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Abstract
Shortcut learning undermines model generaliza-
tion to out-of-distribution data. While the liter-
ature attributes shortcuts to biases in superficial
features, we show that imbalances in the semantic
distribution of sample embeddings induce spuri-
ous semantic correlations, compromising model
robustness. To address this issue, we propose
SCISSOR (Semantic Cluster Intervention for Sup-
pressing ShORtcut), a Siamese network-based de-
biasing approach that remaps the semantic space
by discouraging latent clusters exploited as short-
cuts. Unlike prior data-debiasing approaches,
SCISSOR eliminates the need for data augmen-
tation and rewriting. We evaluate SCISSOR on
6 models across 4 benchmarks: Chest-XRay and
Not-MNIST in computer vision, and GYAFC and
Yelp in NLP tasks. Compared to several base-
lines, SCISSOR reports +5.3 absolute points in
F1 score on GYAFC, +7.3 on Yelp, +7.7 on Chest-
XRay, and +1 on Not-MNIST. SCISSOR is also
highly advantageous for lightweight models with
∼9.5% improvement on F1 for ViT on computer
vision datasets and ∼11.9% for BERT on NLP.
Our study redefines the landscape of model gen-
eralization by addressing overlooked semantic
biases, establishing SCISSOR as a foundational
framework for mitigating shortcut learning and
fostering more robust, bias-resistant AI systems.

1. Instruction
In recent years, machine learning models have surpassed
human capabilities in various domains, such as education
and E-commerce (Kasneci et al., 2023; Bodonhelyi et al.,
2024). However, the high operational and usage costs of
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Figure 1. Illustration of sentiment classification, where semantic
space shows clusters for “Food” and “Furniture.” “Coffee Machine”
and “Ice Cream” are misclassified test samples.

large language models extremely limit their scalability and
practical deployment (Li & Liang, 2021; Hu et al., 2022).
In contrast, the pre-training and fine-tuning pipeline offers a
cost-effective and adaptable solution (Devlin et al., 2019).

However, pre-trained models often fail to maintain the per-
formance observed during fine-tuning when applied to re-
alistic data (Sun et al., 2024). Further analysis originated
this to data biases (Yuan et al., 2024), which is known as the
shortcut issue. Specifically, models rely on spurious corre-
lations between features and labels, obtaining substantially
better results on independently-and-identically-distributed
(ID) data than on out-of-distribution (OOD) data.

For instance, fact-checking models may evaluate the truth-
fulness of a claim by counting its negations (Thorne et al.,
2018), and bird models may misclassify birds as waterbirds
based on water in the background (Sagawa et al., 2020). Al-
though these shortcuts may hold for specific datasets, they
significantly hinder the applicability of models to real-world
scenarios (Sugawara et al., 2018).

Current research typically attributes shortcuts to the fragility
of superficial features, e.g., words or pixels (Chen et al.,
2023; Xu et al., 2023a), as opposed to the robustness of se-
mantic features. However, we challenge this assumption and
argue that the distribution of semantic embeddings (Reimers
& Gurevych, 2019) can also appear as shortcuts.
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To illustrate this, consider the example in Fig. 1. Suppose
we train a binary sentiment classifier using reviews from a
biased E-Commerce website, where all food-related reviews
are positive, and the term “Ice-cream” is not mentioned.
Then, if we apply this classifier to a negative review about
Ice-cream, will it classify correctly? It is unlikely, as “Ice-
cream” is a food item and its word embedding is likely close
to other food-related terms. Consequently, the classifier
may associate the semantic region representing food with
the “positive” label, thereby losing generalizability. In this
case, the shortcut arises not from superficial features, but
from semantic information. Similarly, in medicine, semantic
shortcuts may lead to the misclassification of conditions
in populations with similar physiological characteristics,
resulting in fault diagnostics. As for autonomous vehicles,
their systems might misinterpret ambiguous road signs due
to reliance on simplified semantic patterns. All these cases
highlight that semantic shortcuts may pose an urgent and
previously overlooked risk.

To address these issues, we propose a novel debiasing ar-
chitecture, named SCISSOR (Semantic Cluster Interven-
tion for Suppressing ShORtcut), based on a Siamese net-
work (Bromley et al., 1993).1 Our objective is to filter
out semantic information irrelevant to downstream tasks
from samples exhibiting imbalanced distribution patterns.
To achieve this, we first employ the Markov Clustering
Algorithm (MCL) (Van Dongen, 2008) to cluster samples
based on their semantic similarity, aiming to identify poten-
tial imbalanced areas. After that, we construct contrastive
data (Chen et al., 2020) to train a debiasing module, which
remaps the semantic space to disrupt the clusters that could
act as shortcuts, thereby guiding the model to focus on ro-
bust features. Different from the triplet loss (Schroff et al.,
2015), we consider not only the samples’ original labels
but also their distribution. Finally, we insert the debiasing
module at the output of the pre-trained model and train it
jointly with the classification head. Our contributions are as
follows:

1. Novel conceptualization of semantic bias: To the
best of our knowledge, we are the first to identify and
demonstrate, both theoretically and empirically, that
imbalances in the semantic distribution of samples can
also lead to the shortcut problem.

2. Lightweight, plug-and-play debiasing module: We
propose a novel debiasing approach that does not aug-
ment the training data and operates with the same time
complexity as the baseline.

3. Empirical gains across multiple domains: We con-
duct experiments on text and image data using six
models across text classification, style analysis, medi-

1Code available at https://github.com/
ShuoYangtum/SCISSOR.

cal imaging and hand-written letter recognition tasks.
Our results show that SCISSOR outperforms the base-
lines in terms of accuracy and F1 score.

2. Related Work
Over the past decade, considerable efforts have targeted the
challenge of spurious correlations, which often undermine
a model’s OOD performance. Two primary lines of work
relevant to our paper focus on: (1) creating balanced and
less biased datasets, and (2) counterfactual data genera-
tion. In parallel, other broad techniques in distributionally
robust optimization (DRO) or group-based fairness (e.g.,
Group DRO, IRM) typically aim to improve worst-case per-
formance across predefined demographic groups. However,
while these methods are well-suited for known protected
attributes, they do not directly tackle latent-space clustering
effects, which can give rise to semantic biases that persist
even in “balanced” data. Our proposed approach, SCIS-
SOR, is instead designed to remap the embedding space
itself, complementing both dataset-centric and DRO-based
methods by specifically targeting label-skewed clusters.

Creating Balanced and Less Biased Datasets. Several
studies aim to address spurious correlations through data
manipulation. Wu et al. (2022) propose a data generation
strategy for mitigating biases in natural language inference,
using a GPT-2 model with unlikelihood training to ensure
label consistency and confidence-based filtering (Bartolo
et al., 2021). This process identifies and discards instances
that reinforce spurious correlations, thus yielding a more
robust dataset. Similarly, Bras et al. (2020) use an itera-
tive adversarial filtering approach (AFLite; Sakaguchi et al.,
2020) to remove highly biased data points. For specific
tasks such as fact-checking, CrossAug (Lee et al., 2021)
generates negative claims and modifies evidence to create
contrastive pairs, improving the model’s ability to rely on
genuine textual clues. Meanwhile, CLEVER (Xu et al.,
2023a) attacks inference-phase biases by subtracting the
output of a “claim-only” model from a more complex fu-
sion model. Other techniques include EDA (Wei & Zou,
2019), which relies on random linguistic edits to expand
training data, and “Symmetric Test Sets” (Schuster et al.,
2019), which eliminates label-specific giveaways in claims.
Mahabadi et al. (2020) propose “Product of Experts” to
downweight spurious signals through a combination of a
bias-only model with the main classifier. RAZOR (Yang
et al., 2024) progressively rewrite training set through word-
level feature comparison.

Although these dataset-centric strategies mitigate many
surface-level or single-feature biases, they typically entail
rewriting, filtering, or augmentation. Such processes depen-
dent on careful hyperparameter tuning, and often cannot
break deeper correlations within a pretrained model’s latent
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space. In contrast, our approach is module-based, directly
targeting the geometry of the embedding space instead of
solely relying on rewriting data. This sidesteps heavy data
manipulations or repeated training on LLMs.

Counterfactual Data Generation. Another prevalent strat-
egy is to produce counterfactual examples – perturbations
of existing data designed to disentangle superficial cues
from true task-relevant features. Kaushik & Lipton (2018)
use manually crafted counterfactuals to demonstrate sig-
nificant performance gains on challenging generalization.
However, human generation can be time-consuming and
often lacks diversity. Automated solutions like Polyjuice
(Wu et al., 2021) and Tailor (Ross et al., 2022) fine-tune text
generation models to produce specific perturbation types.
While powerful, these approaches typically require model
retraining when introducing new perturbation classes.

More recently, DISCO (Chen et al., 2023) leverages large
language models to generate candidate phrasal edits, then
uses a teacher model to filter out the low-quality ones. Xu
et al. (2023b) adopt a similar paradigm for fact verifica-
tion, generating tailored counterfactuals that reveal spurious
correlations. A employs LLMs to generate counterfactual
data to balance the concept of textual data. However, these
approaches rely entirely on the usage of LLMs, which can
be extremely resource-intensive.

While counterfactual augmentation can reduce reliance on
obvious biases, it does not necessarily eliminate spurious
semantic clusters in the embedding space. Even datasets
balanced via counterfactual rewriting may contain sub-
populations with label skew when projected into latent space
– particularly if the pretrained model already encodes cer-
tain semantically entangled regions. Contrarily, SCISSOR
directly “pulls apart” or remaps such clusters via a Siamese
network head, forcing the model to focus on truly discrimi-
native features rather than latent cluster membership.

Why SCISSOR? Computational and Conceptual Advan-
tages. DRO methods also aim to ensure robustness but
typically require explicit group labels or assumptions about
how data sub-populations manifest. In real-world settings
where biased sub-populations remain hidden or evolve over
time, group-based constraints may not suffice. SCISSOR
circumvents such requirements by first detecting and la-
beling suspicious clusters through a lightweight Markov
Clustering procedure, then disrupting them. Additionally,
SCISSOR maintains a low overhead relative to repeated
data rewriting or large-scale augmentation, since it slots a
debiasing module directly onto a frozen pretrained model,
preserving the overall time complexity of forward passes.

Hence, our method is complementary to both data-centric
and DRO-style approaches, offering a novel focus on se-
mantic clusters that underlie shortcut learning. As we will

show, explicitly addressing these latent clusters substantially
boosts out-of-distribution performance across tasks in both
NLP and computer vision.

3. Methodology
3.1. Problem Formulation

Let D = {d1, . . . , dn} be a dataset containing n samples
and its corresponding label yi ∈ Y , where Y is the label
set. To classify a sample di, we first transform it using a
specific pre-trained embedding function g : D → X ⊆ Ru.
Subsequently, we train a classifier fθ : X → Y trained by
optimizing a specific loss function θ∗ ← argminθ L(D, θ).
Additionally, let us consider another given dataset D′ =
{d′1, . . . , d′m} with m samples drawn from a different distri-
bution, while sharing the same label set Y . Let us assume
that the samples in D exhibit localized clusters with imbal-
anced label distributions when embedded onto the X space.
Conversely, the distribution of samples in D′ is relatively
balanced within the same embedding space.

Considering these asusmptions, our objectives are twofold:

(1) To demonstrate the existence of semantic bias. We
expect that fθ trained on X to achieve better accuracy on a
test set drawn from the distribution of X compared to one
drawn from X ′. Conversely, we expect fθ, trained on X ′ to
exhibit comparable performance on the test sets drawn from
both X , and X ′.

(2) To enhance the performance of fθ trained on X on test
sets drawn from X ′ through semantic debiasing algorithms.

3.2. Demonstration of Semantic Bias Existence

To elucidate the underlying causes and influential factors
of semantic shortcuts, we propose the following lemmas.
Lemma 3.1 quantifies how small changes in the represen-
tation space influence the classifier’s outputs, revealing the
extent to which the model’s sensitivity to input variations
may contribute to semantic bias.

Lemma 3.1. Given a differentiable classifier fθ, two input
samples d, d′ ∈ D, a function g : D → Ru, if the Euclidean
distance between g(d) and g(d′) in a u-dimensional space
is lower than α, then the Euclidean distance between their
outputs given from fθ is upper-bounded by

√
d · α · ∥∇fθ(g(d))∥2 +

1

2
Mα, (1)

where M is the upper bound of the norm of the Hessian
matrix of fθ over the segment connecting g(d) with g(d′).

Lemma 3.2 formalizes how local imbalances in training la-
bels lead to biased classifier behavior, showing that majority-
label dominance causes systematic misclassification of
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minority-labeled samples, with this effect worsening as
training progresses.

Lemma 3.2. Let fθ be a differentiable classifier trained
on data embedded into X ⊆ Ru by a function g. Fix an
anchor point c ∈ X and a radius α > 0. Suppose that
within the ball B(c, α) = {x ∈ X : ||x − c|| < α}, the
training labels are imbalanced–i.e., one majority label is
heavily represented compared to a minority label. Then:

(1) any classifier that minimizes empirical risk will tend to
predict the majority label for most points in B(c, α);

(2) the expected misclassification probability on the
minority-labeled samples in B(c, α) is bounded below by a
positive constant;

(3) the bound increases over the course of training.

We refer the reader to Appendix B for the omitted proofs,
and to Appendix C for a detailed discussion about the sig-
nificance of our theoretical findings in semantic biases.

3.2.1. THEORY-GROUNDED OBSERVATIONS

Imbalance-Induced Misclassification. As a classifier be-
comes increasingly accurate on the majority-labeled sam-
ples (e.g., “positives”) in a given region, the lower bound on
misclassification for minority-labeled samples (e.g., “nega-
tives”) in the same region grows. In other words, once the
model effectively learns to recognize the majority label, any
semantically similar minority samples become more likely
to be wrongly classified as majority

Concentration Boosts Shortcut Misclassification. As α→
0 the data around an anchor point becomes more tightly
concentrated. Under label imbalance, this yields a higher
lower bound on the expected misclassification rate for the
minority label. In other words, the more localized and
imbalanced the samples are, the more the classifier relies on
a shortcut that favors the majority label—making minority
misclassification increasingly inevitable.

Training Exacerbates Shortcut Misclassification. As model
parameters converge during training, the lower bound on the
expected misclassification probability for minority-labeled
samples rises. This indicates that shortcut-based misclassifi-
cations intensify over the course of training, further harming
minority classes.

Larger Models Reduce Shortcut Misclassification. If the
network’s capacity increases—reflected by a higher Hessian
norm bound M or a larger embedding dimension u—the
theoretical lower bound on the expected misclassification
probability for minority samples decreases. Consequently,
deeper or more expressive models are more resilient against
shortcut-based misclassifications than smaller models.

3.3. Markov Clustering

To determine the initial distribution of the given samples D,
we apply the MCL to their embeddings X , which includes
three steps.

Constructing the Markov matrix. We compute the cosine
similarity between the embeddings to form a similarity ma-
trix, which is then normalized to generate a Markov ma-
trix (Kelly, 1981). Each entry in the matrix represents the
transition probabilities between two samples.

Expansion and inflation. We square the matrix to simu-
late the probability distribution after random walks, prop-
agating and expanding the connections between samples.
Subsequently, we raise each matrix element to its power
and normalize again to emphasize stronger connections and
suppress weaker ones.

Convergence and clustering. By repeating the expansion
and inflation, the matrix will converge into a sparse block-
diagonal structure, where each block represents a cluster.
Finally, we assign samples to different clusters accordingly.
For each cluster, we categorize it into two groups based
on the label distribution of its samples: i.e., balanced and
imbalanced clusters. As discussed in Lemma 3.2, the seman-
tics of samples within imbalanced clusters can introduce
shortcut learning, hence reducing model generalizability.
Therefore, we argue that samples from imbalanced clusters
form X and those from balanced ones form the X ′. Our
goal is to mitigate semantic biases present in X to enhance
the performance of fθ on X ′.

Additionally, we account for the unequal number of samples
within each cluster group. To prevent potential biases caused
by sample imbalance, we perform random downsampling
such that the number of samples in the two cluster groups is
equal, and both groups maintain a balanced label distribution
in total. In Appendix E, we discuss on the scalability and
time complexity of the MCL.

3.4. Semantic Debiasing

We propose a plug-and-play debiasing module designed
to filter out classification-irrelevant semantic features. We
train and integrate a lightweight neural network to the out-
put of a pre-trained language model (PLM), remapping its
embedding space (Devlin et al., 2019).

Construction of contrastive data. Here, we present a
novel idea for constructing contrastive samples with consid-
eration of their semantic distribution. Unlike conventional
approaches that solely maximize the distance between sam-
ples with different labels (Shah et al., 2022), we disrupt the
clustering tendencies within the samples that can serve as
shortcuts. Therefore, we introduce the concept of an “inter-
mediate sample.” For a given anchor, positive samples share
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Figure 2. Overview of SCISSOR. The “Sun” and “Moon” symbols represent samples with two different labels. We first apply the
clustering algorithm to group samples based on the similarity of their embeddings, identifying clusters with label imbalances. Next, we
generate triplets (Positive, Intermediate, Negative) by selecting an anchor sample based on their semantic clustering properties. Their
purpose is to guide (train) the debiasing module in remapping the embedding space of the PLM by discouraging shortcut-induced cluster
formations, ultimately improving classifier robustness.

the same label but belong to different clusters. Intermedi-
ate samples share the same label and cluster as the anchor.
Negative samples have a different label. The intermediate
sample plays a dual role: (1) it acts as a negative sample
when contrasted with a positive one, and (2) as a positive
sample when contrasted with a negative one. Any anchor
in X forms a training quadruplet with its corresponding
positive, intermediate and negative samples.

Table 1. Four ways to create triplets from a quadruptlet. ”A”, ”P”,
”I” and ”N” stand for anchor, positive, intermediate and negative
sample in a quadruptlet, respectively.

Triplet factor Anchor Positive Negative

Inter-cluster
A P N
A I N
I P N

Intra-cluster A P I

Therefore, for each quadruplet, there are
(
4
3

)
= 4 possible

ways to decompose it into triplets of the form (anchor, posi-
tive, negative), as shown in Table 1. Specifically, for each
anchor, we employ two methods to construct a triplet.

(1) Inter-cluster Contrast. Divide positive and negative sam-
ples in the triplet based on their labels, to encourage samples
with different labels to be further apart in the semantic space.

(2) Intra-cluster Contrast. Define positive and negative sam-
ples in triplets based on clustering characteristics. This pro-
motes differentiation among semantically similar samples
within the same class, preventing the model from learning

shortcuts from classification-irrelevant features.

We then rely on the triplet loss to train the debiasing module.

L =

n∑
i=1

max(0, cos(ai, pi)− cos(ai, ni) + β), (2)

where ai, pi, and ni represent the anchor, positive, and neg-
ative samples in the i-th triplet, cos(·, ·) denotes the cosine
distance function, and β is the margin ensuring the dis-
tance between the anchor and the negative sample exceeds
that between the anchor and the positive sample. In this
setup, all three samples are simultaneously fed into a shared-
parameter Siamese network, where the goal is to maximize
the distance between ai and ni while minimizing that be-
tween ai and pi.

After training, we implement the debiasing module by in-
serting it at the output of a frozen PLM. This approach
offers two key advantages: (1) high adaptability, and (2) low
resource consumption. In other words, the debiasing mod-
ule can seamlessly integrate with any architecture without
modifying the PLMs. Moreover, the time complexity of our
lightweight debiasing network is linear, ensuring that the
entire complexity is dominated by the PLM usage. Finally,
SCISSOR does not rely on data augmentation (Lee et al.,
2021) or LLM distillation (Yang et al., 2024), distinguishing
it from other token- and pixel-level debiasing methods.

Alternating Training with Clustering and Remapping.
Lastly, we employ an alternating training strategy between
clustering and debasing. We argue that, as sample embed-
ding distributions update, their cluster assignments change
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dynamically. Samples that move out from their original
clusters may inadvertently align with others, forming new
imbalanced clusters. To prevent this, we alternately imple-
ment the clustering and the debiasing. Fig 2 illustrates our
method.

We train the module until the samples within the imbal-
anced cluster no longer exhibit clustering tendencies in the
remapped semantic space. To quantify the changes in clus-
tering behavior, we employ the Hopkins Statistic. During
training, this metric gradually increases and stabilizes near
0.5, indicating the removal of clustering tendencies. Finally,
we freeze the parameters of the debiasing module and train
a classification head with the cross-entropy loss LCLS.

4. Experiments
4.1. Datasets

We evaluate SCISSOR across four classification tasks: letter
recognition, medical test, sentiment classification and style
analysis. These tasks were conducted on two computer
vision datasets and two natural language processing datasets.

Computer Vision (CV). The Not-MNIST is a multi-label
classification dataset (Bulatov, 2011) contains 19,000 im-
ages of hand-written letters. The Chest-XRay dataset (Ha-
gos et al., 2023) contains 5,863 XRay images depicting both
healthy lungs (0) and lungs affected by pneumonia (1).

Natural Language Processing (NLP). The Yelp dataset
consists of user reviews (positive and negative) of various
businesses on Yelp. We use the version presented in (Dai
et al., 2019). The Grammarly’s Yahoo Answers Formality
Corpus (GYAFC) (Rao & Tetreault, 2018) is the largest
dataset for style transfer, containing 110,000 informal and
formal sentence pairs.

Note that the shortcuts we identified have not been previ-
ously reported in the literature. Thus, no standard adversar-
ial datasets are currently available for robustness evaluation.
To address this limitation, we adopted the cross-validation
method shown in (Yang et al., 2024).

4.2. Experimental Setup

We use six models as baseline classifiers fθ: BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), LLaMA
3.2 (Meta, 2024), Vision Transformer (ViT) (Dosovitskiy
et al., 2020), Shifted Window Hierarchical Visio e nans-
former (Swin) (Liu et al., 2021), and DINOv2 (Oquab et al.,
2024).2 We employ the AdamW optimizer (Loshchilov &
Hutter, 2019) with an initial learning rate of 3× 10−5 and
trained the models with batch size equal to 8 across four

2All models are publicly available at https:
//huggingface.co.

NVIDIA A100 Tensor Core-GPUs. Our debiasing network
consists of a single Transformer module, which includes
an attention layer and a feedforward layer, with 8 attention
heads and 768 neurons per layer. Our classification head
is a single linear layer with 768 neurons. The value of β
in Equation 2 is 0.2. To simplify training, we construct a
quadruplet for each anchor using random sampling.

4.3. Results

Validation of Semantic Shortcuts. To experimentally vali-
date the theoretical findings presented, we first compared the
robustness of classifiers trained on balanced cluster data and
imbalanced cluster data. These differences can be measured
by evaluating the classifiers’ performance on ID test sets
versus OOD test sets. We report the classification accuracy
and F1 scores in Fig. 3. Given that imbalanced clusters
exhibit pronounced shortcut features, we treated them as
the optimization target and the balanced clusters as test data
representing real-world scenarios in the subsequent experi-
ments. To further illustrate the inherent clustering structure
of the datasets in the semantic space, we calculated the Hop-
kins statistic for these datasets after being embedded by the
initial model. Tables 2 and 3 show these statistics for the
NLP and CV datasets, respectivelz.

Effectiveness of the Proposed Method. To evaluate the
debiasing capability of SCISSOR, we evaluate its gain on
accuracy and F1 score over the baseline classifiers. We com-
pare SCISSOR against three state-of-the-art debiasing meth-
ods: RAZOR (Yang et al., 2024) for NLP tasks, LC (Liu
et al., 2023) for CV tasks and IRM (Arjovsky et al., 2019)
for both tasks. Specifically, RAZOR relies on rewriting
training data containing potential biases using LLMs, while
LC corrects classifier logits to balance the gradient impact
of majority and minority groups during training. Tables 4
and 5 illustrate the results.

Table 2. Hopkins Statistic of NLP datasets. Low values indicate
stronger clustering tendency.

BERT RoBERTa LLaMA

GYAFC 1.59×10−8 5.42×10−8 0
Yelp 1.74×10−8 5.59×10−8 3.34×10−4

Table 3. Hopkins Statistic of CV datasets. Low values indicate
stronger clustering tendency.

ViT Swin DINOv2

Chest-XRay 8.87×10−7 7.83×10−9 5.06×10−8

Not-MNIST 4.07×10−7 4.93×10−9 3.01×10−8
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Figure 3. Models trained on imbalanced clusters exhibit significant performance drops on OOD data, confirming that semantic
bias harms generalization, while balanced training improves robustness. We show the performance of classifiers on balanced and
imbalanced clusters under ID and OOD test data. For each data group, we randomly choose 500 from the training set to form the test set.

Table 4. SCISSOR’s impact on the baseline classifiers on the NLP
datasets in terms of Accuracy and F1 score. Bold values indicate
best performing per baseline; underlined the second-best.

GYAFC Yelp

ACC ↑ F1 ↑ ACC ↑ F1 ↑
BERT 70.40 0.70 81.17 0.81
BERT (w/ IRM) 77.82 0.77 87.29 0.87
BERT (w/ RAZOR) 72.76 0.71 82.20 0.82
BERT (w/ SCISSOR) 78.20 0.78 90.65 0.91

RoBERTa 73.66 0.73 75.76 0.76
RoBERTa (w/ IRM) 79.61 0.79 84.53 0.84
RoBERTa (w/ RAZOR) 73.58 0.73 76.36 0.76
RoBERTa (w/ SCISSOR) 81.34 0.81 87.79 0.88

LLaMA 89.40 0.89 95.00 0.95
LLaMA (w/ IRM) 83.65 0.83 94.87 0.95
LLaMA (w/ RAZOR) 87.00 0.86 94.44 0.94
LLaMA (w/ SCISSOR) 89.46 0.89 95.20 0.95

4.4. Analysis and Discussion

Larger models exhibit up to×103 higher Hopkins statis-
tics, revealing a weaker cluster effect in embeddings.
From the Hopkins statistics reported in Tables 2 and 3, we
observe that all models produce values close to 0 across
every dataset. Nonetheless, Yelp and GYAFC share rela-
tively similar clustering tendencies, whereas Not-MNIST
exhibits markedly higher randomness compared to Chest-
XRay. This finding suggests that natural data tends to exhibit
a strong inherent clustering structure within the embedding
space of pretrained language models (PLMs). Such an obser-
vation provides theoretical support for SCISSOR’s approach
of assigning cluster-based labels in this space.

Additionally, we note that the Hopkins statistic monoton-
ically increases with model size. Smaller networks yield
more concentrated embedding distributions for the same

Table 5. SCISSOR’s impact on the baseline classifiers on the CV
datasets in terms of Accuracy and F1 score. Bold values indicate
the best performing per baseline; underlined the second-best.

Chest-XRay Not-MNIST

ACC ↑ F1 ↑ ACC ↑ F1 ↑
ViT 72.38 0.72 88.87 0.89
ViT (w/ IRM) 80.47 0.80 89.37 0.89
ViT (w/ LC) 82.73 0.82 89.25 0.89
ViT (w/ SCISSOR) 83.92 0.84 90.89 0.91

Swin 84.54 0.84 92.72 0.93
Swin (w/ IRM) 76.92 0.76 92.12 0.92
Swin (w/ LC) 79.75 0.79 91.56 0.92
Swin (w/ SCISSOR) 88.65 0.89 92.74 0.93

DINOv2 68.94 0.66 85.40 0.85
DINOv2 (w/ IRM) 69.64 0.67 85.39 0.85
DINOv2 (w/ LC) 72.73 0.72 83.63 0.84
DINOv2 (w/ SCISSOR) 73.59 0.72 85.75 0.86

Table 6. Adjusted rand index between topics and semantic clusters.

BERT RoBERTa LLaMA

GYAFC 0.62 0.13 0.00
Yelp 1.93 2.44 0.15

dataset, while larger models like LLaMA display less con-
centration. In vision models, ViT and DINOv2 similarly
show Hopkins statistics that are one to two orders of magni-
tude higher than Swin, consistent with the trend that larger
parameter counts lead to higher Hopkins values.

Semantic Imbalance Causes Up to 20-Point OOD Ac-
curacy Drops, While Balanced Training Enhances Ro-
bustness. Under in-distribution (ID) conditions, all models
achieve high accuracy (Fig. 3). However, when trained on
semantically imbalanced datasets, their performance sub-
stantially degrades on out-of-distribution (OOD) test sets.
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Table 7. Ablation study on the NLP datasets in terms of Accuracy and F1 score with K-means clustering.

GYAFC Yelp

ACC ↑ F1 ↑ ACC ↑ F1 ↑
BERT 70.40 0.70 81.17 0.81
BERT (w/ RAZOR) 72.76 0.71 82.20 0.82
BERT (w/ Triplet) 77.60 0.77 88.60 0.89
BERT (w/ SCISSOR, k-means) 76.52 0.75 88.50 0.89
BERT (w/ SCISSOR) 78.20 0.78 90.65 0.91

RoBERTa 73.66 0.73 75.76 0.76
RoBERTa (w/ RAZOR) 73.58 0.73 76.36 0.76
RoBERTa (w/ Triplet) 81.32 0.81 87.70 0.87
RoBERTa (w/ SCISSOR, k-means) 81.30 0.81 87.78 0.87
RoBERTa (w/ SCISSOR) 81.34 0.81 87.79 0.88

LLaMA 89.40 0.89 95.00 0.95
LLaMA (w/ RAZOR) 87.00 0.86 94.44 0.94
LLaMA (w/ Triplet) 89.40 0.89 94.64 0.94
LLaMA (w/ SCISSOR, k-means) 89.42 0.89 94.90 0.95
LLaMA (w/ SCISSOR) 89.46 0.89 95.20 0.95

This underscores a robustness gap driven by shortcut learn-
ing. In computer vision (CV), the largest OOD accuracy
drop occurs on Chest-XRay—ViT and DINOv2 each lose
20 points, and even Swin experiences a 2-point decline
on Not-MNIST. By contrast, when training data exhibits
balanced semantic clusters, there is no consistent ID-OOD
performance gap, indicating a higher degree of robustness.

A similar pattern emerges in textual datasets, with the short-
cut effect most pronounced on GYAFC. Among the lan-
guage models tested, BERT—when trained on imbalanced
clusters—shows the greatest performance gap ( 20 points)
between ID and OOD. However, when BERT is trained
on balanced data, the gap narrows to 3 points. Notably,
LLaMA achieves nearly identical results on both ID and
OOD tests. As shown in Table 2, LLaMA exhibits strong
overall performance and lower embedding concentration,
making it less prone to shortcut-driven errors.

SCISSOR Achieves Up to 12-Point Gains in Accuracy
and F1 Across NLP and Vision Tasks. Tables 4 and 5
summarize the performance improvements introduced by
SCISSOR. In the NLP domain (Table 4), SCISSOR delivers
notable gains for all three language models. On GYAFC, for
instance, BERT and RoBERTa each see a 7-point boost in ac-
curacy and F1 score relative to the RAZOR baseline, while
on Yelp, SCISSOR outperforms both BERT and RoBERTa
by 9 and 12 points, respectively. Although LLaMA already
exhibits robust performance against shortcuts, it still real-
izes marginal benefits from SCISSOR. Moreover, because
the datasets in question are label-balanced and contain lim-
ited superficial shortcuts, RAZOR’s strategy of manipulat-
ing superficial features and data rewriting actually lowers

LLaMA’s accuracy by ∼2 points.

In computer vision, SCISSOR’s largest gains occur on
Chest-XRay, where ViT achieves a 12-point increase in
both accuracy and F1 on the OOD set. Across the board,
SCISSOR consistently outperforms LC in terms of both ac-
curacy and F1. We attribute LC’s shortfall to its inability to
address deeper semantic biases in balanced-label scenarios,
thereby limiting its improvement potential. Performance
improvements on Not-MNIST are relatively smaller, likely
due to the dataset’s weaker embedding clusters and lower
susceptibility to shortcut issues; even so, SCISSOR still
provides a 2-point lift in accuracy and F1 for ViT.

We observe that although IRM mitigatesrtcuts in many cases,
our method still significantly outperforms it across all tests.
Moreover, IRM performs worse than the baseline on small
datasets, such as Chest-XRay (w/ SWIN) and GYAFC (w/
LLaMA). We attribute this to IRM assigning excessive train-
ing weight to features that remain invariant, which prevents
other useful features from being accurately identified and
utilized.

4.4.1. WHY DO SEMANTIC CLUSTERS MATTER?

While our experiments demonstrate that debiasing seman-
tic clusters improves generalization, one might still ask:
What do these clusters actually represent in practice? To
investigate, we hypothesize that samples within the same
cluster tend to share common semantic themes or topics.
To test this, we trained a Latent Dirichlet Allocation (LDA)
topic model (Blei et al., 2003) and measured the alignment
between semantic clusters and topic clusters using the Ad-
justed Rand Index (ARI) (Hubert & Arabie, 1985). The
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Table 8. Ablation study on the CV datasets in terms of Accuracy and F1 score.

Chest-XRay Not-MNIST

ACC ↑ F1 ↑ ACC ↑ F1 ↑
ViT 72.38 0.72 88.87 0.89
ViT (w/ LC) 82.73 0.82 89.25 0.89
ViT (w/ Triplet) 82.12 0.81 88.97 0.89
ViT (w/ SCISSOR, k-means) 82.20 0.82 89.44 0.90
ViT (w/ SCISSOR) 83.92 0.84 90.89 0.91

Swin 84.54 0.84 92.72 0.93
Swin (w/ LC) 79.75 0.79 91.56 0.92
Swin (w/ Triplet) 86.64 0.86 91.00 0.91
Swin (w/ SCISSOR, k-means) 87.58 0.87 92.72 0.93
Swin (w/ SCISSOR) 88.65 0.89 92.74 0.93

DINOv2 68.94 0.66 85.40 0.85
DINOv2 (w/ LC) 72.73 0.72 83.63 0.84
DINOv2 (w/ Triplet) 72.88 0.72 84.58 0.85
DINOv2 (w/ SCISSOR, k-means) 72.80 0.72 85.70 0.85
DINOv2 (w/ SCISSOR) 73.59 0.72 85.75 0.86

results, shown in Table 6, reveal a clear positive correlation
between semantic clustering and topic clustering across all
datasets and models. This strongly suggests that semantic
clusters are not just artifacts of model embeddings—they
capture meaningful, high-level concepts in the data. An in-
triguing insight emerges from our findings: stronger models,
such as LLaMA, exhibit significantly lower ARI scores. This
implies that as models grow in capacity, their embeddings
become less tightly coupled to discrete topics. In other
words, more powerful models learn richer, more distributed
representations, rather than rigidly grouping samples by
surface-level themes. This phenomenon aligns with our
earlier observation that larger models are naturally more
resistant to shortcut learning—a key insight into why SCIS-
SOR has a greater impact on smaller architectures. These
findings provide compelling evidence that shortcut learn-
ing is fundamentally tied to how models organize semantic
information, and that disrupting these clusters can lead to
more robust, generalizable classifiers.

4.5. Ablation Study

We investigated the impact of clustering algorithms on the
effectiveness of SCISSOR. Specifically, we replaced MCL
with the K-means clustering algorithm and repeated the
comparative experiments with the baselines, as shown in
Table 7 and 8.

We observed that the clustering algorithm cannot signifi-
cantly impact the effectiveness of SCISSOR. After replacing
MCL with K-means, which holds a linear time complex-
ity with respect to data scale, our approach showed almost
identical performance in Accuracy and F1 scores while

maintaining a significant advantage over the baselines.

Additionally, compared to Triplet, SCISSOR consistently
demonstrates a advantage about 2 points. We analyze that
this is because Triplet focuses solely on optimizing samples
based on their classification labels, neglecting the impor-
tance of the embedding distribution. During the training
process of Triplet, samples with the same label are pulled
closer together, which could lead to the formation of new
imbalanced semantic clusters.

5. Conclusion
Shortcut learning remains a fundamental challenge in ma-
chine learning, undermining model generalization by en-
couraging reliance on spurious correlations. While prior
work has focused primarily on surface-level biases, we
reveal that semantic clustering effects within embedding
spaces also contribute significantly to shortcut-driven fail-
ures. To address this, we introduce SCISSOR, a novel
cluster-aware Siamese network that actively disrupts latent
semantic shortcuts without requiring data augmentation or
rewriting. Our extensive experiments across six models
and four benchmarks demonstrate that SCISSOR substan-
tially improves out-of-distribution robustness, particularly
in settings where traditional debiasing techniques struggle.
Notably, SCISSOR achieves +7.7 F1 points on Chest-XRay,
+7.3 on Yelp, and +5.3 on GYAFC, setting a new standard
for mitigating shortcut learning at the semantic level. Fur-
thermore, we show that larger models are naturally more re-
sistant to these biases, yet SCISSOR enhances even smaller
models, making them competitive with larger, more com-
plex architectures.
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A. More Theoretical Study
A.1. Why Can SCISSOR Reduce Generalization Error?

Typically, the generalization error is:

EDtest [L(fθ(x), y)]− EDtrain [L(fθ(x), y)], (3)

where EDtest [L(fθ(x), y)] is the loss on the OOD test set and EDtest [L(fθ(x), y)] is the loss on during training.

However, it is challenging to pre-define the distribution patterns of OOD data. Therefore, we use Rademacher Complexity to
measure the fitting ability of SCISSOR on random noise, which in turn reflects its generalization capability. The Rademacher
Complexity is define by:

R̂S(F) = Eσ

[
sup
f∈F

1

m

m∑
i=1

σif(xi)

]
, (4)

where supf∈F represents finding the function f within the hypothesis class F that maximizes the Rademacher Complexity.
σi is the Rademacher variable, ranging from [1,−1].

Theoretically, SCISSOR increases the intra-cluster contrastive loss, which filters out semantic information related to
clustering. As a result, it expands the effective dimensionality of the data. This enables the model to learn more robust,
classification-relevant features rather than relying on unstable semantic shortcuts, thereby reducing its ability to fit noise.
Consequently, the Rademacher complexity of F decreases, indicating stronger generalization ability, which in turn reduces
generalization error.

A.2. Why Is SCISSOR’s Classification Hyperplane More Robust?

To further illustrate how SCISSOR remap the semantic space structure to support the building of the classification boundary,
we introduce convex geometric analysis. We assume that a sample embedding x corresponds to a specific label within the
label set Y = {y1, . . . , yN} and that samples of class yi are distributed within the label spherical cluster Ci. Typically,
the classifier θ performs precise classification by separating these label spherical clusters. However, when x is unevenly
distributed, it difficult to establish an accurate classification plane.

We assume that the spherical centers of any cluster Ci is given by µi:

µi = Ex∼Ci
x, (5)

the inter-class separation can be measured using cosine similarity:

cos(θ) =

∑N
i=0

∑N
j=0,i̸=j

<µi,µj>
∥µi∥∥µj∥(

N
2

) . (6)

The larger the cos(θ), the higher the degree of overlap between the class boundaries, making it difficult to establish an
accurate classification plane. We calculated change in cos(θ), denoted as ∆θ, before and after SCISSOR training, i.e. θbefore
and θafter, to demonstrate how SCISSOR increases the distance between samples with different labels:

∆θ = cos(θbefore − θafter) (7)

The results is shown in Table 9 and 10. We observed that by using SCISSOR, the distance between different label samples
increased for all models across all datasets.
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Table 9. ∆θ of NLP datasets. Positive values indicate that the distance between samples with different labels increased.

BERT RoBERTa LLaMA

GYAFC 0.40 0.40 0.02
Yelp 0.26 0.19 0.01

Table 10. ∆θ of CV datasets. Positive values indicate that the distance between samples with different labels increased.

ViT Swin DINOv2

Chest-XRay 0.35 0.22 0.32
Not-MNIST 0.16 0.05 0.17

B. Omitted Proofs
B.1. Lemma 1

Proof. Given ∥g(d) − g(d′)∥2 < α, according to the Cauchy–Schwarz inequality (Garibaldi et al., 2007), the following
holds for ∀v:

∥v∥ =
u∑

i=1

|v| ≤
( u∑

i=1

v2i

) 1
2

=
√
u · ∥v∥2. (8)

Let v = g(d)− g(d′), then:

∥g(d)− g(d′)∥ ≤
√
u · ∥g(d)− g(d′)∥2 < α

√
u. (9)

Since fθ is differentiable, we apply its Taylor expansion (Taylor, 1715) as follows:

fθ(g(d
′)) = fθ(g(d)) +∇fθ(g(d))T (g(d)− g(d′)) +R, (10)

where R represents the higher-order terms, satisfying:

R =
1

2
(g(d′)− g(d))THfθ(ξ)(g(d

′)− g(d)), (11)

where, Hfθ(ξ) is the Hessian matrix (Hemati et al., 2023) of fθ with ξ ∈ [g(d), g(d′)].

Assuming that there is no gradient explosion issue in fθ, it has a finite number of parameters, and all parameters are bounded,
then H is continuous, and its norm has an upper bound M :

∥Hfθ(ξ)∥2 ≤M, ∀ξ ∈ [g(d), g(d′)] (12)

Here,

∥R∥ ≤ 1

2
M∥g(d)− g(d′)∥2<

1

2
Mα. (13)

Substituting it into Eq. (10), we have:

∥f(g(d))− f(g(d′))∥2 ≤ ∥f(g(d))− f(g(d′))∥

<∥∇fθ(g(d))∥ · ∥g(d)− g(d′)∥+ 1

2
Mα

≤
√
u · α · ∥∇fθ(g(d))∥2 +

1

2
Mα

(14)
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B.2. Lemma 2

Proof. Let us consider a multi-label classification, within the neighborhood of c, given a majority sample set D =
(d1, ..., idN1

) with corresponding label ymajor, and any minority sample set D̂ = (d̂1, ..., ˆdN2
) with corresponding label

yminor. We suppose N1 ≫ N2, and the output of fθ is the probability of a sample obtaining label ymajor, that is fθ(g(d)) =
P (ymajor|x; θ). By applying the Lemma 1, we have

∥P (y|c; θ)− P (y|d; θ)∥2 ≤ ∥P (y|c; θ)− P (y|d; θ)∥

<
√
u · α · ∥∇fθ(g(c))∥2 +

1

2
Mα,

(15)

and
∥P (y|c; θ)− P (y|d̂; θ)∥2 ≤ ∥P (y|c; θ)− P (y|d̂; θ)∥

<
√
u · α · ∥∇fθ(g(c))∥2 +

1

2
Mα.

(16)

Therefore, for ∀d,∀d̂, The following inequality holds

|P (y|d; θ)− P (y|d̂; θ)| < 2
√
u · α · ∥∇fθ(g(c))∥2 +Mα. (17)

For the gradient update of fθ, we can decompose it into the sum of two parts:

∂L

∂θ
=

∂LX

∂θ
+

∂LX ′

∂θ
. (18)

Since N1 ≫ N2 → ∂LX
∂θ ≫ ∂LX′

∂θ , fθ will prioritize ensuring convergence for X . Therefore, we have P (y|d; θ) >

P (y|d̂; θ).

Substituting it into Eq. (17), we have

P (y|d̂; θ) > P (y|d; θ)− 2
√
u · α · ∥∇fθ(g(c))∥2 −Mα. (19)

B.3. Proof of Upper Bound for Hessian Matrix (cont. Lemma 1)

Proof. We are going to prove that the spectral norm of the Hessian matrix mentioned in Lemma 1 has an upper bound, i.e.,
∥Hfθ(ξ)∥2 ≤M,∀ξ ∈ [g(d), g(d′)] holds, take a fully connected network as an example:

Let the classifier fθ be an L-layer fully connected neural network with parameters θ = W1, b1, ...,WL, bL where the input
is x ∈ Rdim and the output is y ∈ RK . The computation at each layer is defined as follows:

zl = Wlσ(zl−1) + bl, (20)

where σ is the activation function and z0 = x and the norm of the input x is bounded by B.

Here, popular activation functions such as Sigmoid, Swish, and GLUE are twice differentiable with bounded second
derivatives. Furthermore, the weight matrix of each layer satisfies ∥Wl∥2 ≤ C, where C is a constant.

For the Hessian matrix Hk, which is the k-th component of the output fk
θ (x) can be expanded as:

Hk =

L∑
l=1

∂2fk
θ

∂W 2
l

+ Cross Terms, (21)

To simplify the analysis, we focus on the diagonal blocks and ignore the cross terms, as their norms are typically much
smaller than those of the main diagonal blocks.

Therefore, for the l-th layer, we have:

Hk
l =

∂2fk
θ

∂W 2
l

=
∂

∂Wl
(
∂fk

θ

∂Wl
)

⇒ ∥Hk
l ∥2 ≤ K · ∥al−1∥22 · ∥Wl∥22.

(22)
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Furthermore, with the condition ∥Wl∥22 ≤ Cl and ∥x∥2 ≤ B, we obtain the following inequality using induction:

∥al−1∥2 ≤ B ·
l−1∏
i=1

Ci∥σ′∥∞

⇒ ∥Hk
l ∥2 ≤ K ·B2 · C2

l (

l−1∏
i=1

C2
i ∥σ′∥2∞).

(23)

The spectral norm of the Hessian matrix of fθ can be obtained by summing the norms of the Hessian blocks from each layer:

∥Hfθ(ξ)∥2 ≤
L∑

l=1

∥Hk
l ∥2

⇒ ∥Hfθ(ξ)∥2 ≤ K ·B2 ·
L∑

l=1

(C2
l

l−1∏
i=1

C2
i ∥σ′∥2∞).

(24)

C. Why Our Theory Makes Sense to Demonstrate Bias Existence?
C.1. Lemma 3.1

This lemma is useful in demonstrating the existence of semantic bias in text and images because it provides a mathematical
bound on how small changes in the input space (according to some function g) translate into changes in the classifier’s
output. The key insight is that if two semantically similar inputs (i.e., ones mapped close to each other by g) result in
significantly different outputs, it suggests that the classifier is sensitive to specific aspects of the input that may not align
with human perception of similarity—indicating bias.

Why This Lemma Makes Sense in Demonstrating Bias.

(1) Local Sensitivity to Features: The lemma highlights how changes in input embeddings g(d) and g(d′) propagate through
the classifier. If the upper bound is large for semantically similar inputs, the classifier may be over-sensitive to subtle,
potentially biased variations.

(2) Dependence on Gradient and Curvature: The bound depends on ||∇fθ(g(d))||2 and the Hessian norm M , meaning that
sharp decision boundaries (high curvature) and large gradient norms can amplify small differences in representation space,
possibly leading to biased decisions.

(3) Quantifying Semantic Bias: If semantic similarity (low ||g(d) − g(d′)|| does not guarantee a correspondingly small
change in the classifier’s output, this suggests that the classifier does not treat semantically similar inputs equivalently—an
indication of bias.

C.2. Lemma 3.2

This lemma provides a theoretical justification for how local label imbalances lead to biased classifier behavior, reinforcing
the existence of semantic bias in text and images. It highlights the mechanism by which majority label dominance affects
classification decisions within a local region of the representation space.

Why This Lemma Makes Sense in Demonstrating Bias.

(1) Local Majority Influence: If one label dominates in a local region of the embedding space B(c, α), empirical risk
minimization (ERM) encourages the classifier to favor that majority label, leading to biased predictions.

(2) Persistent Misclassification of the Minority Class: The second claim establishes a lower bound on the classifier’s
misclassification probability for the minority class, demonstrating that bias is not incidental—it is structurally inevitable due
to the local label imbalance.

(3) Worsening Over Time: The third claim states that this misclassification bias increases during training, suggesting that
deeper training exacerbates bias rather than mitigating it. This aligns with real-world observations where models tend to
overfit dominant patterns in the data.
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How This Relates to Semantic Bias.

(1) If a classifier systematically favors majority-labeled instances, it implies that certain semantics (e.g., particular words,
styles, or features) are overprivileged, while others are suppressed.

(2) This is particularly relevant in applications like natural language processing and computer vision, where spurious
correlations (e.g., associating specific words with certain sentiments or skin tones with particular classifications) arise due to
dataset biases.

D. Supplementary Experiments
D.1. Precision-Recall Curve

To further demonstrate the effectiveness of SCISSOR, we plot the precision-recall (PR) curves on the 4 datasets used, as
shown in Fig. 4.

We observe that in all cases, SCISSOR consistently shows a higher Area Under the Curve (AUC) than the baselines. In the
CV domain, the largest improvement comes from the ViT and DINOv2 models on the Chest-XRay dataset. As for NLP
datasets, the most significant difference is observed with the BERT and RoBERTa models on the Yelp dataset. For LLaMA3,
the improvement of SCISSOR is relatively slight, whereas we can still observe that our PR curve consistently lies above that
of the baseline.

Model BERT RoBERTa LLaMA3
Intra-cluster Inter-cluster Intra-cluster Inter-cluster Intra-cluster Inter-Cluster

GYAFC 3.06 * 1.87 * 2.53 * 2.26 * 2.34 * 2.27 *
Yelp 11.35 * 6.80 * 11.56 * 6.50 * 7.12 * 6.99 *

Table 11. Jaccard coefficient of words. For clear comparison, we increased the value by 100 times. * indicates a statistically significant
difference between the Intra-cluster and Inter-cluster groups, with a p-value less than 0.0001.

Model BERT RoBERTa LLaMA3
Intra-cluster Inter-cluster Intra-cluster Inter-cluster Intra-cluster Inter-Cluster

GYAFC 25.28 * 23.38 * 24.01 * 23.34 * 23.51 23.53
Yelp 27.26 * 24.78 * 27.75 * 24.78 * 24.98 25.11

Table 12. Levenshtin similarity between sequence of words. For clear comparison, we increased the value by 100 times. * indicates a
statistically significant difference between the Intra-cluster and Inter-cluster groups, with a p-value less than 0.0001.

D.2. Principal Component Analysis

To visually demonstrate how SCISSOR remaps the semantic space, we selected the RoBERTa model with the greatest
performance improvement in the experiment, along with the Yelp dataset, for testing. We applied Principal Component
Analysis (PCA) to reduce the outputs of both the debiased module and the original RoBERTa outputs to two dimensions, as
shown in Figure 5.

D.3. The Relationship Between Semantic Space Clustering and Linguistic Features

As an additional part, we propose two hypotheses specifically for the embeddings generated by language models:

Samples within the same cluster may share more similar word compositions. To verify this, we conducted 100,000
random sampling trials and calculated the Jaccard similarity coefficients for intra-cluster and inter-cluster pairs. The results
are presented in Table 11.

Samples within the same cluster may exhibit higher word string matching. We performed 100,000 random sampling
trials and computed Levenshtein similarity scores to evaluate the differences between randomly selected intra-cluster and
inter-cluster pairs. The results are shown in Table 12.
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Figure 4. Precision-Recall curve.

We observe a strong correlation between semantic clusters and both word overlap and string matching, as shown in Tables 11
and 12. Samples within the same cluster (intra-cluster) exhibit a significantly higher Jaccard index compared to those in
different clusters (inter-cluster). In particular, for embeddings from the BERT model, the Jaccard index for intra-cluster
pairs is approximately 70% higher than that for inter-cluster pairs.

Similarly, intra-cluster pairs for BERT and RoBERTa embeddings exhibit significantly higher Levenshtein similarity
than inter-cluster pairs. However, for the more powerful model LLaMA, the differences between the two groups are not
statistically significant.

19



Semantic Cluster Intervention for Suppressing Shortcut

Figure 5. The comparison of PCA results for positive and negative sample embeddings in the semantic space of SCISSOR(w/Roberta)
and Roberta, with the experiment conducted on the Yelp training set.

E. Scalability and Complexity of MCL
Although Markov clustering can incur a quadratic cost due to pairwise similarity computations, we underscore that it is
performed offline on the training set–i.e., it does not need to be repeated once the clusters are established. In practice,
especially for large datasets, one can mitigate the computational load by adopting approximate nearest-neighbor methods
(e.g., FAISS (Johnson et al., 2017) or HNSW (Malkov & Yashunin, 2018)) to sparsify the initial similarity graph before
running the Markov clustering. This significantly reduces both runtime and memory overhead without compromising the
integrity of the clusters. Moreover, advanced parallelization strategies, such as block-partitioned similarity calculations
on GPUs, can further scale our clustering to millions of samples. As a result, while the theoretical complexity is O(n2),
well-engineered approximations allow Markov clustering to be applied efficiently in domains like vision and NLP where
data can be extensive. Crucially, this one-time clustering does not impact inference-time latency; once the semantic clusters
are identified, SCISSOR integrates seamlessly as a lightweight module on top of the frozen pretrained model.
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