prior work in visual navigation and geometric 3D vision is pertinent to SLING.

Embodied navigation. Anderson et al. [15] formalized different goal definitions and metrics for the
evaluation of embodied agents. In point-goal navigation, relative coordinates of the goal are avail-
able (either at all steps [16, 11, 17, 18, 19] or just at the start of an episode [9, 20, 21]). Successful
navigation to a point-goal could be done without semantic scene understanding, as seen by compet-
itive depth-only agents [16, 11]. Semantic navigation entails identifying the goal through an image
(image-goal [1, 2, 22]), acoustic cues (audio-goal [23, 24]), or a category label (object-goal [8, 9]).
Several extensions of navigation include language-conditioned navigation following [25, 26, 27, 28],
social navigation [29, 30, 31, 32, 33], and multi-agent tasks [34, 35, 36, 37, 38, 39]. However, each
of these build-off single-agent navigation and benefit from associated advancements. For more em-
bodied tasks and paradigms, we refer the reader to a recent survey [40]. In this work, we focus on
image-goal navigation in visually rich environments.

Image-goal navigation. Chaplot et al. [3] introduced a modular and hierarchical method for nav-
igating to an image-goal that utilizes a topological map memory. Kwon et al. [41] introduced a
memory representation based on image similarity, which in turn is learned in an unsupervised fash-
ion from unlabeled data and the agent’s observed images. Following up on [3], NRNS [1] improves
the topological-graph-based architecture and open-sourced a public dataset and IL and RL base-
lines [11, 3] within AI Habitat. This dataset has been adopted for standardized evaluation [5, 6].
ZER [5] focuses on transferring an image-goal navigation policy to other navigation tasks. In a con-
current preprint, Yadav et al. [6] utilize self-supervised pretraining [42] to improve an end-to-end
visual RL policy [11] for the image-goal navigation benchmark. Our contributions are orthogonal
to the above and can be easily combined with them, as we demonstrate in Sec. 4.
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Beyond simulation, SLING finds relevance to the rich literature of navigating to an image-goal on
physical robots. Meng et al. [4] utilize a neural reachability estimator and a local controller based on
a Riemannian Motion Policy framework to navigate to image-goals. Hirose et al. [43] train a deep
model predictive control policy to follow a trajectory given by a sequence of images while being
robust to variations in the environment. Even in outdoor settings, meticulous studies have shown
great promise, based on negative mining, graph pruning, and waypoint prediction [44] and utilizing
geographic hints for kilometer-long navigations [45]. Complementing this body of work, SLING
tackles image-goal navigation in challenging indoor settings, without needing any prior data of the
test environment (similar to [1, 6, 3]) i.e. during evaluation no access to information (trajectories,
GPS, or top-down maps) in the test scenes is assumed.

Last-mile navigation. The works included above focus primarily on goal discovery. In contrast,
recent works have also identified ‘last-mile’ errors that occur when the goal is in sight of or close to
the agent. For multi-object navigation, Wani et al. [46, 47] observed a two-fold improvement when
allowing an error budget for the final ‘found’ or ‘stop’ actions. Chattopadhyay et al. [48] found
the last step of navigation to be brittle i.e. small perturbations lead to severe failures. Ye et al. [10]
identified last-mile errors as a prominent error mode (10% of the failures) in object-goal navigation.
However, none of these works address the problem with the last-mile of navigation. From a study
inspired by [46], we infer that better (or more tolerant to error) last-mile navigation can indeed lead
to better performance in the image-goal navigation task (details in Appendix H).

Connections to 3D vision. The objective of our last-mile navigation system is to predict the relative
camera pose between two images i.e. agent’s view and image-goal. To this end, pose estimation
of a calibrated camera from 3D-to-2D point correspondences connects our embodied navigation
task to geometric 3D computer vision. The Perspective-n-Point (PnP) formulation, with extensive
research and efficient solvers [49, 50, 51], fits this use case perfectly. To find an accurate PnP
solution, locating correspondences between the local features of the two images is critical. We
utilize SuperGlue [52] which is based on correspondences learned via attention graph neural nets and
partial assignments. We defer details of PnP and finding correspondences to Sec. 3.3, to make the
approach self-sufficient. Notably, different from related works in 3D vision [53, 54, 55], we apply
SLING to sequential decision-making in embodied settings, particularly, image-goal navigation. To
take policies to the real world, we utilized robust SLAM methods [56, 57] for local odometry and
pose estimation, which has also been found reliable by prior works in sim-to-real [58, 59, 60].

3 SLING

In this section, we begin with an overview of the task and the entire pipeline of SLING. We then
discuss the implementations for goal discovery, our proposed system for last-mile navigation, and
switches to easily combine it with prior works. While we explain key design choices in the main
paper, a supplementary description and a list of hyperparameters, for effective reproducibility, is
deferred to Appendix A.

3.1 Overview

We follow the image-goal navigation task benchmark by Hahn et al. [1] (similar to the prior formu-
lations [2, 3]). The agent observes an RGB image Ia, a depth map Da, and the image-goal Ig . The
agent can sample actions fromA = {move forward, turn right, turn left, stop}. The stop
action terminates the episode.

As shown in Fig. 1a, we divide image-goal navigation into – a goal discovery and a last-mile nav-
igation phase. In the goal discovery phase, the agent is responsible for discovering the goal i.e.
navigating close enough for the goal to occupy a large portion of the egocentric observation (‘goal
discovered’ image). Fig. 1b shows how the control flows between our system. If the explore )exploit
switch isn’t triggered, learning-based exploration will continue. Otherwise, if the explore )exploit
switch triggers, the agent’s observations now overlap with the image-goal and the control flows
to the last-mile navigation system. We find that a one-sided flow (as attempted in [1, 3]) from
explore )exploit is too optimistic. Therefore, we introduce symmetric switches, including one that
flows control back to goal discovery.
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Figure 2: Last-Mile Navigation system. Neural keypoint feature descriptors are extracted and
matched to obtain correspondences between the agent’s view and the image-goal. The geometric
problem of estimating the relative pose between the agent and goal view is solved using efficient
perspective-n-point. A exploit )explore switch, if triggered, flows control back to the goal discovery
phase. Else, the estimations are fed into a local policy head to decide the agent’s actions.

3.2 Goal Discovery
We can combine our versatile last-mile navigation system and switching mechanism with any prior
method. These prior methods are previously suggested solutions to image-goal navigation. We
demonstrate this with five diverse goal discovery (GD) implementations.

Straight [61]. A simple, heuristic exploration where the agent moves forward and unblocks itself,
if stuck, by turning right (similar to an effective exploration baseline in [61]).

Distance Prediction Network (NRNS-GD) [1]. Exploratory navigation is done by proposing way-
points in navigable areas (determined utilizing the agent’s depth mask), history is maintained using
a topological map, and processed using graph neural nets. The minimum cost waypoint is chosen
utilizing outputs from a distance prediction network. More details are given in Appendix B and [1].

Decentralized Distributed PPO (DDPPO-GD) [11]. An implementation of PPO [62] for pho-
torealistic simulators where rendering is the computational bottleneck. This has been a standard
end-to-end deep RL baseline in prior works, across tasks [18, 1, 5, 6, 63].

Offline Visual Representation Learning (OVRL-GD) [6]. A DDPPO network, with its visual
encoder pretrained using self-supervised pretext tasks [42] on images obtained from 3D scans [64].

Environment-State Distance Prediction (Oracle-GD). To quantify the effect of errors coming
from the goal discovery phase, we devise an upper bound. This is a privileged variant of NRNS-GD
that accesses the ground-truth distances from the environment, exclusively for the goal discovery
phase. For fine details of its construction, particularly, how we curtail this to be an oracle explorer
and not an oracle policy, see Appendix B.

3.3 Last-Mile Navigation
The proposed last-mile navigation module transforms the agent’s observations and image-goal into
actions that take the agent closer to the goal. The steps are shown in Fig. 2 and detailed next.

Neural Feature Extractor. We first transform the agent’s RGB Ia to local features (X̂a,Fa), where
X̂a ∈ Rna×2 are the positions and Fa ∈ Rna×k are the visual descriptors in the agent’s image. Here,
na is the number of detected local features and k is the length of each descriptor. Similarly, Ig leads
to features (X̂g,Fg), where X̂g ∈ Rng×2 and Fg ∈ Rng×k with ng local features in the image-
goal. Following DeTone et al. [65], we adopt an interest-point detector, pretrained on synthetic data
followed by cross-domain homography adaptation (here, k = 256).

Matching Module. From extracted features (X̂a,Fa) and (X̂g,Fg), we predict matched subsets
Xa ∈ Rn×2 and Xg ∈ Rn×2. The matching is optimized to have Xa and Xg correspond to
the same point. We utilize an attention-based graph neural net (GNN) that tackles partial matches
and occlusions well using an optimal transport formulation, following Sarlin et al. [52]. The above
neural feature extractor and GNN-based matcher help enjoy benefits of learning-based methods, par-
ticularly, those pretrained on large offline visual data without needing online, end-to-end finetuning.
The geometric components, relying on these neural features, are described next.

Lifting Points from 2D )3D. Next, the agent’s 2D local features are lifted to 3D with respect to the
agent’s coordinate frame i.e. Pa ∈ Rn×3. This is done by utilizing the camera intrinsic matrix K
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(particularly, principle point px, py and focal lengths fx, fy) and the corresponding depth values for
each position in Xa, say da ∈ Rn. The ith row of Pa is calculated as

Pa (i, :) =

(
Xa(i, 1)− px

fx
∗ da(i),

Xa(i, 2)− py
fy

∗ da(i),da(i)

)
, (1)

where Xa(i, 1) and Xa(i, 2) correspond to the x and y coordinate of ith feature in Xa, respectively.
Formally, da(i) := Da (Xa(i, 1),Xa(i, 2)).

Perspective-n-Point. The objective of the next step i.e. Perspective-n-Point (PnP) is to find the
rotation and translation between the agent and goal camera pose that minimized reprojection error.
Concretely, for a given rotation matrix R ∈ R3×3 and translation vector t ∈ R3, the 3D positions
Pa of local features can be reprojected from the coordinate system of the agent to that of the goal
camera: [

X̃g

1

]
= K [R|t]

[
Pa

1

]
; Reprojection error e = ‖X̃g −Xg‖22. (2)

where X̃g are the reprojected positions. Minimizing the reprojection error e, via ePnP [51] and
RANSAC [49] (to handle outliers), we obtain the predicted rotation and translation. The reprojec-
tion is visualized in Fig. 2, where the agent’s amber point is lifted and reprojected in goal camera
coordinates. The reprojection is different from its correspondence in the goal image.

Estimating Distance and Heading to Goal. The predicted translation t can help calculate the
distance ρ = ‖t‖2 from the agent to the goal. Similarly, the heading φ from the agent to the goal
can be obtained from the dot product of the unit vectors along the optical axis (of the agent’s view)
and t. Concretely, φ = sgn(t[1]) ∗ arccos (t · oa/‖t‖2‖oa‖2). The sign comes from t[1] which
points along the axis perpendicular to the agent’s optical axis but parallel to the ground. The sign
is particularly important when calculating the heading as it distinguishes between the agent turning
right or left.

Local policy. Finally, the distance ρ and heading φ between the agent’s current position to the
estimated goal are utilized to estimate actions in the action space A to reach the goal. Following
accurate implementations [66, 1], we adopt a local metric map to allow the agent to heuristically
avoid obstacles and move towards the goal. For further details, see Appendix A.

3.4 Switches
We define simple but effective switches between the two phases of goal discovery (explore) and last-
mile navigation (exploit). The explore )exploit switch is triggered if the number of correspondences
n > nth, where nth is a set threshold. This indicates that the agent’s image has significant overlap
with the image-goal, so control can flow to the last-mile navigation phase. We find that this simple
switch performs better than training a specific deep net to achieve the same (variations attempted
in [1, 3, 4]). For exploit )explore, if the optimization for R, t (see Eq. (2)) fails or if the predicted
distance is greater than dth (tuned to 4m), the agent returns to the goal discovery phase.

4 Experiments
We report results for image-goal navigation both in photorealistic simulation and real-world scenes.

4.1 Data and Evaluation
We evaluate image-goal navigation policies on the benchmark introduced by Hahn et al. [1]
and follow their evaluation protocol and folds. The benchmark consists of numerous folds:
{Gibson [67], MP3D [68]}×{straight, curved}×{easy, medium, hard}. For a direct comparison
to prior work [3, 1, 5, 6] that reports primarily on ‘Gibson-curved’ fold, we follow the same in the
main paper. Consistent performance trends are seen in ‘Gibson-straight’ and in the MP3D folds as
well. These results are deferred to Appendix C and Appendix F. Performance on image-goal navi-
gation is chiefly evaluated via two metrics – percentage of successful episodes (success) and success
weighted by inverse path length (SPL) [15]. For top-performing baselines, we also include the av-
erage distance to the goal at the end of the episode in Appendix G. The objective of the image-goal
navigation task is to execute stop within 1m of the goal location. The agent is allowed 500 steps.
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Table 1: Results for ‘Gibson-curved’ episodes Note the significant gains by adding SLING to prior
works. Consistent trends are seen in ‘Gibson-straight’ (Appendix C) and MP3D-curved episodes
(Appendix F).

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 BC w/ Spatial Memory [69] 1.3 1.1 3.1 2.5 0.8 0.7 0.2 0.1
2 BC w/ GRU [69, 70] 1.7 1.3 3.6 2.8 1.1 0.9 0.5 0.3
3 DDPPO [11] (from [1]) 15.7 12.9 22.2 16.5 20.7 18.5 4.2 3.7
4 NRNS [1] 21.7 8.1 31.4 10.7 22.0 8.2 11.9 5.4
5 ZER [5] 33.0 23.6 48.0 34.2 36.0 25.9 15.1 10.8
6 OVRL [6] 45.6 28.0 53.6 31.7 47.6 30.2 35.6 21.9
7 DDPPO-LMN + OVRL-GD 44.3 30.1 52.4 36.6 48.6 32.6 31.9 21.2
8 SLING + Straight-GD 31.0 12.8 39.2 14.3 33.0 14.3 21.0 9.9
9 SLING + DDPPO-GD 37.9 22.8 52.2 32.7 42.2 25.2 19.4 10.5
10 SLING + NRNS-GD 43.5 15.1 58.7 17.4 47.0 17.4 25.0 10.5
11 SLING + OVRL-GD 54.8 37.3 65.4 45.7 59.5 40.6 39.6 25.5

4.2 Methods
We compare our last-mile navigation with several standardized baselines [69, 11, 1]. Note that
field-of-view, rotation amplitude, etc. vary across baselines and we adopt the respective settings for
fair comparison (implementation details of SLING are in Appendix A). Prior methods use a mix
of sensors including RGB, depth, and agent pose, but no dense displacement vector to the goal.
While we did include the most relevant baselines in Sec. 3.2, we also compare SLING to several
other image-goal solvers. This includes imitation learning baselines such as Behavior Cloning (BC)
w/ Spatial Memory [69] and BC w/ Gated Recurrent Unit [69, 70]. We also compare to estab-
lished reinforcement learning baselines – DDPPO [11] and Offline Visual Representation Learning
(OVRL) [6]. OVRL also makes use of pretraining using a self-supervised objective. Finally, we
compare to related modular baselines include NRNS [1] and Zero Experience Replay (ZER) [5].
We defer a detailed discussion of these baselines to Appendix B.

SLING & Ablations. For a comprehensive empirical study, we combine SLING with Straight-GD,
NRNS-GD, DDPPO-GD, OVRL-GD, and Oracle-GD (see Sec. 3.2 for details). We also introduce
a neural baseline, DDPPO-LMN, a DDPPO model trained to perform last-mile navigation.

Further, we include clear ablations to show the efficacy of the components of our method and
robustness to realistic pose and depth sensor noise:
• w/ MLP switch: instead of SLING’s explore )exploit switch (that utilizes geometric structure), if a
MLP1 detects similarity between the agent and goal images (as in [1]).
• w/o Recovery: if the exploit )explore switch is removed i.e. one-sided flow of control.
• w/o Neural Features: if the neural features [65] are replaced with traditional features [71].
• w/ Pose Noise: add noise to pose that emulates real-world sensors [66, 72] (same as [3, 1]).
• w/ Depth Noise: imperfect depth by adopting the Redwood Noisy Depth model [73] in AI Habitat.
• w/ Oracle-GD: privileged baseline where NRNS-GD can access ground-truth distances to move
the agent closer to the goal during exploration (see Sec. 3.2 and Appendix B).
• w/ Oracle-LM-Pose: privileged last-mile system with perfect displacement from agent to goal
• w/ Oracle-LP: privileged baseline where local policy can teleport agent to the goal prediction

4.3 Quantitative Results
In the following, we include takeaways based on the results in Tab. 1 and Tab. 2.

State-of-the-art performance. As Tab. 1 details, SLING + OVRL-GD outperforms a suite of IL,
RL, and neural modular baselines. The Gibson-curved fold is widely adopted in prior works and
hence the focus of the main paper. With a 54.8% overall success and 37.3 SPL we are the best-
performing method on the benchmark, improving success rate by 21.8% vs. ZER and 9.2% vs.
OVRL (‘overall success’ column of rows 5, 6, & 11). In Appendix I, we also demonstrate state-of-
the-art performance when panoramic images are used.

1trained over an offline dataset of expert demonstrations, where adjacent nodes in a topological graph (that
they maintain) are considered positives
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Table 2: Ablations on ‘Gibson-curved’ episodes. Both switches are key to SLING’s performance.
SLING is resilient to sensor noise. Similar trends can be observed over ablations performed with
OVRL-GD in Appendix F. The privileged last-mile navigation system establishes an upper bound
for last-mile navigation. Even with Oracle-GD, performance improves if SLING is added.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 NRNS [1] 21.7 8.1 31.4 10.7 22.0 8.2 11.9 5.4

2 SLING + NRNS-GD 43.5 15.1 58.7 17.4 47.0 17.4 25.0 10.5
3 w/ MLP Switch 42.5 14.8 55.4 16.7 47.3 17.3 24.9 10.5
4 w/ MLP Switch w/o Recovery 31.5 11.5 45.6 14.3 32.8 12.9 16.1 7.3
5 w/o Neural Features 33.7 11.3 47.5 13.5 35.9 13.0 17.7 7.5
6 w/ Pose Noise 43.7 14.3 58.6 16.1 47.6 16.8 24.9 10.1
7 w/ Pose & Depth Noise 43.5 14.0 56.9 15.9 47.2 15.9 26.6 10.3

Privileged Last-Mile Navigation

8 w/ Oracle-LP 45.1 17.8 60.8 21.2 48.7 20.3 25.8 12.1
9 w/ Oracle-LM-Pose 53.3 19.3 72.3 23.4 57.1 21.6 30.5 13.1
10 w/ Oracle-LM-Pose & Oracle-LP 53.7 22.4 72.6 27.7 57.6 24.7 31.0 14.9

Privileged Goal Discovery

11 NRNS + Oracle-GD (upper bound) 67.7 60.2 68.5 58.4 71.2 63.7 63.5 58.7
12 SLING + Oracle-GD (upper bound) 86.2 74.8 85.9 72.2 88.6 77.7 84.3 74.6

SLING works across methods. Using switches, we add our last-mile navigation system to
DDPPO [11], NRNS [1], and OVRL [6], and observe gains across the board. As shown in Tab. 1,
SLING improves the success rate of DDPPO by 22.2%, NRNS by 21.8%, and OVRL by 9.2%
(rows 3 & 9, 4 & 10, 6 & 11, respectively). Quite surprisingly, SLING even with simple straight
exploration, can outperform deep IL, RL, and modular baselines. (rows 1, 2, 3, 4, & 8).

SLING outperforms neural policies for last-mile navigation. SLING surpasses DDPPO trained
over 400M steps for last-mile navigation by 10.5% on success rate (rows 7 & 11).

SLING succeeds across scene datasets. Similar improvements are also seen in MP3D scenes –
adding SLING to OVRL improves success by 5.1%. Further details and results can be found in
Appendix F.

SLING is resilient to sensor noise. As shown in rows 6 & 7 of Tab. 2, minor drops in perfor-
mance are observed despite challenging noise in pose and depth sensors – SPL successively reduces
15.1 )14.3 )14.0% (rows 2 )6 )7).

Geometric switches are better. Performance reduces if we swap out SLING’s explore )exploit
switch with the MLP switch of NRNS [1]. The effect is exasperated when SLING’s exploit )explore
switch is also removed, leading to a drop of 12% (Tab. 2, rows 2 & 4). The neural features utilized
in SLING are useful, as seen by comparing rows 2 and 5. Further, over a set of 6500 image pairs,
we evaluate the accuracy of switches. SLING’s explore )exploit switch is 92.0% accurate and MLP
switch [1] is only at 82.1%. Also, SLING exploit )explore switch is 84.1% accurate while NRNS
doesn’t have such a recovery switch (details of this study in Appendix D).

Large potential for last-mile navigation. When Oracle-LM-Pose and Oracle-LP are used there
is a 10.2% overall improvement in success from 43.5 to 53.7% (Tab. 2, rows 2 & 10). Notably,
in easy episodes, oracle performance is an ambitious upper bound with an increase in success of
13.9% (58.7 )72.6%). For the hard (i.e. longer) episodes, the oracle components have a relatively
lower impact. This is quite intuitive as goal discovery errors are a more prominent error mode in
long-horizon episodes instead of last-mile navigation.

Improvements with Oracle-GD. Even if we assume a perfect variant of goal discovery system
from [1], we observe that performance saturates at 67.7% success (row 11, Tab. 2). Comparing rows
11 and 12, SLING can boost this asymptotic success rate by 18.5% (67.7 )86.2%).

Analysis: Why is SLING more robust? In Fig. 3a, we visualize the frequency distribution of
heading (from the agent to the target) in expert demonstrations [1] (‘train GT’) and that observed
at inference (‘test GT’). With no geometric structure, NRNS picks up the bias in training data, par-
ticularly, towards the heading of 0 (optimal trajectories entail mostly moving forward). Concretely,
72.2% of the training data is within [−15°, 15°]. This drops to 39.4% at test time when the last-mile
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Figure 3: (a) Significant distribution shift between training and test heading from agent to goal
(Sec. 4.3), (b) Navigation policies deployed on a robot in cluttered real-world scenes (Sec. 4.4).

navigation phase is reached (using the best-performing Oracle-GD). Quantified with (first) Wasser-
stein distance, W (Test GT,NRNS) = 0.0134 vs. W (Test GT,SLING) = 0.0034, demonstrating
SLING can better match the distribution at inference.

4.4 Physical Robot Experiments
We test the navigation policies on a TerraSentia [74] wheeled robot, equipped with an Intel®
RealSense™ D435i depth camera (further hardware details in Appendix E). The robot is initial-
ized in an unseen indoor environment and provided an RGB image-goal. We ran a total of 120
trajectories, requiring 30 human hours of effort, across three scenes and two levels of difficulty.
Following the previously collected simulation dataset [1], easy goals are 1.5-3m from the starting
location and hard goals are 5-10m from the starting location. Particularly, we test within an office
and the common areas in two department buildings, over easy and hard episodes (following defi-
nitions from [1]). The physical setup (office) is shown in Fig. 3b. As in simulation, the agent is
successful if it executes stop action within 1m of the goal. Examples of the image-goal utilized in
physical robot experiments and precautions taken are included in Appendix E.

As shown in Tab. 3, for sim-to-real experiments, we base the goal discovery system on the
NRNS model. We choose NRNS as the authors published an instantiation trained exclusively
on real-world trajectories, particularly, RealEstate10K [14] (house tours videos from YouTube).

Easy Hard
Method Succ↑ SPL↑ Succ↑ SPL↑
NRNS [1] 40.0 37.7 3.3 3.3
+ SLING 56.6 53.7 20.0 19.3

Table 3: Results in real-world scenes.

In preliminary experiments, we verified that this NRNS
instantiation outperformed its simulation counterpart. For
a direct comparison, in SLING + NRNS-GD, we utilize
the same goal discovery system but add our switching
and last-mile navigation system (SLING) around it. With
SLING, we improve performance from 40.0% success to
56.6%. The gains become more prominent as the task horizon increases, leading to an improvement
in success rate from 3.3% to 20.0%. The large gains in hard episodes (which are exploration heavy)
are accounted to SLING’s better explore )exploit switch and SLING’s last-mile navigation system
that is not biased to zero heading (particularly important for curved and long episodes).

5 Conclusion
In this work, we identify and leverage the geometric structure of last-mile navigation for the chal-
lenging image-goal navigation task [1]. With analysis of data distributions, we demonstrate that
learning from expert demonstrations may lead to developing a bias. Being entirely complementary
to prior work, we demonstrate that adding SLING leads to improvements across data splits, episode
complexity, and goal discovery policies, establishing the new state-of-the-art for image-goal navi-
gation [1]. We also transfer policies trained in simulation to real-world scenes and demonstrate sig-
nificant gains in performance. Further improvements in the switching mechanism, neural keypoint
features, visual representations from view augmentations, etc. complement our proposed approach
to help improve performance in future work.

Like any method, SLING has several aspects where follow-up works can improve on. We list them
explicitly: (1) Our method is limited by mistakes in matching correspondences. (2) We add addi-
tional parameters that need to be tuned. (3) We make a single prediction for last-mile navigation. (4)
We assume access to depth and pose information. More details of these aspect as well as a discussion
on pose errors, depth noise, and the nuanced image-goal navigation definition in Appendix J.
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[57] M. Labbé and F. Michaud. Rtab-map as an open-source lidar and visual simultaneous local-
ization and mapping library for large-scale and long-term online operation. JFR, 2019.

[58] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, D. Batra, and S. Lee. Sim-
to-real transfer for vision-and-language navigation. CoRL, 2020.

[59] J. Truong, S. Chernova, and D. Batra. Bi-directional domain adaptation for sim2real transfer
of embodied navigation agents. RA-L, 2021.

[60] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and
D. Batra. Sim2real predictivity: Does evaluation in simulation predict real-world performance?
RA-L, 2020.

[61] T. Chen, S. Gupta, and A. Gupta. Learning exploration policies for navigation. ICLR, 2019.

[62] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[63] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi. Simple but effective: Clip embed-
dings for embodied ai. CVPR, 2022.

[64] A. Eftekhar, A. Sax, J. Malik, and A. Zamir. Omnidata: A scalable pipeline for making multi-
task mid-level vision datasets from 3d scans. ICCV, 2021.

[65] D. DeTone, T. Malisiewicz, and A. Rabinovich. Superpoint: Self-supervised interest point
detection and description. Proceedings of the IEEE conference on computer vision and pattern
recognition workshops, 2018.

[66] D. S. Chaplot, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore using active
neural mapping. ICLR, 2020.

[67] F. Xia, A. R. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese. Gibson env: Real-world percep-
tion for embodied agents. CVPR, 2018.

[68] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and
Y. Zhang. Matterport3d: Learning from rgb-d data in indoor environments. 3DV, 2017.

[69] M. Bain and C. Sammut. A framework for behavioural cloning. Machine Intelligence, 1995.

[70] K. Cho, A. C. Courville, and Y. Bengio. Describing multimedia content using attention-based
encoder-decoder networks. IEEE Transactions on Multimedia, 2015.

[71] D. Lowe. Object recognition from local scale-invariant features. ICCV, 1999.

[72] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Py-
robot: An open-source robotics framework for research and benchmarking. arXiv preprint
arXiv:1906.08236, 2019.

[73] S. Choi, Q.-Y. Zhou, and V. Koltun. Robust reconstruction of indoor scenes. CVPR, 2015.

[74] V. A. Higuti, A. E. Velasquez, D. V. Magalhaes, M. Becker, and G. Chowdhary. Under canopy
light detection and ranging-based autonomous navigation. JFR, 2019.

[75] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR,
2016.

[76] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive Mapping and Plan-
ning for Visual Navigation. CVPR, 2017.

[77] S. Gupta, D. Fouhey, S. Levine, and J. Malik. Unifying map and landmark based representa-
tions for visual navigation. arXiv preprint arXiv:1712.08125, 2017.

[78] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, and A. Farhadi. Visual
Semantic Planning using Deep Successor Representations. ICCV, 2017.

12



[79] L. Mezghani, S. Sukhbaatar, T. Lavril, O. Maksymets, D. Batra, P. Bojanowski, and K. Ala-
hari. Memory-augmented reinforcement learning for image-goal navigation. arXiv preprint
arXiv:2101.05181, 2021.

[80] M. V. Gasparino, A. N. Sivakumar, Y. Liu, A. E. B. Velasquez, V. A. H. Higuti, J. Rogers,
H. Tran, and G. Chowdhary. Wayfast: Traversability predictive navigation for field robots.
IROS, 2022.

[81] M. Camplani and L. Salgado. Efficient spatio-temporal hole filling strategy for kinect depth
maps. Three-dimensional image processing (3DIP) and applications Ii, 2012.

[82] J. Shen and S.-C. S. Cheung. Layer depth denoising and completion for structured-light rgb-d
cameras. CVPR, 2013.

13


