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Abstract
Since they lack the powerful tools and personnel available

in enterprise-grade security solution, home networks have
particularly difficult network security challenges. While prior
efforts outsource network traffic to cloud or cloudlet services,
such measures redirect network traffic out of the home net-
work, which grants a third-party access to see and profile
traffic. This affects the privacy of that traffic. Further, if those
tools need to apply Transport Layer Security (TLS) decryp-
tion to enhance their monitoring insight, the privacy risks
to home users grows substantially. Alternatively, residents
may introduce new physical hardware in their home networks,
but doing so incurs greater capital costs that would impede
deployment.

Our work explores a system to leverage existing available
devices, such as smartphones, tablets and laptops, inside a
home network to create a platform for traffic inspection. By
using devices owned and operated by the same end-users, the
system can peeking into TLS traffic and perform detailed
inspection without introducing risks from third parties. By
leveraging existing devices in a home network, we can im-
plement our platform with no additional hardware costs. Our
performance evaluation shows that such middleboxes can
substantially increase the throughput of communication from
around 10 Mbps to around 90 Mbps, while increasing CPU
usage at the router by around 15% , with a 20% CPU usage
increase on a smartphone (with single core processing), and
with a latency increase of about 120 milliseconds to network
packets.

1 Introduction

The increasing use of household broadband Internet service
and smart home technologies are likewise increasing risks
related to home network. In 2021, 442 million smart devices,
and 82% home networks are connected to the Internet. New
smart devices, like smart cameras, can collect data from users
to provide intelligent services, but it can be difficult for de-
fenders to determine what network traffic is associated with
these devices. It can be difficult for users to determine if
their devices are safe from network attacks. A study with
fifteen smart home users indicates that eleven participants
were worry about physical security and five participants were
concerned about the privacy associated with these devices [1].

Typically, consumer-grade routers do not provide effective
network protections [2]. As a result, attackers have various
opportunities to compromise networked devices, allowing
lateral propagation and a range of attacks.

The limited capabilities of consumer-grade network hard-
ware force difficult trade-offs in modern home networks.
While prior work has proposed lightweight functionality on
residential routers [3], the computational constraints of those
devices limit the types of tasks that can be hosted on such
routers. Efforts to profile and examine encrypted traffic using
machine learning [4] would exceed the resources of many
such routers. These routers are unable to engage in the more
sophisticated analysis common in enterprise security gate-
ways.

Other techniques push the computational tasks associated
with network screening to remote servers. Feamster [5] pro-
poses that home networks can outsource their security mech-
anisms to cloud servers with software-defined networking
(SDN) technologies. TLSDeputy [6] uses remote servers to
validate TLS certificates and protocol settings to ensure the
authenticity of communicating endpoints. However, both tech-
niques allow the operators of cloud infrastructure to have in-
sight into the activities of a home network, introducing new
privacy risks and an expanded trusting computing base.

In contrast to prior efforts, we consider mechanisms to
deploy home network traffic inspection in an opportunistic
fashion. We explore mechanisms to leverage existing devices
in a home network when they are available to screen commu-
nication. In doing so, we ask the following research questions:

• To what extent can we utilize current resources within a
home network to build real-time packet inspection?

• To what extent would such a packet inspection system
influence the performance of the home network, in terms
of traffic latency, resource consumption, and throughput?

Our approach enables devices such as smartphones, tablets,
laptops and desktops to perform traffic analysis. These de-
vices can operate as security proxies when they are available,
enabling detailed analysis. In pursuing this direction, our work
makes the following contributions:

• Creation of Prototype On-Router and Outsourced
Middleboxes: We use open source firmware on a
consumer-grade router to profile traffic locally and via a
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smartphone. We compare baseline communication with
an on-router program that profiles destination addresses.
We further implement a technique to transparently direct
traffic through a smartphone middlebox using network
address translation (NAT) rules on the router.

• Performance Evaluation of Deployment Options: We
compare baseline forwarding of the router with on-router
inspection and with opportunistic outsourcing to a smart-
phone. Our evaluation shows that on-device inspection
has a throughput of around 10 Mbps whereas outsourc-
ing the inspection to a smartphone achieve roughly 90
Mbps of throughput. The smartphone middleboxing ap-
proach adds around 15% CPU usage to the router, 20%
CPU usage to a smartphone (with single core process-
ing), and introduces 120 milliseconds of round trip time
(RTT) delay to network traffic.

2 Background and Related work

In this section we introduce the background knowledge and
prior work on residential network computation and security.

2.1 Computation in Residential Networks
A 2015 survey found that 77% of US households subscribed
broadband internet service, and 78% own a desktop or laptop
computer [7]. However, modern home networks face many
security challenges, since the value of assets managed by res-
idential networks is increasing. Attackers can gain sensitive
information or directly control the devices and launch attack
on other devices, such eavesdropping, replay attack, network
scanning, and data theft [8, 9].

There are effective ways to detect these attacks, but they
require significant computational resources. Hafeez et al. [8]
find that machine learning methods can detect a series attack
with accuracy as high as 99%. Jan et al. [10] propose a method
to detect a compromised device that joins a botnet with very
limited data through a deep learning algorithm. A powerful
inspection platform is helpful in increasing home network
security.

2.2 Perimeter Defense for Home Networks
Perimeter defenses can be useful for residential networks.
While the basic NAT functionality on residential routers typi-
cally prevents unsolicited inbound communication, it is inef-
fective at detecting or stopping existing compromises within a
network or attacks that are launched via a connection initiated
from within the network.

Li et al. propose applying deep learning anomaly detec-
tion techniques for securing home networks; however, their
method runs on equipment with computational resources
that may be inapplicable to many home networks [11].

ParaDrop [12] proposes allowing third-party application
providers to install lightweight containers to provide a gate-
way for simple tasks. However, ParaDrop does not have suffi-
cient resources to run resource-consuming tasks like intrusion
detection. Another work [13] adds plug-and-play devices to a
consumer-grade router, which enables the router to work as
an intelligent IoT gateway that can inspect traffic; however,
it incurs capital costs and requires hardware modifications
inside consumer routers that are likely beyond the technical
abilities of some potential deployers.

Shirali-Shahreza et al. [14] summarized commercial home
network firewall products. Each requires the installation of
additional devices in the network with an initial cost of at
least $200 and with ongoing monthly service costs. These
devices may replace typical home routers or act in conjunc-
tion with existing routers. Some use virtual private network
(VPN) techniques to tunnel traffic to a remote VPN server
that can inspects and analyze home network traffic before
forwarding the traffic. These methods introduce additional
costs and equipment for users.

To simplify the management but keep security enforcement,
Feamster proposes to outsource security needs to a remote
cloud server through SDN architecture [5]. Experts and pro-
fessional security software help to dynamically manage the
network. Since cloud servers may contain richer resources,
modules running in the controller can provide better analysis,
along with a broader view of the network. Many other works
propose to build remote firewalls on the controller based on
this architecture [8, 14–18]. Most of them propose to utilize
the gateway as an OpenFlow host in the home network. Others
propose to use a locally-available device, such as a Raspberry
Pi, instead. The agent usually samples the network traffic
and uploads it to the cloud. Controllers running in the cloud
may also run a firewall module to inspect the sampled flow
information. The agent further executes the returned action
decision, which is usually a security policy received from the
controller. However, these methods are based on users’ trust
that their private data is being used properly by a third-party
provider; some users have concerns about such providers.

2.3 Edge Computing for Local Networks

The edge computing paradigm builds decentralized comput-
ing pools for processing jobs from clients, bringing the com-
putation closer to the source of data [19]. Cloudlet [20] is
a popular edge computing prototype that offloads tasks to
nodes that can scale. These nodes can be hosted by ISPs or
other providers. Drop computing [21] builds a collaborative
computing cloud using mobile devices in which one device
can offload tasks to other devices. When there is no available
device, the system seeks help from the cloud. This method is
designed for ad hoc networks, which lack reliability since de-
vices may enter and leave the network frequently and network
coverage is usually limited. Similarly, Verbelen et al. [22]
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split tasks and offload them to a virtualized environment, ei-
ther on mobile devices or on the cloud. Gedeon et al.propose
to let a more reliable device, a home network gateway, run a
broker. The gateway seeks available cloudlet nodes to help
with its tasks [23]. Their methods still outsource the computa-
tion to a third-party platform, which raises privacy concerns.
That work demonstrates that running a broker on a residential
router does not introduce significant overhead, a result we
leverage in our own approach.

Aazam et al. [24] propose to use either smart gateway or
other localized fog nodes to do data pre-processing, before
uploading data to the cloud. The pre-processing not only
reduces the data size and retains only the necessary data, it
can reduce some, but not all, privacy risks.

We explore a mechanism to perform network traffic in-
spection within a home network only. Unlike existing edge
computing work, we focus on inspecting streaming data rather
than discrete computational jobs.

3 Approach

Our research compares two approaches: on-router inspection
via NFQUEUE and on-phone inspection via NAT redirection.
We start by introducing the threat model. Then, we illustrate
the process of on-router inspection. Finally, we describe the
functionalities of each component of the phone-based inspec-
tion platform and how they work together.

3.1 Threat Model and Scope

We consider a basic threat model where malicious communi-
cation occurs between a host within the network and a system
outside of the home network. The defender’s goal is to inspect
all traffic leaving the home network. In this model, we trust
the router and the smartphone that acts as a proxy. We do not
trust the endpoints.

Our goal is to create mechanisms that enable arbitrary traf-
fic inspection on a reasonably resourced device, such as a
phone. We do not aim to create new anomaly detectors or
traffic inspection engines; that is out of the scope of this work.
Accordingly, we demonstrate baseline functionality using an
block list of destination addresses.

3.2 On-Router Inspection via NFQUEUE

We implement a basic C++ program to inspect IP addresses
that is compiled to run natively on the router. The pro-
gram uses the iptables packet inspection tool and the
netfilter_queue library to inspect traffic. Essentially, the
iptables tool operates on each packet processed by the
Linux stack on the router. This action occurs when pack-
ets cross from the LAN interfaces to the WAN interface. The
iptables program sets an NFQUEUE judgment for all packets,

causing them to enter a kernel data structure. The C++ pro-
gram extracts the packets from that data structure, inspects the
address, and returns the packets to the kernel queue for trans-
mission. This program represents the minimum inspection
required for a general-purpose user-space inspection program
on the router.

3.3 On-Phone Inspection via NAT Redirection

There are two components in our on-phone inspection ap-
proach. The first is a set of NAT rules on the router. We
use the iptables program, which can manage IP packet
rules in the Linux kernel. The NAT table is one table of
iptables to create several rules in the NAT table to trans-
form the original destination IP address of the packets from
the server to the IP address of the smartphone, so the traf-
fic sent from the client can be redirected to the smart-
phone. In the example shown in Figure 1, we first apply a
DNAT rule as iptables -t nat -A PREROUTING -p tcp
-s 192.168.1.2 -d 172.16.1.2 -dport 6666
-j DNAT -to-destination 192.168.1.3:6666 and an
SNAT rule as iptables -t nat -A POSTROUTING -p
tcp -s 192.168.1.2 -d 192.168.1.193
-dport 6666 -j SNAT -to-source 192.168.1.1 to for-
ward traffic to the smartphone. Then the smartphone works as
a proxy that receives packets and sends them back to the
router after inspection. When these packets return to the
router, the router transforms their destination IP address to
the original server destination IP address based on another
DNAT rule, such as iptables -t nat -A PREROUTING -p
tcp -s 192.168.1.3 -d 192.168.1.1 -sport 7777
-j DNAT -to-destination 172.16.57.216:6666. Since
all of the NAT rules work bidirectionally, the packets sent
from server will will also go in the reverse direction, again
traversing the smartphone. Rather than processing traffic as
an arbitrary user space program in the router’s Linux stack,
our method forwards them using kernel data structures. This
feature avoids potentially costly transitions to user space.

The second component in our approach is the proxy device
and service. We first explore the smartphone as a proxy and
implement a Java program that uses TCP to accept traffic
for inspection on a pre-defined port. Figure 1 shows how the
phone accepts communication from the router on a specific
port. It starts a new TCP connection to a specifically config-
ured port on the router, which the router pre-configures to
forward to the remote server. Since the smartphone is on-path
in our method, we retrieve the raw payload of every packet.
While we only apply IP list filtering, more advanced inspec-
tion can be deployed in our method, such as TLS inspection
(TLSI) .
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Figure 1: An example of packet forwarding via NAT rules.
As the client sends the original packet to the server, the router
modifies the packet and forwards it to the smartphone. After
the smartphone performs packet inspection, it sends the packet
back to the router. Then the router forwards it to the server.
Since all of the NAT rules work bidirectionally, the packets
sent from the server will follow the reverse path.

4 Implementation

We implement our method in a lab environment on physical
devices. We run the OpenWrt 21.02.2 operating system (OS)
on a TP-LINK AC1750 Wireless Dual Band Gigabit Router.
We simulate a home network client user on a laptop with
four cores and 16 GBytes of memory, running the Windows
OS. We simulate a server outside of the home network on a
laptop with four cores and 16 GBytes of memory, running the
Ubuntu 20.04 OS. We use a smartphone with eight 2.0 GHz
cores and 4 GBytes of memory, running the Android 11 OS
as the proxy device.

For the network configuration, as showen in Figure 2, we
create two VLANs: one is on interface eth0, and the other
is on interface eth1. We assign the LAN ports and wireless
radio to one VLAN, and assign the WAN port to the other
VLAN. The client connects to a LAN port via a category 6
Ethernet cable. The server also connects to the WAN port
using a category 6 cable. For the radio, we build an access
point on 5.785 GHz using a Qualcomm Atheros QCA 9880
802.11ac adapter. We connect the smartphone to this access
point at a distance of 3 feet with an unobstructed line of sight.

After configuring the home network as defined in the threat
model, we add three NAT rules to iptables in the router,
as described in Section 3. These rules include SNAT and
DNAT rules and have the capability of redirecting traffic
between the client and the server to travel via the smartphone.
On the smartphone side, we use Android Studio to build a

Java application that performs packet inspection based on a
malicious IP block list and hosts a proxy service.

Figure 2: Our implementation’s network configuration

5 Performance Evaluation and Results

The most straightforward mechanism for implementing an
inspection and analysis middlebox is to use a device that is
already physically on the network path. In home networks, a
residential wireless router typically fills that role. To justify
the added complexity of opportunistic middleboxes, we ex-
plore the performance implications of using such commodity
devices. We use a typical network setting, without the use of
inspection functionality, to establish a baseline. We then ex-
plore on-device inspection. Finally, we examine an inspection
method in which NAT rules are used to reroute traffic to a
middlebox, using both a smartphone emulator and a physical
commodity smartphone for analysis.

In examining these scenarios, we evaluate the performance
of each using four metrics: flow throughput, end-to-end round
trip time (RTT), the CPU usage at the router, and the CPU
usage of the smartphone when it is in use.

5.1 The Baseline: LAN to WAN traffic

Our baseline scenario connects a client to a server though a
residential router. Often, the WAN port is used on the router
to connect to upstream networks, such as the Internet, and
the servers available through those networks. Therefore, we
connect an Ubuntu server to the WAN port of the router using
a category 6 Ethernet cable, which supports duplex gigabit
connectivity. The server uses a gigabit Ethernet card. We
statically configure the IP addresses of the server and the
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router’s WAN port within a subnet that is only used by those
two devices.

The connectivity options for clients may vary in different
homes. Some devices may be connected via Ethernet connec-
tions to the LAN ports of the router. In other cases, devices
may connect using WiFi radio links. Accordingly, we explore
both of these connection scenarios.

We begin by exploring the case in which the client is con-
nected to a LAN port on the router via a category 6 Ether-
net cable. We use the router’s built-in DHCP server, which
assigns an address to the client in a subnet that the router
and client share, yet is disjoint from the subnet used by the
server. We use the router’s built-in default NAT capabilities to
translate across the subnets, which is a common deployment
model in homes. Using the iperf3 benchmarking tool [25],
we test a TCP connection between the client and the server.
We configure iperf3 to attempt to maximize throughput in
the channel and observe it for 1,100 seconds. We conducted
3 trials and measured the throughput for 1000 seconds af-
ter an initial delay of 100 seconds to accommodate TCP’s
slow-start behavior. As we see in the right-most two lines in
Figure 3, the median download throughput is 440.00 Mbps
and the median upload throughput is 254.00 Mbps, with tight
distributions (standard deviation of 4.90 Mbps for download
and 3.27 Mbps for upload).
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Figure 3: Results from throughput tests when the client con-
nects to the router via a category 6 Ethernet cable. The green
lines show upload and download throughput under a baseline
setting. The red lines show both throughputs after applying
on-router inspection via NFQUEUE library. The blue lines show
both throughput after applying on-phone inspection using
NAT redirection rules.

Next, we determine the impact of connecting the client to
the router using WiFi radios. The client has a network adapter
capable of using 802.11ac communication, and the router sup-
ports 802.11ac, leading to the lowest common denominator

of the 802.11ac standard. That standard has a theoretical max-
imum throughput of 1300 Mbps, though practical throughput
is often less due to interference and obstructions. We place the
router and the client roughly 3 feet apart with line-of-sight.
We then repeat our throughput analysis using the iperf3
benchmark tool, with the same settings as our Ethernet exper-
iments. We use the same 3 trials and timing windows as in
the earlier experiment. In Figure 4, the right-most two lines
show the baseline throughput results via WiFi. The median
download throughput is 196.00 Mbps and the median upload
throughput is 229.00 Mbps, with standard deviation of 10.38
Mbps for download and 14.47 Mbps for upload.
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Figure 4: Results from throughput tests when the client con-
nects to the router wireless. The rightmost green lines show
upload and download throughput under a baseline setting.
The leftmost red lines show the throughput after applying
on-router inspection via NFQUEUE library. The middle blue
lines show the throughput after applying on-phone inspection
using NAT redirection rules.

Since the communication throughput via Ethernet appears
to be less than the medium’s theoretical maximum, we ex-
plore whether the router could be causing a bottleneck. In
particular, we examine the CPU of the router. While we test
the maximum throughput, we use the top tool to record the
CPU usage of the router for 1000 seconds. As shown in Ta-
ble 1, the CPU usage of the router is at its limit more than
90% of the time when testing maximum throughput. These
results show that the CPU of our router is the performance
bottleneck for higher throughput.

To determine the added CPU usage from different traffic
inspection methods, we need to measure the router’s CPU us-
age in a moderate working scenario, rather than in an extreme
situation. We thus evaluate the scenario in which the TCP
connection throughput is reduced to 10 Mbps of randomized
payload to the server. We also record the CPU usage of the
router for 1000 seconds. The green line in Figure 5 shows that
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Table 1: CPU usage of the router while testing the maximum
throughput of connections in six scenarios.

Percentile of Trials 10th 50th 90th
CPU Usage in Baseline Upload 100% 100% 100%
CPU Usage in Baseline Download 100% 100% 100%
CPU Usage in NAT Upload 98% 100% 100%
CPU Usage in NAT Download 97% 100% 100%
CPU Usage in NFQUEUE Upload 100% 100% 100%
CPU Usage in NFQUEUE Download 100% 100% 100%

the median CPU usage of the router is 9.00% with standard
deviation of 1.58%.
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Figure 5: CPU usage of the router when applying on-phone
inspection using NAT redirection rules, applying on-router
inspection via NFQUEUE library, and a baseline without inspec-
tion when throughput is limited to 10 Mbps.

While throughput is an important metric, the end-to-end
round trip time (RTT) is also important for understanding
the delay introduced by the network paths and the router. To
test this, we construct an echo program on the server and a
recording device on the client to measure the time difference
between the client sending a specific payload and receiving
a reply. Across 1000 trials, we see that the left-most line
in Figure 6 has a median RTT of 1.12 ms with a standard
deviation of 0.12 ms. When repeating this analysis via WiFi,
in Figure 7, we see the median RTT of the left-most line is
2.72 ms with a 6.14 ms standard deviation.

5.2 On-Router Inspection via NFQUEUE
To explore whether the router itself can feasibly inspect traffic,
we implement a basic C++ program, that is compiled to run
natively on the router, to inspect IP addresses. The program’s
details are described in Section 3.2.

We explore the throughput, RTT, and router CPU metrics
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Figure 6: RTT with a log scale in milliseconds between the
client and the server when the client connects to the router
via Ethernet. The leftmost green line shows baseline result.
The middle red line shows the result after applying on-router
inspection via the NFQUEUE library. The two rightmost blue
lines show the results with two separate phones after applying
on-phone inspection using NAT redirection rules.
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Figure 7: The RTT with a log scale in milliseconds between
the client and the server when the client connects to the router
via WiFi. The green line shows the baseline result. The red
line shows the result after applying on-router inspection via
NFQUEUE library. The two blue lines show the results with
two separate phones after applying on-phone inspection using
NAT redirection rules.

of the on-device inspection program using the same tools
and settings used in Section 5.1. In the two left-most lines of
Figures 3 and 4, we see the upload and download throughput
after applying this inspection approach. We conducted 3 trials
and measured the throughput for 1000 seconds after an ini-
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tial delay of 100 seconds to accommodate TCP’s slow-start
behavior. As we seen in the right-most two lines in Figure 3,
the median download throughput is 9.62 Mbps, and the me-
dian upload throughput is 8.40 Mbps (standard deviation of
3.91 Mbps for download and 3.93 Mbps for upload). Given
this substantially decreased throughput from the baseline, we
hypothesize that the change introduces a bottleneck on the
router.

When we examine the CPU usage of the router, we confirm
that this resource is exhausted. In Figure 5, we see that the
baseline CPU usage is around 9% when throughput is limited
to 10 Mbps, but is 100% when the router performs packet in-
spection. The process elevates all traffic to the router’s Linux
user space environment, which requires significant computa-
tional resources on the router. Such routers tend to be man-
ufactured with lower-end CPUs for economic reasons [26]
and there appears to be little headroom for this additional
operation. However, when the router is not overwhelmed, as
in the simple echo server RTT tests, we see that the on-device
router introduces minimal RTT increases over the baseline.
These results are shown by the red line in Figure 6, which is
close to the baseline results.

5.3 On-Phone Inspection via NAT Redirection

With the CPU limitations of residential routers, we explore
the potential of re-routing packets via a smartphone to inspect
traffic. As described in Section 3, we add three different NAT
rules via iptables on the router to cause traffic to be sent via
the phone. An example of traffic forwarding, after applying
NAT rules, is shown in Figure 1.

The NAT rules cause traffic to be sent to a specific port
on the smartphone. Our Java program runs on the phone,
binds to the specified port, and receives packets. It performs
simplistic packet inspection and then sends it back to the
router on a specific port. The router uses its NAT rewriting
rules to send it on to the server. When a reply from the server
is received by the router, the traffic likewise traverses the
phone for inspection before traveling to the client.

We use the same three metrics as in the baseline and on-
router cases to explore the performance characteristics of this
phone-based inspection approach. In addition, we consider
the CPU usage of the phone application itself, since high
usage may result in battery depletion on the phone and could
prevent its practical deployment.

Using the same settings as in the two prior sections, we ex-
plore the throughput when traffic is directed through the Moto
G Power smartphone. In the middle two lines of Figures 3,
we see that the median download throughput is 94.80 Mbps
and the median upload throughput is 70.10 Mbps, with tight
distributions (standard deviation of 4.32 Mbps for download
and 2.87 Mbps for upload). The throughput is substantially
higher than the on-router inspection approach in both Fig-
ure 3 and Figure 4. In effect, the processing of the NAT rules

on the router may incur less computational overhead than
the full process of inspecting the traffic. Since the router’s
CPU was the bottleneck in the on-device inspection scenario,
this adjustment increases the amount of traffic the router can
handle.

In Figure 5, we are able to confirm that the NAT-based
approach yields significantly lower CPU utilization than on-
device inspection when throughput is limited to 10 Mbps. The
middle line in that graph shows that the NAT approach has a
median of 24.0% CPU utilization with a standard deviation
of 2.61%.

The insertion of another device on the network path through
a loop will necessarily increase the packet’s propagation delay
and may be observable in the overall end-to-end RTT. This
is apparent in Figure 6, with the RTT of the NAT approach
represented by the two right-most lines. We see patterns where
20% of traffic has an RTT less than 30.44 ms while 75%
of traffic has an RTT over 120.17 ms. This is significantly
higher than either the baseline scenario or when on-device
inspection occurs. Importantly, this experiment uses a simple
echo server approach and does not tax the CPU of the router.
The on-device scenario would incur greater RTT delays when
the CPU is a bottleneck due to processing delay.

In Figure 8, we explore the cause of the RTT delay in
greater detail. We host a simple TCP echo program in three
different ways. The left-most line represents the scenario
when the echo server runs on the server using the baseline
scenario (i.e., the traffic traverses the router to the server, by-
passing the phone). The middle line represents the case when
the echo server runs in an application within an Android emu-
lator running on a laptop. The two rightmost lines represent
the echo server running on two separate physical smartphones:
a Moto G Power and a Pixel 2. While the first two scenarios
have fairly tight distributions with RTTs less than 10 ms, the
echo server built on the Moto G Power has a latency around
20ms for most traffic. However, it has much longer delays for
around 20% of traffic. Moreover, the echo server built on the
Pixel 2 has a latency of less than 50ms for around half of the
trials, but has delays over 200 ms for around half of the traffic.
In essence, the simple echo server smartphone application
sometimes incurs significant delay in sending or receiving
traffic. While this occurs only around 20% of the time for the
echo server, the proxy example would incur two instances of
this behavior, causing more traffic to incur a delay.

The distinct RTT behaviors exhibited by the two physical
phones, that are not present in the Android emulator, may
indicate some outside effect due to phone-specific factors.
These could include the use of power savings modes, in which
applications are periodically suspended or queued to reduce
energy consumption.

Our last metric explores the energy usage of the proxy
application on the phone. We again use the Moto G Power
smartphone as a proxy while maximizing throughput trans-
mission from the client to the server. In this experiment, we
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Figure 8: Comparison of RTT between connecting the client
directly to the Ubuntu server, the Android emulator, the Moto
G Power, and the Pixel 2.

also open a music-playing application on the phone, in the
background, for comparison. We then record the CPU usage
of the proxy application and the music application for 1000
seconds using the top tool in the phone. We monitor the idle
percentage of the 8 cores in the proxy device. In Table 2, we
show the CPU usage of the proxy application and the music
application, along with the time for which the CPU core is
idle. In this table, 100% represents the full utilization of a
core on the device and 800% represents the full utilization
of all eight device cores. The first row in Table 2 represents
the proxy application, which uses only about 21% of a sin-
gle core (and roughly 107% of the CPU usage of the music
application). We see that the majority of the device’s compu-
tational resources are unused. As a result, we anticipate that
the CPU-based energy consumption of the device would be a
small fraction of a music application. Since phones are regu-
larly used for music playing without significant power-related
disruptions to end-users, it is likely that the proxy application
would likewise be accommodated by phones.

Table 2: CPU usage of the smartphone for different applica-
tions when maximizing throughput while applying on-phone
inspection.

Percentile of Trials 10th 50th 90th
CPU Usage of Proxy App 18% 21% 24%
CPU Usage of Music App 98% 107% 114%
CPU Idle 535% 560% 584%

6 Conclusion

The need for privacy and the limited computational resources
in residential networks complicate traffic inspection and anal-

ysis. Residential routers’ limited CPU resources make it diffi-
cult to deploy even straightforward IP address-based inspec-
tion tools without substantially limiting throughput through
the router. However, with carefully-crafted NAT rules, a router
can redirect communication through another device, such as
a smartphone, to inspect traffic.

In our experiments, we find that NAT-based diversion
through a smartphone can substantially raise the communi-
cation throughput from around 10 Mbps to around 90 Mbps.
The router can periodically examine its ARP and DHCP data
structures to detect the availability of a phone in the LAN, con-
tact an application on the phone to configure proxy services,
and then divert traffic through the phone to enable outsourced
inspection. With such an approach, residential networks can
opportunistically use available smartphones as middleboxes
to enable higher-throughput traffic inspection.
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