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Abstract

Pedestrian attribute recognition (PAR) seeks to pre-
dict multiple semantic attributes associated with a specific
pedestrian. There are two types of approaches for PAR:
unimodal framework and bimodal framework. The former
one is to seek a robust visual feature. However, the lack
of exploiting semantic feature of linguistic modality is the
main concern. The latter one utilizes prompt learning tech-
niques to integrate linguistic data. However, static prompt
templates and simple bimodal concatenation cannot to cap-
ture the extensive intra-class attribute variability and sup-
port active modalities collaboration. In this paper, we pro-
pose an Enhanced Visual-Semantic Interaction with Tai-
lored Prompts (EVSITP) framework for PAR. We present
an Image-Conditional Dual-Prompt Initialization Module
(IDIM) to adaptively generate context-sensitive prompts
from visual inputs. Subsequently, a Prompt Enhanced and
Regularization Module (PERM) is proposed to strengthen
linguistic information from IDIM. We further design a Bi-
modal Mutual Interaction Module (BMIM) to ensure bidi-
rectional modalities communication. In addition, existing
PAR datasets are collected over a short period in limited
scenarios, which do not align with real-world scenarios.
Therefore, we annotate a long-term person re-identification
dataset to create a new PAR dataset, Celeb-PAR. Experi-
ments on several challenging PAR datasets show that our
method outperforms state-of-the-art approaches.

1. Introduction

Pedestrian Attribute Recognition (PAR) plays a crucial role
in video surveillance systems [46, 50], facilitating the cate-
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(a) Unimodal PAR framework (b) Existing static bimodal PAR framework

(c) Our adaptive learnable bimodal PAR framework
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Figure 1. Different framework for PAR. (a) Existing unimodal
PAR framework, (b) existing static bimodal PAR framework, (c)
our adaptive learnable bimodal PAR framework.

gorization of diverse semantic attributes such as age, gen-
der, and accessories in varied scenarios, etc. [23, 36].
As a critical tool for advancing person re-identification
[14, 16, 48, 49] and person search [6, 17] techniques, PAR
has become a significant area of research within the com-
puter vision community.

Despite its importance, PAR faces significant chal-
lenges, notably the substantial intra-class attribute variabil-
ity among pedestrian images. Recent advancements in PAR
methodologies [8, 19, 32, 34, 37], built upon unimodal
framework, have propelled forward the state of the art. As
shown in Fig. 1 (a), the unimodal framework refers to mod-
els that exclusively process visual information from im-
ages using CNNs [19, 33, 45], Vision Transformers (ViTs)
[8, 42, 43] or their combinations [38]. However, these
frameworks, while adept at analyzing image data, fail to
integrate linguistic modalities, limiting their ability to in-
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corporate rich semantic contexts, which is crucial for ad-
dressing complex attribute variations [40].

The emergence of large-scale vision-language models,
such as Contrastive Language-Image Pre-Training (CLIP)
[31], has demonstrated remarkable capabilities in reason-
ing across multi-modal data. Unlike the unimodal PAR ap-
proach, two innovative PAR methods, VTB [4] and Prompt-
PAR [37], leverage prompt learning techniques [22, 30]
to integrate linguistic data, enhancing semantic informa-
tion processing during PAR model learning. As shown in
Fig. 1 (b), these methods enrich the image encoding pro-
cess by extracting and utilizing semantic information from
text encoders, thereby enhancing attribute label representa-
tion learning.

Despite their advancements, VTB and PromptPAR ex-
hibit limitations. Firstly, both methods use static prompt
templates that merely embed simple attribute labels, such
as generating sentences like “this pedestrian wears a hat.”.
This approach fails to capture the extensive intra-class at-
tribute variability, providing only coarse textual insights
that cannot adjust to the distinctive attribute features of each
pedestrian image. Secondly, these methods do not support
active collaboration between visual and textual feature dur-
ing the attribute learning process. VTB and PromptPAR
rely solely on merging visual and textual features using
a simple concatenation operation. This method limits the
potential for a more nuanced and interactive blending of
modalities, failing to fully exploit the rich, contextual in-
terplay between the modalities.

In response to these shortcomings, we propose the En-
hanced Visual-Semantic Interaction with Tailored Prompts
(EVSITP) framework, depicted in Fig. 1 (c), which exploits
the foundational capabilities of CLIP to engage both vi-
sual and linguistic modalities. Our framework introduces
the Image-Conditional Dual-Prompt Initialization Module
(IDIM), which enhances standard prompt templates, such
as “this pedestrian wears a hat.” by learning to specify
additional details about the hat, thus adapting the textual
output to each specific image. This capability is facili-
tated by leveraging advanced prompt learning techniques
[22, 30] that capture more nuanced contextual and attribute-
specific information, thereby addressing challenging intra-
class variability and enriching the descriptive accuracy of
the model compared with existing fixed static template
prompt solutions [4, 37]. Furthermore, we present the
Prompt Enhancement and Regularization Module (PERM)
that fuses features extracted from static fixed template
prompts and adaptive learnable prompts to create more ro-
bust, prompt-driven text feature embeddings.

Moreover, for a more nuanced and interactive blending
of visual and linguistic modality features, we propose the
Bimodal Mutual Interaction Module (BMIM). BMIM en-
sures bidirectional communication between visual and text

features, maintaining balanced importance for both modali-
ties during training. Specifically, BMIM includes Visual-
Linguistic Information Interaction (VLII) and Linguistic-
Visual Information Interaction (LVII), where VLII gener-
ates visual-guided linguistic features, and LVII produces
linguistically-enhanced visual features. Given these two
types of enriched features, our EVSITP framework enables
more precise attribute predictions compared with the sim-
ple concatenations between visual and text features used in
existing methods [4, 37].

In summary, main contributions of this paper can be
summarized in four-fold:
• We introduce the Enhanced Visual-Semantic Interaction

with Tailored Prompts (EVSITP) framework. Unlike tra-
ditional fixed static template prompts in existing PAR
methods, our EVSITP introduces IDIM to adaptively gen-
erate context-sensitive prompts from visual inputs.

• We present PERM to aggregate prompts feature, pre-
serving common semantic information while learning
context-sensitive features. A regularization loss leverages
common semantic features to prevent context-sensitive
features from overfitting on the training data.

• We propose BMIM to foster a robust bidirectional inter-
action between visual and linguistic modalities for a more
nuanced and interactive blending of visual and linguistic
modality features. This integration enhances the depth
and accuracy of PAR beyond previous methods.

• We conduct comprehensive experiments across four PAR
datasets and our newly proposed Celeb-PAR. The results
demonstrate that our EVSITP framework significantly
outperforms existing unimodal and bimodal approaches.

2. Related Work

2.1. Unimodal PAR Methods

Most existing PAR methods only consider the visual modal-
ity as input and can be categorized into two types: methods
that embed body information and those that apply attention
mechanisms.

Unimodal PAR Methods Embedded Body Informa-
tion: Li et al. [25] introduced a pose guided deep model
(PGDM) that utilizes a pre-trained pose estimation model
to identify body parts and derive relevant body features.
Zhang et al. [47] incorporated human pose keypoints as
supplementary data to guide a deep template matching net-
work, facilitating accurate alignment of attribute-specific
regions. Yang et al. [45] integrated keypoint estimation
and PAR into a multi-task training framework, utilizing key-
points to extract prior knowledge of body parts for feature
learning.

Unimodal PAR Methods Applied Attention Mecha-
nism: Tan et al. [33] designed three different attention
modules (i.e., parsing attention, label attention and spatial
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attention), aimed at exploring correlated and complemen-
tary information. Guo et al. [9] employed the CAM net-
work as a backbone, enhancing recognition performance
through the refinement of the attention heatmap. Jia et al.
[19] developed a spatial and semantic consistency (SSC)
framework that incorporates two complementary regular-
izations, aiming to capture inter-image relations through
both spatial and semantic lenses for each attribute.

2.2. Bimodal PAR Methods

Currently, two PAR methods, VTB [4] and PromptPAR
[37], share a similar starting point with our EVSITP, inte-
grating visual and linguistic modalities to tackle the PAR
task. Cheng et al. [4] modeled the PAR task as a bimodal
problem and introduced a textual modality to sufficiently
explore the inherent textual correlations in attribute anno-
tations. Wang et al. [37] employed the pre-trained vision-
language models to connect the relations between pedes-
trian images and attribute labels.

Unlike these works, which typically utilize a fixed
prompt template, our EVSITP framework recognizes that
such templates can only extract common linguistic informa-
tion and are insufficient for addressing intra-class attribute
variability. To overcome this, we propose an innovative
image-conditional prompt that generates adaptive linguis-
tic descriptions for specific attributes. Our method distinc-
tively considers both linguistic and visual modalities, en-
abling more effective integration and interaction between
the two.

2.3. Vision-Language Models

Large-scale vision-language models bridge the gap between
image and text embedding within a shared embedding
space, providing effective across various unimodal and mul-
timodal downstream tasks such as classification [3], action
quality assessment [44], and cross-modal retrieval [10, 11].
Foundational models, like CLIP are trained on extensive
image-text pairs using contrastive learning objectives.

Inspired by recent advances in NLP, prompt learning
has gained attention in the vision domain. Context Opti-
mization (CoOP) [52] explored learnable prompt optimiza-
tion for few-shot classification. Conditional context opti-
mization (CoCoOp) [51] improved CoOP’s performance by
learning to generate prompts conditioned on each image in-
stance. Visual Prompt Tuning (VPT) [21] aimed to reduce
the number of parameters that need fine-tuning by injecting
a set of learnable prompts into the input tokens.

Although previous works have utilized these powerful
vision-language models, most lack adequate exploitation
of the linguistic modality. In response, we design a dual-
prompt-driven strategy for the PAR task. The innovation
of our approach lies not only in employing fixed prompt
templates but also in introducing a learnable prompt that

flexibly guides the PAR model to extract more nuanced se-
mantic information from the linguistic modality, tailored to
the unique visual features of each image.

Compared to CoCoOp, our proposed learnable prompts
conditioned on visual features demonstrate greater ef-
ficiency. CoCoOp generates specific image-conditional
prompts for each image-text pair using a small Meta-Net,
requiring all prompts to be input into the text encoder to ex-
tract image-conditional text features for each image. This
process consumes substantial GPU memory and compu-
tational resources. In contrast, we apply the same learn-
able prompts across all image-text pairs and utilize image-
conditional cross-attention following the text encoder. This
approach allows for the extraction of text features only
once for all pairs, while still enabling effective visual-
semantic interactions to enhance the learning of more ef-
fective prompts. More comparison can be found in the sup-
plementary materials.

3. Methodology

3.1. Image-Conditional Dual-Prompt Initialization

Dual-Prompt. Large vision-language models pre-trained
on vast image-text pairs inherently capture rich semantic
knowledge. Therefore, by setting appropriate linguistic in-
puts for each attribute, the embedding extracted by the lan-
guage model will contain the underlying semantic relations
between different labels. In our method, we design a dual-
prompt, which consists of three groups fixed prompt tem-
plate and a learnable prompt.

For the PAR task, we take three groups of fixed prompt
template (i.e., “This pedestrian contains [attribute].”,
“There is a/an [attribute] in this pedestrian.”, and “[at-
tribute] in this pedestrian.”) as the inputs for all M attribute
labels. Subsequently, the text encoder is adapted to extract
three groups M label embeddings, which are denoted as
T1 ∈ RM×d, T2 ∈ RM×d, and T3 ∈ RM×d, respectively.

The fixed prompt template could extract rich semantic
knowledge. However, such information is static and inde-
pendent of the input image. For multi-label PAR task, sig-
nificant intra-class variations in attributes pose challenges,
rendering fixed prompt templates inadequate for accom-
modating the diverse and nuanced linguistic descriptions.
Therefore, except for the fixed prompt template, we adopt
the learnable prompts to promote the representations of lin-
guistic modality.

We prepend L learnable prompt tokens to each label
and yield a learnable prompt (i.e., “A pedestrian with a
[X1] [X2] . . . . . . [XL] attribute.”), where each [Xl]
(l ∈ 1, · · · , L, Xl ∈ Rd) represents a learnable text prompt
tokens with dimensions consistent with word embedding.
Then the sequences are fed into the text encoder to extract
M label embedding TL ∈ RM×d.
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Figure 2. Our EVSITP architecture. Overall, our approach consists of CLIP, IDIM, PERM, and BMIM. IDIM includes a dual-prompt,
within-group attention, and image-conditional attention. PERM includes across-group attention and prompt regularization. BMIM includes
visual-linguistic information interaction (VLII), linguistic-visual information interaction (LVII), and visual-linguistic shared token (V-L
shared token).

Within-Group Attention. Exploring the correlations
between different attributes in multi-label PAR tasks can
contribute to performance improvement [34, 39]. Guided
by this consideration, we introduce a within-group attention
to process the label embeddings obtained from fixed prompt
(T1, T2, and T3) and learnable prompt (TL), thereby captur-
ing the label co-occurrence relationships among individual
features. It processes linguistic features of all attributes gen-
erated under a fixed prompt template. Self-attention demon-
strates robust capabilities in modeling relationships within
an input sequence [7]. Therefore, we utilize a self-attention
to achieve our within-group attention, which can be formu-
lated as:

M out
1 = softmax

(
T1WQ (T1WK)

trs

√
d

)
,

T out
1 = softmax

(
T1WQ (T1WK)

trs

√
d

)
(T1WV ) ,

(1)

where WQ, WK , and WV are learnable weights of self-
attention module. T out

1 ∈ RM×d represents relation-aware
label embedding. M out

1 ∈ RM×M denotes the attention map
that captures the pair-wise relations of vectors in T1. trs is
short for transposing. Since other label embeddings (T2, T3,
and TL) are processed using Eq. 1, the explicit formula pre-
sentations are hereby omitted for brevity (T out

2 , T out
3 , T out

L ,
M out

2 , M out
3 , and M out

L ).
Image-Conditional Attention. To enable the learnable

prompts to flexibly adapt to the attribute variations in each
image, we design an image-conditional attention. It can
utilize visual feature to guide the entire learnable prompt,
enabling specific linguistic descriptions to be generated for
each image. Meanwhile, the fixed prompts is a sentence
formed by embedding attribute names to the fixed template.
The image-conditional attention is also applied to the fixed
prompt feature. Our objective is to utilize visual feature to
modulate within-group attention, enhancing linguistic de-

scriptions that match the attributes present in each image
and suppressing those associated with attributes not found
in the image. Cross-attention takes different sources as in-
puts and is good at capturing different inputs interactions.
Therefore, we leverage cross-attention to condition the la-
bel embedding on visual feature, which is formulated as:

T ′ica
L = softmax

(
T out

L W ica
Q

(
FW ica

K

)trs
√
d

)(
FW ica

V

)
,

(2)
where W ica

Q , W ica
K , and W ica

V are learnable weights of the
cross-attention. F represents the extracted visual feature
from the image encoder of CLIP. After that, we still per-
form a self-attention operation on T ′ica

L to perceive the
inter-relation between different attribute labels, which can
obtain relation-enhanced linguistic representation T ica

L and
relation-enhanced linguistic feature map M ica

L . Since other
label embeddings (T out

1 , T out
2 , and T out

3 ) are processed using
Eq. 2 and a self-attention, the explicit formula presentations
are hereby omitted for brevity (T ica

1 , T ica
2 , T ica

3 , M ica
1 , M ica

2 ,
and M ica

3 ).

3.2. Prompt Enhancement and Regularization

After passing through IDIM, we can obtain four linguis-
tic feature (i.e., T ica

1 , T ica
2 , T ica

3 , and T ica
L ). To fully lever-

age the strengths of different groups prompt, we propose
a PERM. PERM primarily focuses on the following two
aspects: (1) beyond the within-group relationships empha-
sized by IDIM, the across-group relationships should be
considered; (2) it is necessary to prevent the introduced
learnable prompt tokens from overfitting to the training
data.

Prompt Enhancement via Across-Group Attention.
In IDIM, we take into account the within-group correlations
among different label within the same group of linguistic la-
bel embedding. Further, we also consider the correlations
between corresponding attribute features across different
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groups. Therefore, we introduce an across-group attention
aimed at exploring the relationships between the same at-
tributes across different groups, thereby enhancing the rep-
resentation capability of each attribute feature. It involves
analyzing the relationships of the same attribute feature
generated across different prompt templates. To achieve
across-group attention in manner similar to within-group
attention, we continue to employ the self-attention mech-
anism. We define the linguistic features (T ica

1 , T ica
2 , T ica

3 )
processed through across-group attention as T out

across. Both
within-group and across-group attention employ the self-
attention mechanism, they exhibit significant differences in
processing linguistic inputs. Specifically, the linguistic in-
put dimension for within-group attention is 1 × M × d, it
focus on the correlation between different attributes. The
linguistic input dimension for across-group attention is M×
3× d, which emphasizes calculating the correlations of the
same attribute across different prompt templates. Finally,
we utilize channel concatenation operation to fuse T ica

L and
T out

across, which can obtain T out
perm. Then, we employ two fully-

connected layers to restore the channel number of T out
perm to

match the original channel number of T ica
L .

Prompt Regularization. Despite the learnable prompt
tokens comprising a limited number of parameters, the re-
sulting prompts are susceptible to overfitting on the training
data [1]. To address this issue, we propose an effective reg-
ularization loss that encourages the learned prompts to re-
main close to their linguistic counterparts in the embedding
space. This loss can be naturally viewed as a regularizer
that prevents the learned prompt-conditioned features from
diverging too much from the hand-crafted ones. The regu-
larization loss is formulated as:

Lreg =
1

M

M∑
i=1

∥∥ticai − ti
∥∥2
2
, (3)

where T out
across = {t1, · · · ti, · · · , tM} and T ica

L ={
ticai , · · · ticai , · · · , ticaM

}
. ∥ · ∥ represents the euclidean dis-

tance. We can minimize the distance between ti and ticai for
boosting the generalization ability.

3.3. Bimodal Mutual Interaction Module

Our EVSITP utilizes the image encoder and text encoder
of CLIP to extract the visual feature F and linguistic rep-
resentation T out

perm. In contrast to prior works (i.e., VTB [4]
and PromptPAR [37]), which treat linguistic representation
merely as a supplement to visual feature without consider-
ing the mutual interaction between bimodal features.

In our BMIM, we introduce three components: VLII,
LVII, and visual-linguistic shared token, which are designed
to transform the input sequences within cross-attention to
facilitate the interaction of bimodal information. To further
enhance the strengths of fixed and learnable prompts and

the relation among labels, we employ a trainable parameter
α that can adaptively assign different aggregation weights
to M out

across and M ica
L . Specifically, the weight for M out

across is α
and M ica

L is 1 − α, and the aggregated result T is then ob-
tained by applying this weighted sum to T out

perm. M out
across and

M ica
L represent the attention maps learned from T out

across and
T ica
L , respectively. They capture the co-occurrence relations

between attribute pairs in the PAR dataset.
Specifically, we employ the cross-attention mechanism

to implement two module: VILL and LVII. In VLII, we
integrate visual feature into linguistic feature (label em-
bedding) , utilizing linguistic feature T as the query for
cross-attention and generating visual-guided linguistic fea-
ture TV . The generated linguistic feature TV is context-
sensitive embeddings from visual inputs, providing tailored
descriptions for each attribute. Conversely, LVII aims to
integrate linguistic feature into visual feature , where vi-
sual feature F are used as the query for cross-attention and
produces linguistic-related visual feature FL. The resulted
visual feature FL is semantic-aware representations from
label semantic space, supplementing the semantic informa-
tion lacking in visual features.

Inspired by the learnable class token of ViT [7], our
BMIM embeds the introduced V-L shared token to F and
T to further facilitate interaction between visual and lin-
guistic modalities. The V-L shared token is integrated into
both the visual and linguistic pathways prior to the cross-
attention operation. This placement allows the token to
act as a bridge, facilitating synchronized processing of vi-
sual and linguistic information. This synchronization sig-
nificantly improves the model’s ability to amalgamate and
leverage information from both modalities, ultimately en-
hancing attribute recognition.

Following the mutual interaction between visual feature
and linguistic representation, the resulting output TV and
FL serve as final attribute recognition. In traditional PAR
methods, the final feature outputs obtained from CNN or
Transformer are typically projected onto the label space us-
ing a linear layer for final prediction. Different from these
methods, we calculate the similarity between the visual-
guided linguistic feature and the linguistic-related visual
feature to conduct classification directly within the feature
space. The classification probability ŷj for j-th attribute can
be calculated as:

ŷj = sigmoid (GAP(FL) · TV ) . (4)

where GAP represents the global average pooling,
GAP(FL) ∈ RB×1×d, and TV ∈ RB×d×M . Eq. 4 is
followed by a squeeze operation, which can obtain ŷj ∈
RB×M .

In the PAR task, we compute the dot-product similar-
ity between FL and TV to determine the attribute probabil-
ity. The traditional similarity leverages relative measure-
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ment between visual feature vector of each attribute and
all prompts feature vectors. Our EVSITP only computes
the similarity between each visual feature vector and its
corresponding linguistic prompts feature, which can reduce
computational redundancy and enhance computational effi-
ciency.

3.4. Optimization

In our EVSITP, we adopt the binary cross-entropy loss
(BCELoss) with sigmoid function as the optimization tar-
get. Together with the regularization loss of Eq. 3, the final
objective is defined as:

L = Lbce + λLreg , (5)

where λ is a hyper-parameter to make a trade-off between
the two losses.

4. Celeb-PAR Dataset
As shown in Tab. 1, all existing public PAR datasets (i.e.,
PETA [5], PA100K [29], RAPv1 [24], and RAPv2 [26])
are derived from pedestrian images in limited scenes (e.g.,
shopping mall) or specific season. However, the PAR algo-
rithms in real-world scenarios should demonstrate robust-
ness to the attributes that may appear across different scenes
and seasons. For example, if the PAR dataset is collected in
summer , it is unlikely to include attributes such as coats or
sweaters, which may hinder the model’s ability to general-
ize to winter attributes.

To provide a publicly available benchmark, we con-
struct a new PAR dataset (named Celeb-PAR) based on
the long-term person re-identification dataset (Celeb-reID)
[12]. Celeb-reID is collected in highly diverse real-world
environments/backgrounds, encompassing multiple camera
views and a variety of shooting conditions, with each in-
dividual’s clothing exhibiting significant dynamic changes.
Celeb-reID is a benchmark dataset for evaluating long-term
person re-identification algorithms [13, 15, 41]. Based on
this dataset, we annotate 34,186 images (including 20,208
images in the training set and 13,978 images in the test set),
with each images containing 41 attributes.

To ensure the dataset aligns more closely with real-world
scenarios, we ensure that pedestrian IDs in the training set
and test set are completely non-overlapping. Compared to
existing non-overlapping ID PAR datasets (i.e., PETAzs and
RAPzs), our newly proposed dataset exhibits a notable in-
crease in image number. More importantly, these samples
include clothing outfits from a variety of different scenarios
and seasons (referred to Fig. 3 (a), (b)), thereby rendering
the attribute information contained within our dataset more
diverse and abundant.

Fig. 3 (c) presents the co-occurrence matrix of pedes-
trian attributes, where each cell represents the frequency

Table 1. The statistics of our Celeb-PAR dataset and other PAR
datasets.

Dataset Year Attributes Images Non-overlapping Multi-seasons Multi-scenarios

PETA 2014 61 19,000 × × ×

PA100K 2017 26 100,000 × × ×

RAP1 2016 69 41,585 × × ×

RAPv2 2019 76 84,928 × × ×

PETAzs 2021 35 19,000 ✓ × ×

RAPzs 2021 53 26,638 ✓ × ×

Celeb-PAR(Ours) 2024 41 34,186 ✓ ✓ ✓

(a) Images Biased toward Spring and Summer

(b) Images Biased toward Autumn and Winter (c) Co-occurrence Matrix of Attributes

Figure 3. The statistical properties and illustration of representa-
tive samples in our newly proposed Celeb-PAR dataset.

of two attributes appearing together. Darker areas indicate
higher co-occurrence frequency. More information about
our newly proposed dataset can be found in the supplemen-
tary materials.

In Sec. 5.1, we reproduce some state-of-the-art PAR
methods on Celeb-PAR and compare their performance.

5. Experiments
Comprehensive evaluations are conducted to verify the ef-
fectiveness of the proposed EVSITP. The experiments are
conducted on four PAR benchmark datasets. Details about
these datasets and evaluation protocols can be found in the
supplementary material. More implementation details and
ablation studies are shown in the supplementary material.

5.1. Comparison with State-of-the-Art Methods

In Tab. 2, we show the performance comparison between
our EVSITP and several recent SOTA methods (DAFL [20],
Label2Label [28], SOFAFormer [42], AttExpIB-Net [40],
VTB [4], and PromptPAR [37]) on PETA, PA100K, RAPv1,
and RAPv2. It is evident that our method achieves the
best performance in terms of mA on four datasets, respec-
tively. In mA, our EVSITP outperforms the second-best
performance PromptPAR [37] by 0.89%, 1.19%, 0.65%,
and 0.69% on four datasets, respectively.

PA100K is the most challenging dataset among the four
PAR datasets, with PromptPAR previously achieving SOTA
performance. Our method surpasses all evaluation met-
rics, with specific improvements of 1.19% in mA, 0.76%
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Table 2. Performance comparison of SOTA methods on the PETA, PA100K, RAPv1, and RAPv2 datasets. Performance in five metrics,
including mean Accuracy (mA), accuracy (Accu), precision (Prec), recall, and F1, is evaluated. The first and second highest scores are
represented by bold font and underline respectively.

Method
PETA PA100K RAPv1 RAPv2

mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1 mA Accu Prec Recall F1
PGDM [25] 82.97 78.08 86.86 84.68 85.76 74.95 73.08 84.36 82.24 83.29 74.31 64.57 78.86 75.90 77.35 - - - - -
GRL [50] 86.70 - 84.34 88.82 86.51 - - - - - 81.20 - 77.70 80.90 79.29 - - - - -

VRKD [27] 84.90 80.95 88.37 87.47 87.91 77.87 78.49 88.42 86.08 87.24 78.30 69.79 82.13 80.35 81.23 - - - - -
ALM [35] 86.30 79.52 85.65 88.09 86.85 80.68 77.08 84.21 88.84 86.46 81.87 68.17 74.71 86.48 80.16 79.79 64.79 73.93 82.03 77.77

SSChard [19] 85.92 78.53 86.31 86.23 85.96 81.02 78.42 86.39 87.55 86.55 82.14 68.16 77.87 82.88 79.87 - - - - -
IAA-Caps [39] 85.27 78.04 86.08 85.80 85.64 81.94 80.31 88.36 88.01 87.80 81.72 68.47 79.56 82.06 80.37 79.99 68.03 78.75 81.37 79.69
FEMDAR [2] 84.73 78.45 86.79 85.69 85.90 81.02 79.65 87.99 87.45 87.32 79.71 66.88 79.11 79.24 78.76 - - - - -

EALCw.ACM [38] 85.94 80.58 87.49 87.38 87.44 80.52 80.13 87.18 88.59 87.88 82.09 69.30 79.63 82.77 81.17 - - - - -
SOFAFormer [42] 87.10 81.10 87.80 88.40 87.80 83.40 81.10 88.40 89.00 88.30 83.40 70.00 80.00 83.00 81.20 81.90 68.60 78.00 83.00 80.20
AttExpIB-Net [40] 85.90 77.58 84.88 86.36 85.32 83.23 79.42 86.70 88.60 87.23 82.46 68.81 79.67 81.63 80.25 80.60 67.31 78.66 80.38 79.15

DAFL [20] 87.07 78.88 85.78 87.03 86.40 83.54 80.13 87.01 89.19 88.09 83.72 68.18 77.41 83.39 80.29 81.04 66.70 76.39 82.07 79.13
VTB [4] 85.31 79.60 86.76 87.17 86.71 83.72 80.89 87.88 89.30 88.21 82.67 69.44 78.28 84.39 80.84 81.34 67.48 76.41 83.32 79.35

VTB+ [4] 86.34 79.59 86.66 87.82 86.97 85.30 81.76 87.87 90.67 88.86 83.69 69.78 78.09 85.21 81.10 81.36 67.58 76.19 84.00 79.52
PromptPAR [37] 88.76 82.84 89.04 89.74 89.18 87.47 83.78 89.27 91.70 90.15 85.45 71.61 79.64 86.05 82.38 83.14 69.62 77.42 85.73 81.00
EVSITP (Ours) 89.65 83.93 89.67 90.73 90.20 88.66 84.54 89.90 92.09 90.98 86.10 71.64 79.24 86.65 82.78 83.83 69.32 77.64 85.13 81.21

Table 3. Comparison with state-of-the-art methods on Celeb-PAR.

Method mA Accu Prec Recall F1 mFive
IAA-Caps* [39] 74.95 65.39 76.28 80.01 77.78 74.88
Label2Label [28] 75.13 64.30 73.53 81.38 76.95 74.26

SSC* [19] 73.83 64.10 74.56 79.93 77.15 73.91
AttExpIB-Net* [40] 75.82 65.10 75.77 80.03 77.52 74.85
SOFAFormer* [42] 75.81 65.53 75.57 80.96 77.88 75.15
RethinkingPAR [18] 73.61 64.41 76.12 78.55 77.32 74.00

ADFL [53] 74.95 62.91 73.71 78.94 76.24 73.35
VTB [4] 75.47 64.88 74.42 81.34 77.42 74.71

PromptPAR [37] 78.36 67.88 76.48 83.72 79.66 77.22
EVSITP (Ours) 78.61 68.57 78.35 82.56 80.40 77.70
* represents the results obtained from our reproduced or unofficial code.

in Accu, 0.63% in Prec, 0.39% in Recall, and 0.83% in F1.
Although both methods incorporate the linguistic modality
as an information source, our approach further considers the
intra-class attribute variability and optimizes the fusion be-
tween the two modalities compared to PromptPAR.

Compared to another bimodal method VTB , under the
condition of using the same visual encoder, our method
achieves significant performance improvements across four
datasets, achieving mA improvement of 3.31%, 3.36%,
2.41%, and 2.47%, respectively. On the other hand, com-
pared to the previously best-performing unimodal method
DAFL [20], our approach gains significant improvements
in evaluation metrics across every dataset. This notable ad-
vancement is primarily attributed to the incorporation of the
linguistic modality, which enables the PAR model to ac-
cess rich semantic information. By effectively integrating
these semantic information with visual features, our method
demonstrates superior performance.

5.2. Results on Our Newly Proposed Celeb-PAR

Celeb-PAR is our newly proposed dataset, which is con-
structed based the criteria of a highly variable cloth-

Table 4. Ablation study on the proposed modules. FP and LP
represent fixed prompt and learnable prompt, respectively.

FP LP PERM BMIM
RAPv1 RAPv2

mA Recall F1 mA Recall F1
× × × × 82.57 77.50 80.87 79.15 74.62 79.28
✓ × × × 83.87 83.02 82.16 81.66 82.79 81.30
× ✓ × × 84.25 85.34 82.33 82.35 82.73 80.61
✓ ✓ ✓ × 85.19 85.77 82.72 82.88 83.71 81.20
✓ ✓ ✓ ✓ 86.10 86.65 82.78 83.83 85.13 81.21

changing person re-identification dataset, thus exhibiting
more significant intra-class attribute variability. In Tab. 3,
we present the performance of selected unimodal PAR
method (IAA-Caps [39], Label2Label [28], SSC [19],
AttExpIB-Net [40], SOFAFormer [42], RethinkingPAR
[18], and ADFL [53]) and bimodal PAR methods (Prompt-
PAR [37] and VTB [4]) on the Celeb-PAR dataset.

Based on the result presented in Tab. 3, our method per-
forms comparably to PromptPAR in terms of performance.
Our method achieves SOTA on four evaluation metrics (i.e.,
mA, Accu, Prec, and F1), while PromptPAR ranks first on
one metrics (i.e., Recall). Our EVSITP surpasses Prompt-
PAR by 0.25%, 0.69%, 1.87%, and 0.74% across these four
metrics, respectively. To more comprehensively assess the
generalization ability of our method, we leverage mFive
proposed in [46]. On this metric, our method demonstrates
superior performance, surpassing PromptPAR by 0.48%.

5.3. Ablation Study

The ablation study is provided in Tab. 4:
Effects of Fixed Prompt. It is observed that with fixed

prompt, the performance increases from 82.57% to 83.87%
(from 79.15% to 81.66%) in term of mA on RAPv1 and
RAPv2. This demonstrates that compared to merely us-
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Figure 4. Ablation study on our PERM.

ing attribute names as input for the text encoder, employing
fixed prompt templates can more effectively exploit the rich
semantic information within the linguistic modality.

Effects of Learnable Prompt. Compared to fixed
prompt templates, we introduce the learnable prompt to-
kens to address intra-class attribute variability. Experimen-
tal results (83.87% (81.66%) vs. 84.25% (82.35%)) indicate
that these learnable prompt tokens can yield greater perfor-
mance enhancements.

Effect of PERM. In our EVSITP, we adopt dual-prompt
strategy and utilize PERM to better enhance the acquired
linguistic features while prevent overfitting to the training
dataset. As shown in Tab. 4, the performance of dual-
prompt linguistic features enhanced by PERM surpasses
that of using any single prompt feature alone. Under the
enhancement of PERM, our EVSITP achieves 85.19% and
82.88% in terms of mA on RAPv1 and RAPv2, respectively.

Effect of BMIM. Our introduced BMIM approach treats
visual and linguistic features equally, fully facilitating the
fusion of these two modality features, and thus enabling
more effective application to the final attribute recogni-
tion task. As shown in Tab. 4, our BMIM can achieve
performance improvements of 0.91% and 0.95%, respec-
tively. The performance improvement demonstrates that
equal treatment of visual and linguistic features can facil-
itate better feature representation.

Analysis of PERM. In Fig. 4, we analyze the impact of
the absence of regularization on overall performance. De-
spite the learnable prompt tokens comprising a limited num-
ber of parameters, the resulting prompts are susceptible to
overfitting on the training data. As shown in Fig. 4, it is in-
tuitive to observe that the proposed regularization loss can
effectively mitigate the overfitting phenomenon to a certain
extent, resulting in performance improvements. With the
application of our regularization loss, PERM can achieve an
additional performance improvement of 0.46% and 0.38%
in terms of mA on RAPv1 and RAPv2, respectively.

5.4. Generalization Analysis on PETAzs and RAPzs

The datasets, PETAzs and RAPv2zs, have non-overlapping
pedestrian IDs between the training and testing, which can
provide a better measure of the model’s generalization abil-

Table 5. Performance comparison on PETAzs and RAPzs.

Method
PETAzs RAPzs

mA Accu Recall F1 mA Accu Recall F1
MsVAA 71.03 59.38 70.10 72.37 71.32 63.59 76.62 76.44

VAC 71.05 58.90 70.48 72.13 70.20 65.45 76.65 77.07
ALM 70.67 58.56 71.31 71.65 71.97 64.52 77.74 77.06

IAA-Caps 72.53 60.07 73.05 73.07 72.00 64.61 77.06 77.15
SOFAFormer 74.70 62.10 75.10 74.60 73.90 66.30 79.40 78.40

VTB 75.13 60.50 74.40 73.38 75.76 64.73 80.85 77.35
EVSITP 77.83 65.38 80.75 78.07 78.82 68.92 82.93 81.42
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Figure 5. Sensitivity of parameters λ and L.

ity. The experimental results on these datasets are presented
in Tab. 5. It is observed that our EVSITP achieves the
best performance on two datasets. Compared with previous
SOTA bimodal methods, our method achieves a significant
improvement in terms of mA. Compared to previous SOTA
unimodal methods, our approach significantly outperforms
SOFAFormer by a large margin on both datasets.

5.5. Parameter Analysis

The parameter λ in Eq. 5 determines the trade-off between
Lbce and Lreg . As λ increases from 0.1 to 1.0 (Fig. 5 (a)),
the mA exhibits a trend of first increasing and then decreas-
ing, with the highest and second-highest performance re-
sults achieved at 0.4 and 0.5, respectively. After a compre-
hensive comparison between F1 and mFive, we set λ to 0.5.

Fig. 5 (b) demonstrates the impact of different prepend-
able learnable prompt tokens on overall performance. There
is an initial upward trend as L increases from 4 to 12, reach-
ing a peak at L = 12, followed by a decline thereafter.

6. Conclusion

In this work, we present EVSITP, a novel visual-linguistic
representation learning framework for the PAR task. To
address the defects of existing bimodal PAR method, our
EVSITP proposes IDIM to adaptively generate context-
sensitive prompts from visual inputs. We further propose
the PERM to enhance and aggregate linguistic feature.
BMIM is designed to foster a robust bidirectional interac-
tion between two modalities. Extensive experiments on the
public datasets and the newly proposed Celeb-PAR demon-
strate that EVSITP achieves SOTA performance.
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