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Abstract

We study offline off-dynamics reinforcement learning (RL) to utilize data from
an easily accessible source domain to enhance policy learning in a target domain
with limited data. Our approach centers on return-conditioned supervised learning
(RCSL), particularly focusing on Decision Transformer (DT) type frameworks,
which can predict actions conditioned on desired return guidance and complete tra-
jectory history. Previous works address the dynamics shift problem by augmenting
the reward in the trajectory from the source domain to match the optimal trajectory
in the target domain. However, this strategy can not be directly applicable in RCSL
owing to (1) the unique form of the RCSL policy class, which explicitly depends
on the return, and (2) the absence of a straightforward representation of the optimal
trajectory distribution. We propose the Return Augmented (REAG) method for DT
type frameworks, where we augment the return in the source domain by aligning
its distribution with that in the target domain. We provide the theoretical analysis
demonstrating that the RCSL policy learned from REAG achieves the same level
of suboptimality as would be obtained without a dynamics shift. We introduce
two practical implementations REAGY,,., and REAGy;y respectively. Thorough
experiments on D4RL datasets and various DT-type baselines demonstrate that
our methods consistently enhance the performance of DT type frameworks in
off-dynamics RL.

1 Introduction

Off-dynamics reinforcement learning (Eysenbach et al., 2020; Jiang et al., 2021; Liu et al., 2022; Liu
and Xu, 2024; Guo et al., 2025) arises in decision-making domains such as autonomous driving (Pan
et al., 2017) and medical treatment (Laber et al., 2018; Liu et al., 2023), where direct policy training
through trial-and-error in the target environment is often costly, unethical, or infeasible. A common
strategy is to train the policy in source environments with similar but more accessible dynamics.
However, discrepancies between the source and target environments create a simulation-to-reality
(sim-to-real) gap, which can lead to catastrophic failures when deploying the source-trained policy in
the target environment.

Beyond the challenge of dynamics shift, practical scenarios often do not allow real-time online
interaction with the source environment due to time and computational constraints. As a result,
policies must be learned from pre-collected datasets generated by behavior policies. This setting is
particularly difficult, as it combines off-policy, offline, and off-dynamics characteristics. Recently,
supervised learning—based methods (Chen et al., 2021; Brandfonbrener et al., 2022) have emerged as
more stable and scalable alternatives to traditional offline reinforcement learning algorithms grounded
in dynamic programming (Levine et al., 2020). In the offline off-dynamics setting, the majority of
training data is drawn from the source domain, with only a limited portion collected from the target
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domain. Our study focuses on advancing Decision Transformer (DT) type frameworks (Chen et al.,
2021; Hu et al., 2024; Zhuang et al., 2024) for off-dynamics reinforcement learning, which can be
viewed as a special case of return-conditioned supervised learning (RCSL) (Emmons et al., 2021;
Brandfonbrener et al., 2022). While DT-type methods have gained significant attention across various
reinforcement learning tasks, no prior work has explicitly tackled the off-dynamics RL problem.

There are several previous significant works in off-dynamics reinforcement learning that employ
reward augmentation to address the dynamics shift between source and target environments (Ey-
senbach et al., 2020; Liu et al., 2022). In particular, Eysenbach et al. (2020) proposed the DARC
algorithm to train a policy in the source domain using augmented rewards. These augmentations
are derived by minimizing the KL distance between the distribution of trajectories generated by the
learning policy in the source domain and those generated by the optimal policy in the target domain.
Liu et al. (2022) extended this idea to the offline setting with the DARA algorithm. However, these
reward augmentation techniques for dynamic programming based RL algorithms are not directly
applicable to RCSL methods for two primary reasons. First, the policy classes used in RCSL methods
explicitly depend on the conditional return-to-go function, leading to different trajectory distributions
that invalidate the trajectory matching methods. Second, the augmentation techniques in Eysenbach
et al. (2020); Liu et al. (2022) explicitly rely on the form of the optimal trajectory distribution in the
target domain. In contrast, there is no straightforward representation of the optimal RCSL policy and
the trajectory distribution. Therefore, novel augmentation mechanisms must be derived for RCSL
methods to effectively address off-dynamics reinforcement learning.

In this work, we propose the Return Augmented (REAG) algorithm, which augments the returns of
trajectories from the source environment to align with the target environment in DT type framework.
Through rigorous analysis, we show that the RCSL policy learned with REAG in the source domain
achieves suboptimality comparable to that learned directly in the target domain without dynamics
shift. Specifically, our contributions are summarized as follows:

* We propose a novel method, Return Augmented (REAG), designed specifically for DT-type algo-
rithms. The approach augments the returns of offline trajectories in the source domain by leveraging
a small amount of data from the target domain. We develop two practical implementations of REAG:
REAG},,,,, derived from reward augmentation techniques used in dynamic programming—based
methods, and REAGy;y from direct return distribution matching.

* We provide a rigorous theoretical analysis demonstrating that the return-conditioned policy learned
from REAG can achieve the same suboptimality as a policy learned directly from the target domain.
Our analysis relies on the same data coverage assumptions made by Brandfonbrener et al. (2022)
where there is no dynamics shift, implying that return augmentation could enhance the performance
of RCSL in off-dynamics RL when the available source dataset size is much larger than the available
target dataset size.

* We conduct experiments on the D4RL benchmark by training policies on source datasets collected
from modified dynamics and evaluating them in the original environments. Across DT-type
baselines—including DT (Chen et al., 2021), Reinformer (Zhuang et al., 2024) and QT (Hu et al.,
2024)—both REAGY,,,, and REAGy;y consistently improve performance, with REAGyy showing
the greatest gains, highlighting the advantage of return-level augmentation.

2 Preliminary

Sequential Decision-Making. We consider a general sequential decision-making problem. At
each step ¢, the agent receives an observation o; from the environment. Based on the history up
to step t, the agent makes action a, and receives the reward r; from the environment. The agent
interacts with the environment in episodes with a length H. We use 7 = (01, 41,71, , OH, G, T'H )

to denote a whole trajectory, and we use g(7) = ZtH: 1 7't to denote the cumulative return of the
trajectory. We model the environment as a Markov Decision Process (MDP) M, which consists of
(S, A,p,r, H). Here S is the state space, each state s represents the possible history up to some time
step ¢, i.e., s = (01,a1,71,- -+ ,01). As the action space, p(s’|s, a) is the transition dynamics that
determines the transition probability for the agent to visit state s’ from current state s with the action
a. (s, a) denotes the reward function. We re-define a trajectory as 7 = (s1,a1,71, - ,SH, Gy, TH).
We assume that each s corresponds to one single time step ¢ = ¢(s), and we denote g.(s) =
E,~x[g(7)|s1 = s]. Then the goal of the agent is to learn a policy 7 : § — A4 that maximizes the
expected accumulated reward J () := E,.[g(7)]. We denote the optimal policy as 7*.
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Offline RL and Decision Transformer. We consider the offline reinforcement learning setting.
Given a dataset D, the goal of the agent is to learn 7* from D. We assume that the trajectories in D
are generated from a behavior policy (5. In this work, we mainly consider Decision Transformer (DT)
(Chen et al., 2021) as our backbone algorithm. DT is a type of sequential modeling technique based
on Transformer (Vaswani et al., 2017) to solve offline RL problems. In detail, DT maintains a function
m(als, g) as its policy function. To train the plolicy 7, DT aims to minimize the following negative
log-likelihood function () := L(7) := — Y orep 2o<i<m logm(aclst, g(7)). To evaluate 7, DT
defines a conditioning function f : S — R, which maps each state to a return value and guides
the policy 7y within the environment, where 7 (a|s) := m(a|s, f(s)). The conditioning function is
pivotal in DT, as varying f(s) for a given state s results in different policies. To achieve the optimal
policy, f(s) should be maximized (Zhuang et al., 2024).

Offline Off-Dynamics RL. In this work, we consider the offline off-dynamics RL problem, where
the agent has access to two offline datasets D° and D”. D, DT include the data collected from the
source environment M*® and the target environment M” . The source and the target environments
share the same reward function r, with different transition dynamics pS and pT. In practice, we
assume that the dataset size from the source dataset |D®| is much larger than the data coming from
the target dataset | D7 |. Then the agent aims to find the optimal policy for the target environment M T
based on the data from both the source and the target environments. Since the transition dynamics p°
and p are different, we can not directly apply existing RL algorithms on the union D% U DT,

3 Return Augmentation for Goal Conditioned Supervised Learning

3.1 Return-Augmented Framework

DT has the potential to address offline off-dynamics reinforcement learning challenges, as shown in
Table 1. However, it still has certain limitations. To overcome these, we propose a general framework
that efficiently learns the optimal policy for the target environment using the combined dataset
DS U DT. Leveraging the return-conditioning nature of DT, we introduce a return augmentation
technique that modifies returns in the offline source dataset through a transformation function. This
approach allows the policy derived from the augmented source dataset to effectively approximate
the optimal policy of the target environment, as illustrated in the following equation, where 7°
represents a strong candidate for approximating the optimal policy of the target environment and ) is
the carefully chosen transformation function.

7% = argming L(r) i= = 3 cps Dycycpr log m(aulse, ¥(g(7))).
We call our method Return Augmented (REAG) for DT. Next we introduce two methods to construct
1), based on the dynamics-aware reward augmentation (DARA) technique (Eysenbach et al., 2020;
Liu et al., 2022), and a direct return distribution matching method.

3.2 Dynamics-Aware Reward Augmentation

We first summarize the idea of DARA. Let p? (s'|s, a) denote the transition dynamics of the target
environment, and p° (s’|s, a) denote the source environment. According to the connection of RL and
probabilistic inference (Levine, 2018), we can turn the optimal policy finding problem into an infer-
ence problem. We use O to denote a binary random variable where O = 1 suggests 7 is a trajectory
induced by the optimal policy. Given a trajectory T, the likelihood of 7 being a trajectory induced by
the optimal policy under the target environment is p” (O = 1|7) = eXp(Zil r(s¢,at)/n), where
7 is the step size parameter used for tuning. It means that the trajectory with higher cumulative
rewards is more likely to be the trajectory induced by the optimal policy. We introduce a variational
distribution pZ (1) = p(s1) Hthl P (s¢415¢, a¢)m(as|s¢) to approximate pL (O = 1|7). Then we
have

log 7 (0 =1) = log Eryir (p” (0 = 17)
> Erps(r)[logp™ (0 = 1|7) + log (pr (7) /p3(7))]
= Erepr) [S2r r(se,ae) /n —log (p% (serlse, ar) /P (se41lse,a0))], (B.D)

where for the first inequality, we change the distribution of the expectation from PZ () to P2 () and
then use Jensen’s inequality to derive the result; the second equation holds due to the assumption/-
modeling that the likelihood of 7 being a trajectory induced by the optimal policy under the target
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environment is P7(O = 1|7) = exp(ZtH: 1 7(s¢,a¢)/n). Therefore, we obtain an evidence lower
bound of pX' (O = 1), which equals to find a policy to maximize the value in the source environment,
with the augmented reward 77 (s¢, a;) = r(s¢,a¢) + nlogp” (s¢11|5¢,as) — nlogp® (ser1lse, ar).
Following Eysenbach et al. (2020), to estimate the log p” (s;41|s¢, a;) — log p° (s¢41|5¢, ar), we use
a pair of learned binary classifiers which infers whether the transitions come from the source or
target environments. Specifically, we denote classifiers gsqs(:|s, a, s") and ¢4, (+|$, @), which return
the probability for some (s, a,s’) or (s, a) tuples whether they belong to the source or the target
environments. Then according to Eysenbach et al. (2020), we have

1OgPT(8t+1|St7 at) - logps(5t+1|8t, at) = AT(Su Qg 8t+1)

MT ) b MT )
= log 4 S|St Gt St41) — log —an( S|st at). 3.2)
q(M>S|s, a4, 541) Qsa(M5|5¢, a4)
For a trajectory 7 = (s1,a1,71,...,S8H,0H,TH), We denote the transformation 9 (g(s;)) :=

S rn + 00, Ar(sn, an, sni1). We denote such a transformation method as REAG, ..

3.3 Direct Matching of Return Distributions

The reward augmentation strategy in REAGy;,,, stems from the probabilistic inference view of RL
which matches the distribution of the learning trajectory in the source domain with that of the optimal
trajectory in the target domain (Eysenbach et al., 2020). However, it does not fully capture the power
of DT, which is able to induce a family of policies that are conditioned on the return-to-go f. By
varying f, DT enables the generation of a diverse range of policies, including the optimal one. In
contrast, REAGY,,,, assumes a single, fixed target policy, and thus its augmentation strategy cannot
generalize across multiple policies induced by varying f in DT. As a result, it cannot find the desired
return conditioned policy when evaluated with a different f in the target domain. This motivates us
to find a return transformation method 1) to guarantee that Tl'? (als) ~ ﬂ'?(a\s) for all f.

We consider a simplified case where both D and D7 are generated by following the same behavior
policy S(als). We use dg(A) and dr(A) to denote the probability for event A to happen under the
source and target environments following 5. With a slight abuse of notation, we use gg and g to
denote the return following the behavior policy. Then we characterize the learned policies by DT
under the infinite data regime (Brandfonbrener et al., 2022) for both the source environment and
target environment. According to Brandfonbrener et al. (2022), w? (als) = P%(als, ¥ (gs) = f(s)).

Then we can express 7° and 77 as

ds(als)ds(y(gs) = f(s)|s, a) T (als) = dr(als)dr(g9r = f(s)ls,a)

ds(W(gs) = f(s)ls) = 7 dr(gr = f(5)]s)

Since the behavior policies over the source and target environments are the same, we have dg(a|s) =
dr(a|s) for all (s,a). Then in order to guarantee 71? (a]s) = ﬁ?(a\s) we only need to guarantee
ds(w(gg(s)g =|s,a) = dr(gr(s) = -|s,a), Vs, a. Denote the cumulative distribution function
(CDF) of ¢g° conditioned on s, a is g°|s,a ~ G5(s,a), and g”|s,a ~ G%(s,a). Then if both
Gg (s,a) and Gg(s, a) are invertible, we can set ¢ as follows

w7 (als) =

U(g®%) = G5 (G(gss s,a); s, a). (3.3)

If there exist P°, PT, and r such that the DARA-type augmented reward-to-go satisfies (3.3), then
the DARA-type reward augmentation can be deemed as a special case of the transformation (3.3).
In general, G% and Gg are hard to obtain and computationally intractable, making 1/ intractable
either. We use Laplace approximation to approximate both Glg and Gg by Gaussian distributions,

e.g., Gg(s, a) ~ N(u%(s,a),0%(s,a)) and Gg(s, a) ~ N(u¥(s,a),02(s,a)). We then obtain that

s _ .S
v(g%) = gasé‘s(j)“) " (s,0) + 4" (s,0). (34)

We denote DT with a % transformation from (3.4) by REAGgy, since such a transformation only

depends on the estimation of mean values ;°, 7 and variance o, o7
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3.4 Sample Complexity of Off-Dynamics RCSL

In this section, we provide an overview of the sample complexity for off-dynamics RCSL. Let N*°
represent the number of trajectories in the source dataset D and N7 the number of trajectories in
the target dataset D7 We define J7 (1) as the expected cumulative reward under any policy 7 within
the target environment. Our theorem is established based on the following assumptions.

Assumption 3.1. (1) (Return coverage) PBT (g = f(s1)|s1) > oy for all initial states s;1. (2) (Near

determinism) P(r # r(s,a) or s’ # T(s,a)|s,a) < e at all s, a for some functions 7" and r. (3)
(Consistency of f) f(s) = f(s') + r for all s.

Assumption 3.2. For all s we assume (1) (Bounded occupancy mismatch) PTrl}CSL(S) < Cy¢Ps(s); (2)
(Return coverage) PBT (g = f(s)|s) > ay; and (3) (Domain occupancy overlap) dg(s) < 'yfdg(s).

Assumption 3.3. (1) The policy class II is finite. (2)|logn(als,g) — logm(a’ls’,¢")| < ¢ for
any (a,s,g,a’,s',¢') and all 7 € II. (3) The approximation error is bounded by €ypprox, i.€.,
minﬂEH L(Tr) < €approx-

Assumptions 3.1 to 3.3 are the same as the assumptions imposed in Theorem 1, Theorem 2, and
Corollary 3 in Brandfonbrener et al. (2022) respectively. Now we present our theoretical result.

Theorem 3.4. Under Assumptions 3.1 to 3.3 on the coverage of the offline dataset and the occupancy
overlap of the source and target environments, with high probability, we have J7 (7*) — JT (7t;) =

0] (1 J(NT 4 NSV 4) , where O omits terms that are independent of the sample size N7 of the target
domain and the sample size N of the source domain.

Remark 3.5. Theorem 3.4 suggests that the modified samples from the source domain could enhance
the performance of RCSL, for which the sample complexity is approximately O((1/NT)/4).

For more theoretical details, please refer to Appendix B.

4 Experiments

In this section, we first outline the fundamental setup of the experiment. We then describe experiments
designed to address specific questions, with each question and its corresponding answer detailed in a
separate subsection.

» How effective are DT-type methods in mitigating the impact of limited data in target environment?

* What techniques can be employed to improve the performance of DT-type methods in off-dynamics
scenarios while addressing the constraints of offline data shortages in target environment?

* How does the performance of DT-type methods compare to baselines in off-dynamics problems?

4.1 Basic Experiment Setting

Tasks and Environments. We study established D4RL tasks in the Gym-MuJoCo environment (Fu
et al., 2020), a suite built atop the MuJoCo physics simulator, featuring tasks such as locomotion and
manipulation. Particularly, we focused on three environments: Walker2D, Hopper, and HalfCheetah.
In addressing the off-dynamics reinforcement learning problem, we distinguish between the Source
and Target environments. The Target environment is based on the original Gym-MuJoCo framework,
while the Source environment is modified using two shift methods: BodyMass Shift and JointNoise
Shift. In the BodyMass Shift, the mass of the body is altered in the Source environment, whereas in
the JointNoise Shift, random noise is added to the actions.

Dataset. For the Target Dataset corresponding to the Target Environment, we leverage the official
D4RL data to construct the target datasets: 10T and 1T. The 10T dataset comprises ten times the
number of trajectories compared to the 1T dataset.! For the Source Dataset collection, we begin by

"Unlike the approach of Liu et al. (2022), which constructs the 1T dataset by selecting the last 1/10 timesteps
from the original target dataset (10T), we propose a uniform sampling method across trajectories in the target
dataset.
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BEAR AWR BCQ CQL

M M-R M-E M M-R M-E M M-R M-E M M-R M-E
IT 4.638.355 077720105 92671600 68.0231 657 28.426:0074 100.566:0513 62.56712450 60.638106s3 10161011300 65.618:0815 57.402:6161 10161110143
10T 13.14343016 5.852:0.168 21.38311237  78.06010772 58.286.:1 684 109.15410976 74.7354 1184 64.73510555 101.84041060  78.1914 830 80.145.528 101.840.0467
MOPO DT Reinformer QT
M M-R M-E M M-R M-E M M-R M-E M M-R M-E
1T 20.95312715 20.31353488 20.56910083 67.261.2316 3448255800 107.17141611  79.0344 506 38.07210.174 103.28445437  81.75641671 67.546.49505 111.722. 308
10T 2226142811 18.529:1760 21.196:3103  79.697:3343 68.528:1024 108.62241 815 81.377:1003 68.168412661 109.845.0726 88.262: 12886 85.092:8727 111.394:0.469

Table 1 Performance comparison of algorithms on the 1T, 10T, and 1T10S datasets. In this study, 1T10S(B)
refers to the source dataset under the BodyMass shift setting, while 1T10S(J) corresponds to the source dataset
under the JointNoise shift setting. Experiments are conducted using the Medium (M), Medium-Replay (M-R),
and Medium-Expert (M-E) datasets. We present the results for the Walker2D environment here; complete
results are provided in appendix E. All reported values are averaged over five seeds (0, 1012, 2024, 3036, 4048).

modifying the environment through adjustments to the XML file of the MuJoCo simulator. We then
collect the Random, Medium, Medium-Replay, and Medium-Expert offline datasets in the modified
environments, following the same data collection procedure as used in D4RL. For further details on
the dataset collection process and the datasets, please refer to the Appendix D.

Baselines. In selecting our baseline models, we incorporate a diverse set of well-established off-
dynamics RL methods, including BEAR (Kumar et al., 2019), AWR (Peng et al., 2019), BCQ
(Fujimoto et al., 2019), CQL (Kumar et al., 2020), and MOPO (Yu et al., 2020). Furthermore,
we enhance these baseline models by incorporating DARA augmentation, resulting in augmented
algorithms that also serve as baselines for comparison with our proposed method. In establishing
hyperparameters, we ensure consistency across tasks for certain parameters, such as the learning rate
and the number of iteration steps. Refer to Appendix D for further details on the parameter settings.

4.2 Evaluation of Adaptability and Data Efficiency in RCSL Algorithms

We evaluate three representative DT-type algorithms include DT (Chen et al., 2021), Reinformer
(Zhuang et al., 2024) and QT (Hu et al., 2024) to assess their ability to enable an adaptive policy
while reducing reliance on offline data in the target environment. To conduct this evaluation, we
perform two experiments: (1) We examine the performance of the three DT-type algorithms under
varying dataset sizes and quality levels in the target environment; (2) We evaluate their effectiveness
in off-dynamics scenarios.

To assess the impact of dataset size and quality on the performance of DT-type algorithms, we
evaluate three algorithms using two datasets: a subset of the target data (1T) and the full target
dataset (10T), comparing the results against other baselines. These experiments aim to quantify
the performance gap between training on 1T and 10T datasets, highlighting the effects of target
environment data scarcity and establishing a benchmark for off-dynamics settings. In off-dynamics
offline RL, instead of relying solely on a large target dataset, we incorporate a small subset of target
data with a larger source dataset. To examine how effectively algorithms leverage source data, we
construct the 1T10S dataset by combining a subset of target data (1T) with the full source dataset
(10S), following the setting of Liu et al. (2022). This dataset serves as the training set for DT-type
algorithms, whose performance is then evaluated in the target environment. For a comprehensive
comparison, we benchmark DT-type algorithms against other baseline methods.

The evaluation results in Table 1 demonstrate the impact of dataset size and off-dynamics settings on
algorithm performance. With limited training data, the algorithm’s learning capacity is restricted,
leading to degraded performance, especially when target-environment data are scarce. To mitigate
this issue, we incorporate additional source datasets under BodyMass Shift and JointNoise Shift
settings, which improve generalization to the target environment. However, while leveraging source
data can partially compensate for the shortage of target data, it remains less effective than training
with sufficient target-environment data. To further improve DT-type frameworks under off-dynamics
settings, we propose two return-based augmentation methods, REAGy;, and REAGy,,,, which
can be applied to DT, Reinformer, and QT frameworks. Specifically, applying REAGyy yields

REAGHY, REAGREM and REAGYY,, while applying REAGS),, produces REAGDY, REAG RS

Dara

and REAGg;rm, demonstrating the promise of these augmentation techniques in enhancing algorithm

performance under off-dynamics conditions.
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1T108 REAGYY, REAGJT, 1T10S REAGRS REAGR¢H! 1T108 REAGYY REAGY,

BM 78.768+1.233 80.857+1.715T 78.257+2423] 8085740509 82.354+1.479T 80.666+0.505] 4.325:0.425 84.582+0.5071 83.068+0.859.

JIN  71.068+1.022  75.008+1.8347T  71.779+1.7067 75.008+0.986T 74.268+1.341)  80.621+1.143  80.904+1.5027 78.672+2.201.)

W2D g BM 7360451920 73.708£1.570T  67.565+0.799)  67.032+5.767 50.296x14.211] 66.658+4.303] 87.292+0.631 87.491£1.226T 76.169+7.567].
JN 5825543181 55.72242.653)  62.226+0.383T 54.801+3.217 47.591£10.244 55.438+4.8331 82.139+1.020 82.363+4.206T  79.795+4.708.

Mg BM 8443050823 88.235£1.886T 8532808657 83388:0.800 8489711177 83761207357 03.082:0.348 92.74420499] 94.578x1.3837
IN 115.746+1.116 111.060£2.247) 111.236£0.914) 117.360+2.550 118.218£1.4607 117.765+2.4991 116.149+1.640 118.564+0.6971 116.115+1.889.

M BM 3405750177 39.435£1.239T 37.787x1.9141 513573715 59.08542.7917 51771253221 49510:0.798 51796299717  62.26245.3487

JN  70.685+0.726  70.356£3.657)  78.325+2.5227 70.340+4.633 72.346£5.877T 70.466£3.7287 68.656+7.079 73.987+8.0807 68.709+12.1607

Hp g BM 0421051504 66.092£02331 60393£1.086) 17.53420.725 20952697947 27.238+12.7357 60.460+13.945 76.287+7.8107 82.786211.9927
IN  61.870+£0.249  77.825£1.638T 83.525+1.728T 41.820+15.773 43.985+£5.075T 52.052£10.035T 93.704+7.559  93.409+4.696] 51.456+12.168.

M.E BM 335540846 52873404541 33631216057 68.973+7.512 64.206£12.073) 73.363£7.674T  61.162+3.767 73.952+16.2941 77.279+18.6071

JIN 108.254+1.583 109.367+1.0847 108.261£2.6127 109.256+0.126 109.472+0.1037 109.255+0.188]. 109.056+0.214 109.803+0.6097T 109.746+0.7717

M BM 30.9540.260 40.250£0.9117  37.599+0.395 42451204917 38.261+1.2387  44.656+0.643  47.30320.318T  46.383+0.358T

JIN 4772540431  44.149+3.672]  47.833+0.2847 43.009+0.307).  48.404+0.168T 56.213+0.327 52.394+1.413] 55.02620.410.

He g BM 2090629607 27812432567  24.059+2.2711T  31.584+1.248  32.114£1.455T  26.995+4.373  41.300+0.787 42.405+0.729T  41.359+0.9857
JIN  36.509+4.414  38.417+4.068T 38.031+3.529T 40.296+2.914  40.840+2.8807T 38.436+3.377) 53.763+0.793 53.870+0.9817 53.257+0.586.

M.E BM 54981£1.147 56.228+2.9301T 51.35748.231] 40.56820.984 46.048+1.657T 55.818+1.849T 71.080+8.802 69.819£5.120] 76.533+8.0227

JIN 70.573£8.599  77.762+2.099T 77.751£2.702T 76.073+3.878 79.390+0.1497 78.981+1.198T 82.961+4.019 83.692+0.6997 82.148+2.758

Table 2 Performance evaluation of two return augmentation methods, REAGyy and REAGy,,,, integrated
with DT, Reinformer, and QT frameworks in off-dynamics scenarios. The experiments are conducted in the
Walker2D (W2D), Hopper (Hp), and HalfCheetah (Hc) environments under the Medium (M), Medium-
Replay (M-R), and Medium-Expert (M-E) settings. The source environment is modified using two shift
conditions: BodyMass shift (BM) and JointNoise shift (JN). For reference, the table also includes the
performance of the original DT-type methods without augmentation, displayed in gray font. Performance
changes due to augmentation are indicated with red upward arrows (1) for improvements and green downward
arrows (/) for degradations compared to the original DT-type methods. All reported values are averaged over
five random seeds (0, 1012, 2024, 3036, 4048).

4.3 Return Augmentation Methods for Off-Dynamics RL

Here we discuss how to implement REAGy,,, and REAGY;,,, in practice. We implement REAGY, .,
based on the dynamics-aware reward augmentation method proposed in Liu et al. (2022). For
REAGyy, it involves training the CQL model across both the Target and Source Environments to
derive the respective value functions, denoted as Q7 and ) 5. The derived value functions are then
used to relabel the returns of trajectories in the original dataset. More specifically, the relabeled return
§° is calculated as defined in (3.4). Within this framework, we use 1 (s,a) to denote Qs(s, a),
and Qr(s, a) corresponds to ;7' (s, a). For the computation of o5(s,a) and o7 (s, a), we employ
the following methodology: For a given state s, we use the policy of CQL on the source dataset
to obtain n available actions {af, a3, ...,a>} given the state s, with the corresponding Q) values
{Qs(s,a7),Qs(s,a3),...,Qs(s,a>)}, and n available actions {a?,al,...,al} in the target
environment obtained from the CQL policy trained over the target dataset, with the corresponding ()
values {Qr(s,al), Qr(s,al),...,Qr(s,al,)}. The standard deviations os(s, a) and or (s, a) are
then calculated as specified as follows.

US(‘Sv a) = Std(QS(&af)a QS(Sa ag)v sy QS(svarSL))a

UT(Sv a’) = Std(QT(Sv a’,{% QT(57ag)a ey QT(‘S’ ag;))
or(s,a)

For a detailed discussion, please refer to Section 3. As defined in (3.4), computing the ratio o)

is essential. However, extreme values of this ratio can lead to instability during training. To address
this, we introduce a clipping technique that constrains the ratio within an upper bound ¢; and a
lower bound 6. This helps stabilize REAGyy training by mitigating two key challenges. First,
since this ratio depends on the variance of return-to-go in both the source and target environments,
extreme variance values can introduce large gradients or noisy updates, destabilizing training. Second,
variance is estimated using the Q-value function learned through CQL on the source and target
datasets, which may introduce estimation errors. By bounding the ratio within a controlled range,
clipping reduces the impact of these errors and prevents instability.

Table 2 presents a performance comparison of the REAGy, and REAGY,,, return augmentation
techniques integrated into different DT-type frameworks, including DT, Reinformer, and QT, in
off-dynamics scenarios. The results demonstrate that both REAGY;, and REAG],,,, effectively
enhance DT-type frameworks, improving performance in most off-dynamics scenarios compared to
their original, non-augmented counterparts. Specifically, REAGy,y,, which augments based on return
values, leverages information from both the source and target environments, making it particularly
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Figure 1 Average normalized rank scores for all baseline algorithms across the Medium, Medium-Replay,
and Medium-Expert datasets under BodyMass and JointNoise shift settings in the Walker2D, Hopper, and
HalfCheetah environments. Within each setting, algorithms were ranked based on performance, with the
top-performing algorithm assigned a rank of 1. Tied scores received the same rank, with subsequent ranks
adjusted accordingly. Lower rank scores indicate better overall performance. The original ranks (from 19
algorithms) were normalized to a scale of 1 to 19. The figure presents the average normalized rank scores across
the Walker2D, Hopper, and HalfCheetah environments.
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a Performance evaluation under varying body mass shift settings in the Walker2D medium environment.
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b Performance evaluation under varying body mass shift settings in the Hopper medium environment.

Figure 2 Performance of REAGyy and REAGy,,, algorithms under different body mass shift settings in the
Walker2D and Hopper medium environments. ""B-x"' denotes that the body mass in the simulator is set to x. The
target body mass is 2.94 in the Walker2D environment and 5 in the Hopper environment.

well-suited for return-based algorithms. In contrast, REAGY;,,,, which augments based on reward
values, exhibits more variable performance across different environments and dataset settings. While
REAGyY,,,, improves performance in certain cases, REAGy;y consistently delivers more stable and
robust improvements.

DARA is a widely adopted approach for addressing off-dynamics RL problems by introducing reward
augmentation to enhance policy adaptation from a source dataset to a target environment while
minimizing reliance on extensive target data. It seamlessly integrates with traditional offline RL
frameworks such as CQL and BCQ. In our evaluation, we compare our proposed methods against
DARA-based approaches, including both traditional RL frameworks and their DARA-augmented
variants, as well as DT-type frameworks with and without REAGy;y and REAGy;,,, augmentation,
providing a comprehensive assessment of augmentation techniques for off-dynamics adaptation. We
present a comparative ranking where lower average rank scores indicate better overall performance,
as shown in Figure 1; for the raw results of each setting, please refer to Appendix E. The results
demonstrate that DT-type frameworks exhibit strong potential in solving off-dynamics RL prob-
lems, outperforming traditional offline RL methods, particularly in the case of QT. Return-based
augmentation techniques further enhance effectiveness, with REAG;, and REAGy, achieving
state-of-the-art performance compared to other baselines. Additionally, while DARA effectively
improves the performance of non-return-based offline RL methods, a noticeable gap remains between
these approaches and DT-type methods.

4.4 Ablation Studies for Return Augmentation Methods

In this section, we present an ablation study to examine the key factors influencing the performance
of REAGY,,, and REAGy;y,. We focus on two aspects—Dynamics Shift and Clipped Augmented
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Figure 3 Performance of REAGyy and REAGy,,, algorithms across varying JointNoise shift settings in the
Walker2D and Hopper medium environments. " J-x'"" denotes the addition of random noise in the range (-x, +x)
to the action.
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Figure 4 Comparison of REAGyy with and without the clipping technique in the Medium Expert setting of the
Walker2D environment under BodyMass shift. Results are averaged over five seeds.

Return—while the analysis of Consistent Augmented Return and Return Learning is deferred to
Appendix F due to space limitations.

Dynamics Shift. To evaluate the impact of shifting source environments on REAGy;, and

REAGEara, we assess their performance under various BodyMass and JointNoise shift settings.
The experimental results are presented in Figure 2 and Figure 3. Our findings indicate that as the
body mass shift increases—creating a greater discrepancy from the target environment—performance
deteriorates in both the Walker2D and Hopper Medium environments. Similarly, introducing higher
levels of action noise leads to a decline in performance, suggesting that increased random noise raises
the likelihood of failure, ultimately resulting in poorer outcomes. This performance degradation is
particularly evident in the DT framework, highlighting its sensitivity to off-dynamics shifts, whereas
Reinformer and QT demonstrate greater robustness. Across all shift experiments, REAGy;y, con-
sistently outperforms REAGY,,,, with the performance gap becoming especially pronounced under
larger shifts, such as in the Hopper environment with a body mass shift of 1.25.

Clipped Augmented Return. For data augmentation in REAGyy,, we apply a clipping technique
to prevent the occurrence of extreme values. To evaluate its impact, we compare the performance
of REAGy;y with and without clipping in the Walker2D, Hopper, and HalfCheetah environments
under BodyMass shifts with Medium Expert dataset. The results, presented in Figure 4, demonstrate
that mitigating extreme values generally enhances the performance of REAGyy,. Additionally, we

observe that for REAGI(\)K,, clipping does not yield significant improvements compared to DT and
Reinformer. We hypothesize that this is due to the QT mechanism, which inherently regularizes the
return, whereas DT and Reinformer lack such a mechanism.

5 Conclusion and Future Work

In this work, we introduced the Return-Augmented (REAG) method to improve Decision Trans-
former—type approaches in off-dynamics reinforcement learning by aligning source-domain returns
with the target environment. We developed two practical variants, REAGy,, and REAGyy, and
provided theoretical guarantees showing that REAG trained on source data can achieve the same
suboptimality as policies trained directly on target data. Empirical results confirm that REAG en-
hances DT-type baselines and outperforms several dynamic programming—based methods. Overall,
REAG offers a promising direction for leveraging source-domain data to address challenges in offline,
off-policy, and off-dynamics RL. Future work may extend REAG to more diverse environments and
further refine its augmentation strategies.
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A Related Work

Off-dynamics reinforcement learning (RL). It is a type of domain adaptation problem in RL,
drawing on concepts from transfer learning (Pan and Yang, 2009). There are many algorithms
proposed to solve this problem (Niu et al., 2022; Liu et al., 2024; Xu et al., 2024). One of the
promising approaches is to modify the reward in the source domain. The DARC algorithm (Eysenbach
et al., 2020) addresses this domain adaptation challenge in the online setting by proposing a reward
augmentation method that matches the optimal trajectory distribution between the source and target
domains. Building on this, DARA (Liu et al., 2022) utilizes reward augmentation to supplement a
limited target dataset with a larger source dataset. Unlike DARC and DARA, which are based on
dynamic programming, our work adopts the adaptation setting of DARA and introduces a novel
augmentation method tailored for RCSL, specifically focusing on the Decision Transformer. PAR
(Lyu et al., 2024a) learns state encoder and state-action encoder utilizing the dynamics representation
deviation to augment the reward in online settings.

Return Conditioned Supervised Learning (RCSL). It is a general framework for powerful
supervised methods in offline RL (Brandfonbrener et al., 2022). Notable works such as RvS (Emmons
et al., 2021) and Decision Transformer (DT) (Chen et al., 2021) have shown competitive performance
compared to traditional RL methods. The core idea of RCSL is to condition policies on a desired
return. In this paper, we primarily focus on DT, which is a specific instance of RCSL and conducts
offline RL through sequence generation. The generalization potential of DT has inspired researchers
to explore its use in various settings. For example, Zheng et al. (2022); Xu et al. (2022) leverage
the DT in the offline-to-online RL and meta RL respectively. However, no prior work has explicitly
explored the adaptation capabilities of DT in the off-dynamics RL setting.

Additional Related Work. Niu et al. (2022); Xu et al. (2024); Gui et al. (2023); Lyu et al., 2024b)
present recent advancements in off-dynamics RL methods. Specifically, H2O (Niu et al., 2022)
performs importance weighting and penalizes Q-values with large dynamics gaps in offline-to-online
settings. VGDF (Xu et al., 2024) filters data based on value consistency in online off-dynamics RL
scenarios, while CPD (Gui et al., 2023) employs a dynamics alignment module to minimize discrep-
ancies. PAR (Lyu et al.) addresses the off-dynamics problem by capturing representation mismatches.
Lyu et al. (2024b) introduces a newly proposed off-dynamics RL benchmark, demonstrating that IQL
achieves strong performance in off-dynamics RL settings. For cross-domain offline RL methods,
BOSA (Liu et al., 2024) tackles OOD state actions with policy optimization and OOD dynamics with
value optimization, IGDF (Wen et al., 2024) selectively shares transitions from the source domain via
contrastive learning, and SRPO (Xue et al., 2024) learns the stationary state distribution to regularize
the policy in a new environment.

B Sample Complexity of Off-Dynamics RCSL

In this section, we provide the rigorous analysis of the sample complexity of the off-dynamics RCSL.
To this end, we first define some useful notations. We assume there are N° trajectories in the source
dataset D, and N7 trajectories in the target dataset D”'. Denote PE as the joint distribution of state,
action, reward and return-to-go induced by the behavior policy 3 in the source environment, and PﬁT
in the target environment. Denote d2 as the marginal distribution of state s induced by any policy 7
in the source environment, and dz in the target environment.

Denote .J7 (1) as the expected cumulative reward under any policy 7 and the target environment. For
any return-to-go g in the source dataset D, we transform g by an oracle defined in (3.3) with others
remain the same, then we get a modified dataset D°. We denote the mixed dataset as D = DT U D?.

We first show the sample complexity of DT with only the samples from the target dataset D, If we
only use the offline dataset D collect from the target environment, i.e., at training time we minimizes
the empirical negative log-likelihood loss:

LT(r) = — Z Z log m(az|st, g(st))-

7eDT 1<t<H

Then we get the following sample complexity guarantee based on the result in Brandfonbrener et al.
(2022).
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Corollary B.1. There exists a conditioning function f : & — R such that assumptions (1)-(3)
in Assumption 3.1, (1) and (2) in Assumption 3.2 hold. Further assume assumptions (1)-(3) in
Assumption 3.3 hold. Then for some § € (0, 1), with probability at least 1 — §, we have
. . Cy log |TT| /5 1/4 €
JT (%) — JT(#y) < O(@HQ(ﬁ<T) + Fappmx) + a—fH2).

Now we consider the case of mixed dataset, where we train our policy on both the target dataset and
the source dataset using the proposed returned conditioned decision transformer methods. Note that
the size of the target environment dataset is usually small, while the size of the source environment
dataset is much larger, that is, N7 < N9. If we incorporate the modified source dataset into the
supervised learning, that is, we minimize the following empirical negative log-likelihood loss:

L™ (m) == > logm(aslss,g(st))- (B.1)
TED1<t<H

An observation is that, with the modified source dataset, the regret J7 (7*) — J¥ (%) can be
significantly reduced. We state this observation in the following theorem, which is the formal version
of Theorem 3.4.

Theorem B.2. There exists a conditioning function f such that Assumptions 3.1 and 3.2 hold. Further
assume Assumption 3.3 holds. Then for some 6 € (0, 1), with probability at least 1 — J, we have

L () ) ).

(B.2)

Ty _ g7~ < O =L
e < o S

Remark B.3. Compared to Corollary B.1, Theorem B.2 suggests that the modified samples from
the source domain could enhance the performance of RCSL when the domain occupancy overlap
coefficient vy is large. In particular, when N S>> NT and ~vf = O(1), (B.2) can be simplified to
C log |TT| /8 1/4 €
T( * T f 772 2 2
JT (1) = T (f) < O(a—fH (Ve(Z27) T + Vo) + o ).

which significantly improves the bound on suboptimality in Corollary B.1.

C Proof of Theorem B.2

Lemma C.1 (Corollary 1 of Brandfonbrener et al. (2022)). Under the assumptions in Assumption 3.1,
there exists a conditioning function such that

1
T * T r,_RCSL < 2.
JT (%) = J7 (S e(—f +3)H

Lemma C.2 (Lemma 1 of Brandfonbrener et al. (2022)). For any two policies 7, 7/, we have
|dE —dL |, < 2H -Eyoqr [TV ((-]3)[|7(|s))].

B
We define dg’” = #ijsdg + #Sjvsdg Define

L(’fr) = Esr\/dg"”,ngg(-\s) [-DKL(Pg(Bag)Hﬁ(‘Svg))]

Theorem C.3. Consider any function f : S — R such that the assumptions in Assumption 3.2 hold.
Then for any estimated RCSL policy 7 that conditions on f at test time (denoted by 7 ¢), we have

T (eBOSEY — JT(7) < %H%/QL(#).
f

Proof. By definition and Lemma C.2, we have
T (wg) = I (ig) = H(B, [r(5,)) ~ By [r(s,a)])
S H - |dr; — dagly
<2 Eogr [TV (s (19)| s (15)] H2.
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Next, we have
2-Egmar, [TV (7 (1s)]174([5))]

= Eou, [/ [P (als, £(5)) — #(als, £(s))] ]

PE(f(3)]s) :
= ot [ giae) . 1F3 0l 760 ~ el S|
c
< 2 Epag gpy (o [TV (5 (als, f())]A(als, £()))]
Cy NS+ NT )
<2 s N B gy 1o [TV (FS (als, S () 17(als, £(5)]
Cy NS+ NT -
< oh s T Eeagingmrzoin [\ 2P s, SG)7(als, S()))]
Cy NS + NT

SE_ TN AL,
=y NS/y; + NT (7)

O

Proof of Theorem B.2. Following the same argument in the proof of Corollary 3 in Brandfonbrener
et al. (2022), we have

. Cy N5+ NT log [TT] /& \1/4
T =" ) < 0 (2 o Vel ) e

Invoking Lemma C.1, we have

C; NS+ NT log |TI| /6 \ 1/4 €
T * T~ f 2 g 2
JH () =T (wf)§0(2af NS+ +H (ﬁ( T+NS) +./ieappmx>+afH )

This completes the proof. O

D Detailed Experiment Setting

D.1 Environment and Dataset

In this section, we provide details of the environments and datasets used in our experiments. We evalu-
ate our approaches in the Hopper, Walker2D, and HalfCheetah environments, using the corresponding
environments from Gym as our target environments.

D.1.1 Target Environment Dataset Creation

For the target datasets, we construct two distinct datasets: one containing a smaller amount of data
(1T) and another with a larger amount (10T). The 10T dataset consists of ten times the number of
trajectories as the 1T dataset.

Both Liu et al. (2022) and our work aim to demonstrate the following two key points:

» The 10T dataset represents high-quality data, whereas the 1T dataset represents lower-quality
data due to its smaller size.

* Off-dynamics RL algorithms can enhance performance on 1T by effectively leveraging 10S
source domain data through appropriate data augmentation.

Liu et al. (2022) creates the 1T dataset by splitting the original target dataset (10T) based on timesteps,
selecting the last 1/10 timesteps as 1T. However, this approach introduces unintended bias in the
Medium Replay setting, where offline trajectories are collected from a replay buffer in which the
behavior policy improves over time. Consequently, the final 1/10 timesteps tend to exhibit a higher
average return than the overall 10T dataset, undermining the intended quality distinction between 1T
and 10T.
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To address this issue and ensure a fair evaluation of off-dynamics RL algorithms, we propose a
uniform sampling method across trajectories in the target dataset. This approach ensures that the
sampled 1T dataset is a representative subset of the target data, free from biases introduced by
timestep-based selection. Notably, our method produces a 1T dataset of lower quality than that of Liu
et al. (2022) in medium replay setting. If an off-dynamics RL algorithm can significantly improve
performance on our 1T dataset and achieve results comparable to the original 10T dataset, it would
serve as a more rigorous evaluation and a stronger indicator of the algorithm’s effectiveness.

D.1.2 Source Environment Dataset Creation

We employ BodyMass shift, JointNoise shift to construct the source environments. The following
descriptions provide detailed insights into the process of creating these source environments.

* BodyMass Shift: The body mass of the agents is modified by adjusting the mass parameters
in the Gym environment. Detailed body mass settings are provided in Table 3.

* JointNoise Shift: Noise is introduced to the agents’ joints by adding perturbations to the
actions during source data collection. Specifically, the noise is sampled uniformly from the
range [—0.05, +0.05] and applied to the actions when generating the source offline dataset.
Detailed joint noise settings are provided in Table 3.

For the source datasets, we utilize the BodyMass Shift and JointNoise Shift datasets from (Liu et al.,
2022). Additionally, in our ablation study, we explore variations of BodyMass and JointNoise shifts
beyond those specified in Table 3. We also collect medium-level source datasets for the Hopper,
Walker2D, and HalfCheetah environments. Behavior policies are generated by training agents with
SAC using rlkit (https://github.com/vitchyr/rlkit), with checkpoints used for dataset collection. We
construct the Random, Medium, Medium Replay, and Medium Expert datasets, each reflecting
different performance levels determined by their corresponding SAC checkpoints. For the JointNoise
Shift setting, instead of training a new SAC policy and collecting data through environment interaction,
we introduce random noise within a specified range directly to the actions.

Table 3 BodyMass Shift and JointNoise Shift in Hopper, Walker2D and HalfCheetah.

Hopper Walker2D HalfCheetah
BodyMass JointNoise BodyMass JointNoise BodyMass JointNoise
Source mass[-1]=2.5 action[-1]+noise mass[-1]=1.47 action[-1]+noise mass[4]=0.5 action[-1]+noise
Target mass[-1]=5.0 action[-1]+0 mass[-1]=2.94 action[-1]+0 mass[4]=1.0 action[-1]+0

D.2 Baselines

In our experiments, we use BEAR (Kumar et al., 2019), AWR (Peng et al., 2019), BCQ (Fujimoto
et al., 2019), CQL (Kumar et al., 2020), and MOPO (Yu et al., 2020), along with their DARA-
augmented variants (Liu et al., 2022), as baseline methods. We compare these baselines against
DT (Chen et al., 2021), Reinformer (Zhuang et al., 2024), and QT (Hu et al., 2024), as well as our
proposed REAG approaches.

D.3 Hyperparameters

In this section, we outline the hyperparameters used for our REAG methodologies. The REAG
approaches begin with dataset augmentation using either the DARA algorithm (REAGy,,,) or the
Direct Matching of Return Distributions technique (REAGy;y). The augmented dataset is then
used to train the DT-type frameworks, which is subsequently evaluated in the target environment.
Specifically, for REAGY,,,, dataset augmentation follows the DARA algorithm, with its corresponding
hyperparameters provided in Table 4. For REAGy;y, the augmentation process is described in
Section 4.3, where a well-trained Conservative Q-Learning (CQL) model estimates state values,
incorporating a clipping mechanism to mitigate extreme values. The hyperparameters for CQL
training are provided in Table 5, the clipping ratios are listed in Table 6, and the training parameters
for DT, Reinformer, and QT adhere to the settings from their respective original papers.
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Table 4 Hyperparameters used in Table 5 Hyperparameters used Table 6 Hyperparameters for the

the DARA algorithm. in the CQL algorithm. Clipping Technique Employed in
Hyperparameter Value Hyperparameter Value the REAGK/IV Algorlthm
SA Discriminator MLP Layers 4 Actor MLP La Dataset Clipping Ratio
e ) yers 3
SAS Discriminator MLP Layers 4 Critic MLP Layers 3 Walker2D Random 0.9<0<125
Hidden Dimension 256 . N A " oF
" " . Hidden Dimension 256 Walker2D Medium 09<6<1.25
Nonlinearity Function ReLU L . Walker2D Medium Replay 0.9 < 0 < 1.25
Optimizer RMSprop Nonlinearity Function ~ ReLU Walker2D Medium Expert 0.9 < § < 1.25
Batch Size 256 \ Optimizer Adam Hopper Random 09<0<1
Learning Rate 3% 107" Batch size 256 Hopper Medium 09<0<1
Ar Coefficient 7 0.1 Discount Factor 0.99 Hopper Medium Replay 09<6<1
Hopper Medium Expert 09<6<1
Temperature Lo . HalfCheetah Random 0.67<6<15
Actor Learning rate 1 x 10 HalfCheetah Medium 0.67<0<15
Critic Learning rate 3 x 1074 HalfCheetah Medium Replay  0.67 < 6 < 1.5
HalfCheetah Medium Expert 0.67 < 6 < 1.5
BEAR AWR BCQ CQL
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

IT 4.6381388 0.777:0005 926711600 68.023:1 687 28.42612974 10056640513 62.567:2450 60.63810683 101.61041300  65.618:0815 57.402:6161 101.611.40,143
10T 13.143.:3016 5.852:0168 21.38341237  78.060.0772 58.286.4 1684 109.15450976 7473541180 64.73512555 101.84011962 78191415830 80.145:2286 101.84010467
IT 877010400 526410283 3196841213 55.269.250 54.25911205 54.09841165 6330810418 68.448.0251 6228711680 7448941061 714012106 82.071i04s3
10T 20.398.21020 5.554:0812 8823642190  64.494.9517 57.5484 778 10536141300 7346242507 60.385:0418 102.77551912  82.945.033 73.168:2712 102.07141750

He IT  2.659:0067  1.602:0275  3.089:0004  41.672:0732 2802314007 90.168:1308  41.051i2008 2582816142 60.1732447s 4439310263 2695511074 61621113003
10T 10.65710271 19.58810453 16.160:0208 422090611 41.041:0720 9021212259  46.18810423 38.575:12060 95.535:4002  49.38240338 46.966:0372 87.683:77s3
MOPO DT Reinformer QT
M M-R M-E M M-R M-E M M-R M-E M M-R M-E

W2D IT 20.953.2715 20.31313488 20.569.0983 67.261:2316 34.48215800 107.171sp611  79.03411506 38.07219174 103.284.15437 8175611671 67.546:9505 111.7224) 308
10T 222610811 18.529:1760 21.196:3103  79.697:3348 68.5281 024 108.622:1815 81.377:1003 68.16812661 109.845:0706 88.262:12886 85.092:8727 111.39%410460

Hp IT 31.038:1286s 5.849:0146 35.09941212  66.07311745 61.68612502 100.71941679 7473744807 36.00816575 60.753414433  70.92746450 83.40644734 108.225:5 506
10T 32.769: 755 8.638:1305 36.161:200s  85.589:5311 69.70115317 108.087510s0 77.792540650 39.856:12334 79.38%i05054  90.176:0156 100.32151 12, 112.908.3 154

He IT 64.329.5006 122771953 25.05517834 4120410430 1516414847 77.50043325  42.95810065 18.49311584 72.085:3491  50.464.0127 32.31812435 87.854:6657

10T 65.863.1050 59.72441056 28.221u607s 4227320370 345084450 82.844i745 432431020 394344030 87.378:3350  51.284u0405 49.587.0334 94116503

Table 7 Performance comparison of algorithms on the 1T and 10T datasets. The experiments are conducted in
the Walker2D (W2D), Hopper (Hp), and HalfCheetah (Hc) using the Medium (M), Medium Replay (M-R),
and Medium Expert (M-E) datasets. All reported values are averaged over five seeds (0, 1012, 2024, 3036,
4048).

E Additional Experiments Results

This section presents more comprehensive experimental results, including additional variance infor-
mation.

In Table 1, we present the partial performance of various algorithms and their DARA variants in
the Walker2D medium environment under BodyMass and JointNoise shift settings, considering
both limited and sufficient target data scenarios. The complete experimental results are provided
in Table 7. Additionally, Table 8 and Table 9 present a comprehensive comparison of different
algorithms and their corresponding augmented variants in addressing the off-dynamics problem
across various environments and shift settings.

F Ablation Study

Consistent Augmented Return. It is worth noting that our augmented target returns do not satisfy
the consistency condition, which requires that the augmented returns follow R;; — R; = 7, as
enforced by the original DT. To verify whether consistency is a necessary condition for augmentation
in off-dynamics settings, we conduct the following ablation study. Specifically, we introduce a variant
of REAG};y, denoted as REAGy,y (consistent), where for each trajectory in the target environment,
return augmentation is applied only to the initial return, while all subsequent augmented returns
are derived using the consistency condition R, — R; = r;. The results, presented in Figure 5,
indicate that REAGyy outperforms its consistency-enforced variant in most cases. This finding
suggests that enforcing consistency does not necessarily improve performance; instead, it may limit
the effectiveness of REAGy,y in the context of off-dynamics offline reinforcement learning.

Return Learning. To evaluate the learned value functions, Qg and @7, and their impact on
REAGy;y, we conduct an ablation experiment. Specifically, we assess the quality of the learned
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BEAR AWR BCQ CQL MOPO D-BEAR D-AWR D-BCQ D-CQL D-MOPO
BM 5.776 +1.653 77.442+0.340 70.681+0.539 73317+ 1.368 21.617+1.277 6.516+3.220 78.004+0.911 72.023 £0.695 74.276+2.582 21.621 + 1.063
JN 4926+ 1418 67.636+1.468 62.696+1.037 68.962+0.865 23.552+1.063 6.933+1.884 64.303+0.513 60.681+1.118 69.141 £0.944 23.57 +0.665
BM 0.0668 +4.951 47.033£2.278 50.714+1.918 54.753£0.335 11.563+2.751 1.078 £2.083 32.008 +1.286 51.447 £3.108 57.432+0.764 12.129 +2.755

Walker2D M-R
JN 0474£0.719 31.623+2.551 50.601 £ 1.611 50.600+1.589 11.379+0.596 0.384 +3.823 36.807 +2.442 50.714+0.876 51.742+1.061 15389 +0.559

Walker2D M

Walker2D M-E BM 19.799 +3.116 110.324 +1.053 112.343 + 1.488 107.187 £3.209 18.324 £0.708 17.491 £2.844 109.743 +2.632 113.069 + 1.602 105.401 +2.186 20.741 + 0.399
alker -E
N 14.225 +1.338 104.662 +2.370 112.926 + 1.491 104.019 £0.294 17.429 +0.639  14.203 £ 1.602 108.915 + 1.915 111.249 + 1.092 108.236 + 1.206 19.325 +3.119

BM 22.436+0.103 25.843 £0.325 24.853+1.615 49.094£2.207 20.765+3.350 25.608 £ 1.063 26.594 +1.267 26.487 +1.366 45.101 +0.342 21.495 +0.848

Hopper M JN 8536+1.965 57.021 £0.938 74.559 £0.605 71.495+0.126 23.556+1.327 10.576 £2.052 61.463 £0.702 74.853+0.626 63.611 £ 1.136 24.992 +0.944
Hopper M-R BM 6.282+0.132 55.607 £2.310 64.519+0.813 66.455+0.636 5.504+1.701  2.619+0.128 44.883+1.595 64.168 +0.291 68.163 +0.559 5.482+1.061
JN 1.841+3.814 37.821£1.205 65.103+0.703 61.302+1.207 5498+0.568  5.637+0.291 63.937+3.879 64.519+1.102 63.178 = 1.218 6.147 +0.157

Hopper M-E BM 22.934 +3.022 57.595£0.612 109.367 +0.834 70.467 £2.712 30.541 £3.616 31.090 £ 0.463 78.262+0.239 110.014 £2.153 72.149 + 1.934 30.540 + 0.842

JN 39.031+1.079 74.708 + 1.889 108.639 +£2.028 72.512+0.781 30.537+0.842 33.052+0.385 60.952+0.879 111.587 £ 1.602 94.128 + 1.213 32.589 + 1.985

HalfCheetah M BM 54311518 42293 £0.862 39.835+0.427 37.081 £0.358 58.457+1.449 6.009 £ 1.705 41.800+0.830 39.333+0.506 37.189+0.218 59.311 +0.949
alfChee
JN 1948 £1.058 41.992+0.762 50.511+0.371 49.046+0.420 61.073+£0.315 2.901+£0.402 42.545+0.731 52.149+0.457 49.284+0.570 61.447 +£0.734

HalfCheetah M-R BM 7.425+1.307 15988 £5.339 32.553+1.258 37.508+0.520 50.429+1.306 4.909 £0.562 17.918 £3.701 32.095+1.258 37.721 +0.440 52.609 +0.621
N 18.337+£0.498 31.742£4.199 46.567 £2.563 51.566+0.246 51.918+1.584 17.929£0.479 38.125+1.775 49.066 +0.645 52.991 +0.438 51.258 + 1.709

HalfCheetah M-E BM 4.356+0.431 88.155+1.836 61.771+4.610 61.104+4.131 51.040 +4.46 2.948 £0.691 89.201 £2.419 63.465+3.303 62.665+5.326 56.616 +2.609
al eetal
N 3.195+0.391 88.647 £2.669 62.486 +10.025 84.090 £ 1.109 54.630 +10.104 8.789 +0.271 89.220+1.800 71.007 £4.201 84.210+0.506 60.014 + 7.0

Table 8 Performance comparison of traditional offline reinforcement learning algorithms, including BEAR,
AWR, BCQ, CQL, and MOPO, along with their DARA-augmented variants, under BodyMass and JointNoise
distribution shifts in the Walker2D, Hopper, and HalfCheetah environments. Evaluations are conducted using
the Medium (M), Medium Replay (M-R), and Medium Expert (M-E) settings of the 1T10S dataset. The 1T10S
dataset comprises a 1T (target) dataset and a 10S (source) dataset. ''"D-XX"" denotes the DARA-augmented
variant of the XX algorithm.

DT Reinformer Qr REAGDY,  REAGRSM  REAGYY REAGDT ~ REAGR®™  REAGOL

Walkerzppg | BM TBTO8£1233 808570500 8432550425 B08STE 1715 82354%1479 84582+0507 782572423 B0.666£0505 83068 %0859
IN 71068:+1.022 747481721 80.621+1.143 75008+ 1.834 750080986 80.904%1.502 717791706 74268+ 1.341 78.672+2.201

Walkerzp pg M 7366421920 6703245767 872920631 73708+ 1570 50296% 14211 8749121226 675650799 6665824303 76169 £7.567
JN 58255+3.181 548013217 82139+ 1.029 55.722+2.653 47.591+10.244 82.363+£4.206 62.226+0.383 55.438+4.833 79.795+4.708

Walkerzp pp BM 8443050823 83388£0806 9308250348 88235+ 1886 848971117 927440499 85328%0865 83761£0735 94.578:+ 1383
IN 115746 1116 117.360 2,550 116.149 + 1.640 111.060£2.247 118.218 + 1.460 118.564 +0.697 111236+ 0914 117.765 +2.499 116115 + 1.889

Hopper  BM HOTEOITT SIISTE3TN 495160798 0451239 5008522791 SLI6E0971 TS #1914 SLITNE5IN 6226245348
IN 706850726 70340£4.633 68.656+7.079 703563657 72.346+5.877 739878080 78.325+2.522 70.466%3.728 68.709 % 12.160
Hopperar DM 0421621504 1753426725 694602 13945 6609220233 20952%9.794 7628727810 60393 1086 27238+ 12.735 82786 % 11992
IN 618700249 41.820+15.773 93.704+7.559 77.825%1.638 43.985+5.075 93.409+£4.696 83525 1.728 52.052 + 10.035 51.456 £ 12.168
Hopper Mg BM 335340846 GSOTIETSI2 6116223767 5287320454 64206212073 13952+ 16294 363 £ 1605 T3363 27674 77279 % 18607
JN 108.254 + 1583 109.256:£0.126 109.056 £0.214 109367 £ 1.084 109.472£0.103 109.803£0.609 108.261 +2.612 109.255 £ 0.188 109.746 £ 0.771

HlfCheetan py M 3995420260 37353 £0483 4465610643 402500911 424510491 4730320318 375990395 382611238 46383 0358

47.725+£0.431 48.274+0.191 56.213+0.327 44.149£3.672 43.009 £0.307 52394+ 1.413  47.833+0.284 48.404 +0.168 55.026 +0.410

JN
BM 20.966 +9.607 31.584+1.248 41.300+0.787 27.812+3.256 32.114+1.455 42.405+0.729 24.059 £2.271 26.995£4.373 41.359 +0.985
HalfCheetah M-R
JN 36.509£4.414 40.296£2.914 53.763+0.793  38.417 £4.068 40.840+2.880 53.870+0.981 38.031 £3.529 38.436+3.377 53.257 +£0.586
M
N

54.981 £ 1.147 40.568 £0.984 71.008 +8.802  56.228 £2.930 46.048 +1.657 69.819+5.120 51.357 +8.231 55.818+1.849 76.533 + 8.022
70.573 £8.599 76.073 £3.878 82.961 £4.019 77.762+2.099 79.390+0.149 83.692+0.699  77.751 £2.702 78.981+ 1.198 82.148 £2.758

B
HalfCheetah M-E

Table 9 Performance comparison of traditional offline reinforcement learning algorithms, including DT, Re-
informer and QT, along with our proposed methods REAGLY,, REAGBL,, REAGRM REAGRI, REAGI\Q,[TV
and REAGy under BodyMass and JointNoise distribution shifts in the Walker2D, Hopper, and HalfCheetah
environments. Evaluations are conducted using the Medium (M), Medium Replay (M-R), and Medium Expert
(M-E) settings of the 1T10S dataset. The 1T10S dataset comprises a 1T (target) dataset and a 10S (source)
dataset.

value functions in both the source and target domains. We select the Hopper environment with a
medium-expert offline dataset as the target domain and the BodyMass shift as the source domain.
Ideally, the value functions Qs and )7 learned through REAGy;y should accurately reflect the returns
of trajectories in their respective domains. To verify this, we train two additional DTs separately on
the source and target offline datasets to obtain policies for these environments. Using these policies,
we generate test trajectories through rollouts and then leverage the learned value functions Qg and
Qr, trained on the 10S and 1T datasets, to predict the returns of these test trajectories. By comparing
the predicted returns with the actual returns, we assess the accuracy of the learned value functions. As
shown in Figure 6, our learned value functions ) s and Q1 accurately reflect the returns of trajectories

17



605
606

B REAG,, W REAG),(consistent)

Walker2D_M Walker2D_MR Walker2D_ME
85 80 95
80 60 20
75 40 85
70 20 80
DT Reinformer QT DT Reinformer QT DT Reinformer QT

Figure 5 Comparison of REAGyy and REAGyy (consistent) across Medium, Medium Replay, and Medium
Expert settings in the Walker2D environment under BodyMass shift. Results are averaged over five seeds.

n 1]
T B T 4000
g —— Trajectory Return g —— Trajectory Return
@ 2000 —— Q Value [ 3000 —— Q Value
o 3
v o 2000
> >
‘s 1000 b
E v_"u' 1000
F] F]
£ o
g * :
o 200 400 600 800 1000 © W] 200 400 600 800 1000
Timestep Timestep

a Comparison between cumulative rewards and esti- b Comparison between cumulative rewards and esti-
mated Qs values in the source environment with 100 mated Q7 values in the target environment with 100
trajectories. trajectories.

Figure 6 Comparison of the cumulative returns and the learned (Q-values for the source (left) and target (right)
environments using CQL. Results are plotted with the mean and variance of 100 trajectories.

collected by the policies in the source and target environments, demonstrating that the Q-values used
in our approach serve as reliable approximations.
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