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Abstract

We address deep offline reinforcement learning with privacy guarantees, where
the goal is to train a policy that is differentially private with respect to individual
trajectories in the dataset. To achieve this, we introduce DP-MORL, an MBRL
algorithm with differential privacy guarantees. A private model of the environment
is first learned from offline data using DP-FEDAVG, a training method for neural
networks that provides differential privacy guarantees at the trajectory level. Then,
we use model-based policy optimization to derive a policy from the (penalized)
private model, without any further interaction with the system or access to the
dataset. We empirically show that DP-MORL enables the training of private RL
agents from offline data in continuous control tasks and we furthermore outline the
price of privacy in this setting.

1 Introduction

Despite Reinforcement Learning’s (RL) notable advancements in various tasks, there have been many
obstacles to its adoption for the control of real systems in the industry. In particular, online interaction
with the system may be impractical or hazardous in real-world scenarios. Offline RL [Levine et al.,
2020] refers to the set of methods enabling the training of control agents from static datasets. While
this paradigm shows promise for real-world applications, its deployment is not without concerns.
Many studies have warned of the risk of privacy leakage when training machine learning models, as
these models can memorize part of the training data. For instance, Rigaki and Garcia [2020] review
the proliferation of sophisticated privacy attacks. Of the various attack types, membership inference
attacks [Shokri et al., 2017] stand out as the most prevalent. In these attacks, the adversary, with
access to a black-box model trainer, attempts to predict whether a specific data point was part of
the model’s training data. Unfortunately, reinforcement learning is no exception to these threats.
In a recent contribution, Gomrokchi et al. [2023] exploit the temporal correlation of RL samples
to perform powerful membership inference attacks using convolutional neural classifiers. More
precisely, they demonstrate that given access to the output policy, an adversary can learn to infer the
presence of a specific trajectory — which is the result of a sequence of interactions between a user
and the system — in the training dataset with great accuracy.

The threat of powerful membership inference attacks is particularly concerning in reinforcement
learning, where a trajectory can unveil sensitive user information. For instance, when using RL to
train autonomous vehicles [Kiran et al., 2022], we need to collect a large number of trips that may

17th European Workshop on Reinforcement Learning (EWRL 2024).



disclose locations and driving habits. Similarly, a browsing journey collected to train a personalized
recommendation engine may contain sensitive information about the user’s behavior [Zheng et al.,
2018]. In healthcare, RL’s potential for personalized treatment recommendation [Liu et al., 2022]
underscores the need to safeguard patients’ treatment and health history.

Fortunately, a large body of work has focused on protecting against such privacy leakages. Differential
Privacy (DP), which allows learning models without exposing sensitive information about any
particular user in the training dataset, has emerged as the gold standard. While successfully applied
in various ML domains, such as neural network training [Abadi et al., 2016] and multi-armed bandits
[Tossou and Dimitrakakis, 2016], extending differential privacy to reinforcement learning poses
challenges. In particular, the many ways of collecting data and the correlated nature of training
samples resulting from online interactions make it difficult to come up with a universal and meaningful
DP definition in this setting. Several attempts, such as joint differential privacy [Vietri et al., 2020],
have been made, but they mostly extend definitions from bandits and proposed methods do not scale
to the state and action spaces typically encountered in deep RL.

More akin to supervised learning, the particular setting of offline RL arguably provides a more
natural approach to privacy. In contrast to online RL, which inherently blends input and output data
throughout the process, an offline RL method can be seen as a black-box randomized algorithm
h taking in as input a fixed dataset D, partitioned in trajectories, and outputting a policy π̂. An
adversary having access to π̂ may successfully learn to infer the membership of a specific trajectory
in D, which can, as emphasized before, reveal sensitive user information. Hence, similarly to Qiao
and Wang [2023a], we use the following informal DP definition for offline RL, which we refer to
as trajectory-level differential privacy (TDP): adding or removing a single trajectory from the input
dataset of an offline RL algorithm must not impact significantly the distribution of the output policy.
If Qiao and Wang [2023a] have proposed the first private algorithms for offline RL, building on value
iteration methods, their scope is limited to tabular and linear Markov decision processes (MDPs), and
experiments are only conducted on simplistic, 2-state environments. Such methods cannot scale to
complex continuous control tasks that often require deep neural function approximations, leaving a
huge gap between the current private RL literature and real-world applications. In this work, we are
the first to tackle deep RL tasks with continuous state and action spaces under differential privacy
guarantees, paving the way for enhanced applications of private RL in more complex scenarios.

Contributions. While previous work in the differentially private RL literature is essentially re-
stricted to tabular and linear Markov decision processes (MDPs), with experiments reduced to simple,
very low-dimensional tasks , this work is the first attempt to tackle practical deep RL problems with
continuous state and action spaces. To this end, we use a deep model-based approach, exploiting a
model of the environment to generalize the information contained in the offline data to unexplored
regions of the state-action space. Training the model with a user-centered, differentially private
optimizer and mitigating the increased model uncertainty during model-based policy optimization,
the resulting algorithm, named DP-MORL, can to train trajectory-level DP policies with competitive
privacy-performance trade-offs. Experiments on standard continuous control benchmarks show the
potential of our approach.

2 Related Work

2.1 Model-Based Offline Reinforcement Learning

Unlike classical reinforcement learning [Sutton and Barto, 1998] which is online in nature, offline
RL [Levine et al., 2020, Prudencio et al., 2022] aims at learning and controlling autonomous agents
without further interactions with the system. This approach is preferred or even unavoidable in
situations where data collection is impractical (see for instance Singh et al. [2022], Liu et al. [2020],
Kiran et al. [2022]). Model-based RL [Moerland et al., 2023] can also help when data collection
is expensive or unsafe as a good model of the environment can generalize beyond in-distribution
trajectories and allow simulations. Moreover, model-based RL has been shown to be generally more
sample efficient than model-free RL [Chua et al., 2018]. Argenson and Dulac-Arnold [2021] also
show that model-based offline planning, where the model is learned offline on a static dataset and
subsequently used for control without further accessing the system, is a viable approach to control
agents on robotic-like tasks with good performance. Unfortunately, the offline setting comes with its
own major challenges. In particular, when the data is entirely collected beforehand, we are confronted
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to the problem of distribution shift [Fujimoto et al., 2019]: as the logging policy used to collect the
training dataset only covers a limited (and potentially small) region of the state-action space, the
model can only be trusted in this region, and may be highly inaccurate in other parts of the space.
This can lead to a severe decrease in the performance of classic RL methods, particularly in the
model-based setting where the acting agent may exploit these inaccuracies in the model, causing
large gap between performances in the true and the learned environment. MOPO [Yu et al., 2020]
and MOREL [Kidambi et al., 2020], and mroe recently COUNT-MORL [Kim and Oh, 2023] have
effectively tackled this issue by penalizing the reward proportionally to the model’s uncertainty,
achieving impressive results on popular offline benchmarks. Nonetheless, there remain many areas
for improvement, as highlighted by ?, which extensively study and challenge key design choices in
offline MBRL algorithms.

2.2 Privacy in Reinforcement Learning

Differential Privacy (DP), first formalized in Dwork [2006], has become the gold standard in terms
of privacy protection. Over the recent years, the design of algorithms with better privacy-utility
trade-offs has been a major line of research. In particular, relaxations of differential privacy and more
advanced composition tools have allowed tighter analysis of privacy bounds [Dwork et al., 2010,
Dwork and Rothblum, 2016, Bun and Steinke, 2016, Mironov, 2017]. Leveraging these advances, the
introduction of DP-SGD [Abadi et al., 2016] has allowed to design private deep learning algorithms,
paving the way towards a wider adoption of DP in real-world settings, although the practicalities
of differential privacy remain challenging [Ponomareva et al., 2023]. In parallel to the theoretical
analysis of privacy, many works have focused on designing more and more sophisticated attacks,
justifying further the need to design DP algorithms ([Rigaki and Garcia, 2020]). Membership
inference attacks [Shokri et al., 2017], where the adversary has access to a black-box model trainer
and tries to predict whether a particular data point has been used to train the private model, are
the most popular category of attacks. Other kinds of attacks include model inversion attacks (e.g.,
[Krishna et al., 2020]) and reconstruction attacks (e.g., [He et al., 2019]).

Recent works on RL-specific attacks have demonstrated that reinforcement learning (RL) is no more
immune to privacy threats. [Gomrokchi et al., 2023] exploit the temporal correlation of RL samples
to perform powerful membership inference attacks, while [Pan et al., 2019] use classifiers and genetic
algorithms to infer the transition dynamics of an environment. Additionally, [Prakash et al., 2022]
show that Inverse RL can be used to recover the reward function from a trained policy. With RL
being increasingly used to provide personalized services [?], which may expose sensitive user data,
developing privacy-preserving techniques for training policies has become crucial. Shortly after
DP was successfully extended to multi-armed bandits [Tossou and Dimitrakakis, 2016, Basu et al.,
2019], a substantial body of work (e.g., Vietri et al. [2020], Garcelon et al. [2021], Liao et al. [2021],
Luyo et al. [2021], Chowdhury and Zhou [2021], Zhou [2022], Ngo et al. [2022], Qiao and Wang
[2023b]) addressed privacy in online RL, using adapted definitions like Joint Differential Privacy
(JDP) and Local Differential Privacy (LDP), with both model-free and model-based approaches.
However, relying on count-based and UCB-like methods, current RL algorithms with formal DP
guarantees are essentially limited to episodic tabular or linear MDPs. Few works have proposed
private RL methods for more general problems, however with significant limitations or in different
contexts. ? tackle continuous state spaces by adding functional noise to Q-Learning, but the approach
is restricted to unidimensional states and focuses on protecting reward information. Recently, ?
addressed high-dimensional control and robotic tasks; however, they consider a specific notion of
privacy that protects sensitive state variables based on a mutual information framework.

Despite the relevance of the setting for real-world RL deployments, private offline RL has received
comparatively less attention. To date, only Qiao and Wang [2023a] have proposed DP offline algo-
rithms, building on non-private value iteration methods. While their approach lays the groundwork
for private offline RL and offers strong theoretical guarantees, it remains limited to episodic tabular
and linear MDPs. Consequently, no existing work has introduced differentially private methods that
can handle deep RL environments with continuous state and action spaces, a critical step toward
deploying private RL algorithms in real-world applications. With this work, we aim to fill this gap by
proposing a differentially private, deep model-based RL method for the offline setting.
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3 Preliminaries

3.1 Offline Model-Based Reinforcement Learning

We consider a MDP, that is a tupleM = (S,A, P, r, γ, ρ0) where S and A are the state and action
spaces, respectively, P : S × A −→ ∆(S) is the transition dynamics (where ∆(X ) denotes the
space of probability distributions over X ), r : S ×A −→ [0, 1] is the reward function, γ ∈ [0, 1) is
a discount factor and ρ0 ∈ ∆(S) is the initial state distribution. The dynamics satisfy the Markov
property, i.e., the next state s′ ∈ S only depends on current state and action. The goal of RL is to learn
a policy π : S −→ ∆(A) that maximizes the expected discounted return ηM(π) := E

τ∼π,M
[R(τ)],

where R(τ) =
∑∞
t=0 γ

trt. The expectation is taken w.r.t. the trajectories τ = ((st, at, rt))t≥0

generated by π in the MDPM, i.e., s0 ∼ ρ0, st+1 ∼ P (·|st, at) and at ∼ π(·|st).

In offline RL, we assume access to a dataset of K trajectories DK = (τk)
K
k=1, where each τk =(

s
(k)
t , a

(k)
t , r

(k)
t

)
t≥0

has been collected following an unknown behavioral policy πB . For instance,

τk can be seen as the result of the interaction of a user uk with the environment. The objective is then
to learn a policy π̂ from DK (without any further interaction with the environment) which performs
as best as possible in the true MDPM.

To achieve this goal, we consider a model-based approach. In this context, we learn estimates of
both the transition dynamics and the reward function, denoted P̂ and r̂ respectively, from the offline
dataset DK . This results in an estimate of the MDP M̂ =

(
S,A, P̂ , r̂, γ, ρ0

)
. We can then use

the model M̂ as a simulator of the environment to learn a policy π̂M̂, without further access to the
dataset or interactions with the real environment modeled byM. Note that if the policy π̂M̂ is trained
to maximize the expected discounted return in the MDP model M̂, i.e., π̂M̂ ∈ argmax ηM̂(π), we
eventually want to evaluate the policy in the true environmentM, that is using ηM.

3.2 Differential Privacy

When learning patterns from a dataset, differential privacy [Dwork, 2006] protects against the leakage
of sensitive information in the data by ensuring that the output of the algorithm does not change
significantly when adding or removing a data point, as formally stated in Definition 3.1.

Definition 3.1. (ϵ, δ)-differential privacy. Given ϵ > 0, δ ∈ [0, 1), a mechanism h (i.e., a randomized
function of the data) is (ϵ, δ)-DP if for any pair of datasets D, D′ that differ in a most one element
(referred to as neighboring datasets, and denoted d(D,D′) = 1), and any subset E in h’s range:

P (h(D) ∈ E) ≤ eϵ · P (h(D′) ∈ E) + δ .

A small ϵ ensures that h’s output remains close between two neighboring datasets, the corresponding
probability ratio being bounded by exp (ϵ) when δ = 0. When δ is non-zero, this bound may only
hold with probability greater than 1− δ: we talk about approximate DP, as opposed to pure DP.

To achieve (ϵ, δ)-DP, the standard approach is to add a zero-mean random noise to the output of
the (non-private) function f . Intuitively, the magnitude σ of the noise should be large enough to
cover the largest amount by which the function f can change between two neighboring datasets. This
quantity ∆ℓ(f) := max

d(D,D′)=1
∥f(D)− f(D′)∥ℓ, where ∥·∥ℓ is the Lℓ-norm, is called the sensitivity

of the function. Differential privacy can thus be seen as a worst-case guarantee. However, too
much noise may dramatically hurt the utility of the mechanism. This is why σ typically scales with
∆ℓ(f)/ϵ, where ϵ controls the strength of the privacy guarantees and hence the trade-off between
privacy and utility. One of the most used DP mechanisms is the Gaussian mechanism, which provably
guarantees (ϵ, δ)-DP for ϵ, δ ∈ (0, 1) by adding random noise from a Gaussian distribution with
magnitude σ = ϵ−1

√
2 log (1.25/δ) ·∆2(f). From such simple mechanisms, we can derive complex

DP algorithms using the sequential and parallel composition properties of DP, as well as its immunity
to post-processing (i.e., if h is (ϵ, δ)-DP and g is data-independent, then g ◦ h remains (ϵ, δ)-DP).

The Gaussian mechanism is at the core of DP-SGD [Abadi et al., 2016], a learning algorithm
that applies a series of modifications to the classic SGD algorithm to optimize functions while
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guaranteeing (approximate) differential privacy. In particular, it has been successfully used to train
neural networks privately [Ponomareva et al., 2023]. The main idea behind DP-SGD is to add a well-
scaled Gaussian noise to the gradients, which first requires bounding the norm of each per-sample
gradient with a constant C (as gradients can have unbounded sensitivity). To quantify the total privacy
budget ϵtot spent through repeated applications of the Gaussian mechanism during the training of a
neural network, the authors have developed the moments accounting method, which allows to derive
a
(
O
(
qϵ
√
T
)
, δ
)

-DP guarantee for DP-SGD, where q is the sampling ratio (the expected size of
the batch drawn by Poisson sampling at each iteration, relative to the size of the dataset), T is the
total number of iterations (i.e., number of gradient descent steps), and ϵ is the privacy parameter
of each call to the Gaussian mechanism. DP-SGD thus makes heavy use of privacy amplification
by sub-sampling [Balle et al., 2018], and its privacy guarantees have been subsequently refined
with more advanced privacy analysis tools like Rényi DP [Mironov, 2017]. Moreover, in terms of
performance, several works have studied error bounds for DP-SGD under various assumptions on
the loss [Bassily et al., 2014, Kang et al., 2023].

4 Differentially Private Model-Based Offline Reinforcement Learning

DP-FedAvg
Model-Based

SAC

Private Model Private Policy

Data
collection

DP-MORL

1 2

Figure 1: DP-MORL with its two main components: 1 private model training; 2 MBPO.

We now describe our model-based approach for learning differentially private RL agents from offline
data, which we call DP-MORL. After defining trajectory-level differential privacy (TDP) in the
setting of offline RL (Section 4.1), we address the learning of a private model from offline data
(Section 4.2). Finally, we demonstrate how we optimize a policy from the learned private model
(Section 4.3). Exploiting the post-processing property of DP, we show that ensuring model privacy
alone is enough to achieve a private policy. Figure 1 provides a high-level description of DP-MORL.

4.1 Trajectory-level Privacy in Offline Reinforcement Learning

We introduce the following formal definition for trajectory-level differential privacy (TDP) in offline
RL. It can be seen as a reformulation of the definition used in Qiao and Wang [2023a], which is the
first work to tackle differential privacy in this setting.
Definition 4.1. (ϵ, δ)-TDP. Let h be an offline RL algorithm, that takes as input an offline dataset
and outputs a policy. Given ϵ > 0 and δ ∈ (0, 1), h is (ϵ, δ)-TDP if for any trajectory-neighboring
datasets DK , DK\{k}, and any subset of policies Π:

P (h(DK) ∈ Π) ≤ eϵ · P
(
h(DK\{k}) ∈ Π

)
+ δ .

4.2 Model Learning with Differential Privacy

4.2.1 Dynamics Model

Following previous work [Yu et al., 2020, Kidambi et al., 2020], we jointly model the transition
dynamics P̂ and reward r̂ with a Gaussian distribution M̂ conditioned on the current state and action.
Its mean and covariance are parameterized with neural networks θ = (ϕ, ψ):

M̂θ

(
∆t+1
t (s), rt|st, at

)
= N (µϕ(st, at),Σψ(st, at)) .
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Note that we learn to predict the consecutive state difference ∆t+1
t (s) = st+1 − st instead of next

state st+1, in order to guarantee continuity, which is standard in model-based RL. Moreover, instead

of training a single dynamics model, we train an ensemble of N models
{
M̂θi

}N
i=1

, to allow for
uncertainty estimation (see Section 4.3).

4.2.2 Trajectory-level DP Training

Such a model is typically trained on the offline dataset DK using first-order optimizers like SGD
or Adam. The core aspect of our approach, as illustrated in Figure 1, is to learn a private model.
To achieve this, we replace the standard optimizer with a DP optimizer. A natural choice is to use
DP-SGD. However, DP-SGD is not the most suitable to handle trajectory-level privacy, especially
as it clips per-sample gradients. Instead, we use the DP training method developed in McMahan et al.
[2018], namely DP-FEDAVG. While this algorithm based on FEDAVG [McMahan et al., 2017] is
originally intended to achieve client-level privacy in federated settings, we note that it can be used in
any context where the training data can be partitioned. This is the case in offline RL, where the data
can be segmented by trajectory, making DP-FEDAVG an interesting approach to training a model
with trajectory-level privacy.

The core idea behind DP-FEDAVG is to draw, at each iteration t, a random subset Ut of the K
trajectories. Each trajectory is drawn with probability q, so that the expected number of trajectories
selected at each step is qK. Then, we compute one gradient ∆t,k per trajectory (i.e., each gradient is
calculated from a single trajectory’s data), that we clip with a constant C using per-layer clipping.
This ensures that no trajectory will carry more weight than another in the optimization of the model,
hence preventing privacy leakage from a specific trajectory. The next step is to compute an unbiased
estimator of the subset gradient average, which is ∆avg

t = (qK)
−1∑

k∈Ut
∆clipped
t,k , whose sensitivity

is bounded by C/qK. We can then apply the Gaussian mechanism with magnitude σ = zC/qK,
where z controls the strength of the privacy guarantee and therefore the final privacy budget ϵ, and
update the model with noisy gradient:

θt+1 ←− θt +∆avg
t +N

(
0, σ2

)
.

Algorithm 1 provides a condensed pseudo-code for the above training procedure. Further details
about the implementation and the training of the model are provided in appendix.

Algorithm 1 Model Training with DP-FEDAVG

1: for each iteration t ∈ [[0, T − 1]] do
2: Ut ← (sample with replacement trajectories from DK with prob. q)
3: for each trajectory τk ∈ Ut do
4: Clone current model θstart ← θt
5: θ ← CLIPPEDGD (τk, θstart;C, local epochs E, batch size B)

6: ∆clipped
t,k ← θ − θstart

7: end for
8: ∆avg

t =
∑

k∈Ut
∆clipped

t,k

qK

9: θt+1 ← θt +∆avg
t +N

(
0,
(
zC
qK

)2)
10: end for

4.2.3 Privacy Guarantees for the Model

In this section, we derive formal privacy guarantees for the model trained with Algorithm 1. We
must consider that we are not training a single model but rather an ensemble of N models to estimate
uncertainty, all consuming the same dataset DK . In a naive implementation of Algorithm 1, the
gradients for each of the N models would be processed independently, with separate clipping and
noise addition before aggregation. This means that the noise hides the contribution of a given
trajectory only to an individual model, each training step thus corresponding to N separate queries to
the private dataset. By the sequential composition property of differential privacy, the total privacy
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budget would scale linearly with N , which could drastically limit ensemble size and harm the
trade-off between performance and privacy.

To circumvent this issue, we start by training the ensemble as a single big model, as in Yu et al. [2020]
and Kidambi et al. [2020]: the current training batch b is fed to all models θ = {θi}Ni=1 at once, a
single aggregated loss L(θ; b) is computed, and the corresponding gradient g = ∇θL(θ; b), which is
the concatenation of the gradients of the individual models (i.e., g = (g1, ..., gN )), is back-propagated
through all models in one pass. To ensure a privacy loss independent of the number of models, we
distribute the global clipping norm C across all models, on the same principle as per-layer clipping
used in McMahan et al. [2017]. That is, for each model i ∈ [[1, N ]], we set a clipping norm Ci, such

that C =
√∑N

i=1 Ci, and scale i’s gradient gi accordingly:

gclipped
i ← gi

max
(
1, ∥gi∥2

Ci

) .

Therefore, ∥g∥2 ≤ C. In practice, we use a fixed clipping norm Ci =
C√
N

. This technique, which we
refer to as per-model clipping, guarantees that the contribution of each trajectory in the model update
at step t is limited by C, regardless of the number of models. Then, after averaging the gradient
across all sampled trajectories in Ut (line 8 of Algorithm 1), we add a single noise vector to the
clipped ensemble gradient (line 9) whose magnitude is calibrated with C, ensuring that we consume
a fixed privacy budget independent of N at training round t 1.

From a privacy perspective, we can treat the process of training the ensemble as equivalent to training
a single model, and Algorithm 1 behaves similarly to FEDAVG. Theorem 1 from McMahan et al.
[2018] shows that the moments accounting method from Abadi et al. [2016] correctly computes the
privacy loss of FEDAVG at user-level for the noise multiplier z = σ/C with C = C/qK. Given
δ ∈ (0, 1), q ∈ (0, 1) and T ∈ N, we can therefore use the moments accountant to compute the total
privacy budget ϵ spent by Algorithm 1, and obtain (ϵ, δ)-TDP guarantees for our dynamics model, as
outlined in Theorem 4.2.

Theorem 4.2. (ϵ, δ)-TDP guarantees for dynamics model. Given δ ∈ (0, 1), sampling ratio q and T
training iterations, let ϵ := ϵMA (δ, q, T ) be the privacy budget computed by the moments accounting
method from [Abadi et al., 2016]. The dynamics model output by Algorithm 1 is (ϵ, δ)-TDP.

4.3 Policy Optimization with the Private Model

Now that we learned a private model from offline data, we can use it as a simulator of the environment
to learn a private policy with a model-based policy optimization approach.

4.3.1 Pessimistic Private MDP

A major challenge faced in offline RL is distribution shift: since the offline data only covers a
portion of the state-action space, the model can be arbitrarily bad in unexplored regions. The
policy optimization algorithm can then exploit these inaccuracies, which can impact dramatically
the performance of the policy in the real environment. To mitigate these issues, offline model-based
methods like MOPO [Yu et al., 2020], MOReL [Kidambi et al., 2020] and Count-MORL [Kim and
Oh, 2023] incorporate model uncertainty within the model MDP, penalizing the regions of the space
where the model is not confident in its predictions.

In this work, we choose the approach used in MOPO, easier to implement and analyze from a privacy
perspective 2. For a given state-action pair (s, a), MOPO uses the ensemble maximum variance norm
u(s, a) = maxi=1,...,N∥Σψi

(s, a)∥F , where ∥·∥F is the Frobenius norm, to penalize the reward
r̂(s, a) predicted by the model, with a hyperparameter λ controlling the strength of the penalty:

r̃(s, a) = r̂(s, a)− λ · u(s, a) .
1Regarding the privacy-performance trade-off, this approach simply shifts the ensemble size problem from

scaling the privacy budget to impairing performance: a larger N implies either a smaller Ci or a larger C, both
potentially degrading model estimation. In practice, it still yields better trade-offs.

2We could use any other penalization strategy (e.g., MOReL) as long as we can compute the corresponding
privacy guarantees.
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λ is an hyperparameter adjusting the strength of the reward penalty. Policy optimization therefore
occurs in the pessimistic private MDP M̃ =

(
S,A, P̂ , r̃, ρ0, γ

)
, which ensures that the learned

policy π̂M̃ should perform at least as well as the policy (or mixture of policies) used to collect the
data (Yu et al. [2020], Theorem 4.4).

4.3.2 Private Policy Optimization

Still following MOPO, we use Soft Actor-Critic (SAC, Haarnoja et al. [2018])3, a classic off-policy
algorithm with entropy regularization, to learn the policy from the pessimistic private MDP. Offline
model-based methods typically mix real offline data from DK with model data during policy learning
(in MOPO, for instance, each batch contains 5% of real data). Here, however, we learn the policy
exclusively from model data to avoid incurring privacy loss beyond what is needed to train the model,
and thus control the privacy guarantees. Algorithm 4 in appendix provides a pseudo-code for SAC
policy optimization in the pessimistic private MDP.

4.3.3 Privacy Guarantees for the Policy

We now show that, given the (ϵ, δ)-TDP model M̂ = (P̂ , r̂) learned as described in Section 4.2, the
policy learned with SAC under the corresponding pessimistic model M̂ is also (ϵ, δ)-TDP. First, we
observe that since the covariance estimators {Σψi}Ni=1 are learned privately, the uncertainty estimator
u(s, a) = ∥Σψi(s, a)∥F is also private thanks to the post-processing property of DP. Therefore, the
pessimistic model M̂ remains (ϵ, δ)-TDP. Now, we can think of SAC model-based policy optimization
as an abstract, randomized function hΠ, that takes as input M̂ and outputs as policy π̂. Furthermore,
let hM denote the mechanism that takes as input the private offline datasetDK and outputs the private
pessimistic model M̂ , and which is (ϵ, δ)-TDP following 4.2. We observe that h = hΠ ◦ hM , where
h is the global offline RL algorithm which is the object of Definition 4.1. Since SAC only uses data
from the model, as stated in Section 4.3.2, hΠ is independent of the private offline data DK . In other
words, hΠ is a data-independent transformation of the private mechanism hM . Thanks again to the
post-processing property of differential privacy, h is also (ϵ, δ)-TDP.

Theorem 4.3. (ϵ, δ)-TDP guarantees for DP-MORL. Given an (ϵ, δ)-TDP model
(
P̂ , r̂

)
learned

with Algorithm 1, the policy obtained with private policy optimization within the pessimistic model(
P̂ , r̂ − λu

)
is (ϵ, δ)-TDP.

4.3.4 Performance Guarantees for the Policy

We expect that private model training will negatively impact policy performance, as gradient pertur-
bations are likely to hurt model convergence. In the simpler case when the model is trained with
a vanilla DP noisy gradient descent algorithm, and under several assumptions on the model loss
function, Theorem 4.4 evaluates the value evaluation error for the learned policy π̂.

Theorem 4.4. Value evaluation error in private MBRL. Let the model loss function be L-Lipschitz
and ∆-strongly convex, and maxsDKL

(
π̂(·|s), πB(·|s)

)
≤ εB . If the model is learned with (ϵ, δ)-

DP gradient descent, then, with probability at least 1− α, there exists a constant M such that for
sufficiently large N , the value evaluation error is bounded as:

|V̂ π̂ − V π̂| ≤
√
2γ

(1− γ)2
·M · Ld

1/4 log(N/δ) · poly log(1/α)√
∆Nϵα

+
2
√
2γ

(1− γ)2
√
εB .

Full proof is provided in the appendix. Since the policy term is assumed constant between the private
and the non-private case (see the proof), the model term bound is to be compared to the non-private
bound

√
2γ

(1−γ)2 ·M
′ · L log1/2(N/α)√

∆N
, with M ′ another constant. In particular, the private bound has

an explicit dependence on the problem dimension d which is not present in the non-private bound.
Moreover, the

√
ϵ factor in the denominator shows that the error will degrade with strong privacy

guarantees.

3This could be any model-based policy optimization algorithm that does not use offline data.
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Figure 2: Learning curves on CARTPOLE-BALANCE (left) and CARTPOLE-SWINGUP (right).

5 Experiments

We assess DP-MORL empirically and evaluate the impact of privacy in two continuous control tasks:
CARTPOLE-BALANCE and CARTPOLE-SWINGUP from the DeepMind Control Suite [Tassa et al.,
2018]. We also conduct experiments on HALFCHEETAH [Wawrzynski, 2009], which we detail in
appendix (Section F). We refer the reader to the appendix for a detailed presentation of the tasks.

Following common practice, we evaluate the policies learned offline by running them in the real
environment (i.e., online policy evaluation). We consider MOPO as our non-private baseline, as
DP-MORL uses the same reward penalty. Since it is expected that DP training impacts adversely
the policy, our goal is to assess how much the performance of the policy drops for different privacy
levels. As there is no benchmark for our CARTPOLE datasets, we also report results with the online
model-free method DDPG [Lillicrap et al., 2016] to ensure that we actually learn good policies
from our offline dataset. For DP-MORL, we consider different configurations outlined in Table 2.
The NO PRIVACY variant corresponds to our method without noise, which allows us to isolate the
impact of trajectory-level model training on performance. For CARTPOLE, we provide two private
configurations (ϵ <∞): DP-MORL LOW and DP-MORL HIGH, corresponding to different noise
multipliers. We detail the choice of privacy parameters in appendix.

5.1 CARTPOLE Experiments

As existing CARTPOLE-SWINGUP offline benchmark from Gülçehre et al. [2020] is extremely small
(K = 40), and given that DP training of machine learning models typically requires significantly
more data compared to non-private training (see, for instance, Ponomareva et al. [2023]), we build
our own large offline dataset for CARTPOLE-SWINGUP, with K = 30, 000 trajectories (i.e., 30
million steps). We proceed the same way for CARTPOLE-BALANCE for which we know no offline
benchmark. Data collection, which we detail in appendix, follows the same philosophy as standard
offline RL benchmarks like D4RL.

We report experimental results on CARTPOLE-BALANCE and CARTPOLE-SWINGUP for DP-MORL
and the aforementioned baselines in Table 1 and Figure 2 (left). Both report policy performance in
the real MDP, measured at the end of each training epoch of the SAC policy as the mean episodic
return across 10 independent episodes. Average and 95% confidence intervals are then computed by
re-training the model and the policy from scratch on 10 different random seeds, in order to assess the
stability of the whole training process. These results show a well-expected trade-off: performance
tends to drop with stronger privacy guarantees (i.e., smaller ϵ’s), as the model training gets perturbed
with higher levels of noise. But noise is not the sole factor that negatively impacts performance, as
suggested by the gap between MOPO and the NO-PRIVACY variant: clipping the gradients, and more
importantly partitioning the data by trajectory, which is also crucial to ensure TDP, also contribute
to performance drop. In some cases, a small amount of DP noise might even be beneficial, acting
as a kind of regularization, as suggested by the results on CARTPOLE-SWINGUP. Nonetheless, the
performance cost is rather limited overall, even for ϵ in the 101 to 102 range, demonstrating that
DP-MORL can train competitive private deep RL agents in continuous control tasks.

If such ϵ’s only provide weak theoretical DP guarantees, they are competitive in comparison to
the current private RL literature which addresses much simpler problems. Our results show that
DP-MORL enables the training of RL agents under finite privacy budgets in continuous, higher-
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Table 1: Results for CARTPOLE-BALANCE and CARTPOLE-SWINGUP.

CARTPOLE-BALANCE CARTPOLE-SWINGUP

METHOD ϵ RETURN ϵ RETURN

DDPG ∞ 966.1± 29.5 ∞ 827± 91.6
MOPO ∞ 987.8± 13.6 ∞ 773.1± 80.6

DP-MORL NO PRIVACY ∞ 950.1± 47.1 ∞ 717.4± 83.8

DP-MORL LOW 50.2 868.7± 41.7 802.6 773.7± 31.6
DP-MORL HIGH 14.4 765.9± 80.3 73.6 611.3± 139.1

dimensional tasks. Moreover, as pointed out in Ponomareva et al. [2023] and backed by recent work
on empirical privacy auditing (e.g., Carlini et al. [2019], Ponomareva et al. [2022]), such ϵ’s can
already offer enough protection against privacy attacks in practice, especially since DP is a worst-case
guarantee, assuming the release of all gradients and strong assumptions about the adversary. In
particular, the definition of DP assumes the adversary only has to discriminate between two precise
neighboring datasets D and D′ = D ∪ {τ}. In practice, the adversary faces the much harder task of
reconstructing a high-dimensional trajectory based on the output policy and limited side information
only. It is thus likely that such ϵ’s are enough protection in offline RL. However, Section 5.2 shows
how better privacy budgets could be achieved, demonstrating even greater potential for DP-MORL.

5.2 The Price of Privacy in Offline RL

In light of these results, it becomes clear what the price of privacy is in offline RL: the need for
very large datasets. It is already an accepted fact in the general ML community that, to obtain
acceptable privacy-utility trade-offs, DP training requires significantly more data compared to non-
private training. In offline RL, however, it has the obvious implication that current benchmarks,
whose datasets only contain dozens to thousands of trajectories, are not suitable for studying privacy.
Indeed, we could never have reached such privacy-performance trade-offs on CARTPOLE-SWINGUP
had we used RL UNPLUGGED benchmark (K ≈ 101), and would have required a significantly
larger dataset than D4RL’s (K ≈ 103) to obtain similar achievements on HALFCHEETAH. For
comparison, McMahan et al. [2018] consider datasets with 106 to 109 users to train DP recurrent
language models, and this is arguably the main reason why they achieve formal strong privacy
guarantees. Unfortunately, leading experiments with such large datasets in deep offline RL would
require huge computational resources. In the appendix (Section H), we instead provide theoretical
and practical arguments that demonstrate how increasing the size K of the dataset is likely to lead
to better privacy-performance trade-offs. We therefore argue that DP-MORL, already capable of
producing good policies with significant noise levels, has the potential to achieve both strong formal
privacy guarantees and good performance provided access to large enough datasets.

6 Discussion

In this work, we are the first to address the problem of deep offline RL with privacy guarantees,
and propose a model-based approach named DP-MORL. We show empirically that this method is
capable of learning policies under a controlled privacy budget in continuous control tasks, with only
limited performance cost. While the reported privacy budgets ϵ’s are typically considered too large to
stand as formal DP guarantees, these results show great potential for achieving meaningful privacy
trade-offs in benchmark control tasks, given access to large enough offline datasets. We indeed
pointed out that the current offline datasets were inadequate to study private RL, calling for new
benchmarks in this increasingly important field. Moreover, it is important to keep in mind that the
worst-case nature of differential privacy, which in such iterative training assumes that all intermediate
results (i.e., the gradients) are released, can yield too pessimistic privacy budgets in practice. That is
why, as Ponomareva et al. [2023] point out, even substantial ϵ values can offer good protection against
privacy attacks. Empirical evaluation of the robustness of our algorithm against privacy attacks, for
which a rigorous benchmark has to be developed, will thus be an important research direction for
future work. All in all, we believe that our work represents a significant step towards the deployment
of private RL methods in more complex, high-dimensional control problems.
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A Proofs

Theorem 4.2. (ϵ, δ)-TDP guarantees for dynamics model. Given δ ∈ (0, 1), sampling ratio q and T
training iterations, let ϵ := ϵMA (δ, q, T ) be the privacy budget computed by the moments accounting
method from [Abadi et al., 2016]. The dynamics model output by Algorithm 1 is (ϵ, δ)-TDP.

Proof. Theorem 1 McMahan et al. [2018] shows that the moments accounting method from Abadi
et al. [2016] computes correctly the privacy loss of FEDAVG at user-level for the noise multiplier
z = σ/C with C = C/qK. We can therefore use the moments accountant to compute, given
δ ∈ (0, 1), q ∈ (0, 1) and T ∈ N, the total privacy budget ϵ1 spent by Algorithm 1, and obtain
(ϵ1, δ)-TDP guarantees for a single dynamics model.

Since we train an ensemble of N models and release the best Ne ≤ N models to optimize the final
policy, each model M̂θi consuming the same dataset DK , we use the sequential composition property
of differential privacy to show that the total privacy budget spent by Algorithm 1 is ϵNe

= Ne × ϵ1.

The dyanmics model output by Algorithm 1 is therefore (Ne × ϵ1, δ)-TDP.

Theorem 4.3. (ϵ, δ)-TDP guarantees for DP-MORL. Given an (ϵ, δ)-TDP model
(
P̂ , r̂

)
learned

with Algorithm 1, the policy obtained with private policy optimization within the pessimistic model(
P̂ , r̂ − λu

)
is (ϵ, δ)-TDP.

Proof. First, we observe that since the covariance estimators {Σψi
}Ni=1 are learned privately, the

uncertainty estimator u(s, a) = ∥Σψi(s, a)∥F is also private thanks to the post-processing property
of DP. Therefore, the pessimistic model M̂ remains (ϵ, δ)-TDP.

Now, we can think of SAC model-based policy optimization as an abstract, randomized function
hΠ, that takes as input M̂ and outputs as policy π̂. Furthermore, let hM denote the mechanism
that takes as input the private offline dataset DK and outputs the private pessimistic model M̂ , and
which is (ϵ, δ)-TDP following 4.2. We observe that h = hΠ ◦ hM , where h is the global offline
RL algorithm which is the object of Definition 4.1. Since SAC only uses data from the model, as
stated in Section 4.3.2, hΠ is independent of the private offline data DK . In other words, hΠ is a
data-independent transformation of the private mechanism hM . Thanks again to the post-processing
property of differential privacy, h is also (ϵ, δ)-TDP.

Theorem 4.4. Value evaluation error in private MBRL. Let the model loss function be L-Lipschitz
and ∆-strongly convex, and maxsDKL

(
π̂(·|s), πB(·|s)

)
≤ εB . If the model is learned with (ϵ, δ)-

DP gradient descent, then, with probability at least 1− α, there exists a constant M such that for
sufficiently large N , the value evaluation error is bounded as:

|V̂ π̂ − V π̂| ≤
√
2γ

(1− γ)2
·M · Ld

1/4 log(N/δ) · poly log(1/α)√
∆Nϵα

+
2
√
2γ

(1− γ)2
√
εB .

Proof. Let F denote the function class of the model. The model is estimated by maximizing the
likelihood of the data DK = (si, ai, s

′
i)
N
i=1, which is collected by an unknown behavioral policy πB .

This is equivalent to minimizing the negative log-likelihood. The population risk of the estimated
model P̂ obtained with DP-SGD, is therefore:

L(P̂ ) = E
(s,a)∼ρπB

P ,s′∼P (·|s,a)

[
− log P̂ (s′|s, a)

]
,

where ρπ
B

P is the (normalized) state-action occupancy measure under policy πB and dynamics P .

Let us further assume that the true model P belongs to the function class F , and that P ∈
argminP ′∈FL(P ′). We can therefore write the excess population risk of the model estimator P̂
as:

L(P̂ )− L(P ) = E
(s,a)∼ρπB

P ,s′∼P (·|s,a)

[
logP (s′|s, a)
log P̂ (s′|s, a)

]
.
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But, denoting DKL(A,B) the Kullback-Leibler divergence between distributions A,B:

DKL

(
P (s, a), P̂ (s, a)

)
= Es′∼P (·|s,a)

[
logP (s′|s, a)
log P̂ (s′|s, a)

]
.

We can therefore rewrite the above excess population risk as:

L(P̂ )− L(P ) = E
(s,a)∼ρπB

P

[
DKL

(
P (s, a), P̂ (s, a)

)]
. (1)

If the objective function L is L-Lipschitz and ∆-strongly convex, Bassily et al. [2014] shows
(Theorem F.2) that a noisy gradient descent algorithm with (ϵ, δ)-DP guarantees satisfies, with
probability at least 1− α:

L(P̂ )− L(P ) = O

(
L2
√
d log2(N/δ) · poly log(1/α)

∆Nϵα

)
. (2)

In the non-private case, Shalev-Shwartz et al. [2009] provides the following bound under the same
assumptions:

L(P̂ )− L(P ) = O
(
L2 log(N/α)

∆N

)
. (3)

On the other hand, we have from the Simulation Lemma [Kearns and Singh, 2002, Xu et al., 2020]
that for a MDPM with reward upper bounded by rmax = 1 and dynamics P , a behavioral policy
πB and a learn transition model P̂ with:

E
(s,a)∼ρπ̂D

P

[
DKL

(
P (s, a), P̂ (s, a)

)]
≤ εM , (4)

which by 1 is equivalent to:
L(P̂ )− L(P ) ≤ εM , (5)

if the divergence between π̂ and the behavioral policy is bounded:

max
s
DKL

(
π̂(·|s), πB(·|s)

)
≤ εB , (6)

then the value evaluation error of π̂ is bounded as:

|V̂ π̂ − V π̂| ≤
√
2γ

(1− γ)2
√
εM +

2
√
2γ

(1− γ)2
√
εB . (7)

Since f(x) = O(g(x)) implies
√
f(x) = O(

√
g(x)) 4, we note that we can replace

√
εM in the

model term of the right-hand side of 7 by the (square root of) the bounds from 2 and 3 in the private
case and in the non-private case, respectively.

We must also analyze the policy term of the right-hand side of 7, which scales with the divergence
between π and πB . On the one hand, privacy aims at preventing overfitting particular data points,
and is therefore likely to drive π̂ away from the offline data, hence increasing the divergence between
π̂ and πB . On the other hand, the reward penalization used in model-based methods like MOPO
implicitly constrains π̂ to stay close to the data collection policy πB , as it penalizes the reward on
regions of the state-action space where the model uncertainty is high, corresponding to the regions not
covered by the offline dataset. This is likely to cancel the diverging effect of privacy. Therefore, we
consider that maxsDKL

(
π(·|s), πB(·|s)

)
will not change significantly due to privacy, and assume

that εB stays constant between the private and the non-private case.

4Indeed, for f(x) positive, for any x ≥ x0, |f(x)| = f(x) ≤ M ′ × g(x), then, for any x ≥ x0,√
f(x) = |

√
f(x)| ≤

√
M ′ ×

√
g(x) = M ×

√
g(x)
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B Presentation of the Tasks

CARTPOLE requires to swing up then balance an unactuated pole by applying forces on a cart at
its base, while CARTPOLE-BALANCE only requires keeping balance. HALFCHEETAH is another,
higher-dimensional, continuous control task from OpenAI’s Gym [Brockman et al., 2016] based on
the physics engine MuJoCo [Todorov et al., 2012] where we move forward a 2D cat-like robot by
applying torques on its joints. Both are 1,000-step episodic tasks.

C CARTPOLE Data Collection

To collect our offline dataset for CARTPOLE, we used DDPG [Lillicrap et al., 2016], a model-free
RL algorithm for continuous action spaces. We ran 600 independent runs of 50, 000 steps each for
BALANCE and 150 independent runs of 200, 000 steps each for SWINGUP, collecting all training
episodes. As DDPG solves the task in roughly 30, 000 and 100, 000 steps, respectively, this ensures
that the dataset is a good mix between random, medium and expert episodes.

D Baselines

Table 2: DP-MORL configurations.

VARIANT FEDAVG CLIP NOISE DP

NO CLIP ✓ ✗ ✗ ϵ = ∞
NO PRIVACY ✓ ✓ ✗ ϵ = ∞
LOW, HIGH ✓ ✓ ✓ ϵ < ∞

The first two baselines, DP-MORL NO CLIP and DP-MORL NO PRIVACY are not private (ϵ <∞)
but allow us to isolate the impact of trajectory-level model training and clipping on policy performance.
We do not report results for DP-MORL NO CLIP for CARTPOLE as we found that the model
optimized with DP-FEDAVG diverges without clipping.

E Experiment Details

E.1 Datasets

Table 3 provides additional details on the offline datasets used in experiments.

Table 3: Dataset details

CARTPOLE HALFCHEETAH

ORIGIN CUSTOM D4RL
OBSERVATION SPACE S R5 R17

ACTION SPACE A [−1, 1] [0, 1]6

NB. OF EPISODES K 30,000 2,003

E.2 Implementation Details

For CARTPOLE, the model is approximated with a neural network with two hidden layers of 128
neurons each and SWISH activation functions with decaying weights. For HALFCHEETAH, the model
is approximated with a neural network with four hidden layers of 200 neurons each and SWISH
activation functions, also with decaying weights. Models take as input a concatenation of the current
state s and the taken action a and predict the difference between the next state s′ and the current state
s along with the reward r. Table 4 provides further implementation details.

For MOPO, we use the official implementation from https://github.com/tianheyu927/mopo,
as well as the PyTorch re-implementation from https://github.com/junming-yang/mopo. Our
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implementation of DP-MORL, which mainly uses PyTorch, is also based on these codebases. For
the model-free baseline DDPG, we use the implementation from https://github.com/schatty/
DDPG-pytorch.

Model training with DP-FEDAVG is parallelized over 16 CPUs using JobLib, while SAC training is
conducted over a single Nvidia Tesla P100 GPU.

Table 4: Implementation details

CARTPOLE HALFCHEETAH

MODEL INPUT DIMENSION 6 23
MODEL OUTPUT DIMENSION 6 18
MODEL HIDDEN LAYERS 2 4
NEURONS PER LAYER 128 200
WEIGHT DECAY ✓ ✓
ACTIVATION FUNCTIONS SWISH SWISH
ENSEMBLE SIZE N 3 7

E.3 Training Details

Table 5: Training and Hyperparameters details

CARTPOLE HALFCHEETAH

TEST SET SIZE 1%×K 10%×K
EARLY STOPPING ✓ PATIENCE = 5 ✓ PATIENCE = 5

SAMPLING RATIO q 10−3 10−2

MODEL LOCAL EPOCHS E 1 1
MODEL BATCH SIZE B 16 16
MODEL LR η 10−3 10−3

SAC LR 3.10−4 3.10−4

ROLLOUT LENGTH H 20 5
REWARD PENALTY λ 0.5 1.0
AUTO-α ✓ ✓
TARGET ENTROPY H -3 -3

Before model training, we split the offline dataset into two parts: a train set used to train the model, and
a test set used to compute its prediction error. The split is made by episode (instead of by transitions),
so that the test set contains 1% of the episodes for CARTPOLE and 20% for HALFCHEETAH. To tune
the clipping norm, we set z = 0 and progressively decreased C until it started to adversely affect
performance, and found that C = 10−2 provided the best results. Moreover, we set the sampling
ratio to q = 10−3. The model is trained until convergence using early stopping with patience p = 5
over chunks of 100 steps. Test set prediction error is used to track model improvement. For SAC
training, the real-to-model ratio rreal is zero, meaning that SAC is trained using only simulated data
from the model, and does not access any data from the offline dataset. Training details are provided
in Table 5.

E.4 Hyperparameters

The model is trained using DP-FEDAVG with learning rate η = 10−3, batch size B = 16, and
number of local epochs E = 1. While MOPO trains an ensemble of N = 7 and picks the best
Ne = 5 best models, for CARTPOLE we choose smaller numbers (N,Ne) = (3, 2) to limit the
privacy loss incurred by training multiple models, which works just as well in our experiments.

The policy is optimized within the model using Soft Actor-Critic with rollout length H = 20 and
reward penalty λ = 0.5. We use a learning rate of 3.10−4 for both the actor and the critic. For
entropy regularization, we use auto-α with target entropy H = −3.

18

https://github.com/schatty/DDPG-pytorch
https://github.com/schatty/DDPG-pytorch


Hyperparameters are summarized in Table 5. We do not report the privacy loss resulting from
hyperparameter tuning, although we recognize its importance in real-world applications.

E.5 Privacy Parameters

In Table 1, we provide the privacy budget ϵ corresponding to the two configurations of DP-MORL
for both CARTPOLE tasks, computed with the moments accountant method from Abadi et al. [2016].
We use the DP accounting tools from Google’s Differential Privacy library, availabe on GitHub.
Privacy budget are computed for δ = 10−5, i.e. less than K−1 as recommended in the literature.

For CARTPOLE-BALANCE, we use z = 0.25 and z = 0.38 for DP-MORL LOW and DP-MORL
HIGH, respectively. For CARTPOLE-SWINGUP, we use z = 0.15 and z = 0.3 for DP-MORL LOW
and DP-MORL HIGH, respectively. The value for DP-MORL HIGH is chosen by incrementally
increasing z until policy performance drops below acceptable levels. The corresponding ϵ is therefore
roughly the best privacy budget we can obtain while keeping acceptable policy performance. The
value for DP-MORL LOW is chosen arbitrarily to provide a weaker level of privacy that typically
yields higher policy performance, illustrating the trade-off between the strength of the privacy
guarantee and the performance.

E.6 Computational Resources

We perform training on a single machine with 64 CPUs and 6 Tesla P100 GPUs with 16GB RAM
each. The full training of a single policy, from model learning to policy optimization, takes several
hours.

F Experiments on HALFCHEETAH

We conduct experiments on the MEDIUM-EXPERT dataset (K = 2, 003) from the classic D4RL
benchmark [Fu et al., 2020], where agents are anticipated to achieve peak performance, facilitating
the analysis of privacy cost. Experimental results are reported in Figure 3 and Table 6 (in appendix),
using C = 15.0 and q = 10−2.

If DP-MORL can train competitive policies with small enough noise levels — a tiny amount of noise
like z = 10−4 proving even beneficial, possibly acting as a kind of regularization —, we were not
able to obtain reasonable ϵ’s. Indeed, a noise multiplier as small as z = 10−3 is enough to cause a
significant decline in performance. However, we argue that these results are mainly attributable to the
limited dataset size and that more episodes would translate into competitive privacy-performance
trade-offs, as we develop in Section 5.2.

Figure 3: Learning curves for the SAC policy on HALFCHEETAH (right). Policy performance
(episodic return) is evaluated in the true MDP at the end of each training epoch, over 10 evaluation
episodes with different random seeds.
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Table 6: Results for HALFCHEETAH MEDIUM-EXPERT. RETURN is the return of the SAC policy
evaluated over 10 episodes at the end of each training epoch, averaged over the last 20 epochs.

METHOD z RETURN

MOPO 0.0 10931 ± 1326

DP-MORL NO CLIP 0.0 7062 ± 2230
DP-MORL NO NOISE 0.0 8792 ± 2053

DP-MORL z = 1.10−4 9729 ± 2018
z = 1.10−3 3697 ± 1465

G Algorithms

Algorithm 2 is the fully detailed pseudo-code for DP-MORL. Algorithm 3 details the clipping
method we use in DP-FEDAVG, adapted to private ensemble training. Algorithm 4 is the pseudo-
code for SAC policy optimization on the pessimistic private model. This pseudo-code is based on
https://spinningup.openai.com/en/latest/algorithms/sac.html

Algorithm 2 Model Training with DP-FEDAVG

1: Input: offline dataset DK , sampling ratio q ∈ (0, 1), noise multiplier z ≥ 0, clipping norm
C > 0, local epochs E, batch size B, learning rate η

2: Output: private model M̂θ

3: Initialize model parameters θ0
4: for each iteration t ∈ [[0, T − 1]] do
5: Ut ← (sample with replacement trajectories from DK with prob. q)
6: for each trajectory τk ∈ Ut do
7: Clone current model θstart ← θt
8: θ ← θstart
9: for each local epoch i ∈ [[1, E]] do

10: B ← (τk’s data split into size B batches)
11: for each batch b ∈ B do
12: θ ← θ − η∇L(θ; b)
13: θ ← θstart + PERMODELCLIP(θ − θstart;C)
14: end for
15: end for
16: ∆clipped

t,k ← θ − θstart

17: end for
18: ∆avg

t =
∑

k∈Ut
∆clipped

t,k

qK

19: θt+1 ← θt +∆avg
t +N

(
0,
(
zC
qK

)2)
20: end for

CLIPPEDGD (τk, θstart;C,E,B)

Algorithm 3 Per-model Clipping (PERMODELCLIP)
1: Input: ensemble size N , unclipped gradient {gi}i∈[[1,N ]], clipping norm C

2: Output: clipped gradient ∆clipped

3: Ci =
C√
N

s.t. C =
√∑N

i=1 C
2
i .

4:
gclipped
i ← gi

max
(
1, ∥gi∥2

Ci

) , i ∈ [[1, N ]] .
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Algorithm 4 Private Model-Based Optimization with SAC

1: Input: private model M̂ = (P̂ , r̂), empty replay buffer B
2: Output: private policy π̂DP

3: Initialize policy parameters ξ, Q-function parameters ω1, ω2 and target parameters ωtarg,1, ωtarg,2
4: for epoch e ∈ [[1, E]] do
5: while episode is not terminated do
6: Observe state s and select action a ∼ πξ (·|s)
7: Execute a in the pessimistic MDP M̃ and observe next state s′ ∼ P̂ (·|s, a), reward

r ∼ r̂(s, a)− λu(s, a) and done signal d
8: Store (s, a, r, s′, d) in replay buffer B
9: if time to update then

10: Sample a batch of transitions B = {(s, a, r, s′, d)} from buffer B
11: Compute targets for Q-functions:

y(r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qωtarg,i(s
′, ã′)− α log πξ(ã

′|s′)
)
, ã′ ∼ πξ(·|s′) .

12: Update Q-functions by one step of gradient descent using:

∇ωi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qωi
(s, a)− y(r, s′, d))2 , for i = 1, 2.

13: Update policy by one step of gradient ascent using:

∇ξ
1

|B|
∑
s∈B

(
min
i=1,2

Qωi
(s, ãζ(s))− α log πξ (ãζ(s)|s)

)
, ãζ(s) ∼ πξ(·|s).

14: Update target networks with:

ωtarg,i ← ρωtarg,i + (1− ρ)ωi, for i = 1, 2 .

15: end if
16: end while
17: Evaluate πξ is the true environmentM.
18: end for
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H The Price of Privacy in Offline RL

In this section, we provide theoretical and practical arguments to further justify the need for (much)
larger datasets in order to achieve competitive privacy trade-offs in offline RL, as pointed out in
(Section 5.2).

Why does privacy benefit so much from large datasets? From a theoretical perspective, it stems
from two facts: 1) ϵ scales with the sampling ratio q (privacy amplification by subsampling), and
2) noise magnitude σ is inversely proportional to E [|Ut|] = qK. Clearly, the privacy-performance
trade-off would benefit from both small q (reducing ϵ) and large qK (reducing noise levels and thus
improving performance), which are conflicting objectives for a fixed K. However, if we consider
using larger datasets of size K ′ ≫ K, it becomes possible to find a K ′ large enough so that we can
use q′ ≪ q and q′K ′ ≫ qK, achieving both much stronger privacy and better performance. We can
even argue that for a given privacy budget ϵ (obtained for a given q) and an unlimited capacity to
increase K, we could virtually tend to zero noise levels and achieve optimal performance. Therefore,
DP-MORL, already capable of producing good policies with significant noise levels and ϵ, has the
potential to achieve stronger privacy guarantees provided access to large enough datasets.

An aspect that deserves further development is the iterative aspect of the used training methods and its
effect on privacy. Differential privacy being a worst-case definition, it assumes that all intermediate
models are released during training. Although the practicality of this hypothesis is debatable, it
definitely impacts privacy: privacy loss is incurred at each training iteration (corresponding to a
gradient step on the global model in DP-SGD and DP-FEDAVG) and privacy budget, therefore,
scales with the number of iterations T . Consequently, limiting the number of iterations is even more
crucial with DP training than with non-private training. Training a model on the kind of tasks we
considered nonetheless requires a lot of iterations to reach convergence (empirically, thousands of
iterations for CARTPOLE and tens of thousands of iterations for HALFCHEETAH), and the privacy
budget suffers unavoidably.

However, one way to circumvent this is to leverage privacy amplification by subsampling. Indeed, as
McMahan et al. [2017] observe, the additional privacy loss incurred by additional training iterations
becomes negligible when the sampling ratio q is small enough, which is a direct effect of privacy
amplification by subsampling. We discussed in Section 5.2 how increasing dataset size K allowed
to decrease both sampling ratio q and noise levels. Therefore, by increasing the size of the dataset,
we also greatly reduce the impact of the number of training iterations, likely promoting model
convergence. This further reinforces the need for large datasets in offline RL in order to study privacy.

Figure 4 illustrates this point in another way. Given ϵ ∈ {10−4, 10−3, 10−2}, we plot for a range of
sampling ratio q the maximum number of iterations T that is allowed so that the total privacy loss
does not exceed ϵ, as a function of the noise multiplier z. We can see how decreasing q makes it well
easier to train a private model: dividing q by 10, we "gain" roughly 10 times more iterations across
all noise levels.
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Figure 4: Maximum number of iterations T so that the privacy loss does not exceed ϵ, as function of
the noise multiplier z.

I Broader Impacts

As recent advances in the field have moved reinforcement learning closer to widespread real-world
application, from healthcare to autonomous driving, and as many works have shown that it is no
more immune to privacy attacks than any other area in machine learning, it has become crucial to
design algorithmic techniques that protect user privacy. In this paper, we contribute to this endeavor
by introducing a new approach to privacy in offline RL, tackling more complex control problems
and thus paving the way towards real-world private reinforcement learning. We firmly believe in
the importance of pushing the boundaries of this research field and are hopeful that this work will
contribute to practical advancements in achieving trustworthy machine learning.
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