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ABSTRACT

Weakly supervised learning (WSL) is a popular machine learning paradigm in
recent years that aims to learn a classifier with incomplete, imprecise, or inac-
curate supervision. Existing WSL approaches have mainly focused on design-
ing different loss functions or training strategies and then training models from
scratch. In this paper, we first empirically show that a zero-shot baseline based
on the Contrastive Language-Image Pre-Training (CLIP) model with class de-
scriptions empowered by GPT-4o can outperform previous state-of-the-art meth-
ods trained from scratch on various WSL problems. Therefore, this motivates
us to fine-tune pre-trained models to further improve the performance. How-
ever, our additional experiments show that naive use of existing WSL losses de-
grades performance due to severe overfitting exacerbation and feature degener-
ation problems. To address these problems, we propose a novel weakly super-
vised fine-tuning approach using dual classification heads that are trained syn-
ergistically by alternately distilling reliable supervision and performing efficient
model fine-tuning. Theoretically, we prove the consistency and convergence rate
of the proposed risk estimator. Empirically, extensive experiments on bench-
mark datasets of different WSL problems validate the effectiveness of the pro-
posed approach against state-of-the-art competitors. The code is provided at
https://github.com/ICLR2025-6897/WSFT_code.

1 INTRODUCTION

The success of deep learning depends on a large amount of training data with high-quality labels.
However, such a condition can be an obstacle in many real-world scenarios where labeled training
data is scarce. Weakly supervised learning (WSL) aims to train a classifier with only weak supervi-
sion that can achieve comparable performance to fully supervised learning approaches (Zhou, 2018;
Sugiyama et al., 2022). In recent years, WSL has made great progress, and a variety of WSL prob-
lems have been studied, such as positive-unlabeled (PU) learning (Elkan & Noto, 2008; Kiryo et al.,
2017; Bekker & Davis, 2020), unlabeled-unlabeled (UU) learning (Lu et al., 2019; 2020; Xie et al.,
2024), and similarity-based classification (Bao et al., 2018; Wang et al., 2023a).

In the current era of foundation models, a common strategy to solve machine learning problems is to
adopt a pre-trained model and then fine-tune it based on specific downstream training data. Existing
WSL approaches have paid most attention to the design of loss functions, using either unbiased risk
estimators (UREs) with solid theoretical guarantees (Niu et al., 2016; Kiryo et al., 2017; Wang et al.,
2024b) or effective regularization techniques to improve classification performance (Berthelot et al.,
2019; Wang et al., 2022a; Li et al., 2022; Wang et al., 2023b). A common benchmark solution is to
train a deep neural network from scratch to validate the effectiveness of the proposed loss function.
However, the classification performance may degenerate significantly when using more complex
datasets. This motivates us to consider a natural and practical research question: Can we fine-tune
pre-trained models with weakly supervised data to achieve better performance?

In this paper, we attempt to investigate how pre-trained models can be appropriately exploited
for WSL problems. First, we find that by using GPT-4o (OpenAI, 2024) to summarize and en-
rich the class description, and then directly applying a zero-shot Contrastive Language-Image Pre-
Training (CLIP) model, we can achieve better classification performance than some state-of-the-
art (SOTA) WSL algorithms trained from scratch (see Section 3.1). Such an observation indicates
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that the performance of WSL approaches can be improved greatly by exploiting pre-trained models
appropriately. To further improve performance on more complex datasets, it may often be beneficial
to fine-tune pre-trained models with downstream weakly supervised training data. However, we find
that naively fine-tuning pre-trained models with off-the-shelf unbiased or corrected risk estimators
can often lead to inferior performance (see Section 3.2). We identify several causes of the shortcom-
ings of existing risk estimators, including overfitting exacerbation and feature degeneration, which
severely limit the effectiveness of model fine-tuning.

To this end, we propose a weakly supervised fine-tuning (WSFT) approach to effectively fine-tune
pre-trained models for WSL problems (see Section 3.3). To overcome the shortcomings of existing
risk estimators during the fine-tuning process, we directly perform empirical risk minimization by
selecting training data with reliable labels. More specifically, we perform sample selection by dis-
tilling reliable supervision from the classifier obtained as a minimizer of the corrected risk estimator.
Then, we alternately perform efficient model fine-tuning. The supervision distillation process and
model fine-tuning are synergistically encapsulated in a unified framework and are mutually benefi-
cial to improve the downstream classification performance. Our contributions can be summarized
as follows:

• We find that pre-trained models can significantly outperform SOTA WSL approaches on bench-
mark datasets, suggesting a way to improve benchmark evaluation of WSL.

• We propose a WSFT approach to effectively fine-tune pre-trained models for various WSL prob-
lems. WSFT encapsulates reliable supervision distillation and efficient model fine-tuning seam-
lessly supported by theoretical guarantees.

• Extensive experiments on various WSL problems and benchmark datasets validate the effective-
ness of our proposed method against SOTA WSL approaches (see Section 4).

2 PRELIMINARIES

In this section, we first describe the problem setting considered in this paper. Then, we introduce
the background of binary classification and UU learning.

2.1 PROBLEM SETTING

From the perspective of the data generation process, WSL can be roughly categorized into two
main formulations (Sugiyama et al., 2022), i.e., mutually contaminated distributions (MCD) (Scott
et al., 2013; Katz-Samuels et al., 2019) and class-conditional noise (CCN) (Natarajan et al., 2013;
2018; Van Rooyen & Williamson, 2018). In particular, CCN can be shown to be a special case of
MCD (Menon et al., 2015). Without loss of generality, we mainly discuss UU learning (Lu et al.,
2019), the most general formulation of MCD in this paper. It has been proved that a wide variety
of WSL problems are special cases of UU learning (Chiang & Sugiyama, 2023), including PU
learning, pairwise-comparison (Pcomp) (Feng et al., 2021) learning, and similarity-unlabeled (SU)
learning (Bao et al., 2018). Notably, our proposal can handle any kind of weak supervision generated
based on MCD or CCN, and can be extended to multi-class setting.

2.2 BINARY CLASSIFICATION

Let X “ Rd denote the d-dimensional feature space and Y “ t`1,´1u denote the label space.
Let ppx, yq denote a joint probability density over the random variables px, yq P X ˆ Y . Let
πTe “ ppy “ `1q denote the class prior probability for the positive class. Besides, let p`pxq “

ppx|y “ `1q and p´pxq “ ppx|y “ ´1q denote the class-conditional probability densities of
positive and negative data, respectively. When using a deep model, our goal is to minimize the
ordinary classification risk

Rpθ,ωq “ Eppx,yq rℓ pg pf pxqq , yqs . (1)

Here, E is the expectation operator, f : Rd Ñ Rm is an image encoder that outputs an m-
dimensional feature vector, and θ P Θ is learnable parameters, where Θ denotes the space of
learnable parameters. Also, g : Rm Ñ R is a classification head parameterized by ω P Ω, where
Ω is the parameter space for g. Let σp¨q denote the sigmoid function, then σ pg pf pxqqq denotes
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an estimated probability of the example being positive. Also, ℓ is a classification-calibrated loss
function (Bartlett et al., 2006), such as the cross-entropy loss.

2.3 UNLABELED-UNLABELED LEARNING

In UU learning, we are given two unlabeled training datasets D1 “ tx1,iu
n1
i“1 and D2 “ tx2,iu

n2
i“1

sampled from two mixture densities p1pxq “ π1p`pxq ` p1 ´ π1qp´pxq and p2pxq “ π2p`pxq `

p1 ´ π2qp´pxq, with π1 ‰ π2. Note that π1 and π2 can be estimated by off-the-shelf mixture
proportion estimation methods (Ramaswamy et al., 2016; Garg et al., 2021; Cai et al., 2023). To
train a binary classifier from D1

Ť

D2, Lu et al. (2019) proposed an URE for UU learning, i.e.,

pRUUpθ,ωq “ A
1

n1

n1
ÿ

i“1

ℓ pg pf px1,iqq ,`1q ´ B
1

n1

n1
ÿ

i“1

ℓ pg pf px1,iqq ,´1q

´ E
1

n2

n2
ÿ

i“1

ℓ pg pf px2,iqq ,`1q ` F
1

n2

n2
ÿ

i“1

ℓ pg pf px2,iqq ,´1q , (2)

where A “ p1´π2qπTe{pπ1´π2q, B “ π2p1´πTeq{pπ1´π2q, E “ p1´π1qπTe{pπ1´π2q, and F “

π1p1´πTeq{pπ1 ´π2q. Then pRUUpθ,ωq can be an URE of many WSL problems by using different
values of the coefficients. Lu et al. (2020) found that when using deep models, overfitting problems
would degrade the classification performance due to the negative terms in Eq. (2). Therefore, a
corrected risk estimator was proposed to improve the classification performance:

pRCUU pθ,ωq “ h

˜

A
1

n1

n1
ÿ

i“1

ℓ pg pf px1,iqq ,`1q ´ E
1

n2

n2
ÿ

i“1

ℓ pg pf px2,iqq ,`1q

¸

` h

˜

F
1

n2

n2
ÿ

i“1

ℓ pg pf px2,iqq ,´1q ´ B
1

n1

n1
ÿ

i“1

ℓ pg pf px1,iqq ,´1q

¸

, (3)

where h is a non-negative risk-correction function, such as the ReLU function or the absolute value
function (Lu et al., 2020; Wang et al., 2023a).

3 METHODOLOGY

In this section, we first introduce a zero-shot baseline based on the CLIP model, which can outper-
form SOTA approaches in the WSL literature. Then, we discuss that fine-tuning with existing risk
estimators may not be optimal. Finally, we present our proposed WSFT approach.

3.1 A ZERO-SHOT BASELINE

Current WSL algorithms train deep neural networks from scratch, such as convolutional neural
networks (CNNs) (Li et al., 2021b) and ResNet (He et al., 2016). SOTA algorithms can some-
times achieve comparable performance to supervised learning on these datasets. However, their
performance may still be unsatisfactory on more complex and challenging datasets. In the era of
foundation models, it has not been clear whether performance can be improved by exploiting the
rich knowledge of pre-trained models, which are easily accessible and can be used without any fine-
tuning since the class embeddings are readily available. Therefore, we conducted a preliminary pilot
study using a zero-shot baseline approach without any fine-tuning.

Since existing benchmarks for binary classification mainly synthesize experimental datasets by
partitioning multi-class data into binary classes, the semantic information of binary classes may
be versatile and decentralized (Krizhevsky & Hinton, 2009; Helber et al., 2019). Therefore, in-
spired by Menon & Vondrick (2023) and Pratt et al. (2023), we asked GPT-4o to summarize
and enrich the class description of positive and negative classes, and obtained text prompts as
tk “ A photo of <class description> with k P Y . Then, we directly used CLIP for
zero-shot classification. The algorithmic details can be found in Appendix A. Specifically, for a
test image x˚, we obtained its image embedding f px˚q using the image encoder of CLIP, and text
embeddings ψ ptkq pk P Yq of positive and negative classes using the text encoder of CLIP. Then,
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Figure 2: The t-SNE visualizations of feature representations using the zero-shot baseline or differ-
ent fine-tuning approaches on the PU learning setting of CIFAR-100.

we returned the prediction y˚ as the class whose embedding has the largest cosine similarity to the
image embedding of x˚, i.e.,

y˚ “ argmax
kPY

cos pf px˚q ,ψ ptkqq. (4)
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Figure 1: Comparison between the SOTA ap-
proach GLWS for each WSL problem (Chen
et al., 2024) and the zero-shot baseline.

Figure 1 shows the performance comparison be-
tween the zero-shot baseline and the SOTA ap-
proach GLWS on five WSL tasks (Chen et al.,
2024) on CIFAR-10 and CIFAR-100, respectively.
We found that the zero-shot baseline can already
achieve better performance than current SOTA ap-
proaches by a large margin. Such an observation
indicates that the use of pre-trained models can
greatly improve the upper bounds of model perfor-
mance for many WSL problems, since fine-tuning
pre-trained models can often lead to better down-
stream performance than zero-shot models without
fine-tuning (Menghini et al., 2023).

3.2 FINE-TUNING WITH EXISTING RISK ESTIMATORS IS SUBOPTIMAL

UREs, e.g., Eq. (2) and uPU (du Plessis et al., 2015), are mainstream solutions for WSL, where their
universality and effectiveness have been demonstrated in a wide range of WSL problems (Sugiyama
et al., 2022). Corrected risk estimators (CREs), e.g., Eq. (3) and nnPU (Kiryo et al., 2017), which
wrap potentially negative terms with non-negative risk correction functions, can further improve
the classification performance in many cases (Lu et al., 2020; Wang et al., 2023a). Therefore, it is a
natural idea to directly apply off-the-shelf UREs and CREs for fine-tuning. However, we have found
that such straightforward tuning strategies cannot lead to satisfactory results.
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(b) nnPU

Figure 3: Test curves and positive and negative
recall curves for uPU and nnPU on the CIFAR-
100 dataset.

Here, we take PU learning as an example. Fig-
ure 3 shows positive and negative recall curves of
unlabeled training data and the test curve of fine-
tuning with UREs and CREs of PU learning on
CIFAR-100, respectively. We can see that both
risk estimators encounter overfitting exacerbation
problems. First, uPU with CLIP as the backbone
encounters more severe overfitting problems than
commonly used network architectures in the lit-
erature (Chen et al., 2024). This indicates that
UREs may not be suitable for fine-tuning large
pre-trained models. Second, although nnPU can
reduce the negative influence of overfitting, it still
shows inferior performance to the zero-shot baseline. Third, we can see that the overfitting problem
is mainly due to the overfitting problems of positive classes. Figure 2 shows the t-SNE visualizations
of feature representations learned with different strategies, including the zero-shot baseline as well
as different fine-tuning approaches for the PU learning setting of CIFAR-100. We can see that both
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risk estimators also encounter feature degeneration problems. We can observe that the zero-shot
baseline initially learns a rather good clustering result. However, after using UREs and CREs for
fine-tuning, representations of the two classes are not clearly separated and the clustering results are
worse than those without fine-tuning.

Both overfitting exacerbation and feature degeneration suggest that fine-tuning with existing UREs
and CREs may not be optimal. We suspect that the reason for both problems is due to the mismatched
loss terms in the original UREs, which consider unlabeled examples as the wrong classes. For
example, consider PU learning by setting π1 “ 1 and π2 “ πTe. Then the fourth term in Eq. (2) will
consider positive data from D2 as negative, which may cause overfitting problems of the positive
class due to the memorization effect (Han et al., 2018; Zhang et al., 2021b) of deep neural networks.
Although the disadvantage is not significant for moderate-sized models, it may be more obvious for
very deep models.

3.3 A WEAKLY SUPERVISED FINE-TUNING APPROACH

To overcome the deficiency of UREs and CREs, a natural remedy is to perform ordinary empirical
risk minimization directly on labeled data, since it does not involve mismatched loss terms. In
this way, each class can learn discriminative feature representations, which will contribute to better
performance. However, since true labels may not be accessible in WSL, it is necessary to investigate
how to select reliable labeled data. In this paper, we rely on high-confidence predictions made by
off-the-shelf classifiers, which have been shown to be a type of reliable supervision information
widely adopted in the literature (Chen et al., 2020b; Zhang et al., 2021a; Kim et al., 2022).

Our approach consists of two alternating updating steps, i.e., supervision distillation and model
fine-tuning. First, a classification head g1 parameterized by ω1 is updated by minimizing the
CRE pR1 pθ,ω1q, which is instantiated specifically for different WSL problems, e.g., pRCUU for
UU learning in Eq. (3). However, instead of using it directly for test prediction, we use it
only for eliciting reliable supervision to guide the subsequent classifier training. Specifically, we
consider high-confidence predictions made by g1 on the weakly supervised dataset pDW as re-
fined supervision. Here, pDW could contain all the weakly supervised data whose true labels
are not accessible to the learning algorithm, e.g., pDW “ D1

Ť

D2 for UU learning. We intro-
duce pD` “

!

xi|xi P pDW, σ pg1 pf pxiqqq ą τ
)

as the set of high-confidence positive data, and

pD´ “

!

xj |xj P pDW, σ pg1 pf pxjqqq ă 1 ´ τ
)

as the set of high-confidence negative data. Here,
τ is set as a large threshold to filter out examples that may be mislabeled, which is an effective strat-
egy in semi-supervised learning (SSL) to obtain reliable supervision (Sohn et al., 2020; Wang et al.,
2023c; Chen et al., 2023). We call this process supervision distillation, since our supervision infor-
mation to guide the classifier training has been progressively distilled from another classifier trained
based on CREs. Based on the distilled supervision information, we train another classification head
g2 parameterized by ω2 by minimizing the risk estimator:

pR2 pθ,ω2q “
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ÿ

xiP pD`

ℓ pg2 pf pxiqq ,`1q `
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ÿ

xjP pD´

ℓ pg2 pf pxjqq ,´1q , (5)

where | ¨ | is the cardinality.

In summary, the overall training objective is

Lpθ,ω1,ω2q “ pR1 pθ,ω1q ` pR2 pθ,ω2q . (6)

The algorithmic details can be found in Appendix A, and the overall pipeline of WSFT is shown
in Figure 5. In particular, two classification heads are updated independently, while the image
encoder is shared and fine-tuned by minimizing the loss functions of both heads. After each round
of model fine-tuning, we construct pD` and pD´ by exploiting the predictions of g1 on the weakly
supervised training set. Supervision distillation and model fine-tuning are performed iteratively and
are mutually beneficial for achieving better classification performance.

Discussion. Different from self-training in the SSL and domain adaptation literature (Lee et al.,
2013; Zou et al., 2019; Wei et al., 2021), our approach adopts two classification heads to separate
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the generation of pseudo-labels from the training of the classifier. The advantage is that this can
effectively mitigate the confirmation bias that widely exists when training the classifier and gener-
ating pseudo-labels with a single classifier (Arazo et al., 2020; Chen et al., 2022). Moreover, unlike
some SSL approaches that try to mitigate the confirmation bias by constructing teacher models with
different strategies (Laine & Aila, 2017; Tarvainen & Valpola, 2017; Xie et al., 2020), the classifier
used to generate pseudo-labels is not explicitly exposed to pseudo-labels.

Extension. Although this paper discusses binary classification, without loss of generality, our ap-
proach can be easily extended to multi-class classification problems. In particular, for weakly super-
vised multi-class classification (Cour et al., 2011; Lu et al., 2022; Wang et al., 2024b), pR1 pθ,ω1q

can be instantiated accordingly with the CREs for specific WSL problems. Also, the supervision
distillation procedure should be adapted to the multi-class classification setting.

Theoretical analysis. Since the analysis of pR1 pθ,ωq has been investigated thoroughly (Lu
et al., 2020; Sugiyama et al., 2022), we focus on the theoretical properties of the proposed risk
estimator pR2 pθ,ωq by providing its consistency and the convergence rate. Let R2 pθ,ωq “

E
pD`, pD´

”

pR2 pθ,ωq

ı

denote the expected version of the risk estimator proposed in Eq. (5), and
R˚

0´1
denote the Bayes error of the dataset. We also assume that there exists some constant CR such

that the Rademacher complexity RnpFq satisfies RnpFq ď CR{
?
n (Golowich et al., 2018) where

F is an arbitrary class of functions. All the proofs of the theorems can be found in Appendix F.
Theorem 1. Assume there exists a constant Cg such that sup }g}8 ď Cg and some a Cℓ such that
sup|z|ďCg

ℓpz, ¨q ď Cℓ. Consider the case where the marginal density and label distribution of pDW

are the same as those of the test data. Also, we consider that pDW is directly labeled by g1, which
minimizes the CRE. For any δ ą 0, there exists a function φp¨q such that the following inequality
holds with probability 1 ´ 2δ:

|R2 pθ,ωq ´ R pθ,ωq| ď Cℓ

´

R˚

0´1
` φ´1

`

Op

`

1{
?
n

˘˘

¯

. (7)

Here, n is the number of training data for g1, and φ : r0, 1s Ñ r0,`8q is a non-decreasing and
invertible function such that for any sequence puiq P r0, 1s, φpuiq Ñ 0 if and only if ui Ñ 0.
Remark 1. If the Bayes error of the dataset is small enough and the number of training data is large
enough, Theorem 1 shows that the risk can converge to the ordinary classification risk. Furthermore,
when the number of training data goes to infinity, the optimal classifier of our proposed risk estimator
in Eq. (5) can converge to that of the ordinary classification risk.

Let
´

pθ2, pω2

¯

“ argminθPΘ,ωPΩ
pR2 pθ,ωq denote the optimal classifier of the empirical risk esti-

mator. Let pθ˚
2 ,ω

˚
2 q “ argminθPΘ,ωPΩ R2 pθ,ωq denote the optimal classifier of the expected risk.

Then we have the following theorem.
Theorem 2. For any δ ą 0, the following inequality holds with probability 1 ´ δ:

R2

´

pθ2, pω2

¯

´ R2 pθ˚
2 ,ω

˚
2 q ď Op

ˆ

1{

c

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ
` 1{

c

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

˙

. (8)

Remark 2. Theorem 2 elucidates the estimation error bound of the proposed risk estimator. As the
number of training data goes to infinity, the risk of the optimal classifier learned with the empir-
ical risk estimator approaches that of the optimal classifier of the risk, and the convergence rate
is the optimal parametric rate for empirical risk minimization without making additional assump-
tions (Mendelson, 2008).

4 EXPERIMENTS

In this section, we perform experiments to evaluate the effectiveness of WSFT on various WSL
problems, including PU learning, Pcomp learning, and UU learning.

4.1 EXPERIMENTAL SETUP

Datasets. In this work, we have considered more complex benchmark datasets than existing
WSL literature, including CIFAR100 (Krizhevsky & Hinton, 2009), EuroSAT (Helber et al., 2019),
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Table 1: Classification accuracy (mean˘std) of each method on benchmark datasets for PU learning,
where the best performance (excluding the zero-shot baseline) is shown in bold.

Dataset CIFAR-100-a EuroSAT-a Oxford-IIIT Pet-a

# P/U 40/40000 80/40000 30/9000 60/9000 95/2220 190/2220

uPU (du Plessis et al., 2015) 40.00˘0.00 40.00˘0.00 29.63˘0.00 29.63˘0.00 51.30˘0.00 51.30˘0.00
nnPU (Kiryo et al., 2017) 85.34˘1.36 86.16˘1.77 85.50˘1.86 89.27˘1.72 86.00˘1.76 87.40˘0.47
VarPU (Chen et al., 2020a) 60.00˘0.00 60.00˘0.00 70.40˘0.00 70.40˘0.00 48.70˘0.00 48.70˘0.00
CVIR (Garg et al., 2021) 78.52˘1.03 88.10˘1.40 91.37˘0.15 92.47˘0.15 88.48˘0.77 90.67˘1.28
DistPU (Zhao et al., 2022b) 78.73˘1.48 80.96˘3.05 47.97˘3.21 51.88˘2.00 92.46˘0.14 92.71˘0.58
Count Loss (Shukla et al., 2023) 79.70˘1.19 84.71˘2.32 87.36˘2.29 90.00˘1.16 84.93˘0.73 87.85˘0.71
GLWS (Chen et al., 2024) 79.71˘0.55 85.20˘1.09 84.38˘2.11 91.58˘0.42 88.87˘1.66 91.94˘0.85

Zero-Shot 88.19˘0.00 88.19˘0.00 73.01˘0.00 73.01˘0.00 90.11˘0.00 90.11˘0.00

WSFT 94.29˘0.71 92.96˘2.95 91.57˘0.98 94.68˘1.22 93.03˘1.75 93.62˘1.20

Dataset CIFAR-100-b EuroSAT-b Oxford-IIIT Pet-b

# P/U 60/40000 120/40000 70/9000 140/9000 90/2220 180/2220

uPU (du Plessis et al., 2015) 60.00˘0.00 60.00˘0.00 70.37˘0.00 70.37˘0.00 48.68˘0.00 48.68˘0.00
nnPU (Kiryo et al., 2017) 85.97˘1.17 85.75˘3.16 84.35˘3.61 87.27˘1.12 86.71˘0.40 87.23˘1.24
VarPU (Chen et al., 2020a) 40.00˘0.00 40.00˘0.00 29.60˘0.00 29.60˘0.00 51.30˘0.00 51.30˘0.00
CVIR (Garg et al., 2021) 82.38˘0.33 85.06˘2.45 86.29˘2.88 92.41˘1.23 91.06˘1.04 94.27˘0.60
DistPU (Zhao et al., 2022b) 65.75˘8.13 73.84˘12.07 70.37˘0.00 70.37˘0.00 91.54˘0.53 92.88˘1.31
Count Loss (Shukla et al., 2023) 83.17˘2.52 86.35˘1.93 82.60˘4.02 86.03˘1.61 83.50˘0.80 88.17˘3.18
GLWS (Chen et al., 2024) 84.84˘1.14 88.03˘1.32 86.66˘2.58 89.66˘1.87 87.14˘0.30 89.82˘0.83

Zero-Shot 88.19˘0.00 88.19˘0.00 73.01˘0.00 73.01˘0.00 90.11˘0.00 90.11˘0.00

WSFT 93.09˘2.39 93.51˘0.08 91.22˘2.54 96.63˘0.68 91.65˘0.61 92.43˘0.91

Oxford-IIIT Pet (Parkhi et al., 2012), and Caltech-101 (Fei-Fei et al., 2004). Details of these datasets
can be found in Appendix B.1. Since these datasets are multi-class classification datasets, we trans-
formed them into binary-class datasets. We used GPT-4o (OpenAI, 2024) to split the classes in each
dataset into two groups. Detailed prompts and class splitting for each dataset on each setting can be
found in Appendix B.2.

Implementation Details. We used the vision encoder of CLIP ViT B/16 (Dosovitskiy et al., 2020)
as the backbone. We used visual prompt tuning (Jia et al., 2022), a representation parameter-efficient
fine-tuning method as the fine-tuning method, and the number of learnable prompts was set to 10.
Since it is non-trivial to perform model selection in WSL, we used the same parameters for all
experiments. We used the cross-entropy loss coupled with label smoothing (LS) (Müller et al., 2019)
as the loss function and RandAugment (Cubuk et al., 2020) to further improve the performance.
Ablation studies and experiments with other pre-trained models can be found in Section 4.5. We re-
implemented all the methods with the pre-trained model for fair comparisons. We set the learning
rate to 0.1, the batch size to 64, and the threshold τ to 0.9 for all experiments. We used stochastic
gradient descent as the optimizer and used the same optimizer and batch size for other methods.
All experiments were run three times and we reported the average accuracy and standard deviation.
More implementation details can be found in Appendix D.

4.2 POSITIVE-UNLABELED LEARNING

In this subsection, we provide experimental results on a PU learning problem. We considered the
two-sample setting of PU learning (Niu et al., 2016), where a small number of positive examples
were randomly selected as the positive training set and a large number of unlabeled data were sep-
arately sampled as the unlabeled training set. For compared methods, we chose SOTA PU learning
approaches, including uPU (du Plessis et al., 2015), nnPU (Kiryo et al., 2017), VarPU (Chen et al.,
2020a), CVIR (Garg et al., 2021), DistPU (Zhao et al., 2022b), Count Loss (Shukla et al., 2023),
GLWS (Chen et al., 2024), and the zero-shot baseline.

The experimental results on PU learning are shown in Table 1. We can observe that WSFT achieves
the best performance in 9 out of 10 settings. For example, compared with the best compared method
GLWS (Chen et al., 2024), WSFT brings an 8.59% improvement on CIFAR-100-a with 40 positive
training data. These results demonstrate that the proposed WSFT approach is more effective for
fine-tuning pre-trained models under the PU learning setting.
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Table 2: Classification accuracy (mean˘std) of each method for Pcomp learning on the Caltech
dataset (upper) and the CIFAR-100 dataset (lower), where the best performance (excluding the zero-
shot baseline) is shown in bold.

Dataset Caltech-101

# U Pairs 500 1000 1500

Class Priors 0.4 0.5 0.4 0.5 0.4 0.5

Pcomp-Unbiased (Feng et al., 2021) 36.88˘0.00 50.00˘0.00 36.88˘0.00 50.00˘0.00 48.87˘20.77 56.91˘11.97
Pcomp-Relu (Feng et al., 2021) 78.00˘2.79 72.70˘2.89 75.84˘2.06 73.82˘1.10 76.60˘1.12 74.33˘1.58
Pcomp-ABS (Feng et al., 2021) 71.41˘2.95 65.60˘0.70 77.66˘3.03 74.02˘1.11 74.33˘1.58 76.28˘3.15
GLWS (Chen et al., 2024) 71.47˘2.53 72.54˘1.49 77.38˘1.10 77.20˘0.69 82.13˘2.10 81.08˘1.16

Zero-shot 83.57˘0.00 86.74˘0.00 83.57˘0.00 86.74˘0.00 83.57˘0.00 86.74˘0.00

WSFT 78.57˘2.56 80.80˘5.78 86.08˘3.27 88.63˘0.56 91.49˘1.68 94.87˘0.99

Dataset CIFAR-100

# U Pairs 1000 5000 10000

Class Priors 0.4 0.5 0.4 0.5 0.4 0.5

Pcomp-Unbiased (Feng et al., 2021) 46.67˘11.55 62.36˘21.41 53.90˘12.04 71.98˘19.03 84.28˘1.57 85.64˘1.69
Pcomp-Relu (Feng et al., 2021) 73.44˘2.71 72.85˘1.78 78.62˘2.90 77.68˘1.19 88.21˘1.07 87.30˘1.27
Pcomp-ABS (Feng et al., 2021) 73.73˘0.98 70.32˘2.45 89.57˘1.84 88.59˘1.34 93.23˘1.05 92.82˘0.99
GLWS (Chen et al., 2024) 72.03˘6.31 73.01˘4.16 82.19˘6.30 86.82˘1.63 86.44˘1.54 88.64˘3.24

Zero-shot 88.19˘0.00 87.04˘0.00 88.19˘0.00 87.04˘0.00 88.19˘0.00 87.04˘0.00

WSFT 82.89˘1.90 84.41˘1.18 95.60˘0.19 95.76˘0.04 96.13˘0.43 96.00˘0.10

4.3 PAIRWISE-COMPARISON LEARNING

In this subsection, we consider the Pcomp problem framework. For Pcomp learning (Feng et al.,
2021), we have unlabeled data pairs from (+1,+1), (+1,-1), and (-1,-1). Following previous ex-
perimental protocols (Feng et al., 2021), we set the class prior in advance and then sampled the
data to generate training pairs accordingly. We used Pcomp with its variants (Feng et al., 2021),
GLWS (Chen et al., 2024), and the zero-shot baseline as compared methods.

The experimental results are presented in Table 2. The proposed WSFT approach shows consistently
superior performance compared with other approaches across all settings. For example, on the
Caltech dataset with a class prior of 0.4, WSFT yields an accuracy improvement of 9.36% over the
previous best performance using 1500 pairs. This clearly validates the effectiveness of the proposed
method in Pcomp learning.

4.4 UNLABELED-UNLABELED LEARNING

In this subsection, we consider the UU learning setting for binary classification. We selected a
certain number of unlabeled examples with two different class priors. For compared methods, we
considered BER (Menon et al., 2015), UU-Unbiased (Lu et al., 2019), UU-ABS (Lu et al., 2020),
GLWS (Chen et al., 2024), and the zero-shot baseline.

The experimental results are shown in Table 3. Compared with the other methods, WSFT shows
overall consistent improvements across all settings. It is worth noting that WSFT can significantly
outperform other methods when the number of examples is small. For example, WSFT yields an
accuracy improvement of 6.98% on the CIFAR-100 dataset with 100 examples (class priors 0.8/0.2).
This shows that WSFT can be effective for learning from a very small number of unlabeled data.

4.5 FURTHER ANALYSIS

Other pre-trained models. We have conducted experiments on other pre-trained models to test the
generalization ability of the proposed WSFT. We used ViT pre-trained on ImageNet (Deng et al.,
2009) as a backbone. We conducted experiments on the PU learning setting and compared our
approach with two strong baselines CVIR (Garg et al., 2021) and GLWS (Chen et al., 2024). The
results are shown in Table 4. WSFT still outperforms the other two methods on all three datasets.
These results show that WSFT can be effectively combined with different pre-trained models.
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Table 3: Classification accuracy (mean˘std) of each method for UU learning on the CIFAR-100
dataset (upper) and the EuroSAT (lower) dataset, where the best performance (excluding the zero-
shot baseline) is shown in bold.

Dataset CIFAR-100

# U 100 1000 5000

Class Priors 0.8/0.2 0.9/0.3 0.8/0.2 0.9/0.3 0.8/0.2 0.9/0.3

BER (Menon et al., 2015) 79.36˘2.78 80.16˘1.63 84.20˘2.16 86.13˘0.17 95.48˘0.17 95.64˘0.50
UU-Unbiased (Lu et al., 2019) 78.54˘3.52 74.89˘4.13 87.23˘1.18 86.20˘0.85 76.18˘31.33 56.35˘28.32
UU-ABS (Lu et al., 2020) 78.58˘1.69 71.69˘5.47 88.97˘1.50 89.72˘0.89 95.67˘0.26 95.57˘0.68
GLWS (Chen et al., 2024) 82.14˘1.87 75.88˘0.14 92.81˘1.07 93.34˘0.42 95.93˘0.12 95.59˘0.38

Zero-shot 88.19˘0.00 88.19˘0.00 88.19˘0.00 88.19˘0.00 88.19˘0.00 88.19˘0.00

WSFT 88.12˘2.17 82.27˘2.15 95.84˘0.20 94.51˘0.71 96.24˘0.19 96.14˘0.21

Dataset EuroSAT

# U 50 100 150

Class Priors 0.8/0.2 0.9/0.3 0.8/0.2 0.9/0.3 0.8/0.2 0.9/0.3

BER (Menon et al., 2015) 73.61˘1.18 77.39˘1.85 76.48˘3.54 78.84˘1.20 77.20˘2.77 83.60˘1.62
UU-Unbiased (Lu et al., 2019) 79.01˘4.54 29.63˘0.00 81.07˘2.02 29.63˘0.00 64.42˘30.50 29.63˘0.00
UU-ABS (Lu et al., 2020) 81.74˘3.83 77.22˘2.63 82.94˘3.46 78.36˘1.84 85.53˘2.41 84.28˘2.40
GLWS (Chen et al., 2024) 85.00˘3.18 77.73˘11.56 90.09˘2.34 76.29˘9.92 92.86˘2.38 88.56˘2.32

Zero-shot 73.01˘0.00 73.01˘0.00 73.01˘0.00 73.01˘0.00 73.01˘0.00 73.01˘0.00

WSFT 89.03˘5.55 84.15˘2.97 94.73˘0.93 92.61˘1.58 97.05˘0.38 96.16˘1.37

Table 4: Classification accuracy (mean˘std) of each method on benchmark datasets with Vit pre-
trained on ImageNet as the backbone, where the best performance is shown in bold.

Dataset CIFAR-100-a EuroSAT-a Oxford-IIIT Pet-a

# P/U 40/40000 80/40000 30/9000 60/9000 95/2220 190/2220

CVIR (Garg et al., 2021) 73.60˘0.65 81.36˘1.76 83.53˘ 2.53 91.67˘0.46 81.60˘ 1.71 88.55˘2.65
GLWS (Chen et al., 2024) 80.19˘1.63 83.39˘1.10 80.13˘0.93 88.79˘0.57 89.74˘1.11 92.45˘0.61
WSFT 87.62˘1.86 86.31˘2.61 92.44˘1.61 94.03˘0.59 94.69˘1.74 94.26˘0.92

Ablation study. We examined the effectiveness of dual classification heads by using only a single
classification head. We also examined the effectiveness of LS and RandAugment. We also tried
two different inference strategies: using g1 alone for inference (g1 test) and using the ensemble of
g1 and g2 for inference. The experimental results are given in Table 5. We can see that using two
heads improves the accuracy by 3.82% on CIFAR-100-a with 90 positive samples and by 2.34%
on EuroSAT-b with 70 positive examples. Moreover, even without using LS and RandAugment,
our approach can still outperform the compared methods. Also, the use of the ensemble model can
sometimes additionally improve the model performance.

Hyperparameter sensitivity. We examined the sensitivity of the hyperparameters for WSFT. Here,
τ is the sample selection threshold and α is the label smoothing coefficient. The experimental results
are shown in Figure 4. We can see that the performance is not sensitively affected by changes of τ
and α within certain ranges.

5 RELATED WORK

In this section, we discuss related work on WSL, pre-trained models, applications of pre-trained
models to WSL, and knowledge distillation.

Weakly supervised learning. In WSL, we want to train a model that can perform comparably
to supervised learning under incomplete, inexact, or inaccurate supervision (Zhou, 2018; Sugiyama
et al., 2022). WSL in machine learning is fundamentally different from weakly supervised seg-
mentation (WSS) in computer vision (Ahn & Kwak, 2018; Lin et al., 2023), where WSS refers to
segmenting images with image-level labels. In recent years, many WSL problems have been stud-
ied (Ratner et al., 2016; Lu et al., 2019; Bao et al., 2018; Feng et al., 2021; Zhang et al., 2021c;
Li et al., 2023). The most common strategy for WSL is to rewrite the classification risk and then
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Table 5: Experimental results of ablation stud-
ies. The class priors for the UU setting are
0.8/0.2, and the numbers of training data are
80/40000, 70/9000, 5000, and 150 respectively.

PU UU

Dataset CIFAR-100-a EuroSAT-b CIFAR-100 EuroSAT

WSFT 95.12 92.72 96.11 97.11
Single head 91.30 90.48 94.35 96.10
w/o LS 91.81 90.71 96.80 95.71
w/o RandAugment 93.14 90.31 96.18 95.39
g1 test 91.73 90.01 96.17 94.20
Ensemble 93.09 91.08 96.18 97.11

(�) � (�) �

Figure 4: Hyperparameter sensitivity analysis
w.r.t. α and τ on CIFAR-100 and EuroSAT.

derive an URE. It has typically been shown that the URE is a consistent risk estimator with respect
to the expected classification risk and enjoys optimal convergence rates (Sugiyama et al., 2022). Al-
though UREs are elegant and theoretically sound, a common drawback is that they often encounter
overfitting problems. Another group of WSL methods aims to improve classification performance
by designing various regularization techniques (Yu et al., 2021; Wu et al., 2024), such as contrastive
learning (Li et al., 2021a; Wang et al., 2022a; Acharya et al., 2022). However, such complicated
training strategies may not be computationally efficient when fine-tuning large pre-trained models.

Pre-trained models. Pre-trained models have achieved great success in many machine learning
applications (Brown et al., 2020; Caron et al., 2021; Oquab et al., 2024; Jia et al., 2021; Bommasani
et al., 2021). For example, the CLIP model (Radford et al., 2021) uses a contrastive loss to align
image and text features within a common manifold, ensuring that semantically similar images and
text are positioned close together. As a result, CLIP achieves high zero-shot classification accuracy,
often comparable to or even better than supervised models (Radford et al., 2021). To further improve
the performance of pre-trained models, various fine-tuning methods have been proposed (Jia et al.,
2022; Zhou et al., 2022; Hu et al., 2022). While pre-trained models have achieved significant success
in the standard supervised learning paradigm, their impact on WSL remains underexplored.

Weakly supervised learning with pre-trained models. Hendrycks et al. (2019) found that using
pre-trained models can improve the model robustness to noisy labels. Yu et al. (2021) investigated
how to fine-tune pre-trained language models for text classification tasks with only noisy and unla-
beled data. However, their scope is limited to the classification problem of noisy and unlabeled text,
and their training strategies are less efficient. Some recent works in SSL or noisy-label learning have
tried to use or fine-tune pre-trained CLIP models and achieved better empirical performance (Wang
et al., 2022b; Gan & Wei, 2024; Wang et al., 2024a; Ahn et al., 2024; Feng et al., 2024). However,
their approaches can only be applied within a single problem setting and cannot be extended to solve
other WSL problems.

Knowledge distillation. The goal of knowledge distillation (KD) (Hinton et al., 2015) is to train
a student model by distilling knowledge from a teacher model (Zhang et al., 2018; Zhao et al.,
2022a). Recently, KD has been applied to many areas, such as vision-language models to maintain
the generalization ability of models (Yao et al., 2023; Li et al., 2024), SSL to leverage the teacher’s
knowledge (Sohn et al., 2020; Yang et al., 2024). In particular, the supervision distillation process in
the proposed WSFT approach can be considered as a kind of knowledge distillation. However, the
teacher model in WSFT is another classification head of the same size that is efficient and effective
in mitigating confirmation bias.

6 CONCLUSION

In this paper, we investigated the impact of pre-trained models on WSL. Our empirical results
showed that the use of pre-trained models, such as CLIP, can significantly improve the classification
performance for WSL even without fine-tuning. To further improve the classification performance
of pre-trained models, we proposed a novel WSFT approach that uses dual classification heads to
alternately perform efficient model fine-tuning and supervision distillation. Extensive experiments
on different WSL settings demonstrated the superiority of WSFT over SOTA WSL methods. A
limitation of our approach is that it is specifically designed for image data. In the future, it is also
promising to investigate how LLMs, another large category of pre-trained foundation models, affect
and improve WSL.
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Table 6: Dataset statistics and hand-crafted prompts.

Dataset Classes Train Val Test Hand-crafted prompt
CIFAR-100 100 50,000 N/A 10,000 “a photo of a [CLASS].”
EuroSAT 10 13,500 5,400 8,100 “a centered satellite photo of [CLASS].”
Oxford-IIIT Pet 37 2,944 736 3,669 “a photo of a [CLASS], a type of pet.”
Caltech-101 100 4,128 1,649 2,465 “a photo of a [CLASS].”

A ALGORITHMIC DETAILS

Algorithm 1 Zero-Shot Baseline
Input: GPT-4o, Image encoder f of CLIP, text encoder ψ of CLIP, unseen instance x˚, label space
Y .

1: Obtain the image embedding f px˚q of the unseen instance.
2: for k P Y do
3: Generate text descriptions tk using GPT-4o;
4: Obtain the text embedding ψ ptkq for class k;
5: end for
6: Return y˚ “ argmaxkPY cos pf px˚q ,ψ ptkqq;
Output: Predicted label y˚.

Algorithm 2 Weakly Supervised Fine-Tuning
Input: Image encoder f of CLIP, classification head g1 and g2, unlabeled datasets D1 and D2, class
priors π1 and π2, epoch Tmax, warm up epoch Twarm, iteration Imax.

1: for t = 1, 2, . . . , Tmax do
2: Shuffle the unlabeled training datasets D1 and D2;
3: for j “ 1, . . . , Imax do
4: Fetch mini-batch D1,j from D1 and D2,j from D2;
5: if t ď Twarm then
6: Update the classification head g1 by minimizing pR1 pθ,ω1q;
7: else
8: Update the classification head g1 and g2 by minimizing Eq. (6);
9: Obtain the high-confidence positive data pD` and negative data pD´;

10: end if
11: end for
12: end for
13: Return Image encoder f of CLIP, Classification head g2;
Output: Image encoder f of CLIP, Classification head g2.

We provide the pseudo-code of zero-shot baseline in Algorithm 1, the pseudo-code of WSFT in
Algorithm 2, and the overall pipeline of WSFT in Figure 5.

B DETAILS OF DATASETS

B.1 DATASET STATISTICS

The statistics of the datasets used in experiments can be found in Table 6. For CIFAR-100, we use
the original training and test dataset. For EuroSAT, Oxford-IIIT Pet-b, and Caltech-101, we use the
training, validation, and test dataset splitting of CoOp (Zhou et al., 2022).

B.2 DATASET SPLITTING

Since the datasets used in the experiment are multi-class, we transform them into binary classifica-
tion datasets by dividing the classes into two groups: positive and negative. Given the large number
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Figure 5: The overall pipeline of WSFT.

of classes, manual splitting is challenging, so we utilize GPT-4o to group the classes in each dataset.
The grouping prompt is provided below:

grouping prompt: I want to use the [DATASET NAME] dataset for binary classification and need
to divide the [CLASS NUMBER] classes into two groups. The classes in each group should be
semantically similar, while the classes between the two groups should be semantically different so
that each new class is discriminative. The ratio of the amount of the data from these two new classes
should be 4:6 or 5:5. Can you provide the detailed group information of this? Please provide a
detailed step-by-step explanation, and you do not need to provide the python code.

Specifically, for each dataset, we replace the dataset name with [DATASET NAME] and the number
of classes with [CLASS NUMBER].

Then, we provide the final Dataset splitting as below.

CIFAR-100:

Group1 (40 classes): [trout, orchids, bowls, telephone, porcupine, oranges, cockroach, bear, oak,
palm, aquarium fish, apples, clock, squirrel, train, roses, cans, butterfly, spider, dinosaur, pears, ta-
ble, skyscraper, fox, boy, otter, poppies, bee, castle, tank, shark, sunflowers, road, elephant, bicycle,
leopard, worm, mouse, maple, willow, ]

Group1 (60 classes): [beaver, dolphin, seal, whale, flatfish, ray, tulips, bottles, cups, plates, mush-
rooms, sweet peppers, computer keyboard, lamp, television, bed, chair, couch, wardrobe, beetle,
caterpillar, lion, tiger, wolf, bridge, house, cloud, forest, mountain, plain, sea, camel, cattle, chim-
panzee, kangaroo, possum, raccoon, skunk, crab, lobster, snail, baby, girl, man, woman, crocodile,
lizard, snake, turtle, hamster, rabbit, shrew, pine, bus, motorcycle, pickup truck, lawn-mower, rocket,
streetcar, tractor]

EuroSAT:

Group1 (3 classes): [Highway or Road, Industrial Buildings, Residential Buildings, ]

Group2 (7 classes): [Annual Crop Land, Forest, Herbaceous Vegetation Land, Pasture Land,
Permanent Crop Land, River, Sea or Lake, ]

Oxford-IIIT Pet-b:

Group1 (19 classes): [abyssinian, bengal, birman, bombay, british shorthair, chihuahua, egyp-
tian mau, havanese, japanese chin, maine coon, miniature pinscher, persian, pomeranian, pug,
ragdoll, russian blue, siamese, sphynx, yorkshire terrier ]

Group2 (18 classes): [american bulldog, american pit bull terrier, basset hound, beagle,
boxer, english cocker spaniel, english setter, german shorthaired, great pyrenees, keeshond, leon-
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Table 7: Positive and negative label groups of datasets and the statistics of those PU training sets.

Dataset Positive Class Group Negative Class Group π
CIFAR-100-a Group-1 Group-2 0.4
CIFAR-100-b Group-2 Group-1 0.6

EuroSAT-a Group-1 Group-2 0.3
EuroSAT-b Group-2 Group-1 0.7

Oxford-IIIT Pet-a Group-1 Group-2 0.51
Oxford-IIIT Pet-b Group-2 Group-1 0.49

berger, newfoundland, saint bernard, samoyed, scottish terrier, shiba inu, staffordshire bull terrier,
wheaten terrier ]

Caltech-101:

Group1 (49 classes): [ant, bass, beaver, bonsai, brontosaurus, butterfly, cougar body, cougar face,
crab, crayfish, crocodile, crocodile head, dalmatian, dolphin, dragonfly, elephant, emu, flamingo,
flamingo head, garfield, gerenuk, hedgehog, hawksbill, ibis, joshua tree, kangaroo, leopard, llama,
lobster, lotus, mayfly, nautilus, octopus, okapi, panda, pigeon, platypus, rhino, rooster, scorpion,
sea horse, starfish, stegosaurus, strawberry, sunflower, tick, trilobite, water lilly, wild cat]

Group 2 (51 classes): [accordion, airplane, anchor, barrel, binocular, brain, buddha, camera, can-
non, car side, ceiling fan, cellphone, chair, chandelier, cup, dollar bill, electric guitar, euphonium,
ewer, face, ferry, gramophone, grand piano, headphone, helicopter, inline skate, ketch, lamp, lap-
top, mandolin, menorah, metronome, minaret, motorbike, pagoda, pizza, pyramid, revolver, sax-
ophone, schooner, scissors, snoopy, soccer ball, stapler, stop sign, umbrella, watch, wheelchair,
windsor chair, wrench, yin yang]

PU Learning Set-Up. Dataset setup in PU learning is shown in Table 7.

C ZERO-SHOT PROMPT

In this section, we provide the prompt to generate text description for zero-shot CLIP binary classi-
fication. We ask GPT-4o to generate the text description, and the prompt is shown below.

prompt: I am doing a binary classification for [DATASET NAME]. I divided the
[DATASET NUMBER] classes into two groups to consider them positive and negative. The
positive classes are: [POSITIVE GROUP NAME LIST]. The negative classes are [NEGA-
TIVE GROUP NAME LIST]. Can you help me summarize each of the two classes so that I can use
it for CLIP Zero-Shot Classification? The result should be two sentences, one for each class. Please
provide rich and sufficient descriptions for each class, starting with ä photo of änd not exceeding
the maximum token limit of CLIP. Please think step-by-step.

Specifically, for each dataset, we replace the dataset name with [DATASET NAME],
the number of classes with [CLASS NUMBER], the positive class name list with
[POSITIVE GROUP NAME LIST], and the negative class name list with [NEGA-
TIVE GROUP NAME LIST].

Finally, we provide the text prompts for positive and negative classes as below:

CIFAR-100:

Positive: various living organisms and plants, including aquatic mammals, fish, flowers, fruits,
vegetables, insects, large carnivores, large omnivores and herbivores, medium-sized mammals, non-
insect invertebrates, reptiles, small mammals, and trees.

Negative: various man-made objects, scenes, and people, including vehicles, household electrical
devices, household furniture, large man-made outdoor things, large natural outdoor scenes, people,
small man-made outdoor things, and small man-made indoor things.

EuroSAT:
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Table 8: Results on ImageNet-100 on PU learning.

Dataset uPU nnPU VarPU CVIR DistPU Count Loss GLWS Zero-Shot WSFT
ImageNet-100-a 40.00˘0.00 85.43˘1.95 60.00˘0.00 92.60˘1.87 88.27˘1.45 79.93˘1.95 87.97˘2.46 75.26˘0.00 92.90˘2.07

Table 9: Results on CIFAR-100 on PU learning with a different partitioning strategy.

Dataset uPU nnPU VarPU CVIR DistPU Count Loss GLWS Zero-Shot WSFT
CIFAR-100-a 56.00˘0.00 80.73˘4.51 44.00˘0.00 74.07˘2.95 70.97˘13.00 77.83˘3.91 78.17˘1.01 72.29˘0.00 87.64˘1.91

Positive: a centered satellite photo of man-made environments, featuring expansive highways, in-
dustrial complexes with large factories, and dense residential areas filled with houses and buildings,
representing urban and developed landscapes.

Negative: a centered satellite photo of natural environments, including lush forests, sprawling pas-
tures, agricultural lands like annual and permanent crops, vibrant herbaceous vegetation, flowing
rivers, and serene lakes or seas, representing the harmony of diverse ecosystems.

Oxford-IIIT Pet

Positive: a photo of a small pet, including elegant cat breeds like Abyssinian, Bengal, Persian,
Siamese, Sphynx, and toy dog breeds like Chihuahua, Pug, Pomeranian, Yorkshire Terrier, Ha-
vanese, known for their petite size and distinctive features, a type of pet.

Negative: a photo of a medium to large dog breed, such as energetic and robust breeds like
American Bulldog, Beagle, Boxer, German Shorthaired Pointer, Saint Bernard, Samoyed, Shiba Inu,
known for their strength and active nature, a type of pet.

Clatech-101

Positive: a photo of animals, plants, and other living things, including insects, mammals, birds,
aquatic creatures, and plant species like bonsai and lotus.

Negative: a photo of man-made objects and vehicles, including items like airplanes, musical
instruments, tools, cameras, laptops, and cars.

D MORE IMPLEMENTATION DETAILS

In this section, we provide more implementation details. All the methods were implemented us-
ing Pytorch (Paszke et al., 2019). For a fair comparison, we fix the hyper-parameters when re-
implementing previous methods. We set the learning rate as 0.001 for GLWS (Chen et al., 2024)
on all experiments, following the official code. We set the learning rate as 0.1 for uPU (du Plessis
et al., 2015),nnPU (Kiryo et al., 2017), VarPU (Chen et al., 2020a), Pcomp-Unbiased, Pcomp-Relu,
Pcomp-ABS (Feng et al., 2021), BER (Menon et al., 2015), UU-Unbiased (Lu et al., 2019), and UU-
ABS (Lu et al., 2020), 0.001 for CVIR (Garg et al., 2021), 0.0005 for DistPU (Zhao et al., 2022b),
0.00005 for Count Loss (Shukla et al., 2023). We follow FixMath (Sohn et al., 2020) for the use of
strong augmentation for distillation. We use label smoothing with the parameter set as 0.1 for all
experiments. All experiments were run on one single NVIDIA A100 GPU.

E MORE EXPERIMENTAL RESULTS

In this section, we provide more experimental results.
Results on ImageNet-100. We conducted experiments on ImageNet-100 in the PU learning setting.
The number of labeled positive data is 120 and unlabeled data is 10000. The results are shown
in Table 8. As shown in Table 8, the proposed WSFT outperforms all existing methods on the
ImageNet-100 dataset.
Results on CIFAR-100 with different partitioning. We conducted experiments on CIFAR-100
in the PU learning setting with different group partitioning. The previous partitioning is ”living
organisms and plants” versus ”man-made objects, scenes, and people”. We asked GPT-4o to separate
classes in CIFAR-100 with a different partitioning strategy. The partitioning is ”Dynamic Entities
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(Mobile or Potential for Motion)” versus ”Static or Stationary Entities.”. The results are shown in
Table 9. As shown in Table 9, the proposed WSFT still outperforms all existing methods on this
partition by a large margin.

F PROOFS

F.1 PROOF OF THEOREM 1

Let
´

pθ1, pω1

¯

“ argminθPΘ,ωPΩ
pR1 pθ,ωq denote the optimal classifier of the empirical risk esti-

mator. Let pθ˚,ω˚q “ argminθPΘ,ωPΩ R pθ,ωq denote the optimal classifier of the risk in Eq.(1).
We also assume that Ω is closed under negation. We also assume that the loss function ℓpz, ¨q is Lip-
schitz continuous w.r.t. z with a Lipschitz constant Lℓ and the risk correction function hpzq is also
Lipschitz continuous w.r.t. z with a Lipschitz constant Lh. We take UU learning as an example by
instantiating pR1 pθ,ωq with pRCUU pθ,ωq. The estimation error bound of nnUU can be generalized
to a wide range of WSL problems (Chiang & Sugiyama, 2023).

Lemma 1 (Restatement of Theorem 4 in Lu et al. (2020)). For any δ ą 0, the following inequality
holds with probability 1 ´ δ:

R
´

pθ1, pω1

¯

´ R pθ˚,ω˚q ď Op p1{
?
n1 ` 1{

?
n2q . (9)

The estimation error bounds of CREs for other WSL problems are similar (Kiryo et al., 2017; Lu
et al., 2020; Wang et al., 2023a). Without loss of generality, we assume

R
´

pθ1, pω1

¯

´ R pθ˚,ω˚q ď Op

`

1{
?
n

˘

(10)

in our paper, where n indicates the rough number of training data of CREs. Then, we provide the
excess risk bound of CREs.

Lemma 2 (Bartlett et al. (2006)). If the loss function ℓp¨, ¨q is non-negative classification-calibrated,
there exists a convex, non-decreasing, and invertible function φ : r0, 1s Ñ r0,`8q such that for
any sequence puiq P r0, 1s, φpuiq Ñ 0 if and only if ui Ñ 0, and for any measurable function f
and g, and probability distribution over X ˆ Y ,

φ
`

R0´1 pθ,ωq ´ R˚
0´1

˘

ď R pθ,ωq ´ R˚. (11)

Then, we provide an upper bound for the expected misclassification rate of g1.

Lemma 3. Assuming that the Vision Transformer used for fine-tuning is very flexible, for any δ ą 0,
the following inequality holds with probability 1 ´ δ, we have

R0´1

´

pθ1, pω1

¯

ď R˚
0´1 ` φ´1

`

Op

`

1{
?
n

˘˘

(12)

Proof. With probability 1 ´ δ, we have

R0´1

´

pθ1, pω1

¯

´ R˚
0´1 ď φ´1

´

R
´

pθ1, pω1

¯

´ R˚
¯

“ φ´1
´

R
´

pθ1, pω1

¯

´ R pθ˚,ω˚q ` R pθ˚,ω˚q ´ R˚
¯

“ φ´1
´

R
´

pθ1, pω1

¯

´ R pθ˚,ω˚q

¯

ď φ´1
`

Op

`

1{
?
n

˘˘

.

Here, the first inequality is due to Lemma 2, the second equality is because we have R pθ˚,ω˚q “

R˚ when the model is very flexible. The proof is completed.

Finally, we give the proof of Theorem 1.
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Proof of Theorem 1. On one hand, we have

pR2 pθ,ωq

“
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ÿ

iP pD`

ℓ pg pf pxiqq ,`1q `
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ÿ

jP pD´

ℓ pg pf pxjqq ,´1q

“

| pDW|
ÿ

i“1

¨

˝I rσ pg1 pf pxiqqq ą 0.5s
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ℓ pg pf pxiqq ,`1q

`I rσ pg1 pf pxiqqq ă 0.5s
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ℓ pg pf pxjqq ,´1q

˛

‚

ď

| pDW|
ÿ

i“1

¨

˝pI ryi “ `1s ` I ryi “ ´1, σ pg1 pf pxiqqq ą 0.5sq
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ℓ pg pf pxiqq ,`1q

` pI ryi “ ´1s ` I ryi “ `1, σ pg1 pf pxiqqq ă 0.5sq
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ℓ pg pf pxjqq ,´1q

˛

‚

“
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ `1s ℓ pg pf pxiqq ,`1q ` I ryi “ ´1s ℓ pg pf pxiqq ,´1qq

`
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ ´1, σ pg1 pf pxiqqq ą 0.5s ℓ pg pf pxiqq ,`1q

`I ryi “ `1, σ pg1 pf pxiqqq ă 0.5s ℓ pg pf pxiqq ,´1qq

ď
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

ℓ pg pf pxiqq , yiq

`
Cℓ

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ ´1, σ pg1 pf pxiqqq ą 0.5s ` I ryi “ `1, σ pg1 pf pxiqqq ă 0.5sq .

Therefore, with probability 1 ´ δ, we have

E
pDW

”

pR2 pθ,ωq

ı

ďR pθ,ωq ` Cℓ

´

R0´1

´

pθ1, pω1

¯¯

ďR pθ,ωq ` Cℓ

`

R˚
0´1 ` φ´1

`

Op

`

1{
?
n

˘˘˘

.
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On the other hand, we have

pR2 pθ,ωq

“
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ÿ

iP pD`

ℓ pg pf pxiqq ,`1q `
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ÿ

jP pD´

ℓ pg pf pxjqq ,´1q

“

| pDW|
ÿ

i“1

¨

˝I rσ pg1 pf pxiqqq ą 0.5s
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ℓ pg pf pxiqq ,`1q

`I rσ pg1 pf pxiqqq ă 0.5s
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ℓ pg pf pxjqq ,´1q

˛

‚

ě

| pDW|
ÿ

i“1

¨

˝I ryi “ `1, σ pg1 pf pxiqqq ą 0.5s
πTe

ˇ

ˇ

ˇ

pD`

ˇ

ˇ

ˇ

ℓ pg pf pxiqq ,`1q

`I ryi “ ´1, σ pg1 pf pxiqqq ă 0.5s
1 ´ πTe

ˇ

ˇ

ˇ

pD´

ˇ

ˇ

ˇ

ℓ pg pf pxjqq ,´1q

˛

‚

“
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ `1s ℓ pg pf pxiqq ,`1q ` I ryi “ ´1s ℓ pg pf pxiqq ,´1qq

´
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ ´1, σ pg1 pf pxiqqq ą 0.5s ℓ pg pf pxiqq ,`1q

´I ryi “ `1, σ pg1 pf pxiqqq ă 0.5s ℓ pg pf pxiqq ,´1qq

ě
1

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

ℓ pg pf pxiqq , yiq

´
Cℓ

ˇ

ˇ

ˇ

pDW

ˇ

ˇ

ˇ

| pDW|
ÿ

i“1

pI ryi “ ´1, σ pg1 pf pxiqqq ą 0.5s ` I ryi “ `1, σ pg1 pf pxiqqq ă 0.5sq .

Therefore, the following inequality holds with probability 1 ´ δ:

E
pDW

”

pR2 pθ,ωq

ı

´ R pθ,ωq ě ´Cℓ

`

R˚
0´1 ` φ´1

`

Op

`

1{
?
n

˘˘˘

.

Therefore, we have the following inequality with probability 1 ´ 2δ:

|R2 pθ,ωq ´ R pθ,ωq| ď Cℓ

`

R˚
0´1 ` φ´1

`

Op

`

1{
?
n

˘˘˘

, (13)

which concludes the proof.

F.2 PROOF OF THEOREM 2

Definition 1 (Rademacher Complexity). Let pD` “ tpx`
1 , ¨ ¨ ¨ px`

n`
u denote n` i.i.d. random vari-

ables drawn from a probability distribution with the density pp`pxq , and let pD´ “ tpx´
1 , ¨ ¨ ¨ px´

n´
u

denote n´ i.i.d. random variables drawn from a probability distribution with the density pp´pxq.
Let Φ “ tf ˝ g : X ÞÑ Ru denote a class of measurable functions that includes the encoder and
the classifier, and σ “ pσ1, σ2, ¨ ¨ ¨ , σnq denote Rademacher variables taking values from t`1,´1u
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uniformly. Then, the (expected) Rademacher complexity of Φ w.r.t. pD` and pD´ is defined as

Rn`
pΦq “ E

pD`
Eσ

«

sup
ϕPΦ

1

n`

n`
ÿ

i“1

σiϕ
`

px`
i

˘

ff

,

R1
n´

pΦq “ E
pD´

Eσ

«

sup
ϕPΦ

1

n´

n´
ÿ

i“1

σiϕ
`

px´
i

˘

ff

.

Lemma 4. For any δ ą 0, we have the following inequality with probability at least 1 ´ δ:

sup
θPΘ,ωPΩ

ˇ

ˇ

ˇ

pR2 pθ,ωq ´ R2 pθ,ωq

ˇ

ˇ

ˇ
ď2πTeLℓRn`

pΦq ` 2 p1 ´ πTeqLℓR
1
n´

pΦq

`

ˆ

πTeCℓ
?
n`

`
p1 ´ πTeqCℓ

?
n´

˙

c

ln 2{δ

2
.

Proof. To begin with, we investigate the upper bound for the one-side uniform deviation
supθPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

. When an example in pD` is replaced by another example,

the value of supθPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

changes at most πTeCℓ{n`. When a example in

pD´ is replaced by another example, the value of supθPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

changes at
most p1 ´ πTeqCℓ{n´. Therefore, according to McDiarmid’s inequality, we have that

p

˜

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

´ E

«

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ff

ě ϵ

¸

ď exp

¨

˝

´2ϵ2

π2
TeC

2
ℓ

n`
`

p1´πTeq2C2
ℓ

n´

˛

‚.

In an equivalent way, we have the following inequality with probability at least 1 ´ δ{2:

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ďE

«

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ff

`

g

f

f

e

˜

π2
TeC

2
ℓ

n`

`
p1 ´ πTeq

2
C2

ℓ

n´

¸

c

ln 2{δ

2

ďE

«

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ff

`

ˆ

πTeCℓ
?
n`

`
p1 ´ πTeqCℓ

?
n´

˙

c

ln 2{δ

2
, (14)

where the last inequality is due to
?
a2 ` b2 ď |a|`|b|. Besides, by symmetrization (Vapnik, 1998),

it is a routine work to have that

E

«

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ff

ď 2πTeRn`
pℓ ˝ Φq ` 2 p1 ´ πTeqR1

n´
pℓ ˝ Φq . (15)

According to Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014), we have

Rn`
pℓ ˝ Φq ď LℓRn`

pΦq ,R1
n´

pℓ ˝ Φq ď LℓR
1
n´

pΦq . (16)

Combining Inequalities 14, 15, and 16, we have the following inequality with probability at least
1 ´ δ{2:

sup
θPΘ,ωPΩ

´

pR2 pθ,ωq ´ R2 pθ,ωq

¯

ď2πTeLℓRn`
pΦq ` 2 p1 ´ πTeqLℓR

1
n´

pΦq

`

ˆ

πTeCℓ
?
n`

`
p1 ´ πTeqCℓ

?
n´

˙

c

ln 2{δ

2
. (17)
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In a similar way, we have the following inequality with probability at least 1 ´ δ{2:

sup
θPΘ,ωPΩ

´

R2 pθ,ωq ´ pR2 pθ,ωq

¯

ď2πTeLℓRn`
pΦq ` 2 p1 ´ πTeqLℓR

1
n´

pΦq

`

ˆ

πTeCℓ
?
n`

`
p1 ´ πTeqCℓ

?
n´

˙

c

ln 2{δ

2
. (18)

Combining Inequalities 17 and 18, the proof is completed.

Proof of Theorem 2. We have the following inequality:

R2

´

pθ2, pω2

¯

´ R2 pθ˚
2 ,ω

˚
2 q

“

´

R2

´

pθ2, pω2

¯

´ pR2

´

pθ2, pω2

¯¯

`

´

pR2

´

pθ2, pω2

¯

´ pR2 pθ˚
2 ,ω

˚
2 q

¯

`

´

pR2 pθ˚
2 ,ω

˚
2 q ´ R2 pθ˚

2 ,ω
˚
2 q

¯

ď0 ` 2 sup
θPΘ,ωPΩ

ˇ

ˇ

ˇ

pR2 pθ,ωq ´ R2 pθ,ωq

ˇ

ˇ

ˇ

ď4πTeLℓRn`
pΦq ` 4 p1 ´ πTeqLℓR

1
n´

pΦq `

ˆ

2πTeCℓ
?
n`

`
p2 ´ 2πTeqCℓ

?
n´

˙

c

ln 2{δ

2
.

Since we have Rn`
pΦq ď Op

`

1{
?
n`

˘

and R1
n´

pΦq ď Op

`

1{
?
n´

˘

, the proof is completed.

G A BRIEF INTRODUCTION TO SEVERAL WSL PROBLEMS

In this section, we provide a brief introduction to several representative WSL problems and their
corresponding URE and CREs.

G.1 PU LEARNING

In PU learning, we are given a positive training dataset DP “ tpxP
i ,`1qu

nP
i“1 and an unlabeled

dataset DU “ txU
i u

nU
i“1 sampled from densities p`pxq and ppxq “ πTep`pxq ` p1 ´ πTeqp´pxq

respectively. Here, ppxq denotes the density of test data. du Plessis et al. (2015) proposed an URE
for PU learning, i.e.,

pRPUpθ,ωq “
πTe

nP

nP
ÿ

i“1

`

ℓ
`

g
`

f
`

xP
i

˘˘

,`1
˘

´ ℓ
`

g
`

f
`

xP
i

˘˘

,´1
˘˘

`
1

nU

nU
ÿ

i“1

ℓ
`

g
`

f
`

xU
i

˘˘

,´1
˘

. (19)

Then, Kiryo et al. (2017) proposed a CRE to improve the classification performance:

pRCPUpθ,ωq “
πTe

nP

nP
ÿ

i“1

ℓ
`

g
`

f
`

xP
i

˘˘

,`1
˘

` h

˜

1

nU

nU
ÿ

i“1

ℓ
`

g
`

f
`

xU
i

˘˘

,´1
˘

´
πTe

nP

nP
ÿ

i“1

ℓ
`

g
`

f
`

xP
i

˘˘

,´1
˘

¸

. (20)

G.2 PCOMP LEARNING

Feng et al. (2021) investigated a problem called Pcomp learning. In this problem, we are given
unlabeled training data pairs DPcomp “ tpxPC

i ,xPC1

i qu
nPC
i“1 from (+1,+1), (+1,-1), and (-1,-1) are
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given. It was shown that the problem can be transformed to UU learning (Lu et al., 2019) and an
URE was proposed accordingly:

pRPcomppθ,ωq “
1

nPC

ÿnPC

i“1

´

ℓpgpfpxPC
i qq,`1q ` ℓpgpfpxPC1

i qq,´1q

´π`ℓpgpfpxPC
i qq,´1q ´ π´ℓpgpfpxPC1

i qq,`1q

¯

. (21)

Then, a CRE was proposed as

pRPcomppθ,ωq “ h

ˆ

1

nPC

ÿnPC

i“1

´

ℓpgpfpxPC
i qq,`1q ´ π´ℓpgpfpxPC1

i qq,`1q

¯

˙

` h

ˆ

1

nPC

ÿnPC

i“1

´

ℓpgpfpxPC1

i qq,´1q ´ π`ℓpgpfpxPC
i qq,´1q

¯

˙

. (22)
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