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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) under sparse rewards
presents a fundamental challenge due to limited exploration and insufficiently
coordinated attention among agents. To address this, we introduce the Focus-
ing Influence Mechanism (FIM), a framework that drives agents to concentrate
their influence to solve challenging sparse-reward tasks. FIM first identifies Cen-
ter of Gravity (CoG) state dimensions, inspired by Clausewitz’s military strategy,
which are prioritized because when they include task-relevant variables, their low
variability can block learning unless agents sustain influence. To encourage per-
sistent and synchronized influence, FIM then focuses agents’ attention on these
CoG dimensions using eligibility traces that accumulate credit over time. These
mechanisms enable agents to induce more targeted and effective state transitions,
facilitating robust cooperation even under extremely sparse rewards. Empirical
evaluations across diverse MARL benchmarks demonstrate that FIM significantly
improves cooperative performance over strong baselines.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has emerged as a powerful framework for
sequential decision-making problems involving multiple agents, with applications in autonomous
driving (Shalev-Shwartz et al., 2016), multi-robot coordination (Perrusquía et al., 2021), and real-
time strategy games (Vinyals et al., 2019). These environments typically involve partial observabil-
ity, making decentralized partially observable Markov decision processes (Dec-POMDPs) (Oliehoek
et al., 2016) a natural modeling choice. To address the challenges arising from limited observability,
the centralized training with decentralized execution (CTDE) (Oliehoek et al., 2008; Yu et al., 2022;
Sunehag et al., 2018; Rashid et al., 2018; Wang et al.) paradigm has been widely adopted. In CTDE,
policies are trained using access to the global state and all agents’ observations, but are executed
independently using only local observations. Prominent CTDE methods such as VDN (Sunehag
et al., 2018), QMIX (Rashid et al., 2018), and QPLEX (Wang et al.) leverage value decomposition
to promote coordinated policy learning.

Despite their success, CTDE-based methods often struggle in sparse reward settings where effec-
tive exploration is essential (Jaques et al., 2019; Wang et al., 2020b; Liu et al., 2021). Several
approaches have been proposed to address this challenge, including maximizing mutual influence
between agents (Wang et al., 2020b), prioritizing under-visited but important states (Zheng et al.,
2021), and diversifying trajectory distributions (Li et al., 2021a). While promising, we observe that
these methods often fail in challenging environments where the state dimensions that agents must
eventually influence for task completion do not exhibit diverse changes under typical behaviors,
especially in extremely sparse settings, preventing agents from discovering critical transitions and
escaping local optima. Thus, we explicitly target environments where the lack of diversity in key
elements makes task completion particularly difficult, for example, tasks that require all agents to
focus their efforts on a single object to make progress, or settings where agents fall into local optima
and never discover the critical elements needed for task success.

To formalize this perspective, we draw on Clausewitz’s military theory (Echevarria, 2003), which
introduced the concept of the Center of Gravity (CoG) as the focal point where concentrating ef-
forts is most decisive for strategic success. Inspired by this idea, we propose the Focusing Influence
Mechanism (FIM), a framework that enhances cooperation by first identifying CoG state dimen-
sions, which are state dimensions that do not exhibit diverse changes under typical agent behaviors
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and are individually hard to alter, and then guiding agents to concentrate their influence on them.
These dimensions often include task-related variables that are essential for task completion, and if
left uninfluenced, they can prevent agents from making progress. FIM addresses this by explicitly
selecting such dimensions and maintaining persistent and synchronized influence using eligibility
traces that accumulate credit over time, enabling agents to change these otherwise stagnant elements.
Concretely, FIM integrates three components: (i) a state-level focusing mechanism that detects CoG
dimensions based on their low sensitivity to individual actions, (ii) counterfactual intrinsic rewards
that measure each agent’s marginal contribution to influencing these dimensions and align local be-
haviors with team-level goals, and (iii) an agent-level focusing mechanism that sustains coordinated
influence through eligibility traces. Together, these components allow agents to consistently affect
critical parts of the environment, induce targeted state transitions, and achieve robust cooperation
even under extremely sparse rewards. Extensive experiments across diverse MARL benchmarks
demonstrate that FIM achieves more efficient collaborative performance than existing methods.

2 RELATED WORKS

Intrinsic Motivation in Sparse Reward MARL Intrinsic motivation is widely used to promote
exploration in sparse-reward environments. Curiosity-driven objectives encourage agents to seek
novel or uncertain states (Iqbal and Sha, 2019; Zheng et al., 2021; Li et al., 2023; Zhang et al.,
2023; Yang et al., 2024; Xu et al., 2024), while trajectory diversity methods aim to expand state-
space coverage (Zhang and Yu, 2023; Li and Zhu, 2025b;a). Committed exploration is induced by
conditioning agent behavior on a shared latent variable (Mahajan et al., 2019), and spatial formation
strategies reduce redundant exploration (Jo et al., 2024). Subgoal-based methods decompose tasks
into smaller, manageable objectives (Tang et al., 2018; Jeon et al., 2022). Exploration can also
be focused in low-dimensional subspaces (Liu et al., 2021; Xu et al., 2023; He et al., 2024), and
expectation alignment allows agents to adapt based on anticipated behaviors of peers (Ma et al.,
2022).

Influence-Driven Coordination Influence-based methods aim to promote coordination by induc-
ing causally significant changes. Social influence frameworks quantify how an agent’s actions affect
the behaviors of its teammates (Jaques et al., 2019; Li et al., 2022; Hou et al., 2025) and guide
communication decisions (Ding et al., 2020). Opponent modeling enables agents to influence policy
updates of others (Foerster et al., 2018a; Letcher et al., 2019; Xie et al., 2021; Kim et al., 2022).
Influence-aware exploration affect future dynamics (Wang et al., 2020b; Liu et al., 2024) or induce
novel observations (Jiang et al., 2024). Influence has been extended to incentivize beneficial behav-
iors in others (Yang et al., 2020), discourage undesirable actions (Schmid et al., 2021), or shape the
expected returns of other agents (Zhou et al., 2024), as well as to affect external states (Liu et al.,
2023) or latent representations of the environment (Li et al., 2024).
Counterfactual Reasoning Based Credit Assignment Counterfactual reasoning facilitates credit
assignment by measuring each agent’s contribution to the team’s shared reward. COMA estimates
individual action advantages using counterfactual baselines (Foerster et al., 2018b; Cohen et al.,
2021; Wang et al., 2021a; Hoppe et al., 2024), while predictive counterfactual models support value
decomposition (Zhou et al., 2022; Chai et al., 2024). Shapley value–based methods assign local
credit by marginalizing individual contributions to the global reward (Wang et al., 2020a; Li et al.,
2021b; Wang et al., 2022). In offline settings, counterfactual conservatism (Shao et al., 2023) and
sample averaging (Ma and Wu, 2023) improve learning stability. Counterfactual reasoning also aids
in identifying important agents (Chen et al., 2025) and salient state (Cheng et al., 2023).

3 PRELIMINARY

Decentralized POMDP and CTDE Setup In MARL, the environment is typically modeled as a
Dec-POMDP (Oliehoek et al., 2016), defined by the tuple ⟨N , S,A, P,R,O,O, γ⟩, where N is a
set of n agents, S is the global state space, A = A0 × · · · ×An−1 is the joint action space, and γ is
the discount factor. At each timestep t, each agent i ∈ N receives a local observation oit = O(st, i)
and chooses an action ait from its policy πi, based on its trajectory τ it = (oi0, a

i
0, . . . , o

i
t). The state

st is defined as a D-dimensional vector, i.e., st = (s0t , · · · , sD−1
t ), and for given (st,at) pair, the

environment transitions to st+1 ∼ P (· | st,at) and returns a shared reward rt = R(st,at). The
goal is to learn a joint policy π =

∏n
i=1 π

i that maximizes the expected return
∑∞

t=0 rt. In this
paper, we adopt the CTDE paradigm (Rashid et al., 2018), where agents are trained using global
state to optimize a total value function Qtot, while each agent executes actions based solely on local
observations during deployment.
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Credit Assignment via Counterfactual Reasoning In the CTDE paradigm, credit assignment
mechanisms (Rashid et al., 2018; Foerster et al., 2018b; Shao et al., 2023; Liu et al., 2023) estimate
each agent’s contribution to team performance, supporting not only the optimization of a global
value function but also promoting effective exploration (Li et al., 2021a), information sharing (Jo
et al., 2024), and communication (Wang et al., 2020c). A widely adopted technique is counterfac-
tual reasoning (Foerster et al., 2018b; Shao et al., 2023; Liu et al., 2023), which quantifies causal
influence by comparing the actual outcome to a counterfactual one where only an individual agent’s
action is replaced. COMA (Foerster et al., 2018b), for example, defines credit for agent i as:

creditit = f(st, τt,at)− Eai
t∼P

[
f(st, τt, a

i
t,a

−i
t )

]
, (1)

where f = Qtot and P = πi(·|st). This formulation can generalize to any differentiable objec-
tive and has been leveraged not only for advantage estimation but also for shaping exploration and
coordination via intrinsic rewards.
Eligibility Trace Eligibility traces are used to implement TD(λ) online by propagating the current
TD error to future timesteps for value updates (Sutton and Barto, 2018). At each timestep t, the
trace et(s) is updated as:

et(s) =

{
γλet−1(s) + 1, if s = st,

γλet−1(s), otherwise,
(2)

where λ is the decay factor. This mechanism accumulates eligibility for recently visited states and
decays it over time, focusing value updates on frequently visited states. In this work, we adapt
this concept to promote persistent influence on critical states. By extending eligibility traces, we
ensure that states with high influence in earlier steps continue to receive attention in subsequent
steps, facilitating sustained coordination on task-relevant states.

4 METHODOLOGY

4.1 MOTIVATION: THE NEED FOR FOCUSING INFLUENCE IN COOPERATIVE MARL

agent A

agent B

box A

box B

wall

move

(a) Push-2-Box (b) Vanilla QMIX (c) QMIX with SFI (d) QMIX with SFI and
AFI (proposed FIM)

Figure 1: Comparative results in the Push-2-Box environment: (a) shows an enlarged view of the
environment, and (b–d) show average visitation counts of two agents (blue) and two boxes (Box A:
red, Box B: green) over 3M timesteps across 100 seeds. Darker areas indicate more frequent visits.

In cooperative MARL, agents are often required to solve tasks that cannot be accomplished indi-
vidually, making effective coordination essential (Jaques et al., 2019; Wang et al., 2020b; Liu et al.,
2021). Although CTDE algorithms promote cooperation through centralized training, they often fail
in sparse reward settings where agents struggle to discover meaningful joint behaviors. To illustrate
this challenge, we consider the Push-2-Box environment shown in Fig. 1(a), which involves two
agents and two boxes. The task requires both agents to jointly push a single box to the wall within
the episode limit to obtain a reward. Because each box moves only one cell when pushed individ-
ually and two cells when pushed jointly, coordinated pushing is crucial for success. However, in
the absence of intermediate rewards, agents rarely discover the need to push the same box together,
leading to almost no variation in the box position dimension during training. Consequently, this
task-related state remains nearly static under typical behaviors, making it difficult for agents to ex-
plore the transitions necessary for task completion. Fig. 1(b) illustrates this phenomenon, showing
scattered exploration and poor coordination, resulting in task failure.

This observation underscores the importance of guiding agents to influence state dimensions that
do not exhibit diverse changes under typical behaviors, particularly those that require joint effort to
change. To this end, we propose the Focusing Influence Mechanism (FIM), which promotes coop-
erative behavior through two key components: state focusing influence (SFI) and agent focusing
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influence (AFI). First, SFI identifies Center of Gravity (CoG) state dimensions, which show lit-
tle diversity under behavior policies to solve challenging tasks that contain task-related variables
with limited diversity and are essential for task completion. Inspired by Clausewitz’s military the-
ory (Echevarria, 2003), we apply an entropy-based criterion to select these dimensions and guide ex-
ploration toward them. We then design a counterfactual intrinsic reward that quantifies each agent’s
contribution to influencing the CoG dimensions, encouraging alignment of local actions with shared
objectives. As shown in Fig. 1(c), incorporating SFI into QMIX allows agents to more frequently
influence dimensions such as box positions, which do not exhibit diverse changes unless acted upon
cooperatively. However, when multiple CoG dimensions are present, agents tend to alternate their
focus, leading to unstable coordination and frequent task failures. To address this, AFI reinforces
synchronized and persistent attention to a shared CoG dimension using eligibility traces, stabilizing
collective behavior and reducing target switching. Fig. 1(d) shows that QMIX with both SFI and
AFI enables agents to maintain focus on a single box and successfully complete the task.

While prior work has explored ways to influence states or coordinate agents (Li et al., 2021a; Wang
et al., 2021b; Jeon et al., 2022; Liu et al., 2023; Jo et al., 2024), many rely on heuristics or fail under
truly sparse rewards. In contrast, FIM offers a unified framework that combines principled CoG
dimension selection, targeted counterfactual intrinsic rewards, and persistent multi-agent attention
via eligibility traces. These components enable more purposeful exploration and robust cooperation,
and the next section presents each component of FIM in detail.

4.2 STATE FOCUSING INFLUENCE VIA COG STATE DIMENSION SELECTION

(a) Agent positions (b) Box positions (c) Entropy H(d)

Figure 2: (a–b) Empirical distribution p̂ of temporal changes ∆(d) for agent and box positions,
averaged over x, y axes. (c) Entropy H(d) for each of the 8 state dimensions: (x, y) positions of
agent A, agent B, box A, and box B in the Push-2-Box environment. We set the threshold δ to 0.1.

To address the challenge presented in Section 4.1, we focus on tasks such as Push-2-Box that require
agents to actively modify state dimensions that are inherently difficult to change. Focusing explo-
ration on such hard-to-influence dimensions is especially beneficial for solving these tasks. From
the perspective of value-based RL, it is also well known that good convergence requires visiting a
sufficiently diverse set of states (Sutton and Barto, 2018). From an information-theoretic viewpoint,
under-explored state dimensions naturally correspond to those with low transition entropy. Given a
joint behavior policy β and its induced state distribution ρβ, our goal is therefore to identify dimen-
sions whose next-state variability is small and encourage additional exploration along them, which
we formalize via the expected conditional entropy Est∼ρβ, at∼β

[
H(sdt+1 | st,at)

]
. For brevity, we

denote this expectation by Eβ[·].
However, directly comparing raw entropies across dimensions is inappropriate, since different di-
mensions can have different scales of change. For example, letting U(a, b) denote the uniform
distribution on [a, b], we have H(U(−4, 4)) = H(U(−2, 2)) + log 2 solely because of the larger
support, even though from an exploration perspective both are maximally uncertain relative to their
typical change. To remove this scale dependence, we compare dimensions using entropy normalized
by their average change magnitude Eβ[|sdt+1 − sdt |], so that our criterion is insensitive to scale and
captures how under-explored a dimension is relative to how much it tends to move.

CoG State Dimension Selection. To begin, we define the normalized state s̃t = (s̃0t , . . . , s̃
D−1
t )

with s̃dt := sdt
/
Eβ[|sdt+1 − sdt |]. The corresponding dimension-wise entropy of the next state can

then be written as Eβ

[
H(s̃dt+1 | s̃t,at)

]
. For simplicity, we omit the explicit dependence on β in

the notation. Computing this conditional entropy explicitly for all dimensions is still costly, so in
practice we approximate it using the normalized state difference and its empirical distribution, as
detailed below. We then define the normalized temporal change as

4
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∆d(st, st+1) = s̃dt+1 − s̃dt , (3)
and define the entropy of this normalized change as

H(d) = Eβ

[
− log p̂

(
∆d(st, st+1) | s̃dt

)]
, (4)

where p̂(· | s̃dt ) is the empirical distribution of ∆d conditioned on s̃dt , estimated from trajectories
under β. The following theorem shows that this state-difference-based entropy H(d) serves as a
valid surrogate for the theoretically ideal normalized transition entropy.

Theorem 4.1 The state-difference-based entropyH(d) provides an upper bound on the normalized
transition entropy under the joint behavior policy β:

Eβ

[
H

(
s̃dt+1 | s̃t,at

)]
≤ H(d), (5)

where equality holds when I
(
∆d(st+1, st); s̃t,at | s̃dt

)
= 0.

Proof) Proof is provided in Appendix C.

By Theorem 4.1, we can therefore approximately replace the ideal normalized transition entropy
with the state-difference based entropyH(d) when selecting CoG dimensions, obtaining a tractable
yet theoretically justified criterion. Based on these entropy values, we define the CoG set as

CoGδ = { d | 0 < H(d) < δ, d = 0, . . . , D − 1 }, (6)

where δ is a threshold, and dimensions with zero entropy are excluded as they remain unchanged
regardless of agent actions. In this work, the behavior policy β is taken from the policy obtained
during training, and it can either be kept fixed or updated dynamically. In our main experiments,
we compared these two setups in Appendix I.3 and found that, on the standard benchmarks we
consider, the difference between fixed and dynamic β is negligible, so we adopt the fixed version
for simplicity. We also constructed an additional scenario in Appendix I.3 where the influenceable
dimensions change over time and showed that in such a case the dynamic setup becomes advanta-
geous, illustrating that our framework can naturally accommodate both fixed and evolving behavior
policies.

SFI Design: To encourage agents to influence these low-entropy CoG dimensions, we design the
following counterfactual intrinsic reward:

Infdt (st,at, st+1) =

n−1∑
i=0

{∣∣ŝdt+1(st,at)− sdt
∣∣− Eai

t∼βi

[∣∣ŝdt+1(st, a
i
t,a

−i
t )− sdt

∣∣]}, d ∈ CoGδ,

(7)
where ŝ(·) is a learned dynamics model approximating the transition dynamics P , and βi is the
behavior policy for agent i used to simulate counterfactual interventions without coordination by
agent i, as introduced in Section 3. Because low-entropy dimensions are typically characterized by
limited change under β, directly increasing the magnitude of state transitions in these dimensions
naturally leads to increased entropy. Thus, even without explicitly maximizing entropy, our reward
effectively encourages agents to explore and influence these stable components, which often coin-
cide with important aspects of cooperative tasks. As a result, agents are guided to discover causally
meaningful interactions, which improves exploration efficiency and promotes coordinated behavior
in sparse-reward environments.

To visualize the proposed SFI described above, we illustrate the process using the Push-2-Box en-
vironment. Fig. 2 shows the empirical distribution p̂ of state changes ∆(d) for (a) agent positions,
(b) box positions, and (c) the corresponding entropy of each state dimension. As shown in Fig. 2(c),
agent positions, being directly controlled, vary frequently and exhibit high entropy, while box posi-
tions change only through coordinated effort, resulting in low entropy. Using a threshold of δ = 0.1,
the x and y positions of the box are selected as CoG state dimensions. When the sum of proposed in-
trinsic reward

∑
d∈CoGδ

Infdt is applied, agents focus on these dimensions, leading to more frequent
and diverse box movement, as illustrated in Fig. 1(c). This example demonstrates how our method
identifies hard-to-change dimensions that require joint effort, which in this environment align with
task-relevant components. In Section 5 and Appendix F.3, we analyze how CoG state dimensions are
selected in complex environments and compare our selection method with naive and prior heuristic
approaches to show its effectiveness.
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4.3 AGENT FOCUSING INFLUENCE BASED ON ELIGIBILITY TRACE

(a) Box A (without AFI) (b) Box B (without AFI) (c) Box A (with AFI) (d) Box B (with AFI)

Figure 3: Empirical distribution p̂ of temporal changes ∆(d) for CoG dimensions (box positions):
(a–b): Without AFI. (c–d): With AFI, where Box A is the focused target.

While the proposed SFI guides agents to actively influence CoG state dimensions that show limited
changes under the behavior policy, coordination often becomes unstable when multiple such dimen-
sions are present. Agents may alternate attention across them without maintaining focus, leading to
scattered and ineffective behavior. This issue is evident in the Push-2-Box environment introduced
in Section 4.1, where agents frequently switch between the two boxes and fail to push either to the
wall. Such inconsistency is particularly problematic in tasks that require all agents to jointly in-
fluence a single object. To address this, we propose agent focusing influence (AFI), a mechanism
that promotes persistent and synchronized attention on a shared CoG dimension through eligibility
traces. Specifically, we quantify the current influence on each dimension d as Infdt and update the
eligibility trace edt over time as:

edt = λ · edt−1 + η · Infdt , d ∈ CoGδ, (8)

where λ ∈ [0, 1] is a decay factor and η > 0 is a scaling coefficient. The trace et accumulates
historical influence until time t, increasing as agents repeatedly affect the same dimension.

To guide agents to concentrate on such dimensions, we define an intrinsic reward:

rint,t =
∑

sd∈CoGδ

wd · Infdt · clip(edt−1, 1, cmax), (9)

where wd = Softmax(−H(d)) prioritizes lower-entropy (harder-to-change) CoG state dimensions,
and the clipping operator clip(·, 1, cmax) ensures reward stability (cmax set to 10). This design
encourages agents to reinforce influence on dimensions they have consistently affected, fostering
collective persistence. If a previously focused dimension becomes unreachable (e.g., the target is
destroyed or removed), its influence naturally drops, shifting agent attention to the next most relevant
CoG dimension. Through this mechanism, agents learn to sequentially commit to one shared target
at a time, leading to more robust coordination.

To illustrate the effect of the proposed AFI, Fig. 3 shows how the empirical distribution of temporal
changes in CoG state dimensions (i.e., box positions) evolves with and without AFI in the Push-2-
Box environment. Without AFI (i.e., η = 0, wd = 1), applying only SFI, (a) and (b) display greater
variation in both boxes compared to vanilla QMIX in Fig. 2(b), indicating increased interaction with
CoG dimensions. However, due to lack of focus on a single box, agents split their influence, leading
to unstable coordination and task failure. With both SFI and AFI, (c) and (d) show that agents
collectively concentrate on Box A, resulting in significantly more variation in its position, while
Box B remains mostly unchanged. This focused influence increases entropy for Box A, aligning with
successful task completion in Fig. 1(d). This mechanism enables agents to succeed not only in toy
tasks but also in more complex multi-agent scenarios. For instance, in combat-style environments,
agents can collectively focus on disabling a key opponent, while in soccer-like domains, they may
coordinate interference against a specific defender. Even under sparse rewards, this influence-driven
reward promotes persistent cooperation and reliable task completion.

By combining the proposed SFI and AFI, we introduce the Focusing Influence Mechanism (FIM) for
MARL, which directs each agent’s influence toward CoG state dimensions and encourages collective
focus on a single target. Agents receive an intrinsic reward rint,t alongside the environment-provided
external reward rext,t, forming a total reward rt = rext,t + αrint,t, where α balances the two terms.

6
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We adopt QMIX (Rashid et al., 2018) as the base learner, though our intrinsic reward is model-
agnostic and applicable to other MARL algorithms. Further implementation details and the full
algorithm of FIM are provided in Appendix D.2.

5 EXPERIMENT

In this section, we evaluate the effectiveness of the proposed FIM. We begin with the Push-2-Box
task introduced in Section 4.1, comparing various combinations of our proposed components. We
then extend the evaluation to more complex MARL benchmarks, the StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019) and Google Research Football (GRF) (Kurach et al., 2020).
In all performance plots, the mean across 5 random seeds is shown as a solid line, and the standard
deviation is represented by a shaded area. As shown in Appendix. I.3, using the fixed CoG set com-
puted from the initial behavior policy already yields strong performance, so we adopt the fixed CoG
configuration in all main experiments.

5.1 PERFORMANCE COMPARISON: COMPONENT EVALUATION ON PUSH-2-BOX

We revisit the Push-2-Box task, where two agents must jointly
push one of two boxes to a wall, as shown in Fig. 1(a). A box
moves by one grid cell if pushed by a single agent and two cells
if pushed by both agents. A external reward of +100 is given
when either box reaches the wall and -1 is applied if the task
fails. The environment is considered successfully solved when
agents manage to push a box to the wall within the episode
length through synchronized cooperation. More detailed
environment settings are provided in Appendix E. Fig. 4 shows
the success rate comparison between several baselines:
LAIES (Liu et al., 2023), which encourages influence over
heuristic external state features (i.e. box positions); CDS (Li
et al., 2021a), which promotes trajectory diversity for
exploration; FoX (Jo et al., 2024), which leverages
formation-aware exploration; vanilla QMIX trained with only
extrinsic rewards; QMIX with SFI; QMIX with AFI; and FIM.

Figure 4: Performance com-
parison across the proposed
focusing components on
Push-2-Box environment.

In SFI, agents are guided to influence selected CoG state dimensions using an intrinsic reward∑
d∈CoGδ Inf

d
t that promotes interaction with low-entropy components. In contrast, AFI applies

agent-level focusing across all state dimensions without CoG selection, where the intrinsic reward
is given by

∑D−1
d=0 Infdt · clip(edt−1, 1, cmax). FIM combines both selective targeting and synchro-

nized persistence via the intrinsic reward structure in Eq. 9. We observe that only FIM consistently
succeeds in solving the task. Vanilla QMIX alone fails due to ineffective exploration. SFI enhances
interaction with hard-to-change states requiring joint effort, as illustrated in Fig. 1(c), but strug-
gles to maintain consistent focus on a single target, as seen in Fig. 3, which leads to task failure.
AFI promotes sustained influence when combined with SFI, yet fails on its own due to the absence
of targeted attention. These results emphasize that both principled state selection and agent-level
coordination are essential for effective cooperation in sparse-rewarded environments.

5.2 PERFORMANCE COMPARISON ON COMPLEX MARL BENCHMARKS: SMAC AND GRF

Next, we evaluate our method on two complex MARL benchmarks: SMAC and GRF. SMAC
is a multi-agent combat environment built on StarCraft II, where agents must coordinate to de-
feat enemy units. We use a truly sparse reward setting in which agents receive +1 for a win, 0
for a draw, and -1 for a loss. Evaluation is conducted on 8 challenging scenarios: 3 hard maps
(5m_vs_6m, 8m_vs_9m, 3s_vs_5z) and 5 super hard maps (corridor, MMM2, 6h_vs_8z,
27m_vs_30m, 3s5z_vs_3s6z), where m, s, z, and h refer to marine, stalker, zealot, and hy-
dralisk units, respectively. GRF is a multi-agent soccer environment where teams compete to
score goals under sparse rewards: +100 for a win and -1 for a loss. We evaluate on 8 scenarios,
including 4 half-field settings (academy_2_vs_2, academy_3_vs_2, academy_4_vs_3,
academy_counterattack) and their corresponding full-field versions, which are more chal-
lenging due to the increased field size. Further environment details and visualizations are provided
in Appendix E.
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Figure 5: Performance comparison on SMAC environments

Figure 6: Performance comparison on GRF environments

For SMAC, we compare FIM against several QMIX-based baselines: Vanilla QMIX (Rashid et al.,
2018); LAIES (Liu et al., 2023); CDS (Li et al., 2021a); FoX (Jo et al., 2024); COMA (Foer-
ster et al., 2018b), which uses counterfactual baselines for centralized multi-agent policy gradient;
MASER (Jeon et al., 2022), which identifies subgoals based on Q-values; RODE (Wang et al.,
2021b), which assigns latent roles to agents; and QPLEX (Wang et al.), which applies monotonic
value decomposition with a dueling architecture. For GRF, we compare against Vanilla QMIX,
LAIES, CDS, FoX, COMA and QPLEX, omitting baselines without publicly available GRF results.
We also include QMIX-DR for SMAC, trained under dense reward settings, to provide an upper-
bound reference. Baseline algorithms are evaluated using author-provided implementations, while
our method uses the best hyperparameter settings identified through ablation studies. Detailed de-
scriptions of each algorithm, our hyperparameter configurations, and CoG state dimensions for each
environment are provided in Appendix F.

Fig. 5 and Fig. 6 present success rate comparisons on the SMAC and GRF benchmarks. In SMAC,
QMIX-DR is shown only as a final point to indicate an upper bound under dense rewards. Across
both environments, FIM consistently achieves the highest success rates among all baselines. In
SMAC, the sparse reward setting poses a significant challenge, as agents must eliminate all enemies
without intermediate feedback. While LAIES remains competitive in some scenarios, it struggles on
complex maps like 27m_vs_30m and corridor, where it prioritizes influence over external states
except ally agents. In contrast, FIM demonstrates robustness by selectively targeting dimensions
that serve as strategic coordination points. In GRF, although some baselines perform well on simpler
half-field tasks, they largely fail on full-field maps with rare scoring opportunities. FIM, by focusing
influence on hard-to-change elements, maintains strong performance across all scenarios. These
results highlight that FIM promotes effective cooperation, enabling agents to solve challenging tasks
even under highly sparse rewards. For practical comparison, we also evaluate the computational
complexity of our method against QMIX in Appendix G. The additional result demonstrates that,
with nearly the same training time as QMIX, our method achieves superior performance that is
unattainable by the baselines. Furthermore, Appendix I.1 presents additional experiments showing
that FIM achieves strong performance even in the more challenging SMACv2 and in MPE, where
state dimensions are highly dynamic. In both cases, FIM consistently selects relatively stable state
dimensions, demonstrating its generality across diverse MARL settings.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CoG state 
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Sight
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Figure 7: Trajectory analysis in 3s_vs_5z: (a) EntropyH(d) with selected CoG state dimensions
(b) Changes in enemy health and its trace edt (c) Rendered frames for highlighting agents’ coordina-
tion.

5.3 IN-DEPTH ANALYSIS AND ABLATION STUDIES ON SMAC AND GRF
To better understand the impact of FIM’s focusing mechanisms, we conduct detailed analyses and
ablations in environments where it shows the largest advantage: SMAC’s 3s_vs_5z and GRF’s
academy_3_vs_2_full_field. In SMAC 3s_vs_5z, the state focusing mechanism high-
lights enemy features such as health and shield as CoG state dimensions, since they are relatively
stable without coordination, making them natural targets for joint influence. As detailed in Ap-
pendix F.3, similar CoG state dimension patterns are observed in other SMAC environments, while
in GRF, the keeper’s position is frequently selected as a CoG state dimension, as it is challenging for
agents to manipulate. These results demonstrate that the proposed method identifies and influences
key CoG state dimensions, enhancing performance by focusing on impactful features like health and
shield in SMAC and the keeper’s position in GRF.

To further illustrate the effect of the proposed method, Fig. 7(a) presents entropy H(d) values for
each dimension in 3s_vs_5z, where the health of the five enemy units is selected as CoG di-
mensions with δ = 0.1. These features change significantly only when agents coordinate attacks.
Fig. 7(b) shows how eligibility traces evolve on enemy health dimensions during an episode, and
Fig. 7(c) visualizes key timesteps where enemy units are eliminated. Agents trained with FIM learn
to pull enemies into sight and focus fire sequentially. Around t ≈ 20, they concentrate on the first
red enemy, increasing its health trace, and eliminate it by t ≈ 30. Once removed, its influence
drops to zero, and focus shifts to the next enemy (e.g., orange at t ≈ 40), repeating this process.
This strategy resembles human gameplay in StarCraft II. We also provide analysis for GRF in Ap-
pendix H, where the results show that agents learn to disrupt the behavior of the keeper, selected
as a CoG state dimension, thereby increasing goal-scoring opportunities. Although we report re-
sults with a fixed CoG state dimensions, the entropy-based selection rule can be re-applied during
training, which allows the framework to update CoG state dimensions when relevance shifts. These
findings demonstrate how FIM promotes structured and effective cooperation even in sparse-reward
environments.

Beyond visualization, we conduct ablation studies on 3s_vs_5z to evaluate the contributions of
each component and the sensitivity to key hyperparameters. Fig. 8(a) compares performance across
the variants considered in Fig. 4: Vanilla QMIX, QMIX with SFI, QMIX with AFI, LAIES+SFI,
LAIES+AFI and the full FIM combining both. LAIES+SFI replaces LAIES’s extrinsic state with our
CoG-selected dimensions and LAIES+AFI rescales LAIES’s influence using per-dimension eligibil-
ity traces accumulated over time. Results also show that while SFI and AFI individually improve
performance, combining them leads to faster convergence and higher final success rates, confirming
the synergy between selective state targeting and synchronized agent coordination. Fig. 8(b)–(d)
further examine the effects of the trace scaling factor η, intrinsic reward weight α, and trace decay
factor λ. Performance is sensitive to these parameters: too-small values weaken intrinsic rewards
and hinder learning, while overly large values lead agents to overfit intrinsic signals and ignore ex-
trinsic rewards. This trade-off is common in intrinsic-motivation-based methods, emphasizing the
importance of proper scaling. We set η = 50, α = 1, and λ = 0.95 as default values based on
observed performance. To further evaluate the effectiveness of the proposed method, we provide ab-
lation studies comparing FIM with naive and heuristic state selection approaches, along with results
from other environments in Appendix I.2. We also include in Appendix I.4 an analysis of applying
SFI and AFI components to LAIES, further clarifying their individual contributions to influence-
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(a) Component evaluation (b) Trace scaling factor η (c) Reward weight α (d) Trace decaying factor λ

Figure 8: Ablation studies on SMAC 3s_vs_5z

based exploration. We also provide in Appendix J an analysis of the learned dynamics model used
by FIM, showing how prediction error evolves during training and how its behavior relates to ex-
ploratory effectiveness and overall performance. FIM consistently outperforms all baselines, further
demonstrating the superiority of the CoG state dimension selection method and the overall FIM
framework.

6 LIMITATION

Although FIM achieves strong performance, it shares some common limitations of intrinsic-
motivation–based methods. First, performance can be sensitive to hyperparameter choices such
as the intrinsic reward weight α, trace decay factor λ, and scaling coefficient η. While we provide
ablation studies and default settings, additional tuning may be required in new domains. Second,
although the additional computational cost of training the dynamics model is modest compared to
QMIX (see Appendix G), it still introduces overhead in large-scale applications. Addressing these
issues through more robust hyperparameter adaptation and lightweight model approximations would
further improve practicality.

7 CONCLUSION

In this paper, we address the challenge of efficient cooperation in sparse-reward MARL by proposing
FIM, a framework that guides agent influence toward CoG state dimensions and sustains coordinated
focus through eligibility traces. By integrating principled state selection with structured intrinsic
rewards based on counterfactual reasoning, FIM enables agents to induce targeted and persistent
state transitions. Empirical results across Push-2-Box, SMAC, and GRF demonstrate that FIM sig-
nificantly improves learning efficiency and coordination, outperforming state-of-the-art baselines.
These findings highlight the potential of influence-guided learning to enable robust multi-agent co-
operation in complex and sparsely rewarded environments.
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ETHICS STATEMENT

This paper introduces the Focusing Influence Mechanism (FIM) for cooperative multi-agent
reinforcement learning, evaluated entirely in simulated benchmark environments (Push-2-Box,
SMAC/SMACv2, GRF, and MPE). The work does not involve human subjects, personally identifi-
able or sensitive data, or applications that directly interact with people. As such, issues of privacy,
discrimination, or fairness are not directly applicable. We also confirm that our experiments com-
ply with legal, research integrity, and ethical standards. We note that while our research poses no
immediate risks.

REPRODUCIBILITY STATEMENT

We are committed to ensure reproducibility of our results. The complete source code for FIM,
including training scripts, environment wrappers, and configuration files, is provided in the
anonymized supplementary materials. Algorithmic details are presented in Section 4 and Ap-
pendix D.1, with the full procedure summarized in Algorithm 1. Environment specifications
are given in Appendix E, hyperparameters and baseline configurations in Appendix F, and hard-
ware/software settings in Appendix G. Additional ablation studies and generalization results are
provided in Appendix I.2 and Appendix I.1. These resources together provide all necessary infor-
mation for independent reproduction and verification of our findings.
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a large language model (LLM) solely as an assistive tool for
polishing the final text. Specifically, the LLM was employed to improve grammar, style, and clarity
of exposition. It was not used for research ideation, experimental design, theoretical development,
or analysis of results. All scientific content, algorithms, and experiments were conceived, imple-
mented, and validated entirely by the authors. The authors have thoroughly reviewed and edited all
text, and take full responsibility for the content of this manuscript. The LLM is not credited as an
author.

B BROADER IMPACT

This work advances cooperative multi-agent systems by introducing a framework that fosters coor-
dinated behavior through influence-based intrinsic motivation. Enhanced cooperation among agents
holds strong potential for positive societal impact in domains such as autonomous vehicle coordi-
nation, collaborative robotics, disaster response, and environmental monitoring. In these settings,
the ability of agents to reason about and influence task-critical aspects collaboratively can lead to
more robust, adaptive, and efficient team performance. As a foundational contribution, this research
supports the development of AI systems that are better aligned with collective goals, promoting safer
and more effective deployment in real-world multi-agent environments.

C PROOF OF THEOREM 4.1

The left-hand side of Eq. 5 is

Eβ

[
H(s̃dt+1 | s̃t,at)

]
= Eβ

[
H(s̃dt+1 − s̃dt | s̃t,at)

]
= Eβ

[
H

(
∆d(st, st+1)|s̃t,at

) ]
= H

(
∆d(st, st+1)|s̃t,at

)
The inequality in Eq. 5 follows from the nonnegativity of mutual information
I
(
∆d(st+1, st); at | s̃t

)
:

I
(
∆d(st+1, st); at | s̃t

)
= H

(
∆d(st+1, st) | s̃t

)
−H

(
∆d(st+1, st) | s̃t,at

)
≥ 0,

which implies

H
(
∆d(st+1, st) | s̃t,at

)
≤ H

(
∆d(st+1, st) | s̃t

)
≤ H

(
∆d(st+1, st) | s̃dt

)
= H(d).

Equality holds if and only if the mutual information vanishes, i.e.,

I
(
∆d(st+1, st); s̃t,at | s̃dt

)
= 0,

D IMPLEMENTATION DETAILS

In this section, we provide practical details on how the proposed framework is implemented. First,
we describe the empirical implementation of state focusing influence, including how entropy is
estimated, counterfactual influences are approximated, and the transition model is trained in Ap-
pendix D.1. Next, we present the overall learning procedure summarized in Appendix D.2.

D.1 EMPIRICAL IMPLEMENTATION OF STATE FOCUSING INFLUENCE

To estimate H(d) = Eβ

[
− log p̂

(
∆d(st, st+1) | s̃dt

)]
, we approximate the marginal distribution

of normalized changes p
(
∆d(st, st+1)

)
, since conditioning on full states p

(
∆d(st, st+1) | s̃dt

)
is
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computationally prohibitive. We construct the empirical distribution p̂
(
∆d(st, st+1)

)
by counting

occurrences discretized to two decimal places from 100K episodes collected under the initial behav-
ior policy. The entropy is then computed as:

H(d) ≈ Eβ

[
− log p̂(∆d(st, st+1))

]
(10)

To ensure comparability across environments, H(d) values for d ∈ CoGδ are min-max normalized
to the range [0, 1] within each environment. To assess the validity of using marginal entropy as
a surrogate, we empirically measured both the conditional and marginal entropies for each state
dimension in GRF academy_2_vs_2, as shown in Table 1. We found that the two quantities are
numerically very close and, more importantly, induce almost identical rankings across dimensions.
Since CoG selection depends only on this ranking, the marginal entropy provides a reliable and
statistically efficient surrogate in practice.

State Dimension H
(
∆d(st, st+1)

)
H

(
∆d(st, st+1) | s̃dt

)
Ally A position 0.73 0.72
Ally A direction 0.82 0.80
Ally B position 0.73 0.71
Ally B direction 0.78 0.73
Opponent GK position 0.27 0.21
Opponent GK direction 0.32 0.26
Opponent A position 0.74 0.70
Opponent A direction 0.96 0.94
Ball position 0.47 0.45
Ball direction 0.24 0.23

Table 1: Comparison of H
(
∆d(st, st+1)

)
and H

(
∆d(st, st+1) | s̃dt

)
, averaged over state dimen-

sions, measured under the initial behavior policy in GRF academy_2_vs_2
.

The counterfactual intrinsic reward in Eq. 7 is computed as the sum of Infd,it (·) over agents i, where
Infd,it (·) measures the influence of agent i on state dimension sd at time t:

Infd,it (st,at, st+1) =
∣∣ŝdt+1(st,at)− sdt

∣∣− Eai
t∼βi

[∣∣ŝdt+1(st, a
i
t,a

−i
t )− sdt

∣∣] (11)

The transition model ŝ used to compute Infd,it (·) is implemented as a three-layer multilayer percep-
tron (MLP) and trained by minimizing the following mean squared error loss:

Lŝ = Est,at,st+1

[
∥ŝ(st,at)− st+1∥2

]
(12)

Since the influence is estimated using a learned model, approximation noise can introduce spurious
nonzero signals even when agent i has no actual effect on sd. To mitigate false positives, we discard
any Infd,it (·) below a threshold κ, and mask out agents that are inactive or dead at time t. The final
influence on dimension sd is computed by summing only the valid contributions:

Infdt (st,at, st+1) =
∑
i∈Nt

1[Infd,it (st,at, st+1) ≥ κ] · Infd,it (st,at, st+1) (13)

where Nt denotes the set of active agents at time t, and 1[·] is the indicator function.

D.2 COMPLETE IMPLEMENTATION AND ALGORITHMIC DETAILS OF FIM

The FIM framework builds on the centralized training with decentralized execution (CTDE)
paradigm, using QMIX to learn a joint action-value function. Each agent maintains an individual
Q-function Qi(τ it , a

i
t) based on its action-observation history τ it and current action ait. These per-

agent utilities are combined via a mixing network to produce a global joint Q-value, Qtot
θ (st,at),

where θ denotes the parameters of the mixing network.
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To stabilize learning, FIM employs a target mixing network Qtot
θ− , which is periodically updated by

overwriting its parameters with those of the current mixing network. The temporal difference (TD)
loss is computed using a Bellman update that incorporates both extrinsic and intrinsic rewards:

LTD(θ) = Es,a,r,s′

[(
rext,t + αrint,t + γmax

a′
Qtot

θ− (st+1,a
′)−Qtot

θ (st,at)
)2

]
(14)

This loss is minimized using the Adam optimizer to update the parameters θ, while the target net-
work parameters θ− are synchronized at fixed intervals. The complete training procedure of FIM is
summarized in Algorithm 1.

Algorithm 1: FIM framework
Initialize: Q network, dynamics model ŝ

1 Collect trajectories under behavior policy
2 ApproximateH(d) with the obtained trajectories based on Eq. (4)
3 Define CoG state dimensions CoGδ based on Eq. (5)
4 Compute wd for each d ∈ CoGδ

5 for training iteration do
6 for timestep t do
7 Sample transition (st,ot,at, st+1,ot+1) using π, where ot = (o0t , · · · , on−1

t )
8 for d ∈ CoGδ do
9 Compute collective influence Infdt by Eq. (6)

10 Update eligibility trace edt by Eq. (7)
11 Compute intrinsic reward rint,t by Eq. (8)

12 Update value function Qtot and dynamics model ŝ

E ENVIRONMENT DETAILS

Push-2-Box

Push-2-Box is a cooperative multi-agent environment where two agents must jointly push one of
two boxes toward a wall to obtain a reward. A box moves one cell if pushed by a single agent and
two cells if pushed simultaneously. Thus, synchronized cooperation is essential for completing the
task within the episode time limit. The environment terminates either when a box reaches the wall
or when the episode length is exceeded.

The state space consists of the (x, y) positions of both agents and both boxes, resulting in an 8-
dimensional state vector. To isolate coordination from partial observability, each agent receives the
full environment state as observation. The action space is discrete, consisting of eight movement
actions corresponding to up, down, left, right, top-right, right-down, down-left, and left-top direc-
tions. The reward function is sparse, providing +100 if a box reaches the wall and -1 if no box
reaches the wall by the end of the episode.
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StarCraft Multi-Agent Challenge (SMAC)

SMAC (Samvelyan et al., 2019) is a benchmark for evaluating decentralized cooperative multi-agent
reinforcement learning. Agents control individual StarCraft II units and must coordinate to defeat
enemy forces operated by a scripted AI. During centralized training, a global state is accessible, but
during decentralized execution, each agent relies solely on its local observations within a limited
sight range. SMAC offers both dense and sparse reward settings, with the sparse reward setting
significantly increasing the difficulty by removing intermediate feedback.

The state space aggregates absolute features of all units, including positions, health, shields, en-
ergies, cooldowns, unit types, and past actions. The observation space provides each agent with
relative (x, y) positions, health, shield status, and unit types of nearby allies and enemies. The action
space is discrete, consisting of movement in four directions, attacking visible enemies, stopping, and
no-op actions (only allowed for dead units). The reward function is summarized in Table 2, and
our experiments focus on the sparse reward setting across eight challenging scenarios. Scenario vi-
sualizations are provided in Fig. 9, with unit compositions and environment dimensions summarized
in Table 3.

Event Dense reward Sparse reward
Enemy unit killed +10 per enemy killed No reward
Ally unit killed -10 per ally killed No reward
Damage dealt to enemy + (proportional to damage amount) No reward
Damage received by ally - (proportional to damage amount) No reward
Winning the battle +200 at episode end +1 at episode end
Losing the battle 0 -1 at episode end

Table 2: Comparison of dense and sparse reward structures in SMAC

Ally

Enemy

Figure 9: Visualization of initial timestep in SMAC scenarios.
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Scenario Ally Enemy State Dim Obs Dim Action Dim
5m_vs_6m 5 Marines 6 Marines 98 55 12

8m_vs_9m 8 Marines 9 Marines 179 85 15

3s_vs_5z 3 Stalkers 5 Zealots 68 48 11

corridor 6 Zealots 24 Zerglings 282 156 30

MMM2
1 Medivac, 1 Medivac,

322 176 182 Marauders, 3 Marauders,
7 Marines 8 Marines

6h_vs_8z 6 Hydralisks 8 Zealots 140 78 14

27m_vs_30m 27 Marines 30 Marines 1170 285 36

3s5z_vs_3s6z
3 Stalkers, 3 Stalkers, 230 136 155 Zealots 6 Zealots

Table 3: SMAC scenario configuration

Google Research Football (GRF)

GRF (Kurach et al., 2020) provides a realistic soccer simulation, incorporating ball dynamics, pass-
ing, shooting, tackling, and player movement mechanics. Agents control individual players on a
team and must cooperate to score goals against an opponent team controlled by a scripted AI. We
adopt a sparse reward setting to evaluate cooperative behavior under severely limited feedback.

The state space during centralized training consists of player positions and velocities, as well as ball
position and velocity. Each observation space for an agent includes local information about the ego
player, nearby teammates, opponents, and ball-related features, all expressed relative to the agent’s
current frame. The action space is discrete, covering movement in eight directions, sliding, passing,
shooting, sprinting, and standing still. The reward function follows a sparse setting, where agents
receive +100 for winning the match and -1 for losing, without intermediate shaping rewards.

For brevity, several GRF scenarios are referred to using abbreviated names.
Specifically, academy_3_vs_2 refers to academy_3_vs_1_with_keeper,
academy_2_vs_2 to academy_run_pass_and_shoot_with_keeper,
academy_counterattack to academy_counterattack_hard, and
academy_4_vs_3 to academy_4_vs_2_with_keeper in the original GRF environ-
ment. As shown in Fig. 10, we design full-field variants of these scenarios by repositioning ally
and enemy players to opposite half of the court, increasing the difficulty by requiring long-horizon
planning and coordinated movement across larger distances. Table 4 provides an overview of the
unit configurations and corresponding environment dimensions.

Ally

Opponent

Ball

(a) academy_2_vs_2 (b) academy_2_vs_2_
full_field

(c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

(e) academy_4_vs_3 (f) academy_4_vs_3_
full_field

(g) academy_counter
attack

(h) academy_counter
attack_full_field

Figure 10: Visualization of initial agent positions in GRF scenarios.
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Scenario Ally Opponent State Dim Obs Dim Action Dim

academy_2_vs_2 2 center back
1 goalkeeper,
1 center back 22 22 19

academy_2_vs_2
_full_field 2 center back

1 goalkeeper,
1 center back 22 22 19

academy_3_vs_2 3 central midfield
1 goalkeeper,
1 center back 26 26 19

academy_3_vs_2
_full_field 3 central midfield

1 goalkeeper,
1 center back 26 26 19

academy_4_vs_3 4 central midfield
1 goalkeeper,
2 center back 34 34 19

academy_4_vs_3
_full_field 4 central midfield

1 goalkeeper,
2 center back 34 34 19

academy
_counterattack

1 central midfield,
1 left midfield,
1 right midfield,
1 central front

1 goalkeeper,
2 center back 34 34 19

academy
_counterattack
_full_field

1 central midfield,
1 left midfield,
1 right midfield,
1 central front

1 goalkeeper,
2 center back 34 34 19

Table 4: GRF scenario configuration

F EXPERIMENTAL DETAILS

FIM is implemented on top of the open-source framework from (Hu et al., 2021), which is also used
to run QMIX (Rashid et al., 2018) and QPLEX (Wang et al.). LAIES (Liu et al., 2023), RODE (Wang
et al., 2021b), MASER (Jeon et al., 2022), CDS (Li et al., 2021a), and FoX (Jo et al., 2024) are
evaluated using the original code and settings provided by their respective authors. Experiments
are conducted on an NVIDIA RTX 3090 GPU with an Intel Xeon Gold 6348 CPU (Ubuntu 20.04).
Training completes within two days for Push-2-Box and SMAC, while each GRF scenario requires
less than two days to reach 5 million timesteps. We begin by describing the baseline algorithms
in Appendix F.1, outline the hyperparameter setup of FIM in Appendix F.2, and conclude with
visualizations of entropy and CoG state dimension selection in Appendix F.3.

F.1 DETAILED DESCRIPTION OF BASELINE ALGORITHMS

• QMIX (Rashid et al., 2018) factorizes the joint action-value into individual utilities combined by
a monotonic mixing network, ensuring consistency between global and individual greedy actions.
Code: https://github.com/hijkzzz/pymarl2

• QPLEX (Wang et al.) extends QMIX with a duplex dueling architecture, decomposing joint
value into individual value and advantage while enforcing the IGM principle. Code: https:
//github.com/hijkzzz/pymarl2

• LAIES (Liu et al., 2023) incentivizes agents to influence external task-relevant states via intrinsic
rewards for both individual and joint impacts. Code: https://github.com/liuboyin/
LAIES

• RODE (Wang et al., 2021b) employs hierarchical role-based policies where agents periodi-
cally select roles to guide low-level actions, enabling scalable specialization. Code: https:
//github.com/TonghanWang/RODE

• MASER (Jeon et al., 2022) enhances exploration by assigning subgoals from past trajecto-
ries, rewarding agents for revisiting informative states. Code: https://github.com/
Jiwonjeon9603/MASER
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• CDS (Li et al., 2021a) encourages policy diversity under parameter sharing by maximizing mutual
information between agent identity and trajectory. Code: https://github.com/lich14/
CDS

• FoX (Jo et al., 2024) promotes structured exploration by maximizing entropy of agent forma-
tions and their mutual information with team structure. Code: https://github.com/
hyeon1996/FoX

• COMA (Foerster et al., 2018b) is a counterfactual multi-agent policy gradient method that assigns
credit using a centralized critic with counterfactual baselines. Code: https://github.com/
oxwhirl/pymarl2

F.2 HYPERPARAMETER SETUP OF THE PROPOSED FIM

Scenario η α δ κ

Push-2-Box 5 0.1 0.1 0

Starcraft Multi-agent Challenge (Sparse)
5m_vs_6m 50 5 0.05 0.01
8m_vs_9m 50 5 0.05 0.01
3s_vs_5z 50 1 0.1 0.005
corridor 50 5 0.05 0.01
MMM2 50 5 0.15 0.01
6h_vs_8z 50 5 0.1 0.05
27m_vs_30m 50 5 0.05 0.01
3s5z_vs_3s6z 50 5 0.15 0.01

Google Research Football (Sparse)
academy_2_vs_2 10 1 0.5 0.01
academy_2_vs_2_full_field 10 10 0.5 0.01
academy_3_vs_2 10 10 0.1 0.01
academy_3_vs_2_full_field 10 1 0.1 0.01
academy_4_vs_3 10 10 0.2 0.01
academy_4_vs_3_full_field 10 10 0.2 0.01
academy_counterattack 10 10 0.1 0.01
academy_counterattack_full_field 10 1 0.5 0.001

Starcraft Multi-agent Challenge v2 (Sparse)
protoss_5_vs_5 50 5 0.25 0.01
terran_5_vs_5 50 5 0.25 0.01
zerg_5_vs_5 50 5 0.25 0.01

Petting Zoo Multi Particle Environments
simple_spread_v3 50 5 0.25 0.01

Table 5: Scenario specific hyperparmeter setup of FIM

Hyperparameters Value
Optimizer Adam
ϵ anneal step 50000
Replay buffer size 5000
Target update interval 200
Mini-batch size 32
Mixing network dim 32
Discount factor γ 0.99
Learning rate 0.0005
Dynamics model ŝ(·) layer 3
Dynamics model ŝ(·) dim 128

Table 6: Common hyperparameter setting of FIM
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The default hyperparameter settings of FIM, which are generally shared across scenarios, are sum-
marized in Table 6. Scenario-specific tuning of the trace scaling factor η, intrinsic reward weight α,
entropy threshold δ, and influence threshold κ is provided in Table 5, while the trace ceiling cmax is
fixed at 10, the softmax temperature in Softmax(−H(d)) is set to 0.1, and the trace decay factor λ
is fixed at 0.95 across all scenarios.

F.3 VISUALIZATION OF ENTROPY H(d) AND COG STATE DIMENSION SELECTION

Fig. 11 and Fig. 12 visualize H(d) for SMAC and GRF. To facilitate comparison, H(d) values
are min-max normalized to the range [0, 1] within each environment. In GRF, CoGδ consistently
highlights goalkeeper positions, which are critical for evaluating offensive positioning and shot op-
portunities, as discussed in Appendix H. In SMAC, it emphasizes enemy health, a key factor for
prioritizing targets and coordinating attacks. Although ally-specific features such as unit type, which
only change when an agent is eliminated by enemy, are included in the CoG dimensions, FIM em-
phasizes features that allies can directly influence and thus prioritizes enemy health and shield to
increase influence eligibility traces.

CoG state 
dimensions

Figure 11: SMACH(d) visualization
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CoG state 
dimensions

Figure 12: GRFH(d) visualization

G COMPARISON OF COMPUTATIONAL COMPLEXITY

FIM computes intrinsic rewards by estimating each agent’s influence through counterfactual
marginalization over its action set A for every dimension in CoGδ . This results in a space com-
plexity of O(|N | · |A| · |CoGδ|) per timestep, while the time complexity remains O(1) due to GPU
parallelization. FIM uses a lightweight three-layer multilayer perceptron (MLP) as the forward tran-
sition model and does not alter the main Q-network architecture, keeping computational overhead
minimal. We compare FIM against QMIX with dense rewards (QMIX-DR), since sparse-reward
QMIX often converges to tie-seeking behaviors that avoid conflict (Liu et al., 2023), resulting in
minimal policy updates and unrealistically low computational cost. As shown in Table 7, FIM’s av-
erage computation time per 1 million timesteps is comparable to QMIX-DR. In 3s5z_vs_3s6z,
FIM also requires fewer timesteps to reach a 60% success rate, demonstrating strong efficiency. Even
in high-dimensional scenarios such as 27m_vs_30m, FIM maintains computational costs compa-
rable to QMIX-DR, indicating that the added influence modeling does not introduce significant
overhead. These results emphasize FIM’s ability to enhance agent behavior without compromising
computational cost.

Scenario FIM QMIX-DR

3s_vs_5z
72.40 min 70.65 min
5.73M 4.21M

3s5z_vs_3s6z
126.43 min 123.23 min
8.26M 13.05M

27m_vs_30m
155.78 min 139.06 min
14.36M 3.47M

Table 7: Average computation time (in minutes) per 1 million timesteps (top row) and the number
of timesteps (in millions) required to reach a 60% success rate (bottom row).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H TRAJECTORY ANALYSIS IN GRF

Figure 13: FIM trajectory in GRF academy_3_vs_2_full_field

In GRF, the CoG state dimensions identified by FIM primarily correspond to the position of the
opponent goalkeeper, as illustrated in Fig. 13(a). These dimensions exhibit low entropy under initial
behavior policy, since the goalkeeper typically remains stationary and only shifts position when a
ball-carrying agent approaches the goalpost. This characteristic makes the goalkeeper’s state both
stable and strategically significant, as displacing it creates scoring opportunities and thus serves as a
valuable proxy objective in sparse reward settings. Accordingly, FIM guides agents to influence the
goalkeeper’s position.

As shown in Fig. 13(b)-(c), this insight is reflected in the agent trajectory. Around t ≈ 70, agents
begin to receive intrinsic rewards by subtly influencing the goalkeeper’s position, even while po-
sitioned far from the goal area. By t ≈ 100, the accumulated eligibility traces further incentivize
agents to continue exerting influence over the goalkeeper, enabling a gradual progression toward the
goal. Near t ≈ 130, the goalkeeper briefly moves out of position, and the attacking agent capital-
izes on this opportunity to score. Notably, FIM guides agents to approach the goal proactively and
maintain persistent influence over the goalkeeper’s positioning, which serves as a task critical factor
for successful coordination in this environment, particularly under sparse reward conditions.

I ADDITIONAL EXPERIMENTS

In this section, we present additional experiments that further validate the generality, robustness,
and interpretability of our proposed framework. First, we evaluate FIM across different cooperative
MARL benchmarks, including SMACv2 and MPE, in Appendix. I.1. Next, we provide extended
ablation studies that analyze the independent contributions of SFI and AFI under various settings in
Appendix. I.2. We then examine the dynamic update of CoG dimensions and show that the entropy-
based selection remains adaptive as the behavior policy evolves during training in Appendix. I.3.
Finally, we investigate how the components of FIM interact with the LAIES in Appendix. I.4.

I.1 GENERALITY OF FIM ACROSS SMACV2 AND MPE

To assess the generality of FIM across diverse cooperative MARL settings, we extended our exper-
iments to SMACv2 (Ellis et al., 2023), which introduces richer unit types and randomized initial
configurations compared to the original SMAC. We conducted experiments on three representative
scenarios (terran_5_vs_5, zerg_5_vs_5, and protoss_5_vs_5) under the fully sparse
reward setting. As shown in Fig. 14, the CoG dimensions emphasize enemy-related features such
as health and shield, which are critical for focusing fire and coordinating attacks. Although ally-
specific features (e.g., unit type) also exhibit low variability, FIM prioritizes enemy features from
which collaborative influence yields greater intrinsic rewards. Consequently, as reported in Fig. 15,
FIM achieves strong performance across all scenarios, outperforming recent baselines and even sur-
passing QMIX with dense rewards (QMIX-DR).

We further evaluated FIM in PettingZoo MPE benchmark (Terry et al., 2021)
simple_spread_v3 which is highly dynamic environment. In this task, positions, veloci-
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ties, and relative features evolve continuously, leaving no trivially stable dimensions. Nevertheless,
as shown in Fig. 16(a), FIM was able to identify relatively stable dimensions by leveraging entropy
differences. Since actions directly control velocity, agent velocities fluctuate heavily even under
individual actions, leading to high entropy. In contrast, positions and landmark-relative positions
change more gradually unless velocity is consistently applied in the same direction, resulting in
lower entropy. Position dimensions, crucial for target-approaching behavior, are therefore selected
as CoG. Fig. 16(b) presents test return comparison, showing FIM converges faster to higher return
value compared to QMIX.

A key reason for this generality is that CoG dimensions represent state variables less affected by un-
coordinated actions, and thus mark regions that are hard to influence without cooperation. While not
always direct task termination indicators, they highlight underexplored aspects of the environment
that require joint effort. FIM rewards agents for influencing these dimensions, steering exploration
toward coordination-critical regions. For instance, in GRF the goalkeeper state is often selected as
CoG: although not itself the goal signal, coordinating to disrupt it improves scoring. This illustrates
how CoG dimensions, even if not directly tied to objectives, can guide agents toward meaningful
cooperation, explaining the generality of FIM across SMACv2, MPE, and beyond.

(a) zerg_5_vs_5 (b) terran_5_vs_5 (c) protoss_5_vs_5

Figure 14: SMACv2H(d) visualization

Figure 15: Performance comparison on SMACv2 environments

(a) H(d) visualization (b) Performance comparison

Figure 16: Experiment on PettingZoo MPE simple_spread_v3
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I.2 EXTENDED ANALYSIS ON ABLATION STUDIES

To further evaluate the robustness of FIM, we conduct experiments on four challenging sce-
narios: SMAC 3s_vs_5z, SMAC 3s5z_vs_3s6z, GRF academy_3_vs_2, and GRF
academy_3_vs_2_full_field. Our analysis focuses on four aspects: (i) alternatives to the
SFI state selection mechanism, (ii) the impact of each module in FIM through a component ablation
study, (iii) the effect of varying the trace scaling factor η, (iv) the sensitivity to the reward scaling
factor α, and (v) the role of the trace decay factor λ in the trace mechanism.
Alternatives to the SFI State Selection Mechanism
We investigate alternative strategies to the SFI state selection mechanism for determining the set of
state dimensions to influence: no-state-selection, external state focusing influence (EFI), and least-
change state focusing influence (LFI). In all cases, the intrinsic reward is computed as in FIM, with
each variant differing only in the selection of the state dimension set D. The chosen dimensions for
each variant are summarized in Table 8. The no-state-selection variant sets D to include all state
dimensions, effectively applying no filtering. EFI manually selects task-relevant external features,
following the approach of LAIES (Liu et al., 2023): enemy health, shield, and positions in SMAC;
and opponent and ball positions and directions in GRF. LFI selects the n = |CoGδ| state dimensions
with the smallest average temporal change |sdt+1 − sdt | under a initial behavior policy. In SMAC,
this typically includes enemy health and ally positions, while in GRF, it often selects ally direction
features due to their relatively small-scale temporal changes.
As shown in Fig. 17, while some SFI variants show comparable performance in (a) and (c), the state
dimensions selected by SFI consistently lead to the highest overall performance. When variants in-
clude easily influenced features such as ally position, agents tend to exploit these trivial dimensions,
leading to reward hacking and suboptimal behavior. These findings underscore the effectiveness of
FIM’s entropy-based selection, which identifies stable and causally meaningful CoG dimensions to
promote more coordinated and purposeful agent behavior.

(a) 3s_vs_5z (b) 3s5z_vs_3s6z (c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

Figure 17: Alternatives to SFI

Scenario SFI EFI LFI

3s_vs_5z enemy health
enemy health,
enemy shield,
enemy position

enemy health

3s5z_vs_3s6z

enemy health,
enemy shield,
ally health,
ally shield,
ally unit type

enemy health,
enemy shield,
enemy position

enemy health,
enemy position,
ally position

academy_3_vs_2
goalkeeper position,
goalkeeper direction

opponent position,
opponent direction,
ball position,
ball direction

ally direction

academy_3_vs_2
_full_field

goalkeeper position,
goalkeeper direction

opponent position,
opponent direction,
ball position,
ball direction

goalkeeper direction,
ally direction

Table 8: Selected state dimensions comparison for SFI, EFI and LFI
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Component Evaluation

Fig. 18 compares four variants: vanilla QMIX, QMIX with state focusing influence (SFI), QMIX
with agent focusing influence (AFI), and the full FIM framework that integrates both components.
In SMAC, focused fire emerges as a key cooperative strategy, where agents coordinate to attack a
single enemy unit at a time. SFI supports this behavior by directing influence toward task-relevant
CoG dimensions, such as enemy health and shield, while AFI encourages agents to maintain con-
sistent attention across time. Although each component improves performance on its own, only
their combination in FIM reliably induces and sustains focused fire, resulting in the highest suc-
cess rates, as shown in Fig. 18(a)-(b). A similar effect is observed in GRF, where SFI identifies the
goalkeeper’s position as a key dimension, and AFI ensures that agents continue to influence it over
multiple steps in order to exploit brief chance when the goalkeeper is out of position. Together, these
components enable coordinated behaviors that consistently outperform all other variants, as shown
in Fig. 18(c)-(d).

(a) 3s_vs_5z (b) 3s5z_vs_3s6z (c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

Figure 18: Component evaluation

η Effect Analysis

We investigate how different settings of the trace scaling factor η affect performance by evaluating
η ∈ {1, 5, 10, 50, 100}, as shown in Fig. 19. The results show that the choice of η significantly influ-
ences learning outcomes such that extreme values on either end tend to impair performance. When
η is too low, a larger amount of influence over a longer period is required to sufficiently increase
the eligibility trace, which may cause the system to become insensitive to recent influence and fail
to reflect meaningful credit accumulation. On the other hand, if η is too high, the eligibility trace
rapidly reaches the ceiling cmax, leading to two undesirable effects. First, it reduces the discrimi-
native power between dimensions, as many attain the same maximum eligibility value. Second, it
diminishes the incentive for agents to sustain influence across multiple timesteps, since eligibility
values remain near the maximum regardless of temporal decay. Based on these findings, we set
η = 50 for SMAC and η = 10 for GRF, which yielded the most stable and effective performance
across tasks.

(a) 3s_vs_5z (b) 3s5z_vs_3s6z (c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

Figure 19: Effect of η
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α Effect Analysis

We examine how the reward scaling factor α affects performance by testing values in α ∈
{0.1, 0.5, 1, 5, 10, 50}, as shown in Fig. 20. When α is too small, the intrinsic reward signal becomes
negligible, preventing agents from effectively learning the influence-guided strategy promoted by
FIM. Conversely, setting α too large causes agents to over-prioritize intrinsic rewards, ignoring crit-
ical environmental feedback and converging to suboptimal behaviors. To ensure balanced learning,
we select α values that are well aligned with the extrinsic reward scale of each scenario. This bal-
ance is particularly important in sparse-reward environments, where intrinsic signals must guide
exploration without overwhelming the task objective. Our selected α values thus ensure that agents
benefit from influence-driven incentives while still grounding their behavior in task success.

(a) 3s_vs_5z (b) 3s5z_vs_3s6z (c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

Figure 20: Effect of α

λ Effect Analysis

We examine the effect of the trace decay factor λ by varying it across λ ∈ {0.8, 0.85, 0.9, 0.95, 1}.
The parameter λ determines how long the influence of past actions persists in the eligibility trace.
As shown in Fig. 21, when λ = 1, the trace never decays, causing all past influence, whether recent
or outdated, to be treated equally. This undermines the ability to prioritize recent, coordinated
influence, weakening short-term focus and resulting in suboptimal performance. Conversely, when
λ is too small, eligibility decays too rapidly, limiting the benefit of temporal accumulation and again
degrading learning. Through empirical evaluation, we find that λ = 0.95 consistently yields the best
performance and adopt it as the default across all scenarios.

(a) 3s_vs_5z (b) 3s5z_vs_3s6z (c) academy_3_vs_2 (d) academy_3_vs_2_
full_field

Figure 21: Effect of λ

I.3 DYNAMIC COG UPDATE

To verify that entropy-based CoG selection can adapt to the current behavior policy β that
keeps evolving, we conduct an additional experiment using the current behavior policy β to up-
date CoG dimensions. We recomputes CoG dimensions every 250K timesteps. At each up-
date point, we estimate per-dimension entropy H(d), derive a new entropy-based weight vector
wnew

d = Softmax(−H(d)), and then smoothly update the CoG weights via wd ← (1−ϕ)wd+ϕwnew
d

with ϕ fixed at 0.05, ensuring that the intrinsic-reward structure evolves gradually without destabi-
lizing training.
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We designed SMAC 3s_vs_5z_shield_100 scenario as a variant of 3s_vs_5z to evaluate the
performance of dynamic CoG updating FIM (abbreviated as dFIM). We increase all enemy shields
from 50 to 100 so that an untrained initial policy can never alters enemy health. Consequently, the
entropy of enemy-health dimensions is exactly zero at the beginning of training, and these dimen-
sions are therefore excluded from the initial CoG set. This allows us to explicitly test whether the
CoG mechanism can recover previously excluded dimensions once agents become capable of affect-
ing them. Fig. 22 shows that enemy-health dimensions, initially absent due to zero entropy, begin to
exhibit non-zero temporal variation once agents reliably deplete shield, and are progressively con-
tained as a CoG dimensions. As shown in Fig. 24(a), while FIM that fix CoG dimensions fail to
improve performance, dFIM successfully improve performance.

We also tested dFIM in 3s_vs_5z in which initial policy is able to influence all state dimensions.
As shown in Fig. 23, dynamically updating the CoG led to only minor changes, such as the inclusion
of a few additional dimensions such as ally features. As shown in Fig. 24(b), dFIM brought little
additional benefit compared to using a fixed set. Since the initial policy in most of our main exper-
imental scenarios can similarly influence all dimensions from the outset, we adopt the fixed-CoG
version of FIM in the main experiments to keep the overall implementation simple.

CoG state 
dimensions

Figure 22: H(d) at each timestep in 3s_vs_5z_shield_100

CoG state 
dimensions

Figure 23: H(d) at each timestep in 3s_vs_5z

(a) 3s_vs_5z_shield_100 (b) 3s_vs_5z

Figure 24: Performance comparison of FIM and dFIM
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I.4 LAIES WITH FIM COMPONENTS

To better understand the individual contributions of selective state focusing (SFI) and accumulated
future influence (AFI), we further evaluate how the LAIES framework behaves when augmented
with these components. We conduct experiments in SMAC 3s_vs_5z and 27m_vs_30m, where
vanilla LAIES is known to struggle to make progress. In these experiments, we follow the original
LAIES setup and use the full external enemy feature vector exactly as defined in their paper. vanila
LAIES attempts to influence the entire enemy feature vector, which becomes problematic in scenar-
ios that require highly focused strategies such as 3s_vs_5z, or in maps with many enemies such as
27m_vs_30m, where the number of relevant dimensions is large and the influence signal becomes
overly diffuse.

We construct two variants of LAIES: LAIES+SFI, which replaces LAIES’s extrinsic state with our
CoG-selected dimensions, and LAIES+AFI, which rescales LAIES’s influence using per-dimension
eligibility traces accumulated over time. As shown in Fig. 25, both modifications improve the per-
formance of LAIES. From the SFI perspective, this demonstrates that concentrating influence on a
small number of key dimensions (e.g., enemy health) is more effective than distributing it across the
full enemy feature vector. From the AFI perspective, the gains indicate that temporally accumulated
influence provides a complementary signal absent in the original LAIES formulation. Together,
these results confirm that SFI and AFI play essential and complementary roles, and that each com-
ponent independently enhances the effectiveness of influence-based exploration.

(a) 3s_vs_5z (b) 27m_vs_30m

Figure 25: Performance evaluation of LAIES with FIM components

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J ANALYSIS OF THE LEARNED DYNAMICS MODEL

Since the intrinsic reward in FIM is computed from the predictions of the learned dynamics model
ŝ, its accuracy directly influences the reward signal. While a high mean-squared error (MSE) might
seem detrimental, our results suggest that prediction inaccuracies can also serve a constructive role
by implicitly encouraging exploration of regions with complex or less predictable dynamics. In
this sense, model error may act as a form of curiosity, resonating with ideas from curiosity-driven
exploration in model-based RL (Pathak et al., 2017).

To examine this effect empirically, we analyzed the SMAC 3s_vs_5z scenario. As shown in
Fig. 26, the forward model’s MSE gradually increased during training, likely reflecting exposure
to more diverse transitions. Notably, this trend coincided with a steady improvement in win rate,
suggesting that moderate prediction error did not destabilize learning but rather correlated with
productive exploration, ultimately supporting performance gains.

(a) FIM Performance (b) Mean squared error loss of ŝ

Figure 26: Comparison of FIM performance and mean squared error loss of ŝ in 3s_vs_5z
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