
Synthetic Model Combination: An Instance-wise
Approach to Unsupervised Ensemble Learning

Alex J. Chan
University of Cambridge

Cambridge, UK
ajc340cam.ac.uk

Mihaela van der Schaar
University of Cambridge

Cambridge Centre for AI in Medicine
Cambridge, UK

mv472@cam.ac.uk

Abstract

Consider making a prediction over new test data without any opportunity to learn
from a training set of labelled data - instead given access to a set of expert models
and their predictions alongside some limited information about the dataset used to
train them. In scenarios from finance to the medical sciences, and even consumer
practice, stakeholders have developed models on private data they either cannot,
or do not want to, share. Given the value and legislation surrounding personal
information, it is not surprising that only the models, and not the data, will be
released - the pertinent question becoming: how best to use these models? Previous
work has focused on global model selection or ensembling, with the result of a
single final model across the feature space. Machine learning models perform
notoriously poorly on data outside their training domain however, and so we argue
that when ensembling models the weightings for individual instances must reflect
their respective domains - in other words models that are more likely to have seen
information on that instance should have more attention paid to them. We introduce
a method for such an instance-wise ensembling of models, including a novel
representation learning step for handling sparse high-dimensional domains. Finally,
we demonstrate the need and generalisability of our method on classical machine
learning tasks as well as highlighting a real world use case in the pharmacological
setting of vancomycin precision dosing.

1 Introduction

Sharing data is often a very problematic affair - before we even arrive at whether a stakeholder will
want to, given the modern day value - it may not even be allowed. In particular, when the data contains
identifiable and personal information it may be inappropriate, and illegal, to do so. A common solution
is to provide some proxy of the true data in the form of a generated fully synthetic dataset (Alaa et al.,
2020) or one that has undergone some privatisation or anonymisation process (Elliot et al., 2018;
Chan et al., 2021), but this can often lead to low-quality or extremely noisy data (Alaa et al., 2021)
that is hard to gain insight on. Alternatively, groups may release models that they have trained on
their private data. If for a given task there are multiple of such models, we are left with the task of
how to best use these models in combination when they have potentially conflicting predictions. This
problem is known as unsupervised ensemble learning since we have no explicit signal on the task,
and we aim to construct a combination of the models for making future predictions (Jaffe et al., 2016).

Without having trained the models ourselves, it is a very challenging task for us to know how well
the individual models should perform, making the task of choosing the most appropriate model (or
ensemble) difficult. This is compounded by the problem that the provided models could perform
poorly for not one, but two main reasons: Firstly, the model itself may not have been flexible
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enough to properly capture the underlying true function present in the data; and secondly, in the
area that they are making a prediction there may not have been sufficient training data used for
the model to have been able to learn appropriately - i.e. the model is extrapolating (potentially
unreasonably) to cover a new feature point - the main issue in covariate shifted problems (Bickel
et al., 2009). Current practice is usually to try and select the globally optimal model (Shaham
et al., 2016; Dror et al., 2017), that is to say of those made available, which model should be
used to make predictions for any given test point in the feature space. This approach potentially
addresses the first point, it completely overlooks the second - and this is what we will focus on.
In order to consider this problem of extrapolation amongst the individual models, the important
question is: what might a solution look like? We must consider the desiderata that given no
augmentation of the individual models, the ensemble weights must vary depending on the test
features and additionally, these weights should reflect the confidence that a model will be able to
make an appropriate prediction, and we should be able to tell generally when our confidence is low.
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Figure 1: Instance-wise Ensembles. Here we
represent the density of the training features
for three separate models - M1, M2,and M3.
Given new test points A, B, and C, we need to
construct predictions from these models. A is
well represented by both M2 and M3 while
B only has significant density under M3. C
looks like none of the models will be able to
make confident predictions.

Contributions In this work we make a three-fold
contribution. First, we establish and document the
need for instance-wise predictions in the setting of
unsupervised ensemble learning, in doing so intro-
ducing the concept of Synthetic Model Combination
(SMC), shown in Figure 1. Second, we introduce a
novel unsupervised representation learning procedure
that can be incorporated into SMC - allowing for
more appropriate separation of models and estima-
tion of ensemble weights in sparse high-dimensional
settings. Finally, we provide practical demonstrations
of both the success and failure cases of traditional
methods and SMC, in synthetic examples as well
as a real example of precision dosing - code for
which is made available at https://github.com/
XanderJC/synthetic-model-combination,
along with the larger lab group codebase at
https://github.com/vanderschaarlab/
synthetic-model-combination.

2 Background
Formulation Consider having access only to N
provided tuples {(Mj , Ij)}Nj=1 of models Mj and
associated information Ij . With each Mj : X 7→
Y being a mapping from some covariate space
X to another target space Y and having been trained on some dataset Dj which is not ob-
served by us although is in some way summarised by Ij . We are then presented with
some other test dataset DT = {xi}Mi=1 and consequently tasked with making predictions.

Goal Our aim is to construct a convex combination of models in a way so as to produce
optimal model predictions ŷ = M∗(x) =

∑N
j=1 w(x)jMj(x) with

∑N
j=1 w(x)j = 1 and

w(x)j taking the jth index of the output of the function w : X 7→ ∆N that maps features
to a set of weights on the probability N -simplex. We can summarise our task process as:

Given: {(Mj , Ij)}Nj=1 and {xi}Mi=1 Obtain: w to predict {ŷi}Mi=1

Having established the setting we are focused on, we can explore contemporary methods and compare
how they relate to our work. We consider methods that are interested ultimately in the test-time
distribution of labels conditional on feature covariates ptest(Y |X). We discuss the differences in methods
focuses on the distributional information available to them, summarised in Table 1. For example, in
standard supervised learning, samples of the feature-label joint distribution ptrain(X,Y ) are given - the
training-time conditional distribution is then estimated and assumed to be equivalent at test-time.
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Table 1: (Un-)Related Fields and how they compare in terms of: A) whether they make instance-wise
predictions; B) the distributional information which they require; C) the form of the information; and
D) the target quantity they are focused on. References given as: [1] Torrey and Shavlik (2010); [2]
Raftery et al. (1997); [3] Ren et al. (2019); [4] Ruta and Gabrys (2005); [5] Jaffe et al. (2016).

Problem Ref. A) Instance-wise B) Distribution C) Information D) Target

Transfer Learning [1] ✓ ptrain(X,Y ), p
test
(X,Y ) DTrain ptest(Y |X)

Bayesian Model Averaging [2] ✗ ptest(X,Y ) DV al p(Mi|D)

Out-of-distribution Detection [3] ✗/ ✓ ptest(X) - ptrainX (xtest) < ϵ

Majority Voting [4] ✗ ptrain(X,Y ) - ptest(Y |X)

Unsupervised Ensemble Regression [5] ✗ ptest(Y ) E[Y ], V ar[Y ] ŵ

Synthetic Model Combination [Us] ✓ {pMj

(X)}
N
j=1 {Ij}Nj=1 w(x)

In our case, we assume information from considerably less informative distributions, the train-
ing time feature distributions {pMj

(X)}
N
j=1, were the information can take a variety of forms,

most practically though through samples of the features or details of the first and second mo-
ments. Practically, this appears to be the minimal set of information for which we can do some-
thing useful since if only given a set of models and no accompanying information then there
is no way to determine which models may be best in general let alone for specific features.

How are models normally ensembled? The literature on ensemble methods is vast, and we do not
intend to provide a survey, a number of which already exist (Sagi and Rokach, 2018; Dong et al.,
2020). The focus is often on training ones own set of models that can then be ensembled for epistemic
uncertainty insight (Rahaman et al., 2021) or boosted for performance (Chen and Guestrin, 2016).

In terms of methods of ensembling models that are provided to a practitioner (instead of ones
trained by them as well) then closest is the setting of unsupervised ensemble regression - which
like us does not consider any joint feature label distribution. To make progress though some in-
formation needs to be provided, with Dror et al. (2017) considering the marginal label distribution
ptest(Y ) , making the strong assumption the first two moments of the response are known. Instead
of being directly provided the mean and variance, another strand of work assumes conditional
independence given the label (Dawid and Skene, 1979), meaning that any predictors that agree
consistently will be more likely to be accurate. Platanios et al. (2014) and Jaffe et al. (2016)
relax this assumption through the use of graphical models and meta-learner construction respec-
tively, with a Bayesian approach proposed by Platanios et al. (2016) Recent work of Shaham
et al. (2016) attempts to learn the dependence structure using restricted Boltzmann machines.

Model averaging when validation data is available. Moving from the unsupervised methods
mentioned above, which at most considered information from only marginal distributions, we come
to the case of when we may have some validation data from the joint distribution ptest(X,Y ) (or one
assumed to be the same). This can effectively be used to evaluate a ranking on the given models
for more informed ensembles. This ensemble can be created in a number of ways (Huang et al.,
2009), including work that moves in the direction of instance-wise predictions by dividing the space
into regions before calculating per-region weights (Verikas et al., 1999). A practical and more
common approach is Bayesian Model Averaging (BMA) (Raftery et al., 1997). Given an appropriate
prior, we calculate the posterior probability that a given model is the optimal one - and once this
is obtained the models can be marginalised out during test time predictions, creating an ensemble
weighted by each model’s posterior probability. The posterior being intractable, the probability
is approximated using the Bayesian Information Criterion (BIC) (Neath and Cavanaugh, 2012) -
which requires a likelihood estimate over some validation set and is estimated as: p(Mi|D) =

exp(− 1
2BIC(Mi))/

∑N
i=1 exp(−

1
2BIC(Mi)) With this, along with all the ensemble methods

previously mentioned, it is important to note the subtle difference in setup to the problem we are
trying to work with. In all cases, it is assumed that there is some ordering for the models that
holds across the feature space and so a global ensemble is produced with a fixed weighting ŵ
such that w(x) = ŵ ∀x ∈ X . This causes failure cases when there is variation in the models
across the feature space, since it is a key point that BMA is not model combination (Minka, 2000).
This being an important distinction and one of the main reasons BMA has been shown to perform
badly under covariate shifted tasks (Izmailov et al., 2021). That being said, it can be extended by
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considering the set of models being averaged to be every possible combination of the provided
models (Kim and Ghahramani, 2012), although this becomes even more computationally infeasible.

Is this some form of unsupervised domain adaptation or transfer learning then? Given the
focus on models performing on some region of the feature space outside their training domain
this may seem like a natural question. Unsupervised domain adaptation represents this task at
an individual model level but usually considers, access to unlabelled data in the target domain
as well as labelled data from a (different) source domain ptrain(X,Y ), p

test
(X) (Chan et al., 2020). We

refer the interested reader to Kouw and Loog (2019) for a detailed review given space constraints.

In a very similar vein, the transfer learning (Torrey and Shavlik, 2010) task also involves a change
in feature distribution but instead of being completely unsupervised tends to include some labels
on the target set, thus requiring some information on the joint distribution at both test and training
time ptrain(X,Y ), p

test
(X,Y ). A great deal of work then involves learning a prior on the first domain that

can be updated appropriately on the target domain (Raina et al., 2006; Karbalayghareh et al., 2018).
In contrast to both of these areas, we do not aim to improve the performance of the individual
models, but rather combine them based on how well we expect them to perform in the new domain.

3 Introducing Synthetic Model Combination

Our success hinges on the assumption that the quality of a model’s prediction will depend on
the context features. That is to say that the performance ordering of the models will not stay
constant across the feature space. With this being the case, it should seem obvious that the
weightings of individual models should depend on the features presented. As such, we in-
troduce our notion of Synthetic Model Combination1 - a method that constructs a representa-
tion space within which we can practically reason, enabling it to select weights for the mod-
els based on a given feature’s location within the representation space. Recalling our starting
point of {(Mj , Ij)}Nj=1 and {xi}Mi=1, we proceed in three main steps which are outlined below:

1. Estimate densities for models: From each information Ij , we generate a density pXj (x).

2. Learn low-dimensional representation space: Using {xi}Mi=1 and {pXj (x)}Nj=1, learn a
mapping to a low dimensional representation space fθ : X 7→ Z .

3. Calculate ensemble weights for predictions: Evaluate weights w(x) so that predictions can
then be made as ŷ =

∑N
j=1 w(x)jMj(x).

These steps are highlighted again in the full Algorithm 1 as well as shown pictorially in Figure 2.

3.1 From Information to Probability Densities

The first step in SMC is to use the information Ij to produce a density estimate such that we can sam-
ple from each model’s effective support. Given the flexibility in the form of what we allow Ij to take,
SMC must remain relatively agnostic to this step. A common example of the type of information we
expect will simply be example feature samples, and in this case a simple kernel density estimate (Ter-
rell and Scott, 1992) or other density estimation method could be employed. On the other hand, in the
medical setting for example, when models are published authors will often also provide demographics
information on the patients that were involved in the study, such as the mean and variance of each
covariate recorded. In this case we may simply want to approximate the density using a Gaussian and
moment-matching for example. When the information is provided in the form of samples it is possible
to skip this step, as they can be used directly in the subsequent representation learning step’s losses.

3.2 Learning a Separable and Informative Space

The point of learning a new representation space - and not simply using the original feature space
- is twofold. Firstly, we would like to reduce the dimensionality, leading to a more compact rep-

1Our name is a nod towards synthetic control (Abadie et al., 2010), as we construct a new synthetic model as
a convex combination of others that we think will be most appropriate for a given instance.
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resentation and is important because in higher dimensions the densities we model will often end
up effectively non-zero in only very small regions, making the last step of SMC difficult. Sec-
ondly, we would like to induce structure, so that distances and regions in the space better reflect
how capable different models will be over the space. This should aid in better selection of model
weights when making predictions by allowing SMC to better understand the relationship between
the models and the representation space. We should note that if the feature dimensions are low
then this step is not strictly necessary - the model densities may have appropriate coverage of
the space, but this does not then allow you to obtain none of the benefits of the second point.

𝓩

1. Estimate densities. 

2. Learn low-dim 
representation space.

3. Calculate ensemble 
weights.

Original dataset -
unseen

Provided information

Provided models Instance-wise 
Ensemble

Sampled model 
dataset

Test-set features

Learnt representations

Figure 2: Diagrammatic Model Approach. We
visually represent the steps (coloured) and objects
(italics) involved in the SMC approach.

To proceed we define a space Z on which we
will work and aim to learn a parameterised map-
ping fθ : X 7→ Z such that the representations
of features on this space is useful and aids us in
our goal of constructing instance-wise ensem-
bles. In each optimisation step of our algorithm
we will sample a model dataset DM = {x̂j}Nj=1

- sampling one feature example 2 from each den-
sity associated with a model. This model dataset
will play an important part in the learning pro-
cess as these examples serve as proxies to the
regions in the feature space that a model is con-
fident on. Now, given both DT and DM , we aim
to construct an optimisation target for a represen-
tation learning step that can be learnt end-to-end
in an autoencoder fashion. As such, we introduce a total loss that can be broken down into three parts:

Ltotal = Lreconstruction + Lconnection + Lseperation. (1)

The first, Lreconstruction, is the simplest as a simple regularised autoencoder loss and is
used so that the latent space can accurately represent and reconstruct the feature space:

Lrec =
∑

xi ∈ DT ∪ DM

||gϕ(fθ(xi))− xi||2 + β||fθ(xi)||2. (2)

This introduces a second function gϕ : Z 7→ X that can be jointly optimised in order to
learn the space using standard autoencoder techniques. Alternatively, to incorporate a prob-
abilistic element, we can substitute in a (β-)VAE loss (Kingma and Welling, 2013; Higgins
et al., 2016) by considering samples from an approximate posterior, the probabilistic nature
has been shown to improve interpretability in the representation space (Burgess et al., 2018).

We next introduce the first of our more specialised components with the Lconnection loss:

Lcon =
∑

(x̂i,x̂j) ∈ DM×DM

(
1−DY(Mi(x̂i)||Mj(x̂i))

)︸ ︷︷ ︸
Predictive Similarity Score

×||fθ(x̂i)− fθ(x̂j)||2, (3)

which is designed so that models that make similar predictions have domains that map to similar
areas in the space. Here, DY( · || · ) can be any normalised distance metric over Y and is used
to calculate the Predictive Similarity Score between two models evaluated on the same feature.
This loss aims to minimise the distance ||fθ(x̂i) − fθ(x̂j)||2 - which is a proxy for the distance
between the domains of models i and j - when the predictions between the two models are more
similar. This is based on the intuition that if models are making randomly incorrect predictions for
a feature they are unlikely to agree with other models (Dror et al., 2017). Thus, these points are
more likely to be correctly classified - suggesting some overlap in training domain of the two models.

Given the non-negativity of distances we will need to balance the previous loss, which will
always aim to reduce the distance between all the pairs in the loss, albeit up-weighting
those that have more similar predictions between models. Thus, we employ Lseparation:

Lsep = −
∑

(x̂i,x̂j) ∈ DM×DM

1

2
1{x̂i(m) ̸= x̂j(m)} × ||fθ(x̂i)− fθ(x̂j)||2, (4)

2It is possible to sample a larger model dataset to provide a lower variance estimate of the loss at each step,
but given the pairwise distances we will calculate this can become computationally challenging.
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which is designed so that models are naturally moved away from each other - essentially encoding
a prior that data distributions for the different models will be distinct. With 1 denoting the indi-
cator function and x(m) denoting the model density from which the point was sampled, this loss
pushes apart points that were not sampled from the same model. These losses can be balanced
with weighting hyperparameters, the potential optimisation of which is discussed in the appendix.

3.3 Weights Estimation

Algorithm 1: Synthetic Model Combination
Result: Test predictions using mapping from

data to model weights
Input: {(Mj , Ij)}Nj=1 and DT ;
1. Use information to produce density models;
2. Sample data from models and combine with
test data;

3. Learn representation space;
4. Re-model densities in new space;
5. Calculate weights in new space;
6. Make predictions {ŷi}Mi=1 over test set;
Return: {ŷi}Mi=1

Once a space is learnt, we can use it to make
predictions. Given model densities in the fea-
ture space, denoted pXj (x), we construct a cor-
responding density in the representation space
pZj (z) - this can be achieved simply by sam-
pling from pXj (x), passing through fθ and mod-
elling the new density with a kernel density
estimate. From here, we calculate weights
as the relative density a feature representa-
tion has under the densities in the new space:

w(x)i =
pZi (fθ(x)) + γ∑N
j=1 p

Z
j (fθ(x)) + γ

, (5)

with γ a regularisation hyperparameter chosen to be very small such that an outlier’s weights are not
dominated by the closest model. The quantity

∑N
j=1 p

Z
j (fθ(x)) can be used to inform the confidence

of any prediction made by SMC. Particularly low values will indicate that the feature had low density
under all the domains and as such it may be likely that none of the models were accurate. We note
as well that assuming a hierarchical generative model for the test data where one of the models
training data distributions is selected and then sampled from - this can be interpreted as the posterior
probability that a test instance was sampled from a model’s domain and is thus well represented by it.

4 Experimental Demonstration

In this section we will use a series of experiments to make the following concrete points about
our method: 1) In common scenarios, global ensembles do not work, and we must make instance-
wise predictions (Section 4.1); 2) Doing so in even slightly high dimensions requires a repre-
sentation learning step, and our proposed losses improves the quality of the learnt representation
(Section 4.2); 3) We can make good predictions with surprisingly little information (Section 4.2);
4) This is useful beyond synthetic example setups in real-world case scenarios (Section 4.3); 5)
Naturally, there are setups where we will underperform, which we should understand (Section
4.4); and 6) We are completely agnostic to the type of models used (Section 4 - we demonstrate
across a variety of models from simple regressions to convolutional nets and differential equations).

4.1 A Simple Regression Example

In this first example, we aim to demonstrate why this approach is a clear necessity when making
future predictions, showing that we need to construct ensembles with an instance-wise approach to
generate predictions that are accurate and appropriately calibrated. In our examples, we simulate
feature data from experiment-dependant distributions and targets from a simple noisy sin wave curve.

Instance-wise ensembles are necessary under our assumptions. In our first example we con-
sider two models: both simple neural networks, one trained on features sampled from a Gaus-
sian centred at 5, with the other centred at 15, and standard deviation 3.5 - as can be seen from
Figure 3a there is very little overlap in the support of the training data for the two models, and
it can be seen that Model 1 clearly makes appropriate predictions when x < 10, while it is
Model 2 that is accurate when x > 10. This relationship cannot be captured by a global en-
semble of the two methods, as seen in Figure 3b - whereas SMC is perfectly able to do so.

Our uncertainty can show when we are not confident. In our previous example, SMC was
able to match the target function across the feature space given the distribution of the training
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Figure 3: Regression Example. In all cases the background colour reflects the optimal model. This
problem setup (a) demonstrates the key need of an instance-wise ensemble. It can be seen from the
model predictions (b) that SMC is the only ensemble that can capture the target function. Altering
the setup such that training domains are further away (c) shows our uncertainty (background colour
concentration) can helpfully highlight where we should not be confident. Finally, when domains
completely overlap (d) we can see all ensembles perform equally well and SMC loses its edge.
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Figure 4: MNIST Example. Representation spaces learnt from MNIST using just the reconstruction
loss as well as adding the separation and connection losses. Model information consisted of feature-
only samples from the model training data. Test points are plotted to show their relationship to the
model densities, showing that in low-dimensional space they usually have high density under a model.

features of the two models. What happens though if none of the models make accurate predic-
tions on an instance because it is outside all of their domains? We explore this by moving the
two Gaussians used to generate features for the two models further apart, centring them at 0 and
20 respectively - resulting in a region around 10 where none of the models make correct predic-
tions, and consequently SMC’s predictions also suffer as seen in Figure 3c. However, using the
uncertainty explained in Section 3.3 (which is visualised by the background colour of the plot)
we can see that the accuracy of SMC is calibrated well against its confidence. SMC can pro-
vide useful information about which parts of the feature space it is relatively less confident on.

4.2 Higher Dimensions with MNIST
In order to develop further points of our method, we move to a more complicated example with
the most iconic ML problem of handwritten digit classification. Using MNIST (d = 784), we
construct a problem where ten different classifiers are trained to each individually identify a single
digit effectively while their performances on other digits are significantly lower - this is achieved
by providing mostly only data of the respective single digit. The information provided per model
involves a number of feature samples from the training set (number depending on exact experiment).

High dimensions need to be reduced. As discussed earlier, density estimation becomes ineffective
in high dimensions. As the space gets bigger, the relative proportion covered by the data reduces.
We find that even in the case where the full set of features (but of course not targets) used to
train the predictive models are made available to SMC, none of the test set features have non-zero
density to numerical precision - and hence a meaningful prediction cannot be made. On the other
hand, once we incorporate a representation learning step, the coverage of the training examples
significantly increases. This can be seen in Figure 4, which shows two separate 2-dimensional learnt
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representation spaces: on the left using only the Lrec loss; and on the right including the Lsep and
Lcon losses. Here, test features are plotted as points, while the training features used per model are
represented as density estimates. It can be very evidently seen that the majority of test features have
significant density under at least one of the models in both of the example representation spaces learnt.
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Figure 5: Information Gain to Performance
Relationship. The AUROC obtained by SMC
against the number of training data feature
samples given to the method on a log scale.

Standard representation learning is good - but
we are better. We have established that some low-
dimensional representation learning is necessary for
problems like these - the fact is that by simply in-
corporating a standard representation learning step,
using a standard autoencoder for example, will allow
us to make reasonable predictions, indeed we can
achieve a OneVsRest Area Under the Receiver Oper-
ating Characteristic curve (AUROC) of 0.969 on the
test set. By including the extra regularisation though
we can improve the ability of our algorithm. We can
immediately see with a visual inspection of Figure
4 and the two learnt representation spaces that their
inclusion results in more spread out and differentiated
densities (both are plotted on the same scale). Addi-
tionally, we see and increase in the AUROC to 0.972.
This appears to allow more appropriate evaluation of
points like the example ‘4’ in Figure 4, which could reasonably be mistaken for an incomplete ‘9’.

Many examples are unnecessary for significant performance gain. In Figure 5 we plot the
predictive AUROC of SMC against the number of feature samples from the training data passed to
the method. In this setup the information provided to SMC are a number of feature examples per
model that can be sub-sampled from to evaluate the regularisation losses and then used to construct
density estimates in the representation space. Naturally, as the number of samples increases so does
the quantity of information and so too does the performance of SMC. In the extremes, of course with
no samples no meaningful prediction can be made, and when all the training features are provided an
AUROC of about 0.97 is achieved. Interestingly, we can see that actually not a very large number of
samples are required to obtain strong performance here. Notably, after only 3 samples are provided,
SMC sees significant performance improvement to 0.83, compared to the baseline of 0.50. This
is not a significant amount of information, with just three features and none of the target details.

Further failure of global ensembles. We include some additional global ensemble baselines
in Figure 5 to demonstrate that they fail in more general settings than the synthetic example we
previously discussed. We include a simple majority voting ensemble as well as a method that weights
predictions based on a measure of the uncertainty of the ensemble member. In particular, we weight
proportional to the exponential of the reciprocal of the entropy of the predicted categorical distribution.

4.3 Case Study: Vancomycin Precision Dosing

Figure 6: Example Patient Blood Concen-
tration. Predicted concentration levels in the
blood of an example patient. Each line repre-
sents a different model with the black being
an ensemble. The area under the curve (AUC)
is an important target to estimate the impact
the drug will have, as it reflects the total expo-
sure to the patient, and one that is impossible
to calculate directly without continuous mon-
itoring. Graphic produced using the TDMx
(Wicha et al., 2015) software.

Population pharmacodynamic (PopPK) models are
differential equations that model the concentration
of a drug in the bloodstream of a patient. Van-
comycin one of the most common antibiotics -
with multiple PopPK models (Broeker et al., 2019)
having been developed on different patient popu-
lations. For many drugs, including vancomycin,
the area under the curve (AUC) of blood concen-
tration over time is an important marker in estimat-
ing the effectiveness of a drug intervention, and
can be used to support dose individualisation by
predicting drug response in the future. An exam-
ple of the models are found in Figure 6, showing
the predicted concentration levels in an example
patient for a number of different PopPK models.

SMC can be applied to real challenges. This phar-
macological setting is one where SMC would be a
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Table 2: Model Performance for predicting the AUC given varying numbers of blood concentration
observations. We report relative root-mean-square error (RMSE) - note: lower scores are better.

Model A priori One Two Three Four
Adane et al. (2015) 80.0± 0.7% 47.3± 0.4% 40.9± 0.6% 32.5± 0.3% 29.4± 0/3%

Mangin et al. (2014) 83.3± 0.6% 36.2± 0.3% 33.0± 0.3% 21.4± 0.2% 15.6± 0.2%
Medellín-Garibay et al. (2016) 76.5± 0.6% 33.5± 0.2% 28.5± 0.2% 20.9± 0.2% 17.4± 0.2%

Revilla et al. (2010) 32.7± 0.4% 21.6± 0.2% 20.0± 0.2% 16.7± 0.2% 15.3± 0.2%
Roberts et al. (2011) 35.8± 0.3% 20.6± 0.1% 20.0± 0.2% 16.1± 0.1% 14.5± 0.2%

Thomson et al. (2009) 48.2± 0.4% 30.2± 0.2% 25.8± 0.2% 20.9± 0.1% 19.1± 0.2%

Model Averaging 55.7± 0.4% 28.5± 0.2% 24.9± 0.2% 19.3± 0.2% 16.6± 0.2%
SMC 41.8± 0.5% 22.1± 0.2% 19.6± 0.2% 15.2± 0.2% 12.8± 0.1%

particularly appropriate method of choice. First, the private medical nature of the problem means that
data on drug response in humans is not widely available, and so new models cannot be trained on
the data of the previous models. Second, the datasets that the models are built on are often relatively
small and focus on a specific subpopulation, such as those at a particular hospital, or suffering a spe-
cific comorbidity. Third, researchers usually publish the model alongside demographic information
on the patients used to produce them, fulfilling SMC’s need for both a model and information.

Accurate Drug Response Estimation. We base our experiment around those of Uster et al. (2021)
who themselves consider an ensembling approach through the application of model averaging. We
use simulated patients provided by the authors to evaluate the effectiveness of SMC in the accuracy
of predicting the AUC across a number of settings when a number ∈ {0 (A priori), 1, 2, 3, 4} of
concentration measurements are taken in a 36-hour period. Ultimately, we have six models, each
from a separate subpopulation {extremely obese, critically ill post heart surgery, trauma patients,
intensive care patients, septic, hospitalised patients}, as well as a variety of demographic infor-
mation for each3. In our experiments we focus on the age, height, weight, sex, and creatinine
clearance levels as have been shown to be strongly associated with drug response (Uster et al.,
2021) and are provided for each model. In Table 2 we report the relative root-mean-square error
RMSE of the predictions - the lower, the better. We can see that SMC consistently performs well
- and indeed performs the best when at least two observations are made available to the methods.

4.4 Understanding Challenging Scenarios for SMC

We must accept that there’s no such thing as a free lunch, and SMC does not have the answer for
everything - there are scenarios where it may underperform for some reason other than obvious
cases when model information is not available or where individual models are themselves bad.

Performance discrepancy between models leads to worse predictions. Table 2 highlights a
situation where SMC may underperform. We see that SMC performs worse when there is high
variability in the performance of individual models. For example, in the A priori setting, there
is a very large range in RMSE, from 32.7 all the way up to 83.3. Since SMC does not attempt
to evaluate the relative performances of the models, when there are models that just perform very
badly they can severely detract from SMC’s performance. This highlights that SMC performs best
when all the models perform well in their respective domain, but that those domains are relatively
disjoint. Could you do anything if you know (through perhaps a validation set) that some models
perform very badly? A simple solution would involve also calculating the weights given by BMA as
well, before averaging both sets of weights. This would weight models globally by some level of
how confident we are that the model is good as well as locally by how well we believe the model
will be able to perform on a specific feature, balancing the potential causes of poor performance.

Domain overlaps result in marginal improvement. To examine this point we shall revisit the
regression example of earlier. SMC assumes that the domains of the different models are at least
partially different so that the feature dependant weights allow for selecting the model(s) that are most
appropriate. This benefit is lost when all the model domains are the same, as we show in Figure 3d
- all the models are equally good across the feature space and so an ensemble will perform just as
well as SMC. It is important to note SMC does not perform worse, it just does not perform better.

3Further information on the setup, including models and associated information can be found in the appendix.
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5 Discussion
Society and Ethics. The setting of our method is primarily focused on situations where the sharing
of data is in some way tricky or limited - a key example being the medical regime. As such,
our method is designed to be able to perform well in this area and so would hopefully have an
overwhelmingly positive impact. Of course as with any method there is potential for it to be misused in
an application which has damaging effects, but it seems unlikely that SMC poses any intrinsic danger.

Conclusions. In this paper we have introduced the framework of Synthetic Model Combina-
tion - an instance-wise approach to unsupervised ensemble learning, having established that
there are many cases when global ensembles are simply inadequate for meaningful predictions.
We additionally introduced a novel unsupervised representation learning method for the sparse
high-dimensional setting, and showed the use of our method in both example synthetic prob-
lems and the real case study of estimating the effectiveness of vancomycin precision dosing.
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