
Fast and Communication Efficient Decentralized Learning with Local Updates

Peyman Gholami 1 Hulya Seferoglu 1

Abstract

Gossip and random walk-based learning are
widely considered decentralized learning algo-
rithms. Gossip algorithms (both synchronous and
asynchronous) suffer from high communication
cost, while random-walk based learning experi-
ences high convergence time. In this paper, we
design a fast and communication-efficient asyn-
chronous decentralized learning mechanism DI-
GEST by taking advantage of both Gossip and
random-walk ideas, and focusing on stochastic
gradient descent (SGD). DIGEST is an asyn-
chronous decentralized learning mechanism build-
ing on local-SGD, which is originally designed for
communication efficient centralized learning. We
analyze the convergence of DIGEST and prove
that it approaches to the optimal solution asymp-
totically for both iid and non-iid data distribu-
tions. We evaluate the performance of DIGEST
for logistic regression and a deep neural network
ResNet20. The simulation results confirm that
multi-stream DIGEST has nice convergence prop-
erties; its convergence time outperforms the base-
lines when data distribution is non-iid.

1. Introduction
Decentralized algorithms have been extensively studied in
the literature, with Gossip algorithms receiving the lion’s
share of research attention (Boyd et al., 2006b; Nedic &
Ozdaglar, 2009; Koloskova et al., 2019; Aysal et al., 2009;
Duchi et al., 2012; Kempe et al., 2003; Xiao & Boyd, 2003;
Boyd et al., 2006a; Koloskova et al., 2020; Scaman et al.,
2019; Giaretta & Girdzijauskas, 2019). In Gossip algo-
rithms, each node (edge or end user device) has its own
locally kept model on which it effectuates the learning by
talking to its neighbors. This makes Gossip attractive from
a failure-tolerance perspective. However, this comes at the
expense of a high network resource utilization. All nodes
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in a Gossip algorithm in a synchronous mode perform a
model update and wait for receiving model updates from
their neighbors. When a node completes receiving updates
from its neighbors, it aggregates them. Thus, there should
be data communication among all nodes after each model
update, which is a significant communication overhead.

Asynchronous Gossip algorithms, where nodes communi-
cate asynchronously and without waiting for others are
promising to reduce idle nodes and eliminate the stragglers,
i.e., delayed nodes (Lian et al., 2018; Assran et al., 2019;
Li et al., 2018; Avidor & Tal-Israel, 2022; Nadiradze et al.,
2020). However, nodes still rely on iterative Gossip averag-
ing of their models, so updates propagate gradually across
the network. Such delayed updates, also referred as gradient
staleness in asynchronous Gossip may lead to high error
floors (Dutta et al., 2021), or require very strict assump-
tions to converge to the optimum solution (Lian et al., 2018).
Moreover, such methods must be implemented with caution
to prevent the occurrence of deadlocks (Assran et al., 2019).
The need for multiple rounds of Gossip averaging, in both
synchronous and asynchronous algorithms, to distribute a
node’s update to all other nodes tends to diminish the up-
dates after each averaging. The “diminishing updates” are
more emphasized when a model passes through high degree
nodes, and detrimental for the convergence in when data
distribution heterogeneous across the nodes.

In both synchronous and asynchronous Gossip, models prop-
agate over the nodes and updated by each node gradually
as seen Fig. 1(a). This may lead to a notion that we name
“diminishing updates”, where a node’s update (e.g., node 1
in Fig. 1(a)), even though crucial for convergence, may be
averaged and mixed with other models in the next node (e.g.,
node 2 in Fig. 1(a)). The diminishing updates are more em-
phasized when a model passes through high degree nodes,
and detrimental for the convergence when data distribution
is heterogeneous across the nodes.

If Gossip algorithms are one side of the spectrum of decen-
tralized learning algorithms, the other side is random-walk
based decentralized learning (Bertsekas, 1996; Ayache &
Rouayheb, 2021; Sun et al., 2018; Needell et al., 2014; Spiri-
donoff et al., 2021). The random-walk algorithms advocate
activating a node at a time, which would update the global
model with its local data. Then, the node selects one of its
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Figure 1: Spread of information in a decentralized network.

neighbors randomly and sends the updated global model.
The selected neighbor becomes a newly activated node, so
it updates the global model using its local data. This contin-
ues until convergence. Random-walk algorithms reduce the
communication cost as well as computation with the cost of
increased convergence time due to idle times at nodes.

The goal of this work is to take advantage of both Gossip
and random-walk ideas to design a fast and communication-
efficient decentralized learning. Our key intuitions are; (i)
Nodes do not need to communicate as much as Gossip to
update their models, i.e., a sporadic exchange of model up-
dates is sufficient; (ii) the diminishing updates inherent to
Gossip algorithms can be eliminated by employing a global
model (detailed in Section 3.2); and (iii) Nodes do not need
to wait idle as in random walk. Thus, we design a fast and
communication-efficient asynchronous decentralized learn-
ing mechanism DIGEST by particularly focusing on stochas-
tic gradient descent (SGD). DIGEST is an asynchronous
decentralized learning algorithm building on local-SGD
algorithms, which are originally designed for communica-
tion efficient centralized learning (Stich, 2019; Wang &
Joshi, 2021; Lin et al., 2020). DIGEST works as follows.
Each node keeps updating its local model all the time as in
local-SGD. Meanwhile, there is an ongoing stream of global
model update among nodes. We note that the exchanged
models are global models as each node adds its own local
updates to the received model. A node that has the global
model selects the next node randomly among its neighbors
for global model transmission. After all the nodes update
their models with a global model, DIGEST pauses global
model exchange, while local SGD computations still con-
tinue. The global model exchange is repeated at every H iter-
ations. We name this algorithm single-stream DIGEST. We
further improve the convergence time of single-stream DI-
GEST by enabling multiple streams of global model updates,
which is multi-stream DIGEST. We analyze the convergence
of single- and multi-stream DIGEST, and prove that both
algorithms approach to the optimal solution asymptotically.
The simulation results confirm that DIGEST has nice con-
vergence properties. The convergence time of multi-stream

DIGEST outperforms the baselines in non-iid setting.

2. Preliminaries
Network Topology. We model the underlying network
topology with a connected graph G = (V, E), where V
is the set of vertices (nodes) and E is the set of edges. The
vertex set contains V nodes, i.e., |V| = V , and |.| shows
the size of the set. The computing capabilities of nodes are
arbitrary and heterogeneous. If node i is connected to node
j through a communication link and can transmit data, then
link {i, j} is in the edge set, i.e., {i, j} ∈ E . The set of the
nodes that node i is connected to and can transmit data is
called the neighbors of node i, and the neighbor set of node
i is denoted by Ni. We do not make any assumptions about
the behavior of the communication links; there can be an
arbitrary, but finite amount of delay over the links.
Data. We consider a setup where nodes have access to a
subset of data samples D. Each node v has a local dataset
Dv, where Dv = |Dv| is the size of the local dataset and
D =

∑V
v=1 Dv . The distribution of data across nodes is not

identical and independently distributed (non-iid).
Stochastic Optimization. Assume that the nodes in the
network jointly minimize a d-dimensional function f :
Rd → R. The goal of the nodes is to converge on a model
x∗, which minimizes the empirical loss over D samples,
i.e., x∗ := argminx∈Rd

[
f(x) := 1

D

∑D
i=1 fi(x)

]
, where

fi(x) : Rd → R is the loss function of x associated with
the data sample i. The optimum solution is denoted by
f∗. The loss function on local dataset Dv at node v is
fv(x) = 1

Dv

∑
i∈Dv

fi(x).
Notation. The notation table is in Appendix A of (Gholami
& Seferoglu, 2023).

3. Design of DIGEST
In this section, we provide the design principle of multi-
stream DIGEST. The single stream version is a straightfor-
ward extension and its details are provided in (Gholami &
Seferoglu, 2023).

3.1. Tree Construction and Multiple Streams
Multi-stream DIGEST operates over a rooted tree. Thus, our
first step is to create a rooted tree from our undirected graph
G. We use a classical distance vector routing algorithm such
as Bellman-Ford so that each node v learns its delay distance
dGvu to node u in a decentralized manner and via message
passing. We define the radius of node v as RG

v , which is
the largest distance from node v; i.e., RG

v = maxu{dGvu}.
The root of the network is the node with the smallest RG

v ,
i.e., r = argminv{RG

v }, where r is the root node. The
shortest delay tree STr rooted with r is constructed in a
decentralized manner as each node keeps dGvu information.

After the tree is constructed, multiple streams are created
to exchange the global model in the network. First, the root
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Algorithm 1 DIGEST on node v ∈ V with multiple streams.

1: Initialization: xv
0 = x0, xv

−1 = x0, queue = ().
2: for m inMv do
3: x̃0[m] = x0, x̃−1[m] = x0, visited[m] = {},

pre node[m] = v, SvT [m] = {0}0<t≤T , svm1 [m] = 1.
4: for t in 0, ..., T − 1 do
5: Sample ivt uniformly from Dv .
6: Start computing the gradient∇fivt (x

v
t ).

7: xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z)

8: if queue ̸= () then
9: for any message in queue do

10: (x̃t[m], visited[m], pre node[m],m) ←
message

11: svt+1[m] = 1
12: Remove message from queue

13: for m inMv do
14: if svt+1[m] = 1 then
15: x̃t+1[m] = x̃t[m] + Dv

D (xv
t+1 − xv

−1) +
(xv

−1 − x̃−1[m])
16: xv

t+1 = x̃t+1[m]
17: xv

−1 = xv
t+1 ▷ Last updated model at v

18: x̃−1[m] = x̃t+1[m] ▷ Last updated model
at node v corresponding to stream m

19: if mod (t,Hm) = 0 or visited[m] ̸= Vm
then

20: Send message= x̃t+1[m], visited[m],
pre node[m], r to a neighboring node.

21: else
22: svt+H−mod(t,Hm)[m] = 1

23: visited[m] = {}

node creates a number of streams which is equal to the
number of its children. Each of these streams has a range,
which starts from the root node and ends at a child node if
the child node itself has more than one child. In that case,
the child node behaves exactly as a root node, and creates
multiple streams towards its children by following the same
rule that we just described for the root node. Eventually,
there will be M streams in the tree, and the set of the streams
that go through node v isMv. The set of nodes that are in
the range of stream m is Vm. The set of the streams between
root r and node v is defined as P r

v .
3.2. Algorithm Design
Multi-stream DIGEST is summarized in Alg. 1. The follow-
ing are the key properties of Alg. 1.

There are multiple global models in different streams, i.e.,
x̃t[m] corresponds to the global model in stream m out of
M streams. There are |Mv| models stored in each node,
i.e., x̃−1[m] to represent the global model corresponding to
the last synchronization of stream m at node v. We define
visited[m], pre node[m], and svt [m] for each stream m.

Each node v has a queue to store all the messages that a
node receives from its neighbors. It is initialized as an empty
queue at the start. Whenever node v receives a message
from one of its neighbors, it is added in the queue. Each
node can receive up to |Mv| messages related to different
streams, so the size of the queue is |Mv|. In each message
there is a stream index m (line 10).

Node v extracts all the messages in its queue (line 9-12).
Then, it updates its global and local models in line 15, 16 if
svt+1[m] = 1. The global model is updated using the most
recent local updates of node v and global updates of other
streams (line 15). The global model synchronization con-
tinues until all nodes in Vm are visited for stream m. Then,
global model update is paused until a new synchronization
round, which starts at every Hm iteration. The policy for
selecting Hm is explained in the next section.

4. Convergence Analysis of DIGEST
We use the following assumptions for the convergence anal-
ysis of single- and multi-stream DIGEST.

1. Smooth local loss. fv is continuously differentiable
and its gradient is L-Lipschitz for 1 ≤ v ≤ V , i.e.,
∥∇fv(y)−∇fv(x)∥ ≤ L∥y − x∥, ∀x,y ∈ Rd.

2. Bounded local variance. The variance of the stochastic
gradient is bounded for all nodes, i.e., 0 ≤ t < T , 1 ≤
v ≤ V , Eivt

∥∇fivt (x
v
t )−∇fv(xv

t )∥2 ≤ σ2.

3. Bounded diversity. The diversity of the local loss func-
tions and global loss function is bounded, i.e., 0 ≤ t < T ,
1 ≤ v ≤ V , ∥∇fv(xv

t )−∇f(xv
t )∥2 ≤ ζ2.

4. Bounded lag. We assume bounded lag, i.e., max{lvt −
t} ≤ E, 0 ≤ t < T, 1 ≤ v ≤ V .

5. Bounded synchronization interval. For single-stream
DIGEST, we assume that the interval between two sub-
sequent global model synchronizations is bounded, i.e.,
gap(SvT ) ≤ H , 1 ≤ v ≤ V , where gap(SvT ) shows the
maximum gap between two subsequent 1s in SvT . For
multi-stream DIGEST, we assume different bounds for
each stream, i.e., gap(SvT [m]) ≤ Hm for m ∈Mv .

6. Convexity. f is µ-(strongly) convex, i.e., ∀x,y ∈ Rd,
f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2 ∥y − x∥2.

Theorem 4.1. Let assumptions 1-5 hold, with a constant
and small enough learning rate η ≤ 1

30LA (potentially
depending on T ), the convergence rate of single- and multi-
stream DIGEST is as follows:

Non-convex: 1
T

∑T−1
t=0 E ∥∇f(x̂T )∥2 is

O

(
FLA

T
+ σ

√
ρLF

T
+ (

LF
√
σ2A+ ζ2A2

T
)

2
3

)
,

where x̂T =
∑V

v=1

∑T−1
t=0

Dv

D xv
t .
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Convex: Under assumption 6 for µ ≥ 0, E f(x̂T )− f∗ is

O

(
RLA

T
+ σ

√
ρR

T
+ (

R
√
L(σ2A+ ζ2A2)

T
)

2
3

)
,

where x̂T =
∑V

v=1

∑T−1
t=0

Dv

D xv
t .

Strongly-convex: Under assumption 6 for µ > 0, E f(x̂T )−
f∗ is

Õ

(
RLA exp(

−µT
LA

) +
ρσ2

µT
+

L(σ2A+ ζ2A2)

µ2T 2

)
,

where x̂T = 1
DWT

∑V
v=1

∑T−1
t=0 Dvωtx

v
t , ωt = (1 −

aη)−(t+1), WT =
∑T−1

t=0 ωt.

Õ hides constants and poly-logarithmic factors, T represent
the wall clock time, F := f(x0) − f∗, R := ∥x0 − x∗∥2,
A := H ′ + E, and ρ :=

∑V
v=1(

Dv

D )2. The convergence
rate of single-stream DIGEST follows when H ′ = H , and
the convergence rate of multi-stream DIGEST is obtained
by putting H ′ = maxv

∑
m∈P r

v
Hm in A. □

Proof. The proof of Theorem 4.1 is provided in (Gholami
& Seferoglu, 2023).
Remark 4.2. For strongly-convex case, in iid data distri-
bution over nodes, i.e., ζ = 0, the convergence rate to the
optimum value f∗ is Õ( ρ

T ) given that H ′ +E = Õ(ρT ) is
satisfied, where ρ =

∑V
v=1(

Dv

D )2 is a data concentration
coefficient that can take values between 1

V ≤ ρ < 1. In
non-iid data distribution over nodes (ζ ̸= 0), linear speed
up O(

√
ρ
T ) is achieved when H ′ + E = Õ(

√
ρT ) holds.

Theorem 4.1 and Remark 4.2 show a nice trade-off between
convergence rate and communication overhead. It deter-
mines how much communication is needed to achieve a
linear speed-up. Remark 4.2 also shows the impact of non-
iid data distribution, which requires smaller H ′, hence more
communications to converge and achieve linear speed-up.
Remark 4.3. Corollary 4.2 shows that the linear speed up
is achieved when T = Ω̃(H

′

ρ ) and T = Ω̃(H
′2

ρ ) for iid and
non-iid data, respectively. When the network is larger, single-
stream DIGEST needs longer H ′ (which is equal to H) to
visit all the nodes, which requires larger T (convergence
time). But in multi-stream DIGEST, H ′ defined as H ′ =
maxv

∑
m∈P r

v
Hm could be as low as RG

r , which is the
radius of root node r (or maximum delay toward any node
from root node r). As RG

r does not necessarily increase with
the size of the network, multi-stream DIGEST is plausible
even for large networks.
Remark 4.4. Lets assume that the network can be covered
in H iteration using single/multi-stream approach. DIGEST
can efficiently perform synchronization while nodes are
doing local-SGD, i.e., network topology, spectral gap or
the maximum and minimum degrees in the network topol-
ogy don’t affect the convergence rate. This is one advan-
tage of using DIGEST in comparison to previous works on

asynchronous decentralized learning like (Nadiradze et al.,
2020) where the convergence rate in non-convex setting

is O
(

F√
HV T

+
√
H(σ2+Hζ2)√

V T
+ V dmaxL

2H3G2

dminλ2T

)
. Here, we

observe that the minimum degree (dmin), maximum degree
(dmax), and spectral gap (λ) of the network graph are part of
the result, so affects the convergence.

5. Evaluation of DIGEST
5.1. Convergence Properties
We evaluate DIGEST as compared to baselines; (i) Uniform
Random-Walk (URW) (Ayache & Rouayheb, 2021); (ii)
Gradient tracking (GT) with local-SGD (Liu et al., 2023): It
is an algorithm that is developed to overcome data hetero-
geneity across nodes in a decentralized optimization prob-
lems; (iii) Async-Gossip Lian et al. (2018) with local-SGD;
(iv) Sync-Gossip Lian et al. (2018) with local-SGD. Our
codes are provided in (dig, 2023).

We consider two network topologies; an Erdős–Rényi graph
of V = 10 and V = 100 nodes with 0.3 as the probability
of connectivity. We assume that each iteration of Local SGD
takes 0.1 second. The communication delay between every
two neighbors is assumed to have exponential distribution
where its average is randomly chosen from 0 to 5 seconds.

We use two data distribution: (i) iid-balanced, and (ii) non-
iid-unbalanced. In iid-balanced case, data is shuffled and
equally divided and placed in nodes. Non-iid-unbalanced
has two features: (i) Non-iid, which is realized by sorting
data according to their labels, and distribute them in the
sorted order. Thus, the data distributed over nodes will be
non-iid; (ii) Unbalanced, which means that each node may
have different amount of data. We use geometric series to
realize unbalanced data across nodes. For example, if a node
u has Du = δ data, the next nodes get δρ, δρ2, etc. data,
where ρ is determined by taking into account the size of the
total dataset D.

We first examine the convergence performance of logistic
regression. We run the optimization using tuned constant
learning rate for each algorithm. Fig. 2 shows the conver-
gence behavior of our algorithms as well as the baselines for
MNIST dataset in 10-nodes and 100-nodes topologies. URW
generally underperforms as compared to other methods due
to its approach of conducting only one local-SGD operation
per iteration on a single node. As a consequence, it does not
have a linear speed-up with increasing number of nodes. In
certain situations involving non-iid data distribution, URW
may exhibit better performance than some other methods
as shown in Figs. 2b, 2c. This is because URW is not af-
fected by non-iidness as it uniformly incorporates data from
all nodes. DIGEST, Sync-Gossip, and Async-Gossip have
similar performance in iid data distribution in Fig. 2a. On
the other hand, we observe that Gossip based algorithms are
suffering from slow convergence in non-iid setting as shown
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Figure 2: Convergence results in terms of global loss over wall-clock time.

in Figs. 2b, 2c. We also observe that GT algorithms enhance
the performance of gossip-based algorithms by incorporat-
ing a mechanism to overcome non-iidness. However, this
algorithm demands twice the communication overhead com-
pared to sync-Gossip, resulting in more communication
overhead, which can degrade its convergence performance
in terms of wall-clock time. In comparison, DIGEST have
better convergence behavior thanks to its very design of
spreading information uniformly in the network to handle
non-iidness. It is evident that when the network is larger,
one-stream DIGEST method is unable to cover the entire
network as quickly as required, highlighting the need to
utilize multi-stream DIGEST to overcome this limitation.
This observation is supported in Fig. 2c, where all streams
have the same Hm = H,m ∈M in multi-stream DIGEST.

Next, we evaulate the convergence performance of our algo-
rithms for ResNet-20 (He et al., 2015) as the DNN model.
The dataset is CIFAR-10 (Krizhevsky, 2009). We have set
the batch size to 36 per node, and the learning rate is de-
cayed by a constant factor after completing 50% and 75%
of the training time. The initial value of the learning rate is
separately tuned for each algorithm. We have set the momen-
tum value to 0.9 and the weight decay to 10−4. We observe
that in non-iid settings, where communication and model
distribution across the network become crucial, DIGEST
outperforms Gossip-based algorithms, Fig. 2d.

5.2. Speed-up
In this section, we evaluate the speed up performance of
our DIGEST algorithms as well as the baseline; centralized
parallel SGD. We consider the following cost function

f(x) =

{
(x− 1)2 x ≥ 1,
(x−1)2

2 x < 1.
(1)

We employ Local-SGD at node v with gradients affected
by a normal noise, i.e., ∇fivt (x

v
t ) = ∇f(xv

t ) + nv
t , where

nv
t ∼ N (ζv, σ

2),
∑V

v=1 ζv = 0. To create the speed-up
curve, we divide the expected error of a single node SGD
by the expected error of each method at the last iteration T
for different number of nodes. As in linear speed-up, error
decreases linearly with the increasing number of workers,

so we expect to see a straight line on the graph. The speed-
up curve is illustrated in Fig. 3. The central parallel SGD
averages all nodes‘ updates at every H steps, and updates
the model in all nodes. It is worth noting that the central
parallel SGD with H = 1 is the best speed-up that can be
achieved in this scenario.

We set the learning rate to 0.001, and |ζv| = 5 for v ∈ V ,
σ = 5, and T = 104. Note that in iid setting with a less
restrictive constraint on H , larger H can still leads to linear
speed-up when compared to non-iid setting. Moreover, it
is seen that single stream DIGEST has linear speed-up to
a certain limit; however, as the number of nodes increases
and single-stream DIGEST cannot traverse the entire net-
work fast enough, linear speed-up is not maintained. On the
other hand, multi-stream DIGEST achieves linear speed up
and achieves a very close performance to the best possible
scenario, which is centralized parallel SGD with H = 1.
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Figure 3: Speed-up curves for DIGEST.

6. Acknowledgments
This work was supported in part by ARL under Grant
W911NF-2120272, and in part by NSF under Grant CCF-
1942878, Grant CNS-2148182, and Grant CNS-2112471.

7. Conclusion
We designed fast and communication-efficient decentralized
learning mechanisms; single- and multi-stream DIGEST to
exploit the convergence rate and communication overhead
tradeoff. We proved both algorithms converge to the optimal
solution asymptotically for both iid and non-iid data. The
simulation results confirms that the convergence rate of
DIGEST is better than or comparable to the baselines.
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