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Abstract

We study offline off-dynamics reinforcement learning (RL) to utilize data from1

an easily accessible source domain to enhance policy learning in a target domain2

with limited data. Our approach centers on return-conditioned supervised learning3

(RCSL), particularly focusing on Decision Transformer (DT) type frameworks,4

which can predict actions conditioned on desired return guidance and complete tra-5

jectory history. Previous works address the dynamics shift problem by augmenting6

the reward in the trajectory from the source domain to match the optimal trajectory7

in the target domain. However, this strategy can not be directly applicable in RCSL8

owing to (1) the unique form of the RCSL policy class, which explicitly depends9

on the return, and (2) the absence of a straightforward representation of the optimal10

trajectory distribution. We propose the Return Augmented (REAG) method for DT11

type frameworks, where we augment the return in the source domain by aligning12

its distribution with that in the target domain. We provide the theoretical analysis13

demonstrating that the RCSL policy learned from REAG achieves the same level14

of suboptimality as would be obtained without a dynamics shift. We introduce15

two practical implementations REAG∗
Dara and REAG∗

MV respectively. Thorough16

experiments on D4RL datasets and various DT-type baselines demonstrate that17

our methods consistently enhance the performance of DT type frameworks in18

off-dynamics RL.19

1 Introduction20

Off-dynamics reinforcement learning (Eysenbach et al., 2020; Jiang et al., 2021; Liu et al., 2022; Liu21

and Xu, 2024; Guo et al., 2025) arises in decision-making domains such as autonomous driving (Pan22

et al., 2017) and medical treatment (Laber et al., 2018; Liu et al., 2023), where direct policy training23

through trial-and-error in the target environment is often costly, unethical, or infeasible. A common24

strategy is to train the policy in source environments with similar but more accessible dynamics.25

However, discrepancies between the source and target environments create a simulation-to-reality26

(sim-to-real) gap, which can lead to catastrophic failures when deploying the source-trained policy in27

the target environment.28

Beyond the challenge of dynamics shift, practical scenarios often do not allow real-time online29

interaction with the source environment due to time and computational constraints. As a result,30

policies must be learned from pre-collected datasets generated by behavior policies. This setting is31

particularly difficult, as it combines off-policy, offline, and off-dynamics characteristics. Recently,32

supervised learning–based methods (Chen et al., 2021; Brandfonbrener et al., 2022) have emerged as33

more stable and scalable alternatives to traditional offline reinforcement learning algorithms grounded34

in dynamic programming (Levine et al., 2020). In the offline off-dynamics setting, the majority of35

training data is drawn from the source domain, with only a limited portion collected from the target36
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domain. Our study focuses on advancing Decision Transformer (DT) type frameworks (Chen et al.,37

2021; Hu et al., 2024; Zhuang et al., 2024) for off-dynamics reinforcement learning, which can be38

viewed as a special case of return-conditioned supervised learning (RCSL) (Emmons et al., 2021;39

Brandfonbrener et al., 2022). While DT-type methods have gained significant attention across various40

reinforcement learning tasks, no prior work has explicitly tackled the off-dynamics RL problem.41

There are several previous significant works in off-dynamics reinforcement learning that employ42

reward augmentation to address the dynamics shift between source and target environments (Ey-43

senbach et al., 2020; Liu et al., 2022). In particular, Eysenbach et al. (2020) proposed the DARC44

algorithm to train a policy in the source domain using augmented rewards. These augmentations45

are derived by minimizing the KL distance between the distribution of trajectories generated by the46

learning policy in the source domain and those generated by the optimal policy in the target domain.47

Liu et al. (2022) extended this idea to the offline setting with the DARA algorithm. However, these48

reward augmentation techniques for dynamic programming based RL algorithms are not directly49

applicable to RCSL methods for two primary reasons. First, the policy classes used in RCSL methods50

explicitly depend on the conditional return-to-go function, leading to different trajectory distributions51

that invalidate the trajectory matching methods. Second, the augmentation techniques in Eysenbach52

et al. (2020); Liu et al. (2022) explicitly rely on the form of the optimal trajectory distribution in the53

target domain. In contrast, there is no straightforward representation of the optimal RCSL policy and54

the trajectory distribution. Therefore, novel augmentation mechanisms must be derived for RCSL55

methods to effectively address off-dynamics reinforcement learning.56

In this work, we propose the Return Augmented (REAG) algorithm, which augments the returns of57

trajectories from the source environment to align with the target environment in DT type framework.58

Through rigorous analysis, we show that the RCSL policy learned with REAG in the source domain59

achieves suboptimality comparable to that learned directly in the target domain without dynamics60

shift. Specifically, our contributions are summarized as follows:61

• We propose a novel method, Return Augmented (REAG), designed specifically for DT-type algo-62

rithms. The approach augments the returns of offline trajectories in the source domain by leveraging63

a small amount of data from the target domain. We develop two practical implementations of REAG:64

REAG∗
Dara, derived from reward augmentation techniques used in dynamic programming–based65

methods, and REAG∗
MVfrom direct return distribution matching.66

• We provide a rigorous theoretical analysis demonstrating that the return-conditioned policy learned67

from REAG can achieve the same suboptimality as a policy learned directly from the target domain.68

Our analysis relies on the same data coverage assumptions made by Brandfonbrener et al. (2022)69

where there is no dynamics shift, implying that return augmentation could enhance the performance70

of RCSL in off-dynamics RL when the available source dataset size is much larger than the available71

target dataset size.72

• We conduct experiments on the D4RL benchmark by training policies on source datasets collected73

from modified dynamics and evaluating them in the original environments. Across DT-type74

baselines—including DT (Chen et al., 2021), Reinformer (Zhuang et al., 2024) and QT (Hu et al.,75

2024)—both REAG∗
Dara and REAG∗

MV consistently improve performance, with REAG∗
MV showing76

the greatest gains, highlighting the advantage of return-level augmentation.77

2 Preliminary78

Sequential Decision-Making. We consider a general sequential decision-making problem. At79

each step t, the agent receives an observation ot from the environment. Based on the history up80

to step t, the agent makes action at and receives the reward rt from the environment. The agent81

interacts with the environment in episodes with a length H . We use τ = (o1, a1, r1, · · · , oH , aH , rH)82

to denote a whole trajectory, and we use g(τ) =
∑H

t=1 rt to denote the cumulative return of the83

trajectory. We model the environment as a Markov Decision Process (MDP) M , which consists of84

(S,A, p, r,H). Here S is the state space, each state s represents the possible history up to some time85

step t, i.e., s = (o1, a1, r1, · · · , ot). A is the action space, p(s′|s, a) is the transition dynamics that86

determines the transition probability for the agent to visit state s′ from current state s with the action87

a. r(s, a) denotes the reward function. We re-define a trajectory as τ = (s1, a1, r1, · · · , sH , aH , rH).88

We assume that each s corresponds to one single time step t = t(s), and we denote gπ(s) =89

Eτ∼π[g(τ)|s1 = s]. Then the goal of the agent is to learn a policy π : S → A that maximizes the90

expected accumulated reward J(π) := Eτ∼π[g(τ)]. We denote the optimal policy as π∗.91
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Offline RL and Decision Transformer. We consider the offline reinforcement learning setting.92

Given a dataset D, the goal of the agent is to learn π∗ from D. We assume that the trajectories in D93

are generated from a behavior policy β. In this work, we mainly consider Decision Transformer (DT)94

(Chen et al., 2021) as our backbone algorithm. DT is a type of sequential modeling technique based95

on Transformer (Vaswani et al., 2017) to solve offline RL problems. In detail, DT maintains a function96

π(a|s, g) as its policy function. To train the plolicy π, DT aims to minimize the following negative97

log-likelihood function L̂(π) := L̂(π) := −
∑

τ∈D
∑

1≤t≤H log π(at|st, g(τ)). To evaluate π, DT98

defines a conditioning function f : S → R, which maps each state to a return value and guides99

the policy πf within the environment, where πf (a|s) := π(a|s, f(s)). The conditioning function is100

pivotal in DT, as varying f(s) for a given state s results in different policies. To achieve the optimal101

policy, f(s) should be maximized (Zhuang et al., 2024).102

Offline Off-Dynamics RL. In this work, we consider the offline off-dynamics RL problem, where103

the agent has access to two offline datasets DS and DT . DS ,DT include the data collected from the104

source environment MS and the target environment MT . The source and the target environments105

share the same reward function r, with different transition dynamics pS and pT . In practice, we106

assume that the dataset size from the source dataset |DS | is much larger than the data coming from107

the target dataset |DT |. Then the agent aims to find the optimal policy for the target environment MT108

based on the data from both the source and the target environments. Since the transition dynamics pS109

and pT are different, we can not directly apply existing RL algorithms on the union DS ∪ DT .110

3 Return Augmentation for Goal Conditioned Supervised Learning111

3.1 Return-Augmented Framework112

DT has the potential to address offline off-dynamics reinforcement learning challenges, as shown in113

Table 1. However, it still has certain limitations. To overcome these, we propose a general framework114

that efficiently learns the optimal policy for the target environment using the combined dataset115

DS ∪ DT . Leveraging the return-conditioning nature of DT, we introduce a return augmentation116

technique that modifies returns in the offline source dataset through a transformation function. This117

approach allows the policy derived from the augmented source dataset to effectively approximate118

the optimal policy of the target environment, as illustrated in the following equation, where πS119

represents a strong candidate for approximating the optimal policy of the target environment and ψ is120

the carefully chosen transformation function.121

πS = argminπ L̂(π) := −
∑

τ∈DS

∑
1≤t≤H log π(at|st, ψ(g(τ))).

We call our method Return Augmented (REAG) for DT. Next we introduce two methods to construct122

ψ, based on the dynamics-aware reward augmentation (DARA) technique (Eysenbach et al., 2020;123

Liu et al., 2022), and a direct return distribution matching method.124

3.2 Dynamics-Aware Reward Augmentation125

We first summarize the idea of DARA. Let pT (s′|s, a) denote the transition dynamics of the target126

environment, and pS(s′|s, a) denote the source environment. According to the connection of RL and127

probabilistic inference (Levine, 2018), we can turn the optimal policy finding problem into an infer-128

ence problem. We use O to denote a binary random variable where O = 1 suggests τ is a trajectory129

induced by the optimal policy. Given a trajectory τ , the likelihood of τ being a trajectory induced by130

the optimal policy under the target environment is pT (O = 1|τ) = exp(
∑H

t=1 r(st, at)/η), where131

η is the step size parameter used for tuning. It means that the trajectory with higher cumulative132

rewards is more likely to be the trajectory induced by the optimal policy. We introduce a variational133

distribution pSπ(τ) = p(s1)
∏T

t=1 p
S(st+1|st, at)π(at|st) to approximate pTπ (O = 1|τ). Then we134

have135

log pTπ (O = 1) = logEτ∼pT
π (τ)p

T (O = 1|τ)
≥ Eτ∼pS

π(τ)

[
log pT (O = 1|τ) + log

(
pTπ (τ)/p

S
π(τ)

)]
= Eτ∼pS

π(τ)

[∑T
t=1 r(st, at)/η − log

(
pS(st+1|st, at)/pT (st+1|st, at)

)]
, (3.1)

where for the first inequality, we change the distribution of the expectation from PT
π (τ) to PS

π (τ) and136

then use Jensen’s inequality to derive the result; the second equation holds due to the assumption/-137

modeling that the likelihood of τ being a trajectory induced by the optimal policy under the target138
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environment is PT (O = 1|τ) = exp(
∑H

t=1 r(st, at)/η). Therefore, we obtain an evidence lower139

bound of pTπ (O = 1), which equals to find a policy to maximize the value in the source environment,140

with the augmented reward rS(st, at) = r(st, at) + η log pT (st+1|st, at) − η log pS(st+1|st, at).141

Following Eysenbach et al. (2020), to estimate the log pT (st+1|st, at)− log pS(st+1|st, at), we use142

a pair of learned binary classifiers which infers whether the transitions come from the source or143

target environments. Specifically, we denote classifiers qsas(·|s, a, s′) and qsa(·|s, a), which return144

the probability for some (s, a, s′) or (s, a) tuples whether they belong to the source or the target145

environments. Then according to Eysenbach et al. (2020), we have146

log pT (st+1|st, at)− log pS(st+1|st, at) = ∆r(st, at, st+1)

:= log
q(MT |st, at, st+1)

q(MS |st, at, st+1)
− log

qsa(M
T |st, at)

qsa(MS |st, at)
. (3.2)

For a trajectory τ = (s1, a1, r1, ..., sH , aH , rH), we denote the transformation ψ(g(st)) :=147 ∑H
h=t rh + η

∑H
h=t ∆r(sh, ah, sh+1). We denote such a transformation method as REAG∗

Dara.148

3.3 Direct Matching of Return Distributions149

The reward augmentation strategy in REAG∗
Dara stems from the probabilistic inference view of RL150

which matches the distribution of the learning trajectory in the source domain with that of the optimal151

trajectory in the target domain (Eysenbach et al., 2020). However, it does not fully capture the power152

of DT, which is able to induce a family of policies that are conditioned on the return-to-go f . By153

varying f , DT enables the generation of a diverse range of policies, including the optimal one. In154

contrast, REAG∗
Dara assumes a single, fixed target policy, and thus its augmentation strategy cannot155

generalize across multiple policies induced by varying f in DT. As a result, it cannot find the desired156

return conditioned policy when evaluated with a different f in the target domain. This motivates us157

to find a return transformation method ψ to guarantee that πS
f (a|s) ≈ πT

f (a|s) for all f .158

We consider a simplified case where both DS and DT are generated by following the same behavior159

policy β(a|s). We use dS(A) and dT (A) to denote the probability for event A to happen under the160

source and target environments following β. With a slight abuse of notation, we use gS and gT to161

denote the return following the behavior policy. Then we characterize the learned policies by DT162

under the infinite data regime (Brandfonbrener et al., 2022) for both the source environment and163

target environment. According to Brandfonbrener et al. (2022), πS
f (a|s) = PS(a|s, ψ(gS) = f(s)).164

Then we can express πS and πT as165

πS
f (a|s) =

dS(a|s)dS(ψ(gS) = f(s)|s, a)
dS(ψ(gS) = f(s)|s)

, πT
f (a|s) =

dT (a|s)dT (gT = f(s)|s, a)
dT (gT = f(s)|s)

.

Since the behavior policies over the source and target environments are the same, we have dS(a|s) =166

dT (a|s) for all (s, a). Then in order to guarantee πS
f (a|s) = πT

f (a|s) we only need to guarantee167

dS(ψ(gS(s)) = ·|s, a) = dT (gT (s) = ·|s, a), ∀s, a. Denote the cumulative distribution function168

(CDF) of gS conditioned on s, a is gS |s, a ∼ GS
β (s, a), and gT |s, a ∼ GT

β (s, a). Then if both169

GS
β (s, a) and GT

β (s, a) are invertible, we can set ψ as follows170

ψ(gS) = GT,−1
β (GS

β (gS ; s, a); s, a). (3.3)

If there exist PS , PT , and r such that the DARA-type augmented reward-to-go satisfies (3.3), then171

the DARA-type reward augmentation can be deemed as a special case of the transformation (3.3).172

In general, GT
β and GS

β are hard to obtain and computationally intractable, making ψ intractable173

either. We use Laplace approximation to approximate both GT
β and GS

β by Gaussian distributions,174

e.g., GS
β (s, a) ∼ N(µS(s, a), σ2

S(s, a)) and GT
β (s, a) ∼ N(µT (s, a), σ2

T (s, a)). We then obtain that175

ψ(gS) :=
gS − µS(s, a)

σS(s, a)
· σT (s, a) + µT (s, a). (3.4)

We denote DT with a ψ transformation from (3.4) by REAG∗
MV, since such a transformation only176

depends on the estimation of mean values µS , µT and variance σS , σT .177
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3.4 Sample Complexity of Off-Dynamics RCSL178

In this section, we provide an overview of the sample complexity for off-dynamics RCSL. Let NS179

represent the number of trajectories in the source dataset DS and NT the number of trajectories in180

the target dataset DT . We define JT (π) as the expected cumulative reward under any policy π within181

the target environment. Our theorem is established based on the following assumptions.182

Assumption 3.1. (1) (Return coverage) PT
β (g = f(s1)|s1) ≥ αf for all initial states s1. (2) (Near183

determinism) P (r ̸= r(s, a) or s′ ̸= T (s, a)|s, a) ≤ ϵ at all s, a for some functions T and r. (3)184

(Consistency of f ) f(s) = f(s′) + r for all s.185

Assumption 3.2. For all s we assume (1) (Bounded occupancy mismatch) PπRCSL
f (s) ≤ CfPβ(s); (2)186

(Return coverage) PT
β (g = f(s)|s) ≥ αf ; and (3) (Domain occupancy overlap) dTβ (s) ≤ γfd

S
β (s).187

Assumption 3.3. (1) The policy class Π is finite. (2)| log π(a|s, g) − log π(a′|s′, g′)| ≤ c for188

any (a, s, g, a′, s′, g′) and all π ∈ Π. (3) The approximation error is bounded by ϵapprox, i.e.,189

minπ∈Π L(π) ≤ ϵapprox.190

Assumptions 3.1 to 3.3 are the same as the assumptions imposed in Theorem 1, Theorem 2, and191

Corollary 3 in Brandfonbrener et al. (2022) respectively. Now we present our theoretical result.192

Theorem 3.4. Under Assumptions 3.1 to 3.3 on the coverage of the offline dataset and the occupancy193

overlap of the source and target environments, with high probability, we have JT (π⋆)− JT (π̂f ) =194

O
(
1/(NT +NS)1/4

)
, where O omits terms that are independent of the sample size NT of the target195

domain and the sample size NS of the source domain.196

Remark 3.5. Theorem 3.4 suggests that the modified samples from the source domain could enhance197

the performance of RCSL, for which the sample complexity is approximately O((1/NT )1/4).198

For more theoretical details, please refer to Appendix B.199

4 Experiments200

In this section, we first outline the fundamental setup of the experiment. We then describe experiments201

designed to address specific questions, with each question and its corresponding answer detailed in a202

separate subsection.203

• How effective are DT-type methods in mitigating the impact of limited data in target environment?204

• What techniques can be employed to improve the performance of DT-type methods in off-dynamics205

scenarios while addressing the constraints of offline data shortages in target environment?206

• How does the performance of DT-type methods compare to baselines in off-dynamics problems?207

4.1 Basic Experiment Setting208

Tasks and Environments. We study established D4RL tasks in the Gym-MuJoCo environment (Fu209

et al., 2020), a suite built atop the MuJoCo physics simulator, featuring tasks such as locomotion and210

manipulation. Particularly, we focused on three environments: Walker2D, Hopper, and HalfCheetah.211

In addressing the off-dynamics reinforcement learning problem, we distinguish between the Source212

and Target environments. The Target environment is based on the original Gym-MuJoCo framework,213

while the Source environment is modified using two shift methods: BodyMass Shift and JointNoise214

Shift. In the BodyMass Shift, the mass of the body is altered in the Source environment, whereas in215

the JointNoise Shift, random noise is added to the actions.216

Dataset. For the Target Dataset corresponding to the Target Environment, we leverage the official217

D4RL data to construct the target datasets: 10T and 1T. The 10T dataset comprises ten times the218

number of trajectories compared to the 1T dataset.1 For the Source Dataset collection, we begin by219

1Unlike the approach of Liu et al. (2022), which constructs the 1T dataset by selecting the last 1/10 timesteps
from the original target dataset (10T), we propose a uniform sampling method across trajectories in the target
dataset.

5



BEAR AWR BCQ CQL
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

1T 4.638±3.882 0.777±0.105 9.267±1.692 68.023±1.687 28.426±2.974 100.566±0.513 62.567±2.459 60.638±0.683 101.610±1.309 65.618±2.818 57.402±6.161 101.611±0.143

10T 13.143±3.016 5.852±0.168 21.383±1.237 78.060±0.772 58.286±1.684 109.154±0.976 74.735±1.184 64.735±2.555 101.840±1.962 78.191±1.839 80.145±2.286 101.840±0.467

MOPO DT Reinformer QT
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

1T 20.953±2.715 20.313±3.488 20.569±0.983 67.261±2.316 34.482±5.890 107.171±1.611 79.034±1.506 38.072±9.174 103.284±5.437 81.756±1.671 67.546±9.505 111.722±1.398

10T 22.261±2.811 18.529±1.760 21.196±3.103 79.697±3.348 68.528±1.924 108.622±1.815 81.377±1.903 68.168±2.661 109.845±0.726 88.262±12.886 85.092±8.727 111.394±0.469

Table 1 Performance comparison of algorithms on the 1T, 10T, and 1T10S datasets. In this study, 1T10S(B)
refers to the source dataset under the BodyMass shift setting, while 1T10S(J) corresponds to the source dataset
under the JointNoise shift setting. Experiments are conducted using the Medium (M), Medium-Replay (M-R),
and Medium-Expert (M-E) datasets. We present the results for the Walker2D environment here; complete
results are provided in appendix E. All reported values are averaged over five seeds (0, 1012, 2024, 3036, 4048).

modifying the environment through adjustments to the XML file of the MuJoCo simulator. We then220

collect the Random, Medium, Medium-Replay, and Medium-Expert offline datasets in the modified221

environments, following the same data collection procedure as used in D4RL. For further details on222

the dataset collection process and the datasets, please refer to the Appendix D.223

Baselines. In selecting our baseline models, we incorporate a diverse set of well-established off-224

dynamics RL methods, including BEAR (Kumar et al., 2019), AWR (Peng et al., 2019), BCQ225

(Fujimoto et al., 2019), CQL (Kumar et al., 2020), and MOPO (Yu et al., 2020). Furthermore,226

we enhance these baseline models by incorporating DARA augmentation, resulting in augmented227

algorithms that also serve as baselines for comparison with our proposed method. In establishing228

hyperparameters, we ensure consistency across tasks for certain parameters, such as the learning rate229

and the number of iteration steps. Refer to Appendix D for further details on the parameter settings.230

4.2 Evaluation of Adaptability and Data Efficiency in RCSL Algorithms231

We evaluate three representative DT-type algorithms include DT (Chen et al., 2021), Reinformer232

(Zhuang et al., 2024) and QT (Hu et al., 2024) to assess their ability to enable an adaptive policy233

while reducing reliance on offline data in the target environment. To conduct this evaluation, we234

perform two experiments: (1) We examine the performance of the three DT-type algorithms under235

varying dataset sizes and quality levels in the target environment; (2) We evaluate their effectiveness236

in off-dynamics scenarios.237

To assess the impact of dataset size and quality on the performance of DT-type algorithms, we238

evaluate three algorithms using two datasets: a subset of the target data (1T) and the full target239

dataset (10T), comparing the results against other baselines. These experiments aim to quantify240

the performance gap between training on 1T and 10T datasets, highlighting the effects of target241

environment data scarcity and establishing a benchmark for off-dynamics settings. In off-dynamics242

offline RL, instead of relying solely on a large target dataset, we incorporate a small subset of target243

data with a larger source dataset. To examine how effectively algorithms leverage source data, we244

construct the 1T10S dataset by combining a subset of target data (1T) with the full source dataset245

(10S), following the setting of Liu et al. (2022). This dataset serves as the training set for DT-type246

algorithms, whose performance is then evaluated in the target environment. For a comprehensive247

comparison, we benchmark DT-type algorithms against other baseline methods.248

The evaluation results in Table 1 demonstrate the impact of dataset size and off-dynamics settings on249

algorithm performance. With limited training data, the algorithm’s learning capacity is restricted,250

leading to degraded performance, especially when target-environment data are scarce. To mitigate251

this issue, we incorporate additional source datasets under BodyMass Shift and JointNoise Shift252

settings, which improve generalization to the target environment. However, while leveraging source253

data can partially compensate for the shortage of target data, it remains less effective than training254

with sufficient target-environment data. To further improve DT-type frameworks under off-dynamics255

settings, we propose two return-based augmentation methods, REAG∗
MV and REAG∗

Dara, which256

can be applied to DT, Reinformer, and QT frameworks. Specifically, applying REAG∗
MV yields257

REAGDT
MV, REAGReinf

MV , and REAGQT
MV, while applying REAG∗

Dara produces REAGDT
Dara, REAGReinf

Dara ,258

and REAGQT
Dara, demonstrating the promise of these augmentation techniques in enhancing algorithm259

performance under off-dynamics conditions.260
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DT Reinformer QT
1T10S REAGDT

MV REAGDT
Dara 1T10S REAGReinf

MV REAGReinf
Dara 1T10S REAGQT

MV REAGQT
Dara

W2D

M BM 78.768±1.233 80.857±1.715↑ 78.257±2.423↓ 80.857±0.509 82.354±1.479↑ 80.666±0.505↓ 84.325±0.425 84.582±0.507↑ 83.068±0.859↓
JN 71.068±1.022 75.008±1.834↑ 71.779±1.706↑ 74.748±1.721 75.008±0.986↑ 74.268±1.341↓ 80.621±1.143 80.904±1.502↑ 78.672±2.201↓

M-R BM 73.664±1.920 73.708±1.570↑ 67.565±0.799↓ 67.032±5.767 50.296±14.211↓ 66.658±4.303↓ 87.292±0.631 87.491±1.226↑ 76.169±7.567↓
JN 58.255±3.181 55.722±2.653↓ 62.226±0.383↑ 54.801±3.217 47.591±10.244↓ 55.438±4.833↑ 82.139±1.029 82.363±4.206↑ 79.795±4.708↓

M-E BM 84.430±0.823 88.235±1.886↑ 85.328±0.865↑ 83.388±0.806 84.897±1.117↑ 83.761±0.735↑ 93.082±0.348 92.744±0.499↓ 94.578±1.383↑
JN 115.746±1.116 111.060±2.247↓ 111.236±0.914↓ 117.360±2.550 118.218±1.460↑ 117.765±2.499↑ 116.149±1.640 118.564±0.697↑ 116.115±1.889↓

Hp

M BM 34.057±0.177 39.435±1.239↑ 37.787±1.914↑ 51.357±3.713 59.085±2.791↑ 51.771±5.322↑ 49.516±9.798 51.796±9.971↑ 62.262±5.348↑
JN 70.685±0.726 70.356±3.657↓ 78.325±2.522↑ 70.340±4.633 72.346±5.877↑ 70.466±3.728↑ 68.656±7.079 73.987±8.080↑ 68.709±12.160↑

M-R BM 64.216±1.504 66.092±0.233↑ 60.393±1.086↓ 17.534±6.725 20.952±9.794↑ 27.238±12.735↑ 69.460±13.948 76.287±7.810↑ 82.786±11.992↑
JN 61.870±0.249 77.825±1.638↑ 83.525±1.728↑ 41.820±15.773 43.985±5.075↑ 52.052±10.035↑ 93.704±7.559 93.409±4.696↓ 51.456±12.168↓

M-E BM 33.554±0.846 52.873±0.454↑ 33.631±1.605↑ 68.973±7.512 64.206±12.073↓ 73.363±7.674↑ 61.162±3.767 73.952±16.294↑ 77.279±18.607↑
JN 108.254±1.583 109.367±1.084↑ 108.261±2.612↑ 109.256±0.126 109.472±0.103↑ 109.255±0.188↓ 109.056±0.214 109.803±0.609↑ 109.746±0.771↑

Hc

M BM 39.954±0.260 40.250±0.911↑ 37.599±0.395↓ 37.353±0.483 42.451±0.491↑ 38.261±1.238↑ 44.656±0.643 47.303±0.318↑ 46.383±0.358↑
JN 47.725±0.431 44.149±3.672↓ 47.833±0.284↑ 48.274±0.191 43.009±0.307↓ 48.404±0.168↑ 56.213±0.327 52.394±1.413↓ 55.026±0.410↓

M-R BM 20.966±9.607 27.812±3.256↑ 24.059±2.271↑ 31.584±1.248 32.114±1.455↑ 26.995±4.373 41.300±0.787 42.405±0.729↑ 41.359±0.985↑
JN 36.509±4.414 38.417±4.068↑ 38.031±3.529↑ 40.296±2.914 40.840±2.880↑ 38.436±3.377↓ 53.763±0.793 53.870±0.981↑ 53.257±0.586↓

M-E BM 54.981±1.147 56.228±2.930↑ 51.357±8.231↓ 40.568±0.984 46.048±1.657↑ 55.818±1.849↑ 71.080±8.802 69.819±5.120↓ 76.533±8.022↑
JN 70.573±8.599 77.762±2.099↑ 77.751±2.702↑ 76.073±3.878 79.390±0.149↑ 78.981±1.198↑ 82.961±4.019 83.692±0.699↑ 82.148±2.758↓

Table 2 Performance evaluation of two return augmentation methods, REAG∗
MV and REAG∗

Dara, integrated
with DT, Reinformer, and QT frameworks in off-dynamics scenarios. The experiments are conducted in the
Walker2D (W2D), Hopper (Hp), and HalfCheetah (Hc) environments under the Medium (M), Medium-
Replay (M-R), and Medium-Expert (M-E) settings. The source environment is modified using two shift
conditions: BodyMass shift (BM) and JointNoise shift (JN). For reference, the table also includes the
performance of the original DT-type methods without augmentation, displayed in gray font. Performance
changes due to augmentation are indicated with red upward arrows (↑) for improvements and green downward
arrows (↓) for degradations compared to the original DT-type methods. All reported values are averaged over
five random seeds (0, 1012, 2024, 3036, 4048).

4.3 Return Augmentation Methods for Off-Dynamics RL261

Here we discuss how to implement REAG∗
MV and REAG∗

Dara in practice. We implement REAG∗
Dara262

based on the dynamics-aware reward augmentation method proposed in Liu et al. (2022). For263

REAG∗
MV, it involves training the CQL model across both the Target and Source Environments to264

derive the respective value functions, denoted as QT and QS . The derived value functions are then265

used to relabel the returns of trajectories in the original dataset. More specifically, the relabeled return266

ĝS is calculated as defined in (3.4). Within this framework, we use µS(s, a) to denote QS(s, a),267

and QT (s, a) corresponds to µT (s, a). For the computation of σS(s, a) and σT (s, a), we employ268

the following methodology: For a given state s, we use the policy of CQL on the source dataset269

to obtain n available actions {aS1 , aS2 , . . . , aSn} given the state s, with the corresponding Q values270

{QS(s, a
S
1 ), QS(s, a

S
2 ), . . . , QS(s, a

S
n)}, and n available actions {aT1 , aT2 , . . . , aTn} in the target271

environment obtained from the CQL policy trained over the target dataset, with the corresponding Q272

values {QT (s, a
T
1 ), QT (s, a

T
2 ), . . . , QT (s, a

T
n′)}. The standard deviations σS(s, a) and σT (s, a) are273

then calculated as specified as follows.274

σS(s, a) = std(QS(s, a
S
1 ), QS(s, a

S
2 ), . . . , QS(s, a

S
n)),

σT (s, a) = std(QT (s, a
T
1 ), QT (s, a

T
2 ), . . . , QT (s, a

T
n )).

For a detailed discussion, please refer to Section 3. As defined in (3.4), computing the ratio σT (s,a)
σS(s,a)275

is essential. However, extreme values of this ratio can lead to instability during training. To address276

this, we introduce a clipping technique that constrains the ratio within an upper bound θ1 and a277

lower bound θ2. This helps stabilize REAG∗
MV training by mitigating two key challenges. First,278

since this ratio depends on the variance of return-to-go in both the source and target environments,279

extreme variance values can introduce large gradients or noisy updates, destabilizing training. Second,280

variance is estimated using the Q-value function learned through CQL on the source and target281

datasets, which may introduce estimation errors. By bounding the ratio within a controlled range,282

clipping reduces the impact of these errors and prevents instability.283

Table 2 presents a performance comparison of the REAG∗
MV and REAG∗

Dara return augmentation284

techniques integrated into different DT-type frameworks, including DT, Reinformer, and QT, in285

off-dynamics scenarios. The results demonstrate that both REAG∗
MV and REAG∗

Dara effectively286

enhance DT-type frameworks, improving performance in most off-dynamics scenarios compared to287

their original, non-augmented counterparts. Specifically, REAG∗
MV, which augments based on return288

values, leverages information from both the source and target environments, making it particularly289
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Figure 1 Average normalized rank scores for all baseline algorithms across the Medium, Medium-Replay,
and Medium-Expert datasets under BodyMass and JointNoise shift settings in the Walker2D, Hopper, and
HalfCheetah environments. Within each setting, algorithms were ranked based on performance, with the
top-performing algorithm assigned a rank of 1. Tied scores received the same rank, with subsequent ranks
adjusted accordingly. Lower rank scores indicate better overall performance. The original ranks (from 19
algorithms) were normalized to a scale of 1 to 19. The figure presents the average normalized rank scores across
the Walker2D, Hopper, and HalfCheetah environments.

a Performance evaluation under varying body mass shift settings in the Walker2D medium environment.

b Performance evaluation under varying body mass shift settings in the Hopper medium environment.

Figure 2 Performance of REAG*
MV and REAG*

Dara algorithms under different body mass shift settings in the
Walker2D and Hopper medium environments. "B-x" denotes that the body mass in the simulator is set to x. The
target body mass is 2.94 in the Walker2D environment and 5 in the Hopper environment.

well-suited for return-based algorithms. In contrast, REAG∗
Dara, which augments based on reward290

values, exhibits more variable performance across different environments and dataset settings. While291

REAG∗
Dara improves performance in certain cases, REAG∗

MV consistently delivers more stable and292

robust improvements.293

DARA is a widely adopted approach for addressing off-dynamics RL problems by introducing reward294

augmentation to enhance policy adaptation from a source dataset to a target environment while295

minimizing reliance on extensive target data. It seamlessly integrates with traditional offline RL296

frameworks such as CQL and BCQ. In our evaluation, we compare our proposed methods against297

DARA-based approaches, including both traditional RL frameworks and their DARA-augmented298

variants, as well as DT-type frameworks with and without REAG∗
MV and REAG∗

Dara augmentation,299

providing a comprehensive assessment of augmentation techniques for off-dynamics adaptation. We300

present a comparative ranking where lower average rank scores indicate better overall performance,301

as shown in Figure 1; for the raw results of each setting, please refer to Appendix E. The results302

demonstrate that DT-type frameworks exhibit strong potential in solving off-dynamics RL prob-303

lems, outperforming traditional offline RL methods, particularly in the case of QT. Return-based304

augmentation techniques further enhance effectiveness, with REAG∗
MV and REAGQT

MV achieving305

state-of-the-art performance compared to other baselines. Additionally, while DARA effectively306

improves the performance of non-return-based offline RL methods, a noticeable gap remains between307

these approaches and DT-type methods.308

4.4 Ablation Studies for Return Augmentation Methods309

In this section, we present an ablation study to examine the key factors influencing the performance310

of REAG∗
Dara and REAG∗

MV. We focus on two aspects—Dynamics Shift and Clipped Augmented311
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a Performance evaluation under varying joint noise
shift settings in the Walker2D medium environment.

b Performance evaluation under varying joint noise
shift settings in the Hopper medium environment.

Figure 3 Performance of REAG*
MV and REAG*

Dara algorithms across varying JointNoise shift settings in the
Walker2D and Hopper medium environments. "J-x" denotes the addition of random noise in the range (-x, +x)
to the action.

Figure 4 Comparison of REAG∗
MV with and without the clipping technique in the Medium Expert setting of the

Walker2D environment under BodyMass shift. Results are averaged over five seeds.

Return—while the analysis of Consistent Augmented Return and Return Learning is deferred to312

Appendix F due to space limitations.313

Dynamics Shift. To evaluate the impact of shifting source environments on REAG∗
MV and314

REAG*
Dara, we assess their performance under various BodyMass and JointNoise shift settings.315

The experimental results are presented in Figure 2 and Figure 3. Our findings indicate that as the316

body mass shift increases—creating a greater discrepancy from the target environment—performance317

deteriorates in both the Walker2D and Hopper Medium environments. Similarly, introducing higher318

levels of action noise leads to a decline in performance, suggesting that increased random noise raises319

the likelihood of failure, ultimately resulting in poorer outcomes. This performance degradation is320

particularly evident in the DT framework, highlighting its sensitivity to off-dynamics shifts, whereas321

Reinformer and QT demonstrate greater robustness. Across all shift experiments, REAG∗
MV con-322

sistently outperforms REAG∗
Dara, with the performance gap becoming especially pronounced under323

larger shifts, such as in the Hopper environment with a body mass shift of 1.25.324

Clipped Augmented Return. For data augmentation in REAG∗
MV, we apply a clipping technique325

to prevent the occurrence of extreme values. To evaluate its impact, we compare the performance326

of REAG∗
MV with and without clipping in the Walker2D, Hopper, and HalfCheetah environments327

under BodyMass shifts with Medium Expert dataset. The results, presented in Figure 4, demonstrate328

that mitigating extreme values generally enhances the performance of REAG∗
MV. Additionally, we329

observe that for REAGQT
MV, clipping does not yield significant improvements compared to DT and330

Reinformer. We hypothesize that this is due to the QT mechanism, which inherently regularizes the331

return, whereas DT and Reinformer lack such a mechanism.332

5 Conclusion and Future Work333

In this work, we introduced the Return-Augmented (REAG) method to improve Decision Trans-334

former–type approaches in off-dynamics reinforcement learning by aligning source-domain returns335

with the target environment. We developed two practical variants, REAG∗
Dara and REAG∗

MV, and336

provided theoretical guarantees showing that REAG trained on source data can achieve the same337

suboptimality as policies trained directly on target data. Empirical results confirm that REAG en-338

hances DT-type baselines and outperforms several dynamic programming–based methods. Overall,339

REAG offers a promising direction for leveraging source-domain data to address challenges in offline,340

off-policy, and off-dynamics RL. Future work may extend REAG to more diverse environments and341

further refine its augmentation strategies.342
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A Related Work433

Off-dynamics reinforcement learning (RL). It is a type of domain adaptation problem in RL,434

drawing on concepts from transfer learning (Pan and Yang, 2009). There are many algorithms435

proposed to solve this problem (Niu et al., 2022; Liu et al., 2024; Xu et al., 2024). One of the436

promising approaches is to modify the reward in the source domain. The DARC algorithm (Eysenbach437

et al., 2020) addresses this domain adaptation challenge in the online setting by proposing a reward438

augmentation method that matches the optimal trajectory distribution between the source and target439

domains. Building on this, DARA (Liu et al., 2022) utilizes reward augmentation to supplement a440

limited target dataset with a larger source dataset. Unlike DARC and DARA, which are based on441

dynamic programming, our work adopts the adaptation setting of DARA and introduces a novel442

augmentation method tailored for RCSL, specifically focusing on the Decision Transformer. PAR443

(Lyu et al., 2024a) learns state encoder and state-action encoder utilizing the dynamics representation444

deviation to augment the reward in online settings.445

Return Conditioned Supervised Learning (RCSL). It is a general framework for powerful446

supervised methods in offline RL (Brandfonbrener et al., 2022). Notable works such as RvS (Emmons447

et al., 2021) and Decision Transformer (DT) (Chen et al., 2021) have shown competitive performance448

compared to traditional RL methods. The core idea of RCSL is to condition policies on a desired449

return. In this paper, we primarily focus on DT, which is a specific instance of RCSL and conducts450

offline RL through sequence generation. The generalization potential of DT has inspired researchers451

to explore its use in various settings. For example, Zheng et al. (2022); Xu et al. (2022) leverage452

the DT in the offline-to-online RL and meta RL respectively. However, no prior work has explicitly453

explored the adaptation capabilities of DT in the off-dynamics RL setting.454

Additional Related Work. Niu et al. (2022); Xu et al. (2024); Gui et al. (2023); Lyu et al., 2024b)455

present recent advancements in off-dynamics RL methods. Specifically, H2O (Niu et al., 2022)456

performs importance weighting and penalizes Q-values with large dynamics gaps in offline-to-online457

settings. VGDF (Xu et al., 2024) filters data based on value consistency in online off-dynamics RL458

scenarios, while CPD (Gui et al., 2023) employs a dynamics alignment module to minimize discrep-459

ancies. PAR (Lyu et al.) addresses the off-dynamics problem by capturing representation mismatches.460

Lyu et al. (2024b) introduces a newly proposed off-dynamics RL benchmark, demonstrating that IQL461

achieves strong performance in off-dynamics RL settings. For cross-domain offline RL methods,462

BOSA (Liu et al., 2024) tackles OOD state actions with policy optimization and OOD dynamics with463

value optimization, IGDF (Wen et al., 2024) selectively shares transitions from the source domain via464

contrastive learning, and SRPO (Xue et al., 2024) learns the stationary state distribution to regularize465

the policy in a new environment.466

B Sample Complexity of Off-Dynamics RCSL467

In this section, we provide the rigorous analysis of the sample complexity of the off-dynamics RCSL.468

To this end, we first define some useful notations. We assume there are NS trajectories in the source469

dataset DS , and NT trajectories in the target dataset DT . Denote PS
β as the joint distribution of state,470

action, reward and return-to-go induced by the behavior policy β in the source environment, and PT
β471

in the target environment. Denote dSπ as the marginal distribution of state s induced by any policy π472

in the source environment, and dTπ in the target environment.473

Denote JT (π) as the expected cumulative reward under any policy π and the target environment. For474

any return-to-go g in the source dataset DS , we transform g by an oracle defined in (3.3) with others475

remain the same, then we get a modified dataset D̃S . We denote the mixed dataset as D = DT ∪ D̃S .476

We first show the sample complexity of DT with only the samples from the target dataset DT . If we477

only use the offline dataset DT collect from the target environment, i.e., at training time we minimizes478

the empirical negative log-likelihood loss:479

L̂T (π) = −
∑

τ∈DT

∑
1≤t≤H

log π(at|st, g(st)).

Then we get the following sample complexity guarantee based on the result in Brandfonbrener et al.480

(2022).481
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Corollary B.1. There exists a conditioning function f : S → R such that assumptions (1)-(3)482

in Assumption 3.1, (1) and (2) in Assumption 3.2 hold. Further assume assumptions (1)-(3) in483

Assumption 3.3 hold. Then for some δ ∈ (0, 1), with probability at least 1− δ, we have484

JT (π⋆)− JT (π̂f ) ≤ O
(Cf

αf
H2

(√
c
( log |Π|/δ

NT

)1/4

+
√
ϵapprox

)
+

ϵ

αf
H2

)
.

Now we consider the case of mixed dataset, where we train our policy on both the target dataset and485

the source dataset using the proposed returned conditioned decision transformer methods. Note that486

the size of the target environment dataset is usually small, while the size of the source environment487

dataset is much larger, that is, NT ≪ NS . If we incorporate the modified source dataset into the488

supervised learning, that is, we minimize the following empirical negative log-likelihood loss:489

L̂mix(π) = −
∑
τ∈D

∑
1≤t≤H

log π(at|st, g(st)). (B.1)

An observation is that, with the modified source dataset, the regret JT (π⋆) − JT (π̂f ) can be490

significantly reduced. We state this observation in the following theorem, which is the formal version491

of Theorem 3.4.492

Theorem B.2. There exists a conditioning function f such that Assumptions 3.1 and 3.2 hold. Further493

assume Assumption 3.3 holds. Then for some δ ∈ (0, 1), with probability at least 1− δ, we have494

JT (π⋆)− JT (π̂f ) ≤ O
(Cf

αf

NS +NT

NS/γf +NT
H2

(√
c
( log |Π|/δ
NT +NS

)1/4

+
√
ϵapprox

)
+

ϵ

αf
H2

)
.

(B.2)

Remark B.3. Compared to Corollary B.1, Theorem B.2 suggests that the modified samples from495

the source domain could enhance the performance of RCSL when the domain occupancy overlap496

coefficient γf is large. In particular, when NS ≫ NT and γf = O(1), (B.2) can be simplified to497

JT (π⋆)− JT (π̂f ) ≤ O
(Cf

αf
H2

(√
c
( log |Π|/δ

NS

)1/4

+
√
ϵapprox

)
+

ϵ

αf
H2

)
,

which significantly improves the bound on suboptimality in Corollary B.1.498

C Proof of Theorem B.2499

Lemma C.1 (Corollary 1 of Brandfonbrener et al. (2022)). Under the assumptions in Assumption 3.1,500

there exists a conditioning function such that501

JT (π⋆)− JT (πRCSL
f ) ≤ ϵ

( 1

αf
+ 3

)
H2.

Lemma C.2 (Lemma 1 of Brandfonbrener et al. (2022)). For any two policies π, π′, we have502 ∥∥dTπ − dTπ′

∥∥
1
≤ 2H · Es∼dT

π

[
TV (π(·|s)||π̂(·|s))

]
.

We define dmix
β = NT

NT+NS d
T
β + NS

NT+NS d
S
β . Define

L(π̂) = Es∼dmix
β ,g∼PT

β (·|s)
[
DKL

(
PT
β (·|s, g)||π̂(·|s, g)

)]
.

Theorem C.3. Consider any function f : S → R such that the assumptions in Assumption 3.2 hold.503

Then for any estimated RCSL policy π̂ that conditions on f at test time (denoted by π̂f ), we have504

JT (πRCSL
f )− JT (π̂f ) ≤

Cfγf
αf

H2
√

2L(π̂).

Proof. By definition and Lemma C.2, we have505

JT (πf )− JT (π̂f ) = H
(
EPT

πf
[r(s, a)]− EPT

π̂f

[r(s, a)]
)

≤ H · ∥dπf
− dπ̂f

∥1
≤ 2 · Es∼dT

πf

[
TV (πf (·|s)||π̂f (·|s))

]
H2.
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Next, we have506

2 · Es∼dT
πf

[
TV (πf (·|s)||π̂f (·|s))

]
= Es∼dT

πf

[ ∫
a

∣∣PT
β (a|s, f(s))− π̂(a|s, f(s))|

∣∣]
= Es∼dT

πf

[PT
β (f(s)|s)
PT
β (f(s)|s)

∫
a

∣∣PT
β (a|s, f(s))− π̂(a|s, f(s))|

∣∣]
≤ 2

Cf

αf
Es∼dT

β ,g∼PT
β (·|s)

[
TV (PT

β (a|s, f(s))||π̂(a|s, f(s)))
]

≤ 2
Cf

αf

NS +NT

NS/γf +NT
· Es∼dmix

β ,g∼PT
β (·|s)

[
TV (PT

β (a|s, f(s))||π̂(a|s, f(s)))
]

≤ Cf

αf

NS +NT

NS/γf +NT
· Es∼dmix

β ,g∼PT
β (·|s)

[√
2KL(PT

β (a|s, f(s))||π̂(a|s, f(s)))
]

≤ Cf

αf

NS +NT

NS/γf +NT

√
2L(π̂).

507

Proof of Theorem B.2. Following the same argument in the proof of Corollary 3 in Brandfonbrener508

et al. (2022), we have509

JT (πRCSL
f )− JT (π̂f ) ≤ O

(
2
Cf

αf

NS +NT

NS/γf +NT
H2

(√
c
( log |Π|/δ
NS +NT

)1/4

+
√
ϵapprox

))
.

Invoking Lemma C.1, we have510

JT (π⋆)− JT (π̂f ) ≤ O
(
2
Cf

αf

NS +NT

NS/γf +NT
H2

(√
c
( log |Π|/δ
NT +NS

)1/4

+
√
ϵapprox

)
+

ϵ

αf
H2

)
.

This completes the proof.511

D Detailed Experiment Setting512

D.1 Environment and Dataset513

In this section, we provide details of the environments and datasets used in our experiments. We evalu-514

ate our approaches in the Hopper, Walker2D, and HalfCheetah environments, using the corresponding515

environments from Gym as our target environments.516

D.1.1 Target Environment Dataset Creation517

For the target datasets, we construct two distinct datasets: one containing a smaller amount of data518

(1T) and another with a larger amount (10T). The 10T dataset consists of ten times the number of519

trajectories as the 1T dataset.520

Both Liu et al. (2022) and our work aim to demonstrate the following two key points:521

• The 10T dataset represents high-quality data, whereas the 1T dataset represents lower-quality522

data due to its smaller size.523

• Off-dynamics RL algorithms can enhance performance on 1T by effectively leveraging 10S524

source domain data through appropriate data augmentation.525

Liu et al. (2022) creates the 1T dataset by splitting the original target dataset (10T) based on timesteps,526

selecting the last 1/10 timesteps as 1T. However, this approach introduces unintended bias in the527

Medium Replay setting, where offline trajectories are collected from a replay buffer in which the528

behavior policy improves over time. Consequently, the final 1/10 timesteps tend to exhibit a higher529

average return than the overall 10T dataset, undermining the intended quality distinction between 1T530

and 10T.531
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To address this issue and ensure a fair evaluation of off-dynamics RL algorithms, we propose a532

uniform sampling method across trajectories in the target dataset. This approach ensures that the533

sampled 1T dataset is a representative subset of the target data, free from biases introduced by534

timestep-based selection. Notably, our method produces a 1T dataset of lower quality than that of Liu535

et al. (2022) in medium replay setting. If an off-dynamics RL algorithm can significantly improve536

performance on our 1T dataset and achieve results comparable to the original 10T dataset, it would537

serve as a more rigorous evaluation and a stronger indicator of the algorithm’s effectiveness.538

D.1.2 Source Environment Dataset Creation539

We employ BodyMass shift, JointNoise shift to construct the source environments. The following540

descriptions provide detailed insights into the process of creating these source environments.541

• BodyMass Shift: The body mass of the agents is modified by adjusting the mass parameters542

in the Gym environment. Detailed body mass settings are provided in Table 3.543

• JointNoise Shift: Noise is introduced to the agents’ joints by adding perturbations to the544

actions during source data collection. Specifically, the noise is sampled uniformly from the545

range [−0.05,+0.05] and applied to the actions when generating the source offline dataset.546

Detailed joint noise settings are provided in Table 3.547

For the source datasets, we utilize the BodyMass Shift and JointNoise Shift datasets from (Liu et al.,548

2022). Additionally, in our ablation study, we explore variations of BodyMass and JointNoise shifts549

beyond those specified in Table 3. We also collect medium-level source datasets for the Hopper,550

Walker2D, and HalfCheetah environments. Behavior policies are generated by training agents with551

SAC using rlkit (https://github.com/vitchyr/rlkit), with checkpoints used for dataset collection. We552

construct the Random, Medium, Medium Replay, and Medium Expert datasets, each reflecting553

different performance levels determined by their corresponding SAC checkpoints. For the JointNoise554

Shift setting, instead of training a new SAC policy and collecting data through environment interaction,555

we introduce random noise within a specified range directly to the actions.

Table 3 BodyMass Shift and JointNoise Shift in Hopper, Walker2D and HalfCheetah.

Hopper Walker2D HalfCheetah
BodyMass JointNoise BodyMass JointNoise BodyMass JointNoise

Source mass[-1]=2.5 action[-1]+noise mass[-1]=1.47 action[-1]+noise mass[4]=0.5 action[-1]+noise
Target mass[-1]=5.0 action[-1]+0 mass[-1]=2.94 action[-1]+0 mass[4]=1.0 action[-1]+0

556

D.2 Baselines557

In our experiments, we use BEAR (Kumar et al., 2019), AWR (Peng et al., 2019), BCQ (Fujimoto558

et al., 2019), CQL (Kumar et al., 2020), and MOPO (Yu et al., 2020), along with their DARA-559

augmented variants (Liu et al., 2022), as baseline methods. We compare these baselines against560

DT (Chen et al., 2021), Reinformer (Zhuang et al., 2024), and QT (Hu et al., 2024), as well as our561

proposed REAG approaches.562

D.3 Hyperparameters563

In this section, we outline the hyperparameters used for our REAG methodologies. The REAG564

approaches begin with dataset augmentation using either the DARA algorithm (REAG∗
Dara) or the565

Direct Matching of Return Distributions technique (REAG∗
MV). The augmented dataset is then566

used to train the DT-type frameworks, which is subsequently evaluated in the target environment.567

Specifically, for REAG∗
Dara, dataset augmentation follows the DARA algorithm, with its corresponding568

hyperparameters provided in Table 4. For REAG∗
MV, the augmentation process is described in569

Section 4.3, where a well-trained Conservative Q-Learning (CQL) model estimates state values,570

incorporating a clipping mechanism to mitigate extreme values. The hyperparameters for CQL571

training are provided in Table 5, the clipping ratios are listed in Table 6, and the training parameters572

for DT, Reinformer, and QT adhere to the settings from their respective original papers.573
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Table 4 Hyperparameters used in
the DARA algorithm.

Hyperparameter Value
SA Discriminator MLP Layers 4

SAS Discriminator MLP Layers 4
Hidden Dimension 256

Nonlinearity Function ReLU
Optimizer RMSprop
Batch Size 256

Learning Rate 3× 10−4

∆r Coefficient η 0.1

Table 5 Hyperparameters used
in the CQL algorithm.

Hyperparameter Value
Actor MLP Layers 3
Critic MLP Layers 3
Hidden Dimension 256

Nonlinearity Function ReLU
Optimizer Adam
Batch size 256

Discount Factor 0.99
Temperature 1.0

Actor Learning rate 1× 10−4

Critic Learning rate 3× 10−4

Table 6 Hyperparameters for the
Clipping Technique Employed in
the REAG∗

MV Algorithm.
Dataset Clipping Ratio

Walker2D Random 0.9 < θ < 1.25
Walker2D Medium 0.9 < θ < 1.25

Walker2D Medium Replay 0.9 < θ < 1.25
Walker2D Medium Expert 0.9 < θ < 1.25

Hopper Random 0.9 < θ < 1
Hopper Medium 0.9 < θ < 1

Hopper Medium Replay 0.9 < θ < 1
Hopper Medium Expert 0.9 < θ < 1
HalfCheetah Random 0.67 < θ < 1.5
HalfCheetah Medium 0.67 < θ < 1.5

HalfCheetah Medium Replay 0.67 < θ < 1.5
HalfCheetah Medium Expert 0.67 < θ < 1.5

BEAR AWR BCQ CQL
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

W2D 1T 4.638±3.882 0.777±0.105 9.267±1.692 68.023±1.687 28.426±2.974 100.566±0.513 62.567±2.459 60.638±0.683 101.610±1.309 65.618±2.818 57.402±6.161 101.611±0.143

10T 13.143±3.016 5.852±0.168 21.383±1.237 78.060±0.772 58.286±1.684 109.154±0.976 74.735±1.184 64.735±2.555 101.840±1.962 78.191±1.839 80.145±2.286 101.840±0.467

Hp 1T 8.770±0.402 5.264±0.283 31.968±1.213 55.269±2.254 54.259±1.295 54.098±1.165 63.308±0.418 68.448±0.251 62.287±1.689 74.489±1.061 71.401±2.106 82.071±0.483

10T 20.398±2.102 5.554±0.842 88.236±2.192 64.494±2.217 57.548±1.778 105.361±1.392 73.462±2.527 60.385±0.418 102.775±1.912 82.945±0.323 73.168±2.712 102.071±1.759

Hc 1T 2.659±0.167 1.602±0.275 3.089±0.104 41.672±0.732 28.023±4.027 90.168±1.398 41.051±2.908 25.828±6.142 60.173±4.175 44.393±0.263 26.955±1.274 61.621±13.093

10T 10.657±0.271 19.588±0.453 16.160±0.208 42.209±0.611 41.041±0.729 90.212±2.259 46.188±0.423 38.575±2.060 95.535±4.042 49.382±0.338 46.966±0.372 87.683±7.753

MOPO DT Reinformer QT
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

W2D 1T 20.953±2.715 20.313±3.488 20.569±0.983 67.261±2.316 34.482±5.890 107.171±1.611 79.034±1.506 38.072±9.174 103.284±5.437 81.756±1.671 67.546±9.505 111.722±1.398

10T 22.261±2.811 18.529±1.760 21.196±3.103 79.697±3.348 68.528±1.924 108.622±1.815 81.377±1.903 68.168±2.661 109.845±0.726 88.262±12.886 85.092±8.727 111.394±0.469

Hp 1T 31.038±2.868 5.849±0.146 35.099±1.212 66.073±1.745 61.686±2.592 100.719±1.679 74.737±4.807 36.008±6.575 60.753±14.433 70.927±6.482 83.406±4.734 108.225±5.596

10T 32.769±1.788 8.638±1.395 36.161±2.204 85.589±5.311 69.701±5.317 108.087±1.049 77.792±4.652 39.856±12.334 79.389±28.054 90.176±0.186 100.321±1.121 112.908±3.154

Hc 1T 64.329±2.096 12.277±1.953 25.055±7.834 41.204±0.430 15.164±4.847 77.500±3.323 42.958±0.065 18.493±1.584 72.085±3.491 50.464±0.127 32.318±2.435 87.854±6.657

10T 65.863±1.289 59.724±1.056 28.221±6.078 42.273±0.379 34.508±1.482 82.844±7.635 43.243±0.262 39.434±0.362 87.378±3.340 51.284±0.605 49.587±0.334 94.116±0.321

Table 7 Performance comparison of algorithms on the 1T and 10T datasets. The experiments are conducted in
the Walker2D (W2D), Hopper (Hp), and HalfCheetah (Hc) using the Medium (M), Medium Replay (M-R),
and Medium Expert (M-E) datasets. All reported values are averaged over five seeds (0, 1012, 2024, 3036,
4048).

E Additional Experiments Results574

This section presents more comprehensive experimental results, including additional variance infor-575

mation.576

In Table 1, we present the partial performance of various algorithms and their DARA variants in577

the Walker2D medium environment under BodyMass and JointNoise shift settings, considering578

both limited and sufficient target data scenarios. The complete experimental results are provided579

in Table 7. Additionally, Table 8 and Table 9 present a comprehensive comparison of different580

algorithms and their corresponding augmented variants in addressing the off-dynamics problem581

across various environments and shift settings.582

F Ablation Study583

Consistent Augmented Return. It is worth noting that our augmented target returns do not satisfy584

the consistency condition, which requires that the augmented returns follow Rt+1 − Rt = rt, as585

enforced by the original DT. To verify whether consistency is a necessary condition for augmentation586

in off-dynamics settings, we conduct the following ablation study. Specifically, we introduce a variant587

of REAG∗
MV, denoted as REAG∗

MV (consistent), where for each trajectory in the target environment,588

return augmentation is applied only to the initial return, while all subsequent augmented returns589

are derived using the consistency condition Rt+1 − Rt = rt. The results, presented in Figure 5,590

indicate that REAG∗
MV outperforms its consistency-enforced variant in most cases. This finding591

suggests that enforcing consistency does not necessarily improve performance; instead, it may limit592

the effectiveness of REAG∗
MV in the context of off-dynamics offline reinforcement learning.593

Return Learning. To evaluate the learned value functions, QS and QT , and their impact on594

REAG∗
MV, we conduct an ablation experiment. Specifically, we assess the quality of the learned595
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BEAR AWR BCQ CQL MOPO D-BEAR D-AWR D-BCQ D-CQL D-MOPO

Walker2D M
BM 5.776 ± 1.653 77.442 ± 0.340 70.681 ± 0.539 73.317 ± 1.368 21.617 ± 1.277 6.516 ± 3.220 78.004 ± 0.911 72.023 ± 0.695 74.276 ± 2.582 21.621 ± 1.063

JN 4.926 ± 1.418 67.636 ± 1.468 62.696 ± 1.037 68.962 ± 0.865 23.552 ± 1.063 6.933 ± 1.884 64.303 ± 0.513 60.681 ± 1.118 69.141 ± 0.944 23.57 ± 0.665

Walker2D M-R
BM 0.0668 ± 4.951 47.033 ± 2.278 50.714 ± 1.918 54.753 ± 0.335 11.563 ± 2.751 1.078 ± 2.083 32.008 ± 1.286 51.447 ± 3.108 57.432 ± 0.764 12.129 ± 2.755

JN 0.474 ± 0.719 31.623 ± 2.551 50.601 ± 1.611 50.600 ± 1.589 11.379 ± 0.596 0.384 ± 3.823 36.807 ± 2.442 50.714 ± 0.876 51.742 ± 1.061 15.389 ± 0.559

Walker2D M-E
BM 19.799 ± 3.116 110.324 ± 1.053 112.343 ± 1.488 107.187 ± 3.209 18.324 ± 0.708 17.491 ± 2.844 109.743 ± 2.632 113.069 ± 1.602 105.401 ± 2.186 20.741 ± 0.399

JN 14.225 ± 1.338 104.662 ± 2.370 112.926 ± 1.491 104.019 ± 0.294 17.429 ± 0.639 14.203 ± 1.602 108.915 ± 1.915 111.249 ± 1.092 108.236 ± 1.206 19.325 ± 3.119

Hopper M
BM 22.436 ± 0.103 25.843 ± 0.325 24.853 ± 1.615 49.094 ± 2.207 20.765 ± 3.350 25.608 ± 1.063 26.594 ± 1.267 26.487 ± 1.366 45.101 ± 0.342 21.495 ± 0.848

JN 8.536 ± 1.965 57.021 ± 0.938 74.559 ± 0.605 71.495 ± 0.126 23.556 ± 1.327 10.576 ± 2.052 61.463 ± 0.702 74.853 ± 0.626 63.611 ± 1.136 24.992 ± 0.944

Hopper M-R
BM 6.282 ± 0.132 55.607 ± 2.310 64.519 ± 0.813 66.455 ± 0.636 5.504 ± 1.701 2.619 ± 0.128 44.883 ± 1.595 64.168 ± 0.291 68.163 ± 0.559 5.482 ± 1.061

JN 1.841 ± 3.814 37.821 ± 1.205 65.103 ± 0.703 61.302 ± 1.207 5.498 ± 0.568 5.637 ± 0.291 63.937 ± 3.879 64.519 ± 1.102 63.178 ± 1.218 6.147 ± 0.157

Hopper M-E
BM 22.934 ± 3.022 57.595 ± 0.612 109.367 ± 0.834 70.467 ± 2.712 30.541 ± 3.616 31.090 ± 0.463 78.262 ± 0.239 110.014 ± 2.153 72.149 ± 1.934 30.540 ± 0.842

JN 39.031 ± 1.079 74.708 ± 1.889 108.639 ± 2.028 72.512 ± 0.781 30.537 ± 0.842 33.052 ± 0.385 60.952 ± 0.879 111.587 ± 1.602 94.128 ± 1.213 32.589 ± 1.985

HalfCheetah M
BM 5.431 ± 1.518 42.293 ± 0.862 39.835 ± 0.427 37.081 ± 0.358 58.457 ± 1.449 6.009 ± 1.705 41.800 ± 0.830 39.333 ± 0.506 37.189 ± 0.218 59.311 ± 0.949

JN 1.948 ± 1.058 41.992 ± 0.762 50.511 ± 0.371 49.046 ± 0.420 61.073 ± 0.315 2.901 ± 0.402 42.545 ± 0.731 52.149 ± 0.457 49.284 ± 0.570 61.447 ± 0.734

HalfCheetah M-R
BM 7.425 ± 1.307 15.988 ± 5.339 32.553 ± 1.258 37.508 ± 0.520 50.429 ± 1.306 4.909 ± 0.562 17.918 ± 3.701 32.095 ± 1.258 37.721 ± 0.440 52.609 ± 0.621

JN 18.337 ± 0.498 31.742 ± 4.199 46.567 ± 2.563 51.566 ± 0.246 51.918 ± 1.584 17.929 ± 0.479 38.125 ± 1.775 49.066 ± 0.645 52.991 ± 0.438 51.258 ± 1.709

HalfCheetah M-E
BM 4.356 ± 0.431 88.155 ± 1.836 61.771 ± 4.610 61.104 ± 4.131 51.040 ± 4.461 2.948 ± 0.691 89.201 ± 2.419 63.465 ± 3.303 62.665 ± 5.326 56.616 ± 2.609

JN 3.195 ± 0.391 88.647 ± 2.669 62.486 ± 10.025 84.090 ± 1.109 54.630 ± 10.104 8.789 ± 0.271 89.220 ± 1.800 71.007 ± 4.201 84.210 ± 0.506 60.014 ± 7.011

Table 8 Performance comparison of traditional offline reinforcement learning algorithms, including BEAR,
AWR, BCQ, CQL, and MOPO, along with their DARA-augmented variants, under BodyMass and JointNoise
distribution shifts in the Walker2D, Hopper, and HalfCheetah environments. Evaluations are conducted using
the Medium (M), Medium Replay (M-R), and Medium Expert (M-E) settings of the 1T10S dataset. The 1T10S
dataset comprises a 1T (target) dataset and a 10S (source) dataset. "D-XX" denotes the DARA-augmented
variant of the ’XX’ algorithm.

DT Reinformer QT REAGDT
MV REAGReinf

MV REAGQT
MV REAGDT

Dara REAGReinf
Dara REAGQT

Dara

Walker2D M
BM 78.768 ± 1.233 80.857 ± 0.509 84.325 ± 0.425 80.857 ± 1.715 82.354 ± 1.479 84.582 ± 0.507 78.257 ± 2.423 80.666 ± 0.505 83.068 ± 0.859

JN 71.068 ± 1.022 74.748 ± 1.721 80.621 ± 1.143 75.008 ± 1.834 75.008 ± 0.986 80.904 ± 1.502 71.779 ± 1.706 74.268 ± 1.341 78.672 ± 2.201

Walker2D M-R
BM 73.664 ± 1.920 67.032 ± 5.767 87.292 ± 0.631 73.708 ± 1.570 50.296 ± 14.211 87.491 ± 1.226 67.565 ± 0.799 66.658 ± 4.303 76.169 ± 7.567

JN 58.255 ± 3.181 54.801 ± 3.217 82.139 ± 1.029 55.722 ± 2.653 47.591 ± 10.244 82.363 ± 4.206 62.226 ± 0.383 55.438 ± 4.833 79.795 ± 4.708

Walker2D M-E
BM 84.430 ± 0.823 83.388 ± 0.806 93.082 ± 0.348 88.235 ± 1.886 84.897 ± 1.117 92.744 ± 0.499 85.328 ± 0.865 83.761 ± 0.735 94.578 ± 1.383

JN 115.746 ± 1.116 117.360 ± 2.550 116.149 ± 1.640 111.060 ± 2.247 118.218 ± 1.460 118.564 ± 0.697 111.236 ± 0.914 117.765 ± 2.499 116.115 ± 1.889

Hopper M
BM 34.057 ± 0.177 51.357 ± 3.713 49.516 ± 9.798 39.435 ± 1.239 59.085 ± 2.791 51.796 ± 9.971 37.787 ± 1.914 51.771 ± 5.322 62.262 ± 5.348

JN 70.685 ± 0.726 70.340 ± 4.633 68.656 ± 7.079 70.356 ± 3.657 72.346 ± 5.877 73.987 ± 8.080 78.325 ± 2.522 70.466 ± 3.728 68.709 ± 12.160

Hopper M-R
BM 64.216 ± 1.504 17.534 ± 6.725 69.460 ± 13.948 66.092 ± 0.233 20.952 ± 9.794 76.287 ± 7.810 60.393 ± 1.086 27.238 ± 12.735 82.786 ± 11.992

JN 61.870 ± 0.249 41.820 ± 15.773 93.704 ± 7.559 77.825 ± 1.638 43.985 ± 5.075 93.409 ± 4.696 83.525 ± 1.728 52.052 ± 10.035 51.456 ± 12.168

Hopper M-E
BM 33.554 ± 0.846 68.973 ± 7.512 61.162 ± 3.767 52.873 ± 0.454 64.206 ± 12.073 73.952 ± 16.294 33.631 ± 1.605 73.363 ± 7.674 77.279 ± 18.607

JN 108.254 ± 1.583 109.256 ± 0.126 109.056 ± 0.214 109.367 ± 1.084 109.472 ± 0.103 109.803 ± 0.609 108.261 ± 2.612 109.255 ± 0.188 109.746 ± 0.771

HalfCheetah M
BM 39.954 ± 0.260 37.353 ± 0.483 44.656 ± 0.643 40.250 ± 0.911 42.451 ± 0.491 47.303 ± 0.318 37.599 ± 0.395 38.261 ± 1.238 46.383 ± 0.358

JN 47.725 ± 0.431 48.274 ± 0.191 56.213 ± 0.327 44.149 ± 3.672 43.009 ± 0.307 52.394 ± 1.413 47.833 ± 0.284 48.404 ± 0.168 55.026 ± 0.410

HalfCheetah M-R
BM 20.966 ± 9.607 31.584 ± 1.248 41.300 ± 0.787 27.812 ± 3.256 32.114 ± 1.455 42.405 ± 0.729 24.059 ± 2.271 26.995 ± 4.373 41.359 ± 0.985

JN 36.509 ± 4.414 40.296 ± 2.914 53.763 ± 0.793 38.417 ± 4.068 40.840 ± 2.880 53.870 ± 0.981 38.031 ± 3.529 38.436 ± 3.377 53.257 ± 0.586

HalfCheetah M-E
BM 54.981 ± 1.147 40.568 ± 0.984 71.008 ± 8.802 56.228 ± 2.930 46.048 ± 1.657 69.819 ± 5.120 51.357 ± 8.231 55.818 ± 1.849 76.533 ± 8.022

JN 70.573 ± 8.599 76.073 ± 3.878 82.961 ± 4.019 77.762 ± 2.099 79.390 ± 0.149 83.692 ± 0.699 77.751 ± 2.702 78.981 ± 1.198 82.148 ± 2.758

Table 9 Performance comparison of traditional offline reinforcement learning algorithms, including DT, Re-
informer and QT, along with our proposed methods REAGDT

MV, REAGDT
Dara, REAGReinf

MV , REAGReinf
Dara , REAGQT

MV

and REAGQT
Dara under BodyMass and JointNoise distribution shifts in the Walker2D, Hopper, and HalfCheetah

environments. Evaluations are conducted using the Medium (M), Medium Replay (M-R), and Medium Expert
(M-E) settings of the 1T10S dataset. The 1T10S dataset comprises a 1T (target) dataset and a 10S (source)
dataset.

value functions in both the source and target domains. We select the Hopper environment with a596

medium-expert offline dataset as the target domain and the BodyMass shift as the source domain.597

Ideally, the value functionsQS andQT learned through REAG∗
MV should accurately reflect the returns598

of trajectories in their respective domains. To verify this, we train two additional DTs separately on599

the source and target offline datasets to obtain policies for these environments. Using these policies,600

we generate test trajectories through rollouts and then leverage the learned value functions QS and601

QT , trained on the 10S and 1T datasets, to predict the returns of these test trajectories. By comparing602

the predicted returns with the actual returns, we assess the accuracy of the learned value functions. As603

shown in Figure 6, our learned value functionsQS andQT accurately reflect the returns of trajectories604
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Figure 5 Comparison of REAG∗
MV and REAG∗

MV(consistent) across Medium, Medium Replay, and Medium
Expert settings in the Walker2D environment under BodyMass shift. Results are averaged over five seeds.

a Comparison between cumulative rewards and esti-
mated QS values in the source environment with 100
trajectories.

b Comparison between cumulative rewards and esti-
mated QT values in the target environment with 100
trajectories.

Figure 6 Comparison of the cumulative returns and the learned Q-values for the source (left) and target (right)
environments using CQL. Results are plotted with the mean and variance of 100 trajectories.

collected by the policies in the source and target environments, demonstrating that the Q-values used605

in our approach serve as reliable approximations.606
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