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Abstract

Generalizable Neural Radiance Fields (GNeRF) are recog-001
nized as one of the most promising techniques for novel view002
synthesis and 3D model generation in real-world applica-003
tions. However, like other generative models in computer004
vision, ensuring their adversarial robustness against vari-005
ous threat models is essential for practical use. The pio-006
neering work in this area, NeRFool, introduced a state-of-007
the-art attack that targets GNeRFs by manipulating source008
views before feature extraction, successfully disrupting the009
color and density results of the constructed views. Build-010
ing on this foundation, we propose IL2-NeRF (Iterative L2011
NeRF Attack), a novel adversarial attack method that ex-012
plores a new threat model (in the L2 domain) for attack-013
ing GNeRFs. We evaluated IL2-NeRF against two standard014
GNeRF models across three benchmark datasets, demon-015
strating similar performance compared to NeRFool, based016
on the same evaluation metrics proposed by NeRFool. Our017
results establish IL2-NeRF as the first adversarial method018
for GNeRFs under the L2 norm. We establish a founda-019
tional L2 threat model for future research, enabling direct020
performance comparisons while introducing a smoother,021
image-wide perturbation approach in Adversarial 3D Re-022
construction.023

1. Introduction024

In recent years, machine learning has significantly advanced025
the field of computer vision, with numerous state-of-the-art026
(SOTA) models pushing the boundaries of 2D and 3D rep-027
resentation. Among these models, Neural Radiance Fields028
(NeRF) has emerged as a powerful method for reconstruct-029
ing highly detailed 3D scenes from 2D images [9, 21, 33].030
NeRF utilizes a deep learning model to represent a 3D scene031
as a continuous volumetric field, generating realistic views032
from any camera angle based on its learned representation033
of light and color radiance.034

As machine learning vision models see greater in-field035
deployment, security concerns around these models in-036
crease. Specifically, adversarial attacks can perturb images,037

in turn producing adversarial examples that machine learn- 038
ing models misclassify. The first proposed successful attack 039
for GNeRF models was the NeRFool attack under the L∞ 040
norm [8]. 041

Being the first adversarial attack proposed on GNeRF 042
models, NeRFool was the advent for analyzing robustness 043
for a novel type of vision model. With this in mind, we are 044
keen to present new attacks across new threat norms. Our 045
main contributions can be summarized as follows: 046
1. We introduce IL2-NeRF, the first adversarial attack on 047

GNeRF models in the L2 domain, providing a novel 048
threat model that applies uniform perturbations across 049
the entire image and setting a foundation for future L2- 050
based attacks. 051

2. Technical Contribution: We utilize several unique fac- 052
tors, such as an independent perturbation variable and 053
a weighted loss term, that presents a unique perspec- 054
tive on iterative attack algorithms. The traits we present 055
here provide a framework for future algorithms to exploit 056
GNeRF robustness. 057

3. Comprehensive Experimental Validation: We demon- 058
strated the effectiveness of IL2-NeRF through rigorous 059
experiments across multiple datasets (LLFF, DeepVox- 060
els, Synthetic) and GNeRF models (IBRNet, GNT). The 061
results showcase IL2-NeRF’s comparable performance 062
with existing methods like NeRFool in degrading 3D 063
model outputs under varied conditions. 064

2. Preliminaries 065

In this section, we will formalize the loss objective of the 066
NeRF and GNeRF pipelines. This allows us to define the 067
NeRFool attack. Lastly, we propose the threat model we 068
operate under. All of this serves as a preliminary to establish 069
our new attack algorithm. 070

2.1. NeRF Pipeline 071

In computer vision, the 3D coordinate of the camera is 072
stored in the form of the location (x, y, z) and direction (θ, 073
ϕ). The rays are formed and broken into ro ∈ R3 (ray ori- 074
gin/camera center) and rd ∈ R3 (ray direction) based on the 075
image size. 076
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Each chunk’s color and density can later be synthesized077
into the color along the ray. ie, the ray segment becomes078
rt = ro+tird, where ti ∼ U [tn+ i

N (tf−tn), tn+ i+1
N (tf−079

tn)] [21].080

A rendering model is trained using a loss function com-081
prised of multiple functions aggregated together to generate082
our final scene. The predicted color is a function of the083
camera’s ray r(t) that is input into volume density function084
σ. The function T (t) denotes the likelihood that the ray085
will be transmitted from tn to t without colliding with an-086
other rendered particle. Like the ray, the transmittance T087
is broken down into N evenly spaced bins partitioned from088
[tn, tf ]. The function then aggregates these partitioned bins089
back into the full transmittance. The function then uses the090
sum to estimate the continuous integral C(r).091

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, (1)092

where T (t) = exp
(
−
∫ t

tn
σ(r(s))ds

)
.093

The estimated color takes in the continuous integral094
while using δi, the distance between consecutive samples095
along the ray, in the exponential term exp(-σiδi) to model096
then calculate the attenuation of the ray as it travels, which097
can be given by098

Ĉ(r) =

N∑
i=1

Ti (1− exp(−σiδi)) ci (2)099

where Ti = exp
(
−
∑i−1

j=1 σjδj

)
.100

After the volumetric rendering, we receive the learned101
image from that particular coordinate. We then use the102
generated 2D image against the ground truth image to103
calculate the Mean Squared Error (MSE) Loss from which104
the model learns and updates its weights. formally, the loss105
function is as follows106

107

L =
∑
r∈R

[
∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)− C(r)∥22

]
(3)108

for all the accumulation of rays as R where Cc(r) is109
the output from the coarsely ray-sampled NeRF model and110
Cf (r) is for the finely ray-sampled NeRF model.111

2.2. GNeRF Adaptations112

To enable cross-scene generalizations, subsequent work113
adopt CNN encoders to extract features {E(Ii)} from the114
source views {Ii} [3, 17, 27, 31, 32]. Each sampled point x115
is transformed by some function πi, producing feature vec-116
tors e = {E(Ii)[πi(x)]} that the GNeRF model f can use117
to produce the density and color f(x, rd, e) = (σ, c).118

2.3. NeRFool 119

The original NeRF paper presents two attacks - one that 120
samples a subset of rays, and one that perturbs all rays. 121
We will only explore the first NeRFool attack known as the 122
“View Specific” attack [8]. 123

The view-specific attack adds perturbations ∆ = {δi} to 124
the RGB pixels of selected source view images (Ii). To min- 125
imize perturbations while maximizing loss, ∆ is optimized 126
with a perturbation budget of ϵ over a L∞ norm constraint 127
(∥δi∥∞ ≤ ϵ). This gives us the attack objective 128

max
∀δi∈∆:∥δi∥∞≤ϵ

L̂rgb(Rtarget, f,∆) (4) 129

where f is the GNeRF model and Rtarget are the randomly 130

sampled rays for the source view image. L̂rgb is a modi- 131
fied loss function that uses a pseud-ground truth since the 132
ground truth image might not be available. Formally, it is 133
expressed as follows, 134

L̂rgb(R, f,∆) =
∑
r∈R
∥Ĉ(r, fadv

∆ )− Ĉ(r, f clean)∥22 (5) 135

where fadv
∆ is the output from the model with adversarial 136

image and f clean is the output from the model with clean 137
image. Lastly, δi is iteratively optimizing by updating at 138
each step via gradient descent. An Adam Optimizer is used 139
as follows: 140

δ
(t+1)
i = clip(δti + η · Adam(∇δti

L̂rgb),−ϵ, ϵ) (6) 141

while keeping the sum between our source image and per- 142
turbation Ii + δi ∈ [0, 1] within an expected pixel bound. 143

2.4. Threat Model 144

All adversarial attacks can be categorized as black-box or 145
white-box attacks [19]. White-box attacks assume the at- 146
tackers have full access to the target victim model, such as 147
model parameters or the training data set. In contrast, black- 148
box attacks are implemented without prior knowledge of the 149
target victim model, except for the model output [15]. 150

While most existing GNeRF attacks operate under the 151
L∞ norm, focusing on individual pixel perturbations, the 152
L2 norm offers a more uniform and holistic approach to 153
perturbations across the entire image, which can be more 154
realistic and challenging for generative models to counter 155
[1, 4, 5, 18, 23]. By introducing the L2 norm in this set- 156
ting, we provide a new threat model that broadens the scope 157
for evaluating adversarial robustness in GNeRF. Both types 158
of attacks work by applying perturbations under a speci- 159
fied norm. Most popular attacks work under the L∞ norm, 160
where updates are performed coordinate-wise and bounded 161
by a specified ϵ term [6, 7, 10, 11, 14, 16]. However, at- 162
tacks that work exclusively in the L2 norm, or Euclidean 163
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distance, have gained notoriety, especially in the black-box164
domain [22, 24, 26, 29, 35].165

The NeRFool attack requires the model loss and the ro-166
tation and translation matrix, making it a white-box attack.167
We work under the same assumption that we have access168
to rotation and translation matrices and can compute model169
loss. Unlike NerFool, which works under the L∞ norm,170
we introduce an iterative algorithm that works under the L2171
norm. The following sections explain our threat model’s172
formalism and efficiency.173

3. IL2-NeRF: NeRFool in L2 Domain174

In this section, we present IL2-NeRF, an iterative attack that175
perturbs NeRF source images in Euclidean distance. We176
draw insight from both the NeRFool and PGD attacks.177

3.1. Motivation178

Current adversarial approaches to GNeRF only focus on179
the L∞ norm, which targets maximal per-pixel perturba-180
tions [12, 13]. While effective, this approach tends to intro-181
duce highly localized perturbations, emphasizing individ-182
ual pixel changes without a unified impact across the im-183
age [1, 4]. In contrast, the L2 norm threat model offers a184
different perspective, allowing for smoother, more evenly185
distributed perturbations across all pixels [4, 23]. This uni-186
formity in perturbation can be particularly advantageous for187
generative models, where coherent transformations across188
the image may be more perceptually relevant than isolated189
pixel deviations [5, 18, 23].190

From this, we derive that L2 perturbations can provide a191
realistic setting for GNeRF adversarial attacks, as they re-192
semble noise patterns that affect the entire image uniformly,193
mimicking real-world imaging artifacts. Exploring the L2194
norm thus enables us to assess GNeRF models’ robustness195
in an alternative threat model that may reflect practical ad-196
versarial scenarios more accurately than L∞. This work in-197
troduces the first attack under the L2 norm for GNeRF mod-198
els, establishing a baseline for future explorations in this199
domain and enabling direct comparisons in the L2 threat200
space.201

3.2. Objective202

We work under a similar objective as the original NeRFool203
attack, but we rework the formalism to include minimizing204
adversarial perturbation as an objective. For an image-set205
{xi}Ni=1, we want to find {δi}Ni=1 such that ∀δi ∈ ∆,206

min
∥δi∥2

(
max L̂rgb(Rtarget, f,∆)

)
s.t. ∥δi∥2 ≤ ϵ (7)207

where f is the GNeRF model, Rtarget are the randomly208

sampled rays for the source view image, and L̂rgb is a mod-209
ified loss function defined in Eq. (5).210

3.3. Algorithm & Explanation 211

Algorithm 1 IL2-NeRF
Input: Set of sampled rays Rtar, GNeRF model f , Input
images {x}Ni=1, Number of Steps T , Step Size α, Perturba-
tion Limit ϵ
Output: δTi for each xi

1: for i← 1 to N do
2: δt0 ∈ U [−ϵ, ϵ]
3: for t← 1 to T do
4: δ′ti = ∇δti−1

L̃rgb(Rrgb, f, δ
t
i−1)

5: δ̃ti = δti−1 + α · sign
(

δ′ti
||δ′ti ||2

)
6: δti = δti−1 + ||δ̃ti − δti−1||2
7: δti = clip(δti ,−ϵ, ϵ)
8: end for
9: end for

10: Return {δTi }Ni=1;

The IL2-NeRF algorithm is an iterative adversarial at- 212
tack method specifically designed for GNeRF models. Un- 213
like traditional 2D adversarial attack methods, our method 214
targets the volumetric representation of scenes within GN- 215
eRF, aiming to produce perturbations along rays that impact 216
the rendered output views. Our algorithm uses gradient- 217
based optimization, customizing the loss function to target 218
the RGB and density of the final output. Specifically, in our 219
implementation, we are taking the gradient over 8 different 220
loss functions, each crafted upon GNeRF’s unique 3D per- 221
spective. 222

The pseudo-code of our algorithm is provided in Algo- 223
rithm (1). We iterate through each source image and sample 224
the initial perturbation from a Uniform distribution with up- 225
per and lower bounds set at our perturbation limit. 226

At the i-th step, we take the gradient of our GNeRF 227
model f when we add the last δi−1 perturbation to our 228
source images and subset of rays, denoting this change in 229
loss as δ′i−1. From here, we add the product of the sign of 230
L2 normalized δi−1 grad with a specified step size α to δi−1. 231
We denote this as δ̃i. Note that Eq. (6) uses η to denote its 232
learning rate. α is a normalized learning rate determined by 233
α = η

255 . 234
To ensure that our final perturbation is added with re- 235

spect to the L2 norm, we take the difference between δ̃i and 236
δi−1, normalize this in L2, and add this back δi−1 to receive 237
our current δi term. To ensure our final perturbation stays 238
within our perturbation limit ϵ, we clip in the ϵ ball. 239

3.4. Key Technical Differences from PGD 240

1. Ray-Based Perturbation vs. Pixel-Level Perturba- 241
tion: Traditional PGD focuses on perturbing individual 242
pixels in 2D images only[19]. In contrast, IL2-NeRF ap- 243
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plies perturbations along both the sampled rays in 3D244
space (Rtar) and at a pixel-level, leveraging the GN-245
eRF model’s structure and targeting the volumetric ren-246
dering process. This combination of perturbing pixels247
and rays fundamentally changes how adversarial effects248
are achieved, as the perturbations influence the entire 3D249
scene rather than a single 2D representation.250

2. Customized Gradient-Based Optimization for RGB251
and Density Losses: Our algorithm uses gradient-based252
optimization, customizing the loss function to target both253
the RGB values and the density of the final output.254
Specifically, in our implementation, we compute the gra-255
dient over a weighted loss of 8 different loss functions,256
each designed to exploit GNeRF’s unique 3D perspec-257
tive. In contrast, traditional PGD typically uses only258
a single basic loss function, such as Cross Entropy, to259
guide perturbations in 2D adversarial attacks [2, 19].260
These tailored loss functions in IL2-NeRF enable pre-261
cise control over how the adversarial perturbations affect262
the rendered output in terms of both color and depth.263

3. Direct Perturbation Optimization: Most adversarial264
attacks operate by creating an initial adversarial image265
and then directly optimizing the loss and perturbation of266
the adversarial image with respect to its clean counter-267
part [6, 7, 10, 11, 14, 16]. Our algorithm is unique in268
that we maintain our perturbation as a separate variable269
and update this using the gradient loss that our perturbed270
rays and images create.271

4. Experiments & Results272

To properly compare the performance of NeRFool with IL2-273
NeRF, we maintain a controlled environment where only274
one parameter is variable and the rest are fixed. We compare275
attack performance and pixel-wide perturbations between276
ground truth source images and the predicted outputs from277
feeding the perturbed source images.278

4.1. Experiment Setup279

Models We run both NeRFool and IL2-NeRF on two SOTA280
GNeRF methods: IBRNet [28] and GNT [27]. We use the281
pre-trained weights provided by their corresponding imple-282
mentations.283

Datasets On IBRNet and GNT, we run experiments284
across three different datasets: LLFF [21], DeepVoxels285
[25], and Synthetic [20]. We present results for GNT on286
LLFF and DeepVoxels here. We run attacks on evaluation287
images from eight objects and scenes from LLFF, four ob-288
jects in DeepVoxels, and eight objects from Synthetic.289

Attack Parameters To ensure a controlled experiment290
environment, we fix all hyperparameters besides our max-291
imum perturbation factor ϵ. For both NeRFool and IL2-292
NeRF, we fix the number of steps T to 1000. Both attacks293
use a learning rate of 1 (so η = 1, α = 1/255) and four294

source views. The initial adversarial perturbation δ0 is sam- 295
pled uniformly from U [−ϵ, ϵ]. Both attacks are set to per- 296
turb both color and density. 297

Evaluating Attack Performance There are three met- 298
rics we use to evaluate attack performance. PSNR, or Peak 299
Signal-to-Noise Ratio, represents the reconstruction accu- 300
racy and is our main metric [34]. A lower PSNR indicates 301
a poor scene generation and thus a more successful attack. 302

SSIM, or structural similarity, compares the local pat- 303
terns of pixel intensities by normalizing using the mean in- 304
tensity and taking luminance as a contrast comparison [30]. 305
A lower SSIM score indicates a more successful attack. 306

LPIPS, or Learned Perceptual Image Patch Similarity, 307
takes the L2 distance between averaged unit-normalized 308
channels for an image [34]. Unlike PSNR and SSIM, a 309
higher LPIPS score means a more successful attack. 310

Comparing Epsilon We vary ϵ starting at 8 for IL2- 311
NeRF and consider powers of two until we perform simi- 312
larly to NeRFool. As a benchmark, we fix the perturbation 313
factor ϵ to 8 for NeRFool. It is important to note that the ϵ 314
values imply different interpretations of perturbation mag- 315
nitudes when working under different norms (such as L∞ 316
and L2). 317

For an L∞ attack like NeRFool with ϵ = 8, the perturba- 318
tion constraint allows each pixel in the input to be indepen- 319
dently perturbed by up to 8 units, which can lead to a large 320
and consistent maximum distortion across all pixels. 321

In contrast, for an L2 attack like ours, ϵ = 8 signifies 322
that the total perturbation energy (i.e., the sum of squared 323
perturbations across all pixels) must remain within 8. This 324
constraint in the L2 norm distributes the perturbation across 325
multiple dimensions, resulting in smaller individual pixel 326
changes than the maximum possible under the L∞ con- 327
straint. 328

Thus, even though a large perturbation factor like ϵ = 329
64 in L2 may appear large, it actually enforces a more 330
dispersed, lower-magnitude perturbation at the pixel level 331
when compared to ϵ = 8 in L∞. This explains why the L2 332
norm attack with a higher ϵ results in a smaller perceptible 333
perturbation than the L∞ attack with a smaller ϵ. 334

4.2. Experiment Evaluation 335

LLFF Attack Results Tables 1, 2, 3 and 4 showcase results 336
from varying ϵ on IL2-NeRF when compared to NeRFool 337
on ϵ = 8 across all scenes for the LLFF dataset on IBRNet. 338
We interpret the IBRNet as our baseline GNeRF model and 339
likewise LLFF as our most standard dataset for GNeRFs. 340

Table 1 reports the PSNR value of NeRFool against IL2- 341
NeRF on all eight scenes from the LLFF dataset. We com- 342
pare NeRFool on ϵ = 8 to IL2-NeRF on five values of ϵ 343
from 8 to 256. For each scene, as our perturbation factor ϵ 344
increases, we notice the PSNR that IL2-NeRF achieves de- 345
creases monotonically, closer to NeRFool. Once we reach 346
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LLFF PSNR
Model ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool IBRNet 8 13.145 14.428 12.944 11.682 14.045 11.042 12.091 11.526 12.613
GNT 8 14.921 15.428 14.165 14.134 13.946 12.348 13.253 12.773 13.871

IL2-NeRF IBRNet

8 21.581 25.214 24.605 22.967 18.696 17.960 24.172 20.188 21.923
16 20.590 24.296 21.652 21.458 18.450 17.438 21.071 18.355 20.414
64 16.825 17.852 15.862 15.742 16.740 14.030 16.120 14.240 15.926

128 14.900 15.220 14.299 13.945 14.708 11.950 13.837 12.731 13.949
256 13.02 13.193 13.462 12.028 12.212 9.920 12.518 11.485 12.230

GNT 256 13.381 13.367 14.449 12.394 11.912 10.151 12.649 11.453 12.470
Table 1. PSNR of NeRFool vs. IL2-NeRF on IBRNet model, LLFF dataset. Note that a lower PSNR indicates a more successful attack.

LLFF SSIM
Model ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool IBRNet 8 0.473 0.594 0.539 0.513 0.442 0.311 0.658 0.549 0.510
GNT 8 0.470 0.515 0.462 0.541 0.391 0.327 0.626 0.520 0.482

IL2-NeRF IBRNet

8 0.694 0.836 0.790 0.809 0.641 0.565 0.908 0.792 0.754
16 0.670 0.825 0.740 0.784 0.631 0.548 0.881 0.767 0.731
64 0.564 0.705 0.570 0.635 0.551 0.426 0.764 0.656 0.609
128 0.485 0.579 0.487 0.516 0.442 0.320 0.686 0.567 0.510
256 0.405 0.435 0.451 0.390 0.271 0.184 0.616 0.437 0.399

GNT 256 0.353 0.307 0.388 0.356 0.180 0.144 0.545 0.365 0.330
Table 2. SSIM of NeRFool vs. IL2-NeRF on IBRNet model, LLFF dataset. Note that a lower SSIM indicates a more successful attack.

LLFF LPIPS
Model ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool IBRNet 8 0.477 0.407 0.471 0.479 0.409 0.566 0.447 0.484 0.468
GNT 8 0.375 0.338 0.391 0.358 0.369 0.421 0.351 0.388 0.374

IL2-NeRF IBRNet

8 0.299 0.180 0.232 0.236 0.272 0.347 0.199 0.305 0.259
16 0.326 0.193 0.281 0.263 0.280 0.360 0.233 0.330 0.283
64 0.430 0.322 0.444 0.404 0.346 0.476 0.374 0.425 0.403
128 0.510 0.440 0.510 0.505 0.432 0.576 0.466 0.499 0.492
256 0.578 0.550 0.538 0.596 0.556 0.690 0.534 0.587 0.579

GNT 256 0.483 0.484 0.469 0.500 0.499 0.560 0.447 0.506 0.494
Table 3. LPIPS of NeRFool vs. IL2-NeRF on IBRNet model, LLFF dataset. Note that a higher LPIPS indicates a more successful attack.

IBRNet LLFF Average L2 Distance
ϵ = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

NeRFool 8 343.268 288.048 354.545 393.361 299.904 426.528 377.955 407.624 361.404

IL2-NeRF

8 126.494 85.853 94.222 114.872 176.605 192.003 100.132 148.946 129.891
16 142.021 95.403 128.997 137.913 181.555 203.898 138.884 184.992 151.708
64 218.791 195.606 249.270 252.401 220.501 304.433 240.540 298.844 247.548

128 274.809 264.418 293.947 308.864 278.835 384.506 310.953 352.868 308.650
256 339.786 333.319 323.590 382.289 372.280 483.862 360.341 405.359 375.103

Table 4. Average L2 Difference between ground truth source images and predicted outputs when IBRNet is provided perturbed source
images as input on LLFF dataset. Note that a lower L2 distance is desired.

IBRNet LLFF PSNR
η = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

IL2-NeRF
0.001 9.848 11.571 11.231 9.547 10.332 8.179 25.500 9.406 11.952
0.05 9.849 11.561 10.899 9.587 10.282 8.143 13.932 9.525 10.473
0.1 9.906 11.558 10.886 9.531 10.326 8.135 13.795 9.612 10.469

Table 5. PSNR of IL2-NeRF on IBRNet and GNT models with variable learning rate, LLFF dataset. Note that a lower PSNR indicates a
more successful attack.
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NeRFool IL2-NeRF

ϵ=8 ϵ=8 ϵ=16 ϵ=64 ϵ=128 ϵ=256

Figure 1. Visual comparing predicted images on four LLFF scenes from IBRNet on NeRFool and IL2-NeRF perturbed images on varying
perturbation factors ϵ.

NeRFool IL2-NeRF

ϵ=8 ϵ=8 ϵ=16 ϵ=64 ϵ=128 ϵ=256

Figure 2. Visual comparing depth masks of Orchids predicted image from IBRNet on NeRFool and IL2-NeRF perturbed images on varying
perturbation factors ϵ.

IBRNet LLFF SSIM
η = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

IL2-NeRF
0.001 0.296 0.327 0.388 0.291 0.150 0.089 0.876 0.319 0.342
0.05 0.295 0.330 0.387 0.292 0.150 0.089 0.686 0.323 0.319
0.1 0.292 0.328 0.385 0.292 0.150 0.090 0.686 0.323 0.318

Table 6. SSIM of IL2-NeRF on IBRNet and GNT models with variable learning rate, LLFF dataset. Note that a lower SSIM indicates a
more successful attack.

IBRNet LLFF LPIPS
η = Fern Flower Fortress Horns Leaves Orchids Room T-Rex Avg.

IL2-NeRF
0.001 0.604 0.583 0.571 0.628 0.586 0.711 0.295 0.626 0.576
0.05 0.603 0.583 0.571 0.626 0.585 0.713 0.468 0.623 0.597
0.1 0.605 0.586 0.573 0.626 0.584 0.713 0.467 0.623 0.597

Table 7. LPIPS of IL2-NeRF on IBRNet and GNT models with variable learning rate, LLFF dataset. Note that a higher LPIPS indicates a
more successful attack.
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IBRNet Synthetic PSNR
Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

NeRFool 13.330 14.490 12.300 10.095 13.510 10.874 10.720 9.824 11.893
IL2-NeRF 13.727 11.758 13.327 12.286 11.104 9.024 10.450 9.780 11.432

Table 8. PSNR of NeRFool vs. IL2-NeRF on IBRNet, Synthetic dataset. Note that a lower PSNR indicates a more successful attack.

IBRNet Synthetic SSIM
Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

NeRFool 0.855 0.861 0.818 0.797 0.829 0.802 0.803 0.663 0.804
IL2-NeRF 0.791 0.700 0.763 0.754 0.635 0.640 0.735 0.581 0.700

Table 9. SSIM of NeRFool vs. IL2-NeRF on IBRNet, Synthetic dataset. Note that a lower SSIM indicates a more successful attack.

IBRNet Synthetic LPIPS
Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.

NeRFool 0.231 0.221 0.236 0.263 0.232 0.252 0.244 0.386 0.258
IL2-NeRF 0.338 0.378 0.337 0.383 0.418 0.397 0.352 0.456 0.820

Table 10. LPIPS of NeRFool vs. IL2-NeRF on IBRNet, Synthetic dataset. Note that a higher LPIPS indicates a more successful attack.

DeepVoxels PSNR
Model Armchair Cube Greek Vase Avg.

NeRFool IBRNet 9.500 13.982 11.688 11.437 11.652
GNT 13.070 17.991 15.532 19.540 16.533

IL2-NeRF IBRNet 8.660 11.829 12.067 10.235 10.700
GNT 11.959 13.874 13.414 13.312 13.140

Table 11. PSNR of NeRFool vs. IL2-NeRF on IBRNet and GNT
models, DeepVoxels dataset. Note that a lower PSNR indicates a
more successful attack.

DeepVoxels SSIM
Model Armchair Cube Greek Vase Avg.

NeRFool IBRNet 0.760 0.668 0.772 0.761 0.745
GNT 0.833 0.826 0.789 0.921 0.842

IL2-NeRF IBRNet 0.728 0.591 0.760 0.684 0.691
GNT 0.796 0.253 0.684 0.781 0.629

Table 12. SSIM of NeRFool vs. IL2-NeRF on IBRNet and GNT
models, DeepVoxels dataset. Note that a lower PSNR indicates a
more successful attack.

DeepVoxels LPIPS
Model Armchair Cube Greek Vase Avg.

NeRFool NeRFool 0.303 0.285 0.291 0.231 0.278
GNT 0.188 0.139 0.191 0.076 0.149

IL2-NeRF IL2-NeRF 0.360 0.373 0.314 0.291 0.335
GNT 0.231 0.676 0.266 0.190 0.331

Table 13. LPIPS of NeRFool vs. IL2-NeRF on IBRNet and GNT
models, DeepVoxels dataset. Note that a higher LPIPS indicates a
more successful attack.

ϵ = 256, the PSNR of IL2-NeRF is lower than NeRFool347
for five out of eight scenes, achieving a PSNR that is on-348
average 0.383 lower.349

Table 2 shows the SSIM value of NeRFool against IL2-350
NeRF on all eight scenes from the LLFF dataset. At ϵ =351
128, IL2-NeRF achieves a lower SSIM across two scenes352
than NeRFool ϵ = 8: Flower and Fortress. Furthermore, the353
average SSIM that IL2-NeRF achieves is exactly the same354
as the average SSIM that NeRFool achieves at ϵ = 8 of355
0.510.356

We also see that at ϵ = 256, IL2-NeRF achieves a357

lower SSIM than NeRFool across all scenes. IL2-NeRF at 358
ϵ = 256 achieves an average SSIM of 0.399, which is a dif- 359
ference of 0.111 lower than the average SSIM of NeRFool 360
ϵ = 8 on LLFF. 361

Table 3 holds the LPIPS value of NeRFool against IL2- 362
NeRF on all eight scenes from the LLFF dataset. Starting 363
at ϵ = 128, IL2-NeRF achieves a higher LPIPS across all 364
scenes when compared to NeRFool ϵ = 8. NeRFool ϵ = 365
8 achieves an average LPIPS of 0.468 whereas IL2-NeRF 366
ϵ = 128 achieves an average LPIPS of 0.492, a difference 367
of 0.24. At ϵ = 256, IL2-NeRF achieves an average LPIPS 368
of 0.579, resulting in a difference of 0.111. 369

To test this trend that IL2-NeRF receives better attack 370
metrics for ϵ = 256 when compared to NeRFool ϵ = 8, we 371
run our attacks on the GNT model as well for LLFF. Table 372
1 shows us that IL2-NeRF achieves a lower PSNR on seven 373
out of eight scenes for ϵ = 256. Likewise, Tables 2 and 374
3 tells us IL2-NeRF earns a higher SSIM and lower LPIPS 375
across all scenes. 376

Overall, for IBRNet, IL2-NeRF ϵ = 128 performs 377
comparably to NeRFool ϵ = 8, with worse average 378
PSNR and better LPIPS. On both IBRNet and GNT, 379
IL2-NeRF ϵ = 256 outperforms NeRFool ϵ = 8 across 380
most scenes in LLFF for PSNR and all scenes on LLFF 381
for SSIM and LPIPS. This proves that L2 attacks can sur- 382
pass L∞ attacks on GNeRFs. 383

LLFF Perturbation Results PSNR, SSIM and LPIPS 384
were all the metrics used to study adversarial perturbations 385
in NeRFool [8]. To complete our analysis, we need to con- 386
sider the immediate affects that our perturbed images have 387
on GNeRF scene generation. We report these findings in 388
Table 4 and visuals in Figure 1 and 2. 389

Table 4 shows the average L2 distance across all our 390
ground-truth source images and the predicted images. 391
These predicted images are produced by the GNeRF model 392
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after feeding in the perturbed source images for each scene393
in LLFF. Up to ϵ = 128 for IL2-NeRF, all L2 distances394
for each scene are smaller than the L2 distances for each395
scene for NeRFool ϵ = 8.396

Five out of our eight scenes achieve a lower average L2397
distance for IL2-NeRF at ϵ = 256 than NeRFool on ϵ = 8:398
Fern, Fortress, Horns, Room, and T-Rex. The average L2399
distance across all scenes for IL2-NeRF is 375.103, which400
is larger than the averaged L2 distance across all scenes for401
NeRFool ϵ = 8 of 361.404 by 13.699. Despite this, if we402
remove the two scenes with the largest difference between403
NeRFool ϵ = 8 and IL2-NeRF ϵ = 256, Leaves and Or-404
chids, the average for IL2-NeRF becomes 357.447.405

We provide a visual for these predicted images in Figure406
1. We show the GNeRF outputs for images in four scenes of407
LLFF from top to bottom: Fern, Flower, T-Rex and Room.408
At ϵ = 8, 16, IBRNet’s output have very minimal degrada-409
tions. It is not until ϵ = 64 that IBRNet produces noticeable410
perturbations, but these are not as intense as NeRFool ϵ = 8.411
At ϵ = 128, 256, the IBRNet outputs appear similarly dis-412
torted as from providing NeRFool ϵ = 8 as input.413

To better visualize these differences in degradations, we414
provide another visual in Figure 2. This figure shows the415
depth mask of our predicted scenes for the Orchid scene in416
LLFF. These depth masks provide a clear visual for where417
artifacts are added as we can compare the intensity and ad-418
dition of said artifacts as we vary ϵ.419

Again, we notice that at ϵ = 8, 16, any perturbations420
added by IL2-NeRF are minimally visible. Artifacts that421
create clear contrast with the remaining depth mask are no-422
ticeable at ϵ = 64. At ϵ = 128, 256, these artifacts inten-423
sify and start to consume most of the depth mask, similar to424
NeRFool ϵ = 8.425

From Tables 1, 2 and 3 we have found that IL2-NeRF426
ϵ = 256 outperforms NeRFool ϵ = 8 by our attack metrics.427
We wish to study if this trend holds across different datasets.428
For subsequent experiments on new datasets, we fix ϵ =429
256 for IL2-NeRF.430

Learning Rate LLFF Results Tables 5, 6 and 7 report431
our attack metrics that result from varying the learning rate432
η, where α = η

255 , when we run IL2-NeRF on IBRNet on433
the LLFF dataset with fixed perturbation factor ϵ = 128.434
We use three learning rates 0.001, to 0.05, to 0.1 to study the435
effects of perturbations on a log scale smaller than η = 1.436

Table 5 compares the PSNR of running IL2-NeRF on437
all scenes of LLFF on IBRNet when η is variable. Interest-438
ingly, as η increases, PSNR does not always follow a mono-439
tonic behavior for all scenes. Here, the PSNR for Flower,440
Fortress, Orchids and Room decreases as η increases.441

Tables 6 and 7 show SSIM and LPIPS, respectively,442
when we vary η. We see that across all scenes, as we varied443
η from 0.001 to 0.1 the change in SSIM and LPIPS is neg-444
ligible. This validates using a learning rate η ≥ 1 for our445

attack setting. 446
DeepVoxels Attack Results Tables 11, 12 and 13 report 447

results from running NeRFool ϵ = 8 and IL2-NeRF ϵ = 448
256 on all four scenes of the DeepVoxels dataset on both 449
IBRNet and GNT. 450

Table 11 compares the PSNR that both attacks achieve 451
on DeepVoxels. Here, IL2-NeRF achieves a lower PSNR on 452
three out of four scenes for IBRNet and all scenes for GNT. 453
Likewise, Table 12 and Table 13 shows that IL2-NeRF gives 454
us a lower SSIM and higher LPIPS respective on both IBR- 455
Net and GNT. 456

Synthetic Attack Results Tables 8, 9 and 10 showcase 457
results from running NeRFool ϵ = 8 and IL2-NeRF ϵ = 458
256 on all eight scenes of the Synthetic dataset. 459

As shown in Table 11, IL2-NeRF achieves a lower PSNR 460
on five out of eight scenes for IBRNet. Furthermore, Ta- 461
ble 12 and Table 13 shows that IL2-NeRF gives us a lower 462
SSIM and higher LPIPS respective on both IBRNet. 463

Experiment Conclusion We have shown that for our 464
base model IBRNet, on our most standard dataset LLFF 465
that IL2-NeRF at ϵ = 128 produces comparable metrics 466
to NeRFool ϵ = 8. We have further shown that across all 467
three datasets and two models that IL2-NeRF at ϵ = 256 468
outperforms NeRFool at ϵ = 8. 469

We acknowledge that there is future work in explor- 470
ing adversarial methods that produce better metrics under 471
smaller L2-norm bounds. However, our adversarial algo- 472
rithm proves that it is possible for L2 adversarial attacks to 473
achieve success in compromising GNeRF robustness. 474

5. Conclusion 475

By introducing IL2-NeRF, we have laid the groundwork for 476
future studies in L2-based adversarial robustness for GN- 477
eRFs. Our baseline threat model and metrics provide a 478
foundation for advancing adversarial 3D reconstruction, of- 479
fering a new perspective on how L2 domain attacks can im- 480
prove robustness testing for neural radiance fields. 481

As machine learning models see further deployment 482
across social and ethical fields, this research aims to high- 483
light vulnerabilities to drive safer model deployment by ex- 484
amining potential risks. Our work paves the way for future 485
adversarial attacks on GNeRF models that work under the 486
L2 threat model. The advent of L2 attacks on GNeRFs will 487
open the door for geometric-based methods and black-box 488
attacks for evaluating GNeRF robustness. 489

Ethical Considerations of Our Findings: We acknowl- 490
edge that developing effective and efficient adversarial at- 491
tacks on generative AI models can be destructive to a certain 492
extent. Attackers could potentially use these algorithms to 493
compromise systems implemented in real-life applications. 494
However, the purpose of inventing such attacks is to expose 495
vulnerabilities and encourage the development of more ro- 496
bust defensive systems. 497
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