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Abstract

Pre-trained Large Language Models (LLMs)001
have significantly advanced natural language002
processing capabilities but are susceptible to003
biases present in their training data, leading to004
unfair outcomes in various applications. While005
numerous strategies have been proposed to mit-006
igate bias, they often require extensive compu-007
tational resources and may compromise model008
performance. In this work, we introduce AX-009
OLOTL, a novel post-processing framework,010
which operates agnostically across tasks and011
models, leveraging public APIs to interact with012
LLMs without direct access to internal parame-013
ters. Through a three-step process resembling014
zero-shot learning, AXOLOTL identifies biases,015
proposes resolutions, and guides the model to016
self-debias its outputs. This approach mini-017
mizes computational costs and preserves model018
performance, making AXOLOTL a promising019
tool for debiasing LLM outputs with broad ap-020
plicability and ease of use.021

1 Introduction022

Pre-trained Large Language Models (LLMs) have023

revolutionized natural language processing, offer-024

ing unparalleled capabilities in understanding, gen-025

erating, and translating text (Zhu et al., 2023;026

Zhang et al., 2020). Despite their advance-027

ments, these models are not immune to inheriting028

and perpetuating biases present in their training029

data (Maudslay et al., 2019a). Often the uncurated030

datasets that these models are trained on reflect031

historical, societal, and cultural prejudices. Biases032

in LLMs can manifest in various forms such as033

gender, race, religion, profession, etc stereotypes,034

leading to unfair or discriminatory outcomes in ap-035

plications ranging from automated hiring systems036

to conversational AI (Zhang et al., 2020). Stud-037

ies such as (Bolukbasi et al., 2016b) and (Bender038

et al., 2021) highlight the critical nature of this039

problem, demonstrating how biases can skew LLM040

outputs in ways that reinforce harmful stereotypes 041

and marginalize already disadvantaged groups. 042

Researchers have explored a multitude of strate- 043

gies to identify and mitigate bias. These efforts 044

encompass a broad spectrum of approaches, in- 045

cluding enhancing fairness through modifications 046

in sentence and word representations and embed- 047

dings (May et al., 2019; Caliskan et al., 2017b; 048

Ravfogel et al., 2020), adjusting the underlying dis- 049

tribution of tokens (Guo et al., 2022), and refining 050

datasets alongside model pre-training (Garimella 051

et al., 2021; Maudslay et al., 2019a,b). While 052

such interventions are crucial, they are not with- 053

out their challenges. Specifically, the processes 054

of pre-training or retraining LLMs entail signifi- 055

cant computational resources and financial costs. 056

Moreover, certain debiasing techniques may com- 057

promise the LLMs’ overall performance. Another 058

notable issue is the reliance on access to the models’ 059

internal configurations, a requirement that limits 060

the applicability of these methods to open-source 061

models and excludes the potential benefits of uti- 062

lizing sophisticated, closed-source models. These 063

factors underscore the need for innovative debias- 064

ing methodologies that are both cost-effective and 065

performance-preserving. 066

We present AXOLOTL, a novel, model-agnostic 067

and task-agnostic post-processing framework 068

aimed at reducing bias through self-debiasing. AX- 069

OLOTL is inspired by the unique characteristics of 070

the axolotl, a Mexican salamander known for its 071

remarkable regenerative abilities. Just as the ax- 072

olotl self-heals and regrow parts of its body, the 073

AXOLOTL model is founded on self-debiasing by 074

identifying and correcting biases in its outputs. 075

Inspired by zero-shot learning (Radford et al., 076

2019), AXOLOTL operates through a three-step 077

process: first, it identifies bias (in form of an orien- 078

tation to a demographic group and an unpleasant 079

characteristic) within the model’s output; Second, 080

it effectively proposes a resolution to counteract 081
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the detected bias, and the final step which involves082

guiding the model to revise and regenerate its previ-083

ous response in light of this new, unbiased direction.084

This approach enables AXOLOTL to instruct the085

model on both the nature of the detected bias and086

the means for its rectification, thereby facilitating087

the self-debiasing of its initial response.088

More importantly, AXOLOTL treats the Large089

Language Model (LLM) as a “black box”, leverag-090

ing public APIs to interact with the model without091

requiring direct access to the LLM’s parameters.092

This design choice significantly reduces the need093

for expensive computational resources, allowing094

our system to operate efficiently with minimal hard-095

ware requirements. By combining these elements,096

AXOLOTL stands out as a tool for mitigating bias097

in LLM outputs, ensuring broader applicability and098

ease of use across various platforms and models.099

In summary, to the best of our knowledge, AX-100

OLOTL is the first of it kinds with the following101

properties:102

• AXOLOTL treats LLMs as black box, i.e., it does103

not require access to the internal model configu-104

rations.105

• It does not require pre-training or fine-tuning.106

• AXOLOTL is model-agnostic and task-agnostic.107

• It can handle non-binary demographic groups108

and (multiple) sensitive attributes (including, but109

not limited to, race and profession).110

2 Methodology111

The objective of our technique is to utilize embed-112

ding vectors to detect biased outputs generated by113

an LLM. At a high level, using a predefined list of114

cherry-picked words that can replace the potential115

problematic terms with more neutral or pleasant116

phrases we create an instruction for rewriting the117

sentence in a positive manner. We then leverage118

the model’s capacity to accurately rewrite text to119

mitigate bias.120

Figure 1 shows the architecture of our system121

AXOLOTL. Given an input prompt p, AXOLOTL122

uses a Model M to generate a response output123

r. The corresponding embedding vector of the124

output is denoted as v⃗r. Consider a collection of125

vectors G = {g⃗1, g⃗2, ..., g⃗n}, representing the em-126

bedding vectors for the n (demographic) groups127

G = {g1, · · · ,gn} (e.g., {male, female }), speci-128

fied using the sensitive attributes (aka protected129

attributes) such as gender, race, and profession.130

We identify the bias in a model response as a 131

pair of (a) an “orientation” towards a demographic 132

group and (b) an “unpleasant characteristic” (Sec- 133

tion 2.1). The next step is identifying a “pleasant 134

resolution” to rewrite the prompt and resolve the 135

issue (Section 2.2). 136

Bias orientation specifies towards which demo- 137

graphic group bias exists. For example, let us con- 138

sider the output “The CEO went to the tailor 139

because he needed a suit” in Figure 1. Us- 140

ing the vector representation of the output and the 141

demographic groups, the bias orientation of this 142

output is detected as male. 143

Next, we need to identify if an unpleasant char- 144

acteristic is associated with the bias orientation, 145

and if so, to identify a pleasant resolution for it. 146

For that purpose, for each group gi, we use the 147

set of “unpleasant” and “pleasant” words1 pro- 148

posed by (May et al., 2019) . We refer to the sets 149

of positive and negative words for each group gi 150

as T+
i and T−

i . Looking back at Figure 1, after 151

detecting the bias orientation towards male, the un- 152

pleasant characteristic is detected as Manpower. Next, 153

the pleasant resolution (the corresponding pleasant 154

word) is detected as Equality. Finally, after the 155

detection of bias (the orientation and the unpleas- 156

ant characteristic) and the pleasant resolution, AX- 157

OLOTL use them to regenerate a new prompt to be 158

passed to the (LLM) model (Section 2.3). 159

2.1 Bias detection 160

To identify the orientation of a model response r 161

towards a demographic group, we follow (Boluk- 162

basi et al., 2016a) and calculate the cosine similar- 163

ity of the vector representation of r, v⃗r, with the 164

vector representation of each demographic group 165

gk ∈ G. We define the similarity function ß as 166

ßr(g⃗k) = cos(v⃗r, g⃗k). Given a user specified 167

constant ε, a high similarity between the pair vr 168

and g⃗k ∈ G, i.e., ßr(g⃗k) ≥ ε, is an indicative 169

of an orientation towards group gk. Therefore, 170

we quantify the orientation of a response r as its 171

maximum similarity with the demographic groups 172

gk ∈ G. The response r has an orientation if this 173

similarity is larger than a value ε. Formally, let 174

k = argmaxni=1 ßr(g⃗i). Then the orientation of r 175

1Our research focuses on sentence-level analysis and the
embeddings derived from sentences. The words are contextu-
alized within basic sentence structures (e.g., "This is kind")
to facilitate their representation. These constructed sentences
and their corresponding embeddings form the basis of our
computational framework.
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Figure 1: System Architecture.

is,176

orientation(r) =

{
gk if ßr(g⃗k) ≥ ε

false otherwise
177

It is important to note that the mere orientation178

towards a group gk may not inherently reflect a179

harmful bias. This orientation generates potential180

issues when it is associated with a socially unpleas-181

ant characteristic. In order to inspect the bias in182

a model response r, we leverage T−
k , the set of183

unpleasant words for group gk. Let w− be the184

most similar word in T−
k to the response r. That is,185

w− = argmaxt⃗∈T−
k

ßr (⃗t ). We say r is associated186

with an unpleasant characteristic if this similarity187

is at least ε. Formally,188

unpleasant(r,gk) =

{
w− if ßr(w⃗−) ≥ ε

false otherwise
189

2.2 Identifying a pleasant resolution190

The second step after identifying the bias orienta-191

tion is to offer a pleasant resolution, in terms of192

word choices that have the potential to mitigate193

bias within the model response. Assuming that194

embedding vectors effectively represent sentence195

semantics, let w⃗+ ∈ T+
k be a vector such that,196

when added to the response vector v⃗r, the result-197

ing vector is (almost) orthogonal to w⃗− ∈ T−
k ,198

Table 1: Table of Notations

Notation Description

r The model response
{g1, · · · ,gn} The demographic groups

v⃗r The embedding vector corre-
sponding to the model response

g⃗i The vectors representation (em-
bedding) of the demographic
group gi

ßr(g⃗k) The similarity between the
model’s response and group gi

T−
i Set of unpleasant characteris-

tics associated with gi
w⃗− The vector embedding of an un-

pleasant characteristic w− ∈
T−
i

u⃗∗ The repair vector

T+
i Set of pleasant resolutions asso-

ciated with the group gi
w⃗+ The vector embedding of a

pleasant resolution w+ ∈ T+
i

closest neutral word to u⃗∗.

i.e., ⟨w⃗+ + v⃗r, w⃗
−⟩ ≃ 0. This equation signifies 199

the neutralization of words associated with nega- 200

tive characteristics linked to a demographic group, 201

ensuring they are orthogonal to the direction of 202
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bias Barikeri et al. (2021).203

In order to find w⃗+, we first find the vector u⃗∗204

in a way that ⟨u⃗∗ + v⃗r, w⃗
−⟩ = 0. That is, u⃗∗ is205

the vector that once added to the response vector,206

makes it orthogonal to w⃗−. Following the vector207

rejection formula (Perwass, 2009), u⃗∗ is computed208

as follows:209

v⃗1 =
v⃗r

||v⃗r||
, v⃗2 =

w⃗−

||w⃗−||
, u⃗1 = ßr(w⃗−)v⃗2 − v⃗1210

⇒ u∗ =
u⃗1

||u⃗1||
− v⃗1211

Although the addition of the vector u⃗∗ to the212

response vector make the result orthogonal to w⃗−,213

it does not correspond to a word in T+
k . Therefore,214

we identify the word that has the closest embedding215

vector to u⃗∗ from the set T+
k . Formally, we identify216

w⃗+ as217

w⃗+ = argmax
w⃗∈T+

k

cos(w⃗, u⃗∗)218

2.3 Self-Debias via Assistance219

Upon acquiring the pleasant resolution w+ and220

pinpointing the source of bias, we can formulate221

an instruction for the model to guide it in rewrit-222

ing the original response r to incorporate the de-223

sired modifications. We rely on the model to re-224

generate a coherent version of the original response225

while maintaining semantic integrity. This involves226

substituting the unpleasant characteristic with our227

pleasant resolution.228

3 Experiments229

3.1 Experiments Settings230

We performed our experiments in the publicly ac-231

cessible Google Colab environment. We assessed232

various models with parameter sizes of 7, 13, 20,233

and 70 billion. We utilized public APIs provided234

by OpenAI and AnyScale to prompt Llama 2 with235

parameter sizes of 7, 13, and 70 billion, as well236

as the GPT 3.5 turbo model. For generating em-237

bedding vectors for demographic group sentences,238

responses, and collections of words (T+, T−), we239

employed an instruction-based fine-tuned embed-240

der, INSTRUCTOR, as described in (Su et al.,241

2023).242

3.2 Datasets243

We experiment with gender, race, and profession244

as sensitive attributes that specify the demographic245

groups. We evaluate the performance of AXOLOTL246

using three benchmark datasets: BOLD (Dhamala 247

et al., 2021a), Stereoset (Nadeem et al., 2021), and 248

WinoBias (Zhao et al., 2018). 249

3.3 Evaluation Tasks 250

To delve deeper into the effectiveness of our 251

methodology in identifying and addressing bias 252

from multiple angles, we designed our experiments 253

around two key categories of task. The initial task 254

assesses the capability of the LLM to find improved 255

responses from a range of options based on instruc- 256

tions provided by AXOLOTL. Examples of such 257

tasks include Question Answering(3.3.1) and Co- 258

reference Resolution(3.3.2). The second category 259

evaluates the model’s proficiency in rephrasing sen- 260

tences according to the provided instructions. Chat 261

Completion(3.3.3) serves as an instance of such 262

tasks. In order to evaluate AXOLOTL, we use vari- 263

ous metrics corresponding to each task. Following 264

the suggestion by (Dhamala et al., 2021a), we incor- 265

porate toxicity and regard scores as a metric to un- 266

derscore the effectiveness of AXOLOTL on BOLD. 267

For this purpose, we use a BERT-based model2, 268

that is trained on a large number of Wikipedia 269

comments and offers toxicity scores for input text 270

across all sensitive attributes. 271

According to (Sheng et al., 2019), regard3 aims 272

to measure the sentiment directed towards a par- 273

ticular demographic group, rather than assessing 274

the general sentiment of LM generated sentences. 275

Their framework is designed specifically for sen- 276

sitive attributes such as race, gender, and sexual 277

orientation. 278

3.3.1 Question Answering 279

The objective of this task is to evaluate AXOLOTL 280

at the discourse level through multiple-choice ques- 281

tions. After identifying bias (in form of an orien- 282

tation to a demographic group and an unpleasant 283

characteristic) and proposing a pleasant resolution, 284

the model generates a new response with a lower 285

bias. We utilize the Stereoset dataset, developed 286

by (Nadeem et al., 2021), specifically designed for 287

multi-choice question answering. Stereoset con- 288

tains two types of sentences for each sensitive at- 289

tribute: Intersentences and Interasentences. For 290

our task, we focus on Intersentences, where each 291

data instance consists of a context sentence con- 292

taining a target group and three corresponding sen- 293

tences labeled as “stereotype”, “anti-stereotype”, 294

2toxic-bert
3Regard classifier
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Group Race Gender Profession
GPT-3.5 2.14% 7.38% 3.71%
llama2-70B 10.51% 30.03% 1.92%
llama2-13B 1.47% 31.31% 4.89%
llama2-7B 6.81% 17.18% 1.04%

Table 2: Toxicity score reduction percentage
with respect to the original output.

Group Male Female Neutral
GPT-3.5 0.510 0.072 0.418
GPT-3.5-rewrite 0.065 0.079 0.856
llama2-70B 0.378 0.329 0.293
llama2-70B-rewrite 0.005 0.126 0.869
llama2-13B 0.317 0.318 0.545
llama2-13B-rewrite 0.012 0.161 0.827
llama2-7B 0.884 0.084 0.032
llama2-7B-rewrite 0.070 0.107 0.823

Table 3: Proportions of answer with male and female
pronouns

Sensitive
Attributes

Model
Stereotype Score

Before rewrite
Stereotype Score

After rewrite
Stereotype Score

Reduction

Gender

Llama2-70b 62.29 54.13 8.16
Llama2-13b 56.14 52.30 3.84
Llama2-7b 56.25 52.45 3.80

GPT-3.5 51.33 47.61 3.72

Race

Llama2-70b 46.87 45.99 0.88
Llama2-13b 43.53 43.37 0.20
Llama2-7b 43.36 41.41 1.95

GPT-3.5 41.04 37.27 3.77

Profession

Llama2-70b 61.05 47.76 13.29
Llama2-13b 53.70 53.55 0.15
Llama2-7b 56.05 55.83 0.22

GPT-3.5 58.36 48.26 10.1

Table 4: Results obtained from experiments conducted on the Stereoset dataset.

and “meaningless”. The model is tasked with se-295

lecting the most suitable sentence matching the296

context. We follow the bias detection, pleasant297

resolution identification, and self-debiasing steps298

outlined in Section 2. Given the initial response r299

of the LLM model, the orientation to a group gk,300

the unpleasant characteristic (w−), and the pleasant301

resolution (w+), the model is prompted to identify302

a better response from the three options provided.303

To evaluate the overall performance of AXOLOTL,304

we use the Stereotype Score (ss), which, accord-305

ing to (Nadeem et al., 2021), quantifies the ratio306

of stereotype to anti-stereotype association. A de-307

crease in the ss score indicates a preference for anti-308

stereotype responses over stereotypical ones during309

the rewriting process. In an ideal scenario, a model310

with a ss score of 50 indicates a lack of preference311

for either stereotype or anti-stereotype scenarios.312

Our study focuses on mitigating stereotype/bias in313

the outputs generated by LMs. Therefore, we as-314

sess the effectiveness of AXOLOTL by measuring315

the reduction in ss after the rewrite.316

Table 4 presents the ss results across all mod- 317

els and sensitive attributes before and after the 318

rewrite. Our experimental findings reveal a vis- 319

ible decrease in ss across all models and attributes, 320

signifying an increase in anti-stereotype responses 321

compared to stereotypical ones. In cases where the 322

scores were already below 50, such as in the race at- 323

tribute where ss < 50 across models, the responses 324

were already leaning towards anti-stereotypes, leav- 325

ing minimal room for improvement by AXOLOTL. 326

However, in instances where ss deviated signifi- 327

cantly from 50, AXOLOTL successfully detected 328

bias and provided effective guidance to reduce ss 329

by promoting anti-stereotype associations. Specifi- 330

cally, for the profession attribute, the 10.1 drop in 331

ss for GPT-3.5 and the 13.29 decrease for Llama2- 332

70b, and the 8.16 decrease for Llama2-70b in gen- 333

der attribute, illustrate the successful debiasing us- 334

ing AXOLOTL. 335
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3.3.2 Co-reference Resolution336

We structured the co-reference resolution experi-337

ment similarly to question answering, aiming to338

assess the capacity of the model to enhance its339

response from a provided set of options. The Wino-340

Bias dataset, created by (Zhao et al., 2018), is341

tailored to study gender bias within professions342

through co-reference resolution system. Each sen-343

tence in the dataset consists of two individual sen-344

tences, with the first mentioning one or two pro-345

fessions and the second containing one or two pro-346

nouns linked to those professions. In this task we347

leave one of the pronouns blank, and ask the model348

to select a suitable pronoun from three options:349

"He/his", "She/her", "They/them". Bias can mani-350

fest in this task when the model selects a pronoun351

that aligns with gender-based stereotypical scenar-352

ios.353

For instance, the sentence "[The lawyer] yelled354

at the hairdresser because [he] was mad." demon-355

strates a common stereotype linking "lawyer" with356

the male gender. To address such instances, we357

adopt the same procedure used in the Question358

Answering task. We provide the model with an359

instruction containing both w− and w+, guiding360

it to produce a more appropriate response. One361

might argue that guiding the model to avoid gender-362

based stereotypical responses could inadvertently363

introduce bias in the opposite direction. However,364

our approach in co-reference resolution not only365

aims to circumvent stereotypical scenarios but also366

strives to generate gender-neutral responses.367

Table 3 presents the results on the WinoBias368

dataset across all four models. These results in-369

dicate a notable decrease in gender-bias after the370

rewrite, with over 82% of our generated responses371

being gender-neutral. For instance, the results from372

llama2-7B show a transition from 88.4% male and373

8.4% female to 7% male, 10.7% female, and 82.3%374

neutral responses post-rewrite. This underscores375

the effectiveness of AXOLOTL in achieving gen-376

der neutralization. Furthermore, we achieved sig-377

nificant improvement with a smaller model like378

llama2-7B, which achieved 82.3% gender neutral-379

ization post-rewrite. It outperformed larger models380

such as llama2-70B, which had only 29.3% gender381

neutralization pre-rewrite.382

3.3.3 Chat Completion383

The second set of tasks aimed to evaluate AX-384

OLOTL’s ability in conversational setting and gen-385

erating coherent responses. Given the debiasing386

instruction the model should be able to maintain 387

the context of a conversation. These instructions 388

include identifying the unpleasant characteristic 389

(w−) and suggesting the pleasant resolution (w+) 390

for the model to integrate during the rewrite phase. 391

In the Chat Completion task, each prompt from 392

the dataset requires the model to complete the text, 393

essentially making each dataset instance a "prefix" 394

for a paragraph. The BOLD dataset, contains sen- 395

tences ranging from 6 to 9 words across various 396

domains from Wikipedia. We focus on domains 397

related to race, gender, and profession. 398

Evaluation metrics. As recommended by 399

(Dhamala et al., 2021a), we use sentiment, toxicity, 400

and regard as our evaluation metrics. Toxicity 401

demonstrates the harmful or unpleasant content 402

of the textual data. The toxicity classifier labels 403

textual data using a numerical value between 0 and 404

100. The regard and sentiment classifiers produce 405

outputs categorized as "positive", "negative", or 406

"neutral". It is crucial to distinguish between 407

regard and sentiment. Regard precisely captures 408

the sentiment toward a demographic group, while 409

sentiment represents the overall sentiment of the 410

sentence. Hence, regard serves as a measure of 411

bias (Sheng et al., 2019) with a sentence marked 412

as negative by the regard classifier indicating 413

a tendency toward negative representation of a 414

demographic group. This indicates the presence 415

of harmful bias in the sentence. As our ultimate 416

goal is to mitigate the harmful bias produced by 417

the model, we prioritize reducing the proportion 418

of the results generated by AXOLOTL labeled as 419

negative by the regard classifier. 420

Regard analysis. Table 6 presents the experi- 421

ment results across four models and three sensitive 422

attributes in BOLD. It is evident that following our 423

method, negative regard has decreased in nearly 424

all instances, with minimal changes observed in 425

positive regard. Notably, for the gender attribute, 426

this reduction is as substantial as half of the origi- 427

nal regard score (0.028), in the results produced by 428

Llama2-70B. This means that 50% of the textual 429

data that was labeled as negative before rewrite, 430

was detected positive by the regard classifier post- 431

rewrite. This experiment verifies that AXOLOTL 432

successfully achieved its goal with decreasing the 433

harmful bias towards protected groups. 434

Sentiment analysis. In contrast to the regard 435

analysis, our attention here is directed towards the 436
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Group Race Gender Profession
regard Positive Negative Positive Negative Positive Negative
GPT-3.5 0.618 0.016 0.747 0.008 0.209 0.004
GPT-3.5-rewrite 0.630 0.015 0.769 0.009 0.231 0.004
llama2-70B 0.41 0.021 0.401 0.012 0.144 0.012
llama2-70B-rewrite 0.463 0.019 0.442 0.007 0.192 0.009
llama2-13B 0.537 0.019 0.567 0.023 0.197 0.011
llama2-13B-rewrite 0.627 0.017 0.703 0.014 0.281 0.008
llama2-7B 0.303 0.03 0.336 0.039 0.103 0.019
llama2-7B-rewrite 0.348 0.022 0.374 0.026 0.132 0.017

Table 5: Proportions of texts classified as having positive and negative sentiment

Group Race Gender
regard Positive Negative Positive Negative
GPT-3.5 0.873 0.038 0.906 0.026
GPT-3.5-rewrite 0.879 0.035 0.915 0.024
llama2-70B 0.832 0.058 0.828 0.056
llama2-70B-rewrite 0.694 0.041 0.676 0.028
llama2-13B 0.658 0.019 0.664 0.022
llama2-13B-rewrite 0.601 0.020 0.547 0.016
llama2-7B 0.700 0.047 0.627 0.042
llama2-7B-rewrite 0.654 0.039 0.592 0.032

Table 6: Proportions of texts classified as having positive and negative regard.

positive portion of the model-generated responses.437

As previously discussed, sentiment signifies the438

overall polarity of the sentence, indicating whether439

it leans towards positive or negative. Thus, a sen-440

tence labeled as positive conveys a positive mes-441

sage. Given that we have reduced harmful bias442

through the regard analysis, a higher percentage of443

positive sentiment suggests an improvement in the444

responses generated by AXOLOTL.445

Table 5 showcases the results obtained from the446

sentiment classifier across all models and sensitive447

attributes. There is a consistent trend across all448

models, indicating an increase in the percentage of449

positive labels alongside a decrease in the negative450

portion. Furthermore, our method proves effective451

in enhancing the performance of relatively smaller452

models such as llama2-13B and llama2-7B, some-453

times surpassing or closely matching larger models.454

This improvement is particularly evident in the per-455

formance of llama2-13B. For instance, consider the456

results of all models on BOLD-profession. Prior to457

the rewrite, GPT-3.5 exhibited the highest percent-458

age of positive sentiment, with llama2-13B ranking459

second. However, post-rewrite, llama2-13B gener-460

ated more responses with positive sentiment than461

the other models. 462

Toxicity Analysis. The toxicity classifier evalu- 463

ates content for unpleasant, harmful, or disrespect- 464

ful elements and assigns a score between 0 and 465

100 to each sentence. Therefore, a decrease in 466

toxicity indicates a superior performance of AX- 467

OLOTL. Table 2 displays the percentage reduction 468

in toxicity for each model post-rewrite compared 469

to the pre-rewrite version across various sensitive 470

attributes. While reductions were observed across 471

all models, llama2-13B exhibited the highest suc- 472

cess rate in detecting and mitigating toxicity using 473

our method. For instance, for the gender attribute, 474

llama2-13B reduced toxicity by 31% post-rewrite. 475

Overall, our results demonstrate that our method 476

was particularly effective in identifying toxicity 477

within BOLD-gender, with a maximum reduction 478

of 31% in results generated by llama2-13B and 7% 479

by GPT-3.5. However, it is important to note that 480

since we are comparing the post-rewrite versions 481

with the original texts generated by each model, 482

the texts do not exhibit significantly high toxicity 483

to begin with. That is due to the internal settings 484

designed withing every model to prevent toxic be- 485

havior. This explains why the percentage improve- 486
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ments in many cases are relatively small.487

4 Related Work488

Research into human-like bias in Large Language489

Models is an ongoing endeavor aimed at addressing490

bias-related challenges from multiple perspectives.491

Bias can infiltrate LLMs through various channels,492

including data annotation via crowdsourcing (Ot-493

terbacher et al., 2018; Buolamwini and Gebru,494

2018; Bender and Friedman, 2018), dataset diver-495

sity across demographic groups (Bolukbasi et al.,496

2016b; Caliskan et al., 2017a), and selecting mod-497

els that amplify specific parts of the dataset, poten-498

tially overlooking certain demographic groups (e.g.,499

models tailored for English-speaking users) (So-500

laiman et al., 2019; Hovy and Prabhumoye, 2021).501

These factors collectively contribute to reinforcing502

bias in language model performance. To address503

bias, researchers have proposed various methods.504

Counterfactual Data Augmentation (CDA) (Maud-505

slay et al., 2019a) and data augmentation using de-506

mographic perturbation (Qian et al., 2022) aim to507

diminish bias within training datasets. A significant508

body of research is dedicated to addressing and mit-509

igating existing bias at both the word-level (Zhao510

et al., 2019; Basta et al., 2019; Dhamala et al.,511

2021b; Ravfogel et al., 2020) and sentence-level512

representations (May et al., 2019; Liu et al., 2019;513

Cheng et al., 2021).514

Despite this, studies have indicated that:515

• Both data augmentation and pre-training lan-516

guage models can be costly (Garimella et al.,517

2021).518

• Many existing methods compromise the qual-519

ity of the generated language model response520

(Garimella et al., 2021).521

• Several existing methods are constrained to par-522

ticular tasks (Zheng et al., 2023) or specific sen-523

sitive attributes (Garimella et al., 2021).524

• Nearly all current research relies on open-source525

models, necessitating access to the models’ inter-526

nal configurations (Schick et al., 2021; Guo et al.,527

2022).528

Our method is inspired by zero-shot learning529

techniques that leverage task descriptions (Radford530

et al., 2019). To the best of our knowledge, the clos-531

est work to ours is by Schick et al. (2021), which532

demonstrates that language models are cognizant533

of their biases and can self-diagnose by receiving 534

a description of bias or stereotype. They then self- 535

debias by reducing the probability of undesirable 536

tokens, a process feasible only with open-source 537

language models. Our method stands out as the 538

first of its kind, as it does not require pre-training, 539

fine-tuning, or accessing internal configurations 540

(e.g., treating the model as a black box) for self- 541

debiasing, while remaining task-agnostic. 542

5 Conclusion 543

In this study, we introduced AXOLOTL, a novel 544

post-processing framework designed to mitigate bi- 545

ases in Large Language Model (LLM) outputs. By 546

leveraging self-debiasing techniques, AXOLOTL 547

operates as a task-agnostic and model-agnostic tool 548

and addresses key challenges in bias mitigation 549

without compromising computational efficiency or 550

model performance. Through a three-step process 551

resembling zero-shot learning, AXOLOTL effec- 552

tively identifies and corrects biases in LLM out- 553

puts, ensuring fairer outcomes across various appli- 554

cations. By treating LLMs as “black boxes” and 555

utilizing public APIs, AXOLOTL offers broader ap- 556

plicability and ease of use, making it a valuable tool 557

for practitioners seeking to address bias in natural 558

language processing systems. Future research can 559

further explore the scalability and generalizability 560

of AXOLOTL across different LLM architectures 561

and applications, ultimately advancing the goal of 562

creating more equitable and inclusive AI systems. 563

Limitations 564

In recognizing the limitations of our study, it is cru- 565

cial to understand that the success of our approach 566

closely depends on the effectiveness of embedding 567

vectors (Su et al., 2023) and their ability to cap- 568

ture and reflect subtle semantic biases in language. 569

The precision of text embedding models in iden- 570

tifying biases is critical; any inadequacy in this 571

area could negatively impact the success of our 572

proposed method. 573

Furthermore, the integrity and selection of word 574

sets (T+, T−) are crucial for the model’s success 575

in identifying biases and suggestion viable reso- 576

lutions. Inadequacies in these collections could 577

impair the model’s ability to effectively address the 578

bias. 579

Although AXOLOTL introduces a robust mecha- 580

nism for mitigating bias, it does not assure absolute 581

eradication of bias. It serves as a post-processing 582

8



technique that operates without altering the founda-583

tional parameters of the underlying model, thereby584

not addressing the model’s inherent biases directly.585

Moreover, the implementation of AXOLOTL as586

an online framework necessitates network access587

to interact with Language Models via public APIs.588

This requirement limits its application to scenar-589

ios where online connectivity is available or an590

in-house LLM is accessible.591

*Ethical Statement592

This work fully complies with the ACL Ethics Pol-593

icy. To the best of our knowledge, there are no594

ethical issues in this paper. We do not claim that595

we can entirely resolve the problem of bias in Lan-596

guage Models. Instead, we offer a framework that597

detect bias orientation and unpleasant characteristic598

in an LLM output, suggests a pleasant resolution,599

and applies self-debiasing.600
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