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Abstract
In this work, we present a novel Game Theoretic
Neural Ordinary Differential Equation (Neural
ODE) optimizer based on the minimax Differen-
tial Dynamic Programming paradigm. As neural
networks and neural ODEs tend to be vulnera-
ble to attacks, and their predictions are fragile in
the presence of adversarial examples, we aim to
design a robust game theoretic optimizer based
on principles of Min-Max Optimal Control. By
formulating Neural ODE optimization as a Min-
Max Optimal Control Problem, our proposed al-
gorithm aims to enhance the robustness of neu-
ral networks against adversarial attacks by find-
ing policies that perform well under worst-case
scenarios. Leveraging recent advances in the in-
terpretation of Neural ODE training through an
Optimal Control Problem perspective, we extend
recent second-order optimization techniques to
a game theoretic setting and adapt them to our
proposed method. This allows our optimizer to
efficiently handle the increased complexity stem-
ming from the computation of double the amount
of learnable parameters. The resulting optimizer,
Game Theoretic Second-Order Neural Optimizer
(GTSONO), enables more effective exploration of
the control policy space, leading to improved ro-
bustness against adversarial attacks. Experimental
evaluations on benchmark datasets demonstrate
the superiority of GTSONO compared to existing
state-of-the-art optimizers in terms of both per-
formance and efficiency against state-of-the-art
adversarial defense methods.

1. Introduction
Continuous deep learning architectures have recently gained
quite significant popularity. This genre of models, where
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the ODE of the state derivative is parameterized by an DNN
are called Neural ODEs (Chen et al., 2018) and concern the
following optimization

min
θ
L(x(tf)),where

dx

dt
= F(t,x(t), θ), x(t0) = x0

(1)

where in its general form x(t) ∈ Rm is the state vector, and
(·, ·, θ) is the dynamics of the vector field of x parameterized
by θ ∈ Rn.

Chen (2018) introduced the Adjoint Sensitivity Method
(ASM) as a first order method to perform reverse-
differentiation and train these models, which is based on
Pontryagin’s principle. Although the authors noted that it is
possible to compute higher order derivatives, this causes ac-
cumulation of the integration error. Motivated by this, (Liu
et al., 2021a) introduced a novel second-order framework.
Their approach involved recasting the Neural ODE formula-
tion, represented by equation 10, within the framework of
continuous time Differential Dynamic Programming (DDP),
which is a well-established second-order optimal control
method. By formulating the training process as an optimal
control problem, the authors successfully devised an effi-
cient second order optimizer for updating the parameters
of Neural ODEs. Intuitively, this extends the underlying
connection between OCP and the training of discrete NNs.
In (Liu et al., 2021b), a connection between the training
process of NNs and DDP was established and it was further
shown that the DDP update policy constitutes a general-
ization of Gradient Descent (GD) as the update rule of the
weights and biases in NNs under some assumptions.

In their work to elucidate the underlying operations in Neu-
ral ODEs, (Massaroli et al., 2020) describe these continuous
models as the latest instance in the pursuit of robustness in
traditional neural networks. Machine learning (ML) models
are often vulnerable to adversarial examples, deliberately
perturbed inputs designed to mislead a model ((Tramèr et al.,
2017), (Goodfellow et al., 2014)). Despite their superhuman
performance in many computer vision tasks, recent find-
ings demonstrate that deep neural networks tend to be more
fragile (Liu et al., 2020). Adversarial training in machine
learning aims to improve the robustness and generalization
of models by training a model that can withstand such at-
tacks on its input data. The robustness of Neural ODEs
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against adversarial examples is discussed showing great
performance against white box attacks (Chu et al., 2020),
(Carrara et al., 2019). (Huang et al., 2022) proposed that
the adversarial robustness in stabilized Neural ODEs might
stem from obfuscated gradients, as the adaptive stepsize
of numerical ODE solvers have a gradient masking effect
that causes the PGD attacks to fail. In this vein, to further
explore the robustness of Neural ODEs, (Liu et al., 2020)
examined how the injection of noise in Neural ODEs can
generate more stable predictions.

In the realm of OCP, it has been demonstrated that game-
theoretic formulation enables the model handling uncertain-
ties and external disturbances. The first min-max formula-
tion was introduced by (Sun et al., 2015). This algorithm has
been successfully tested in real-life robotic applications. For
instance, it was shown that it can handle the steering and sta-
bilization of a quadrotor subjected to external distrubances,
and come up with the control policy for a biped robot to
successfully walk under unknown disturbances (Sun et al.,
2018), (Morimoto et al., 2003).

In this work, drawing inspiration by the novel connection of
Neural ODE training and continuous time OCP, we adapt
the Min-Max OCP paradigm into the training of Neural
ODEs and introduce a second order Game Theoretic Neu-
ral Optimizer. The resulting framework, called GTSONO,
based on the continuous time Min-Max DDP algorithm,
employing the ability of this algorithm to handle well un-
certainties and external disturbances. It is aimed to transfer
this ability into the Neural ODE training seeking a control
policy or equivalently a weight configuration that robustifies
the model and immunizes it to external disturbances. The
extension of the optimal control problem (OCP) perspec-
tive from discrete models, such as deep neural networks
(DNNs), to continuous models like Neural ODEs necessi-
tates specialized treatment based on continuous-time OCP
theory (Todorov et al., 2006; Liu et al., 2021a), however
this fundamental connection motivates the development of
principled algorithms for the training of Neural ODEs.

The connection established between our methodology and
DDP, a second order OCP method, motivates the deriva-
tion of second-order derivatives and effectively optimize
the configuration for optimal performance. However, im-
plementing second-order methods can be computationally
intractable, especially for high-dimensional systems, such
neural networks. Additionally,our algorithm entails seeking
the optimal configuration of twice the number of weights,
and storing more second order matrices. As a result, it
becomes imperative to employ efficient second-order meth-
ods to effectively manage the heightened computational
complexity. In this vein, by incorporating Kronecker factor-
ization (Martens & Grosse, 2015), we are able to decompose
the second-order matrices into vectors, facilitating more ef-

ficient computations. Therefore, our second-order method
is found to come at no additional memory cost than coun-
terpart first order methods. After the derivation of efficient
preconditioning, we see that the resulting update law con-
stitutes an approximation of the Natural Gradient Descent,
as we approximate the Fischer Information Matrix through
Gauss-Newton method. Furthermore, we also examine a
generalization of this update law based on the open loop
Min-Max DDP.

2. Preliminaries
2.1. Min-Max Differential Dynamic Programming

The discussion on the Min-Max Differential Dynamic Pro-
gramming starts with the optimization problem.

min
u

max
v

J(u,v) (2)

where J(u,v) is the cost function defined as: J(u,v) =
ϕ(x, tf ) +

∫
L(x,u,v)dt. We denote as u,v the controls

applied by the two antagonizing players. It is assumed that
the player in control of the u variable wants to minimize the
cost function, whereas the other player wants to maximize
it. Consider the dynamics describing the aforementioned
OCP problem being given by the following ODE:

dx(t)

dt
= F (x(t),u(t),v(t), t), x(t0) = x0 (3)

where x(t) ∈ X is the state of the dynamic system. We
proceed to define the value function for our problem as the
function expressing the minmax value of the cost function
at time t = t0 and x = x0.

V(t0, x0) = min
γu

max
γv

{
ϕ(tf ,x(tf ))

+

∫ tf

t0

L(x(t),u(t,x(t)),v(t,x(t)), t)dτ

}
(4)

Using the Bellman principle, we write (49), as follows:

V(t, x(t)) = min
u

max
v

{
V (t+ dt,x(t+ dt)

+

∫ t+dt

t

L(x(t),u(t,x(t)),v(t,x(t)), t)dτ

}
(5)

The detailed derivation of the Bellman equation is left in the
Appendix B.2. From 5, we can derive the Hamilton-Jacobi-
Bellman-Isaacs (HJBI) PDE

−∂V

∂t
=min

u
max
v
L(x(t),u(t),v(t), t)+

Vx(x, t)
⊺F(x,u,v, t)

(6)
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with boundary conditions V(x(tf), tf) = ϕ(xtf , tf).

Subsequently, we define the Bellman objective function
Q(t,x,u,v) to be the optimization objective from 49. The
Bellman principle allows us to interpret the optimization
problem as a sequence of minimization over each u control
and maximization over each v (Liu et al., 2021b). However,
solving the Bellman equation for high-dimensional prob-
lems becomes infeasible. For this reason, given a nominal
trajectory at time t, (x̄t, ūt, v̄t), during the backward pass,
we approximate the Bellman equation locally around the
nominal trajectory through a second order Taylor expansion.
The goal of the min-max DDP is iteratively find the update
laws of the control variables that minimize and maximize J ,
through the following minimization and maximizations

δu∗
t = argmin

δut

{
1
δxt

δut

δvt


⊺ 

0 Qx Qu Qv

Qx Qxx Qxu Qxv

Qu Qux Quu Quv

Qv Qvx Qvu Qvv




1
δxt

δut

δvt

}
(7a)

δv∗
t = argmin

δvt

{
1
δxt

δut

δvt


⊺ 

0 Qx Qu Qv

Qx Qxx Qxu Qxv

Qu Qux Quu Quv

Qv Qvx Qvu Qvv




1
δxt

δut

δvt

}
(7b)

Finally, the optimization problems in 7a have a closed form
solution, and can be compactly written as follows[

δu∗
t

δv∗
t

]
=

[
lu
lv

]
+

[
Ku

Kv

]
δxt (8)

where δxt is the state differential, and the feed-forward
gains lu, along with lv, and the feedback gains Ku, Kv are
given by

lu = Q̃−1
uu(QuvQ

−1
vvQv −Qu), and

Ku = Q̃−1
uu(Qux −QuvQ

−1
vvQvx)

(9a)

lv = Q̃−1
vv (QuvQ

−1
uuQu −Qv), and

Kv = Q̃−1
vv (Qvx −QuvQ

−1
vvQvx)

(9b)

with Q̃uu = (Quu − QuvQ
−1
vv Qvu), and Q̃vv = (Qvv −

QvuQ
−1
uuQuv). Substituting 23 into the Taylor expansion

of the Bellman function, we obtain the backward ODEs to
back-propagate Vx, and Vxx. A detailed derivation of the
update laws and the backward ODEs of Min-Max DDP is
provided in the Appendix B.2.

2.2. Neural ODEs

In general, Neural ODEs concern the following optimization
over an objective function: L:

min
θ
L(x(t)(tf )),where

dx

dt
= F (t,x(t), θ),x(t)(t0) = x0

(10)

, where x(t) ∈ Rm, and F (·, ·, θ) is a deep neural network
parameterized by θ ∈ Rn. Solving the ODE involves a
call of an ODE solver. In practice higher order integra-
tions methods such as Runge-Kutta, Dopri5 are employed
which provide with more accurate results than vanilla Euler
discretization (Liu et al., 2021a). Back propagation of Neu-
ral ODEs involves obtaining the gradient ∂L

∂θ . Naively, one
could try to back-propagate through solving the ODE by call-
ing the same solver mentioned above, however this results
in intractable algorithms with very high memory complex-
ity, as the computation graph can grow arbitrarily large for
adaptive ODE solvers. For this reason, (Chen et al., 2018)
proposed the Adjoint Sensitivity Method, which enables
computing the gradient through the following integration

∂L
∂θ

= −
∫ t0

t1

a(t)
∂F(t,xt, θ)

∂θ
dt, (11)

where a(t) ∈ Rm is the adjoint state, whose dynamics obey
the backward ODE

−da(t)

dt
= a(t)⊺

∂F (t,x, θ)

∂x
(12)

with terminal condition a(t1) = ∂L
∂x(t1)

. These coupled
ODEs in 11, and 12 are the equivalent continuous-time
expression of the Back-propagation (Lecun, 1988). As men-
tioned in the 1, the authors mentioned that computation of
higher order derivatives is possible via this formulation, by
recursively calling ∂nL

∂θn = grad(∂
n−1L

∂θn−1 , however this causes
accumulation of the integration error as pointed out in (Liu
et al., 2021a).

3. Methodology
3.1. Training Neural Dynamics using Game Theoretic

Optimal Control Theory

Our proposed methodology , based on the continuous time
minmax DDP algorithm, leverages the ability of this algo-
rithm to handle well uncertainties and external disturbances
and rendering second order methods for Neural ODEs more
robust.

Converting (10) into an expression that is easier to imple-
ment through a min-max continuous time Optimal Control
perspective, we obtain:

min
u

max
v

[
Φ(xtf ) +

∫ tf

t0

ℓ(t,x,u,v)dt

]
,

subjected to


dx
dt = F (t,x,u,v), x(t0) = x0

du
dt = 0, u(t0) = θ
dv
dt = 0, v(t0) = η

(13)

where x ≡ x(t) ∈ Rm, u ≡ u(t) ∈ Rn, and v ≡ v(t) ∈
Rn. It is clear that (27) describes (10) without loss of gener-
ality by taking (Φ, ℓ) = (L, 0). The function F (t,x,u,v)
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characterizes the vector field and is parameterized by a
Deep Neural Network (DNN). We consider that the dynam-
ics of the system are symetric with respect to the two sets of
weights (u,v). The functions Φ, and ℓ are known as the ter-
minal and running cost in the context of OCP. This problem
is understood as particular type of OCP that searches for
the optimal initial condition of the time-invariant controls
ut,vt. In the DNN setting, the terminal cost is equivalent to
the loss function, for instance Categorical Cross Entropy for
multi-label classification, and the running cost is equivalent
to the weight decay, or some other regularization techniques
that acts on the weights of the intermediate hidden layers.
Next, the accumulated loss Q(t,x,u,v) is defined as fol-
lows:

Q(t,x,u,v) = Φ(x(tf )) +

∫ tf

t

ℓ(τ,x(τ),u(τ),v(τ))dτ

(14)
From this definition of the accumulated loss implies that Q
we can readily obtain:

0 = ℓ(t,x,u,v) +
dQ(t,x,u,v)

dt
(15)

At this point our goal is to compute higher-order derivatives
with respect to u,v. Under the OC formulation the gradient
of the loss function with respect to the parameters θ, and
η ∂L

∂θ , ∂L
∂η respectively are equivalent to ∂Q(t0,xt0

,ut0
,vt0

)

∂ut0
,

and ∂Q(t0,xt0
,ut0

,vt0
)

∂vt0
in the context of Neural ODEs. In

similar fashion, the hessian of the loss ∂2L
∂θ2 is identical to

∂2Q(t0,xt0
,ut0

,vt0
)

∂u2
t0

, similarly for the hessians of the loss

with respect to η, and v(t0). This is because we set ut0 = θ,
and v(t0) = η by construction. Intuitively, we can interpret
Q(t0,xt0 ,ut0 ,vt0) as the accumulation of the loss over
the entire interval [t0, tf ], thus it represents L satisfactorily.
Now, we frame the equation above along a nominal path to
derive the ODEs that will help us to compute the second
order derivatives at t0.

Theorem 3.1. Consider nominal trajectory (x̄, ū, v̄), that
satisfies the ODEs in the constraints of (27) is considered.
Then, the function Q along with its first and second deriva-
tives expanded locally around the nominal trajectory obey
the following backward ODEs:

−dQx

dt
= FxQx + ℓx, (16a)

−dQxx

dt
= ℓxx + FxQxx +QxxF

⊺
x , (16b)

−dQxu

dt
= ℓxu + FxQxu +QxxF

⊺
u (16c)

−dQu

dt
= FuQx + ℓu, (16d)

−dQuu

dt
= ℓuu + FuQxu +QuxF

⊺
u , (16e)

−dQuv

dt
= ℓuv + FuQxv +QuxF

⊺
v (16f)

−dQv

dt
= FvQx + ℓv, (16g)

−dQvv

dt
= ℓvv + FvQxv +QvxF

⊺
v (16h)

−dQxv

dt
= ℓxv + FxQxv +QxxF

⊺
v (16i)

The terminal conditions are given by: Qx(tf ) =
Φx, Qxx(tf ) = Φxx, and Qu(tf ) = Qv(tf ) =
Quu(tf ) = Qvv(tf ) = Quv(tf ) = Qxu(tf ) =
Qxv(tf ) = 0.

Remark This theorem implies that the proposed frame-
work can obtain first and second order derivatives with a
single pass of an ODE solver, without any recursive compu-
tations. This contributes to avoiding accumulating integra-
tion errors, and increased runtimes.

3.2. Second-order Matrix Factorization

Theorem 1 indeeds set the foundations for an efficient sec-
ond order game theoretic framework. However, there is still
the issue of the dimensionality. The number of learnable
parameters in networks with highly complicated architec-
tures grows easily to an unfavorable number, especially in
our Game-Theoretic framework, dealing with two sets of
weights, and every operation takes place twice, rendering
the inversion of the Hessians intractable. Therefore, it is
vital to establish an efficient methodology to approximate
the second order matrices.
Theorem 3.2. We assume the matrix Qxx(t1) to be a sym-
metric matrix of rank R ≤ m, it may be represented as:
Qxx =

∑R
i=1 yiy

⊺
i , where yi ∈ Rm. Then ∀t ∈ [t0, tf ],

the second order matrices in (33) that contain derivative
with respect to the state can be decomposed as follows:

Qxx(t) =

R∑
i=1

qi(t)qi(t)
⊺, Qxu(t) =

R∑
i=1

qi(t)pi(t)
⊺

Quu(t) = ℓuu +

R∑
i=1

pi(t)pi(t)
⊺, Quv(t) =

R∑
i=1

pi(t)si(t)
⊺,

Qxv(t) =

R∑
i=1

qi(t)si(t)
⊺, Qvv(t) = ℓvv +

R∑
i=1

si(t)si(t)
⊺,

(17)
where the vectors qi ∈ Rm, and pi(t), and si(t) ∈ Rn

obey the following backward ODEs:

−dqi(t)

dt
= Fxqi(t), − dpi(t)

dt
= Fuqi(t),

−dsi(t)

dt
= Fvqi(t)

(18)

with the terminal condition given by
(qi(tf ),pi(tf ), si(tf )) = (yi, 0, 0).
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Remark This theorem suggests that the coupled matrices
back propagated through (33) can be decomposed into a
set of vectors. As the number of vectors is dependent on
the rank of Qxx(tf ); lower rank matrices observed in many
Neural ODE applications (Chen et al., 2018) alleviate the
computational load and provide great memory efficiency.

Assumption We assume that the running cost ℓ is twice
differentiable and only dependent quadratic with respect
to the antagonizing controls, namely: ℓ ≡ ℓ(u,v), with
ℓuu = RuI, and ℓvv = RvI and ℓuv = 0, where I is the
identity matrix, Rv and Ru are scalars, with Rv being larger
than Ru. The intuition for this selection is that we wish to
penalize the disturbance more severely and prevent instabil-
ity. Based on the above, substituting (18) in (17), the second
order matrices can be formulated as follows:

Quu(t) = RuI(t− tf )+ (19a)
R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

(19b)

Qvv(t) = RvI(t− tf )+ (19c)
R∑
i=1

(∫ t

tf

Fvqidt
)(∫ t

tf

Fvqidt
)⊺

(19d)

Quv(t) =

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fvqidt
)⊺

(19e)

Qux(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fuqidt
)⊺

(19f)

Qvx(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fvqidt
)⊺

(19g)

To avoid dimensionality issues and tensor representations,
the integrations in equations (39) are broken down into each
layer j of the network structure. We demonstrate the layer-
wise break down for the pi(t) vector, the rest are shown in
detail in the Appendix.∫ t0

tf

(
Fuqi

)
dt =

[
. . . ,

∫ t0

tf

(
Fujqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
zj ⊗ (

∂F

∂hj
qi)

)
dt, . . .

] (20)

We denote zj , hj , uj , and vj as the activation, pre-
activation (linear combination), and the parameters of layer
j, respectively. We consider the the preactivation vector
hj(t), as an affine combination of the weights with the in-
put to the jth layer. At this point it is emphasized that we
considered symmetric dynamics with respect to u, and v,
resulting in that hj

u = hj
v = zj , and hj

x = (u + v). This

implies that:

Fuj
qi = zj ⊗ (

∂F

∂hj
qi) for feed-forward layers (21a)

Fujqi = zj ∗̂(
∂Fuj

∂hj
qi) for convolution layers (21b)

where ⊗ denotes the Kronecker product, and ∗̂ denotes
the de-convolution operator. The partial derivatives of the
system dynamics with respect to the other variables (x,v),
are mentioned in the Appendix. Finally, the layer-wise
precondition matrices Quu, Quv and Qvv at time t = t0
can be approximated through the Kronecker factorization as
shown in (22). To derive these expressions, we first use the
Kronecker product property: (A⊗B)(C⊗D) = AC⊗BD,
and it is also assumed that z(t)j , and g(t)j = ∂F

∂hj
are

uncorrelated across time, and that zj(t), gj(t) are pair-wise
independent. A discussion over this assumptions takes place
in the Appendix.

Qujuj
(t0) ≈ RuI(t− tf )+∫ t0

tf

(
zjz

⊺
j

)
dt︸ ︷︷ ︸

Aj(t)

⊗
∫ t0

tf

R∑
i=1

(( ∂F
∂hj

qi

)(( ∂F
∂hj

qi

))⊺
dt︸ ︷︷ ︸

Bj(t)

(22a)

Qvjvj
(t0) ≈ RvI(t− tf ) +Aj(t)⊗Bj(t) (22b)

Qujvj
(t0) ≈ Aj(t)⊗Bj(t) (22c)

Our motivation to exploit Kronecker products is to uti-
lize product properties, such as: (A ⊗ B)−1 = A−1 ⊗
B−1, and (A⊗B)vec(X) = vec(BXA⊺). Primarily, the
first property enables the efficient preconditioning, where in-
stead of inverting the Hessians Quu, and Qvv of dimensions
mn×mn, instead we can invert two matrices of dimensions
m×m, and n× n.

3.3. Efficient Approximation of Update Laws

Update Law from Min-Max DDP Recall that Neural
ODE analysis and OCP principles are deeply intertwined.
That motivates us to view the optimization process of the
Neural ODEs as a trajectory optimization task. Following
this, we employ the control variable update laws derived in
the 2. The factorization from the previous section enable us
to derive tractable update expressions for the antagonizing
control variables, based on the min-max DDP update rule
introduced in (8).

[
δut

δvt

]
=

[
lu
lv

]
+

[
Ku

Kv

]
δxt, (23)



Game Theoretic Neural ODE Optimizer

where:

lu = Q̃−1
uu(QuvQ

−1
vvQv −Qu), and

Ku = Q̃−1
uu(Qux −QuvQ

−1
vvQvx)

(24a)

lv = Q̃−1
vv (QuvQ

−1
uuQu −Qv), and

Kv = Q̃−1
vv (Qvx −QuvQ

−1
vvQvx)

(24b)

with: Q̃uu = (Quu − QuvQ
−1
vv Qvu), and Q̃vv =

(Qvv −QvuQ
−1
uuQuv).

At this point, we examine two cases for the update law. The
first one follows curvature approximation of the loss curve
using the factorizations showed above to efficiently invert
the Hessian. The second update rule constitutes a gener-
alization following open loop Min-Max DDP, for which
we will introduce two more propositions below in order to
efficiently and compactly represent the terms in 24.

Curvature Approximation Initially, setting the cross-
terms: Quu = Qvu = Qxu = Qxv = 0, in 23 it is
easy to see that the update rule for the two control vari-
ables takes the following form: u← u− ηQ−1

uu∇uQ, and
v ← v + ηQ−1

vv∇vQ, where η ∈ (0, 1) is the step size or
learning rate of the optimizer. Note that our analysis, we
applied to the terminal Hessian Qxx(tf ) the Gauss-Newton
approximation, enabling our the Hessians Quu, and Qvv to
be computed and approximated in a similar manner. This im-
plies that the resulting precondition matrices can be viewed
as an approximation of the Fisher Information Matrix, thus
the resulting update law can be thought as following the
Natural Gradient Descent (George et al., 2018).

Open-Loop DDP Update Law The second update rule
is a generalization of the first rule based on the open loop
update rule of Min-Max DDP. For this update law, we lift the
assumption of Quv to be equal to zero so the lu, and lv terms
become slightly more complex. Recall that by design we
impose that ℓuv = 0, as suggested by OCP literature (Sun
et al., 2018). The role of the cross term Quv is to capture
the implicit interaction of the two weights. It expresses the
coupling of the two control variables describing how the
two control variables of the system are coupled to each other
and how changes in one can affect the update of other.

Proposition 3.3. Using the property of the eigenvalue de-
composition of a Kronecker product: (A ⊗ B + λI)−1 =
(UA⊗UB)(ΣA⊗ΣB+λ)−1(UA⊗UB)

⊺, to each of the ma-
trix terms in Q̃uu, Q̃vv, we derive an equivalent expression
for their eigenvalue decomposition.

Q̃uu = (UA ⊗ UB)(Su − SuvS
−1
v Suv)(UA ⊗ UB)

⊺

Q̃vv = (UA ⊗ UB)(Sv − SuvS
−1
v Suv)(UA ⊗ UB)

⊺

(25)

The eigen-value decomposition in of Q̃uu, Q̃vv help us
view the resulting Kronecker-factored preconditioning as
the scaled down by (ΣA ⊗ΣB + λ) projection of the corre-
sponding gradient vector (Qu, or Qv) along the eigenbasis
(inner product with (UA ⊗ UB), scaled down that basis by
((UA ⊗ UB)

⊺) which finally returns to the initial parameter
space, as demonstrated in (George et al., 2018).

Proposition 3.4. After Eq. 25, the property: (A ⊗
B)vec(X) = vec(BXA⊺) allows us to rewrite the feed for-
ward and feedback gains in 24 more compactly

lu =vec(UBGuvU
⊺
A)− vec(UBGuuU

⊺
A),

Ku = vec(UBYuvU
⊺
A)− vec(UBYuuU

⊺
A)

(26a)

lv =vec(UBGvuU
⊺
A)− vec(UBGvvU

⊺
A),

Kv = vec(UBYvuU
⊺
A)− vec(UBYvvU

⊺
A)

(26b)

Following the property mentioned in the proposition , the
only matrix inversions taking place involve the inversion
of the diagonal matrices of the form S = (ΣA ⊗ ΣB + λ).
Therefore, the computation of the terms in 26 is computa-
tionally tractable. The detailed proof is left in the Appendix
A.1.

In this case, using the l terms from Eq. 26, our update law
for the open-loop DDP GTSONO becomes ut ← ut+ηlut ,
and vt ← vt+ηlvt

, offering a generalization of the standard
training scheme. From a Game Theoretic standpoint, the
open loop information structure is equivalent to the two
players (i.e. weights) having minimal access and knowledge
to the game (i.e. network) structure.

4. Experiments
In this section, we assess the robustness of our suggested
architecture compared with other state-of-the-art adversarial
defense methods and the innate robustness of the continu-
ous models. These models are tested in the task of image
classification in 2 datasets. The tests performed examine
the accuracy each model in the clean test set, along with the
test set subjected to white box adversarial attacks and injec-
tion of Gaussian Noise. It is demonstrated that comparable
performance to state-of-the-art adversarial training methods
is achieved. We denote each model’s accuracy to the clean
test set (i.e. natural accuracy) with Anat.

4.1. Experimental Setup

First, we introduce the datasets, the architectures and the
white box attacks employed during our experiments. Note
that generalized update rule following open loop Min-Max
DDP is referred as DDP-GTSONO.

Attacks For the adversarial attacks, our emphasis lied
on white box ℓ∞-norm Projected Gradient Descent (PGD)
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Table 1. Results on the MNIST. Anat denotes each optimizer’s accuracy to the clean test set (i.e. natural accuracy). N (0, σ) shows the
robust accuracy of the optimizers after gaussian noise injection in the test set. PGDϵ

s denotes the accuracy of the optimizers under PGD
attack in the test set with a perturbation distance ϵ that takes s steps in the direction of the gradient. FGSMα

s describes the accuracy
under FGSM attack whose single step in the direction of the gradient is multiplied with constant α.

Method Anat N (0, 0.3) N (0, 0.4) PGD0.2
40 PGD0.3

40 FGSM0.1 FGSM0.2

Adam 97.54 97.05 96.88 90.92 85.44 94.62 91.44
SGD 98.00 97.42 96.85 90.04 85.19 95.48 92.12
SNOpt (Liu et al., 2021a) 97.67 97.23 97.11 91.34 87.04 94.68 91.36
DDP GTSONO (Ours) 99.25 98.91 98.67 93.88 93.26 95.38 91.33
GTSONO (Ours) 99.37 99.15 98.70 95.70 94.75 96.84 91.58

Table 2. Results on the SVHN

Method Anat N (0, 0.1) N (0, 0.15) PGD0.01
20 PGD0.02

20 FGSM0.02 FGSM0.03

Adam 87.35 91.02 89.52 73.48 68.18 77.04 72.08
SGD 92.95 84.11 84.00 83.18 72.92 79.9 72.26
SNOpt (Liu et al., 2021a) 87.25 86.81 84.82 82.11 66.56 78.49 72.12
DDP GTSONO (Ours) 93.03 93.23 91.90 89.32 80.68 81.60 74.98
GTSONO (Ours) 94.17 93.41 92.39 92.92 82.08 82.72 74.64

(Madry et al., 2017) and Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2014) to assess the robustness of our
models. PGD attacks are an optimization-based attack used
to undermine the estimations and predictions of machine
learning models. It involves iteratively perturbing input
data in the direction of the gradient, while constraining the
perturbations to stay within a predefined projection set deter-
mined by parameter ϵ. For ℓ∞ PGD attack, the update rule
is defined as x′ ← ΠB∞(x′ + η1 sign(∇x′L(F (x′), y))).
We denote PGDϵ

s the PGD attack with a perturbation dis-
tance ϵ that takes s steps in the direction of the gradient.
Additionally, FGSM is another popular and computationally
efficient attack technique. As opposed to taking multiple
steps like PGD, FGSM operates by taking a single step in
the direction of the gradient of the loss function with respect
to the input. FGSM generates attacked sample through
x′ ← x + η2 sign(∇xL(F (x), y))). We denote FGSMα

s

the FGSM attack whose single step in the direction of the
gradient is multiplied with constant α. Finally, we also ex-
amined the robustness of our models, when Gaussian Noise
was injected in the image. The perturbation of the images
was carried out as follows: x′ ← x + N (0, σ).

Datasets and training settings We carry out our experi-
ments on two datasets the MNIST (Lecun et al., 1998), the
SVHN (Netzer et al., 2011), with both datasets having 10
label classes. MNIST consists of 28×28 gray-scale images,
while SVHN consists of 3×32×32 colour images.

The baseline optimizers used for our experiments are state-
of-the-art optimizers widely used in Neural ODE applica-

tions. In particular, we consider Adam and SGD with mo-
mentum as first order benchmark optimizers, and SNOpt
(Liu et al., 2021a) as a second order baseline. For training
process of our proposed models, the training was carried
out using only non-perturbed images for all optimizers. Ad-
ditionally, the structure of the networks was identical for all
experiments across all datasets and among every tested opti-
mizer, with a batch size of 128 used for the training on both
datasets. The networks trained on MNIST was trained for 5
epochs, while the network trained on SVHN was trained for
10 epochs. The ODE solver we used is the standard Runge-
Kutta 4(5) adaptive solver (dopri5; (Dormand & Prince,
1980)) implemented by the torchdiffeq package, with the nu-
merical tolerance set to 1e-3. All experiments are conducted
on a TITAN RTX.

4.2. Results

Table 1 and 2 demonstrate the performance of our two
methodologies compared with the benchmark optimizers on
the two aforementioned datasets. In each Table, the perfor-
mance of each optimizer in the clean test set is mentioned,
along with the robust accuracy of each method under various
attacks. Table 1 shows that all optimizers achieve near per-
fect accuracy on the MNIST clean test set, while our method
outperforms the baseline optimizers under every attack and
for all disturbances in the PGD attacks. We observe robust
accuracy up to 94.75% for our optimizers under attacks with
significant perturbation such as PGD0.3

40 . However, we can
see that in the case of the FGSM attacks all classifiers have
nearly identical performance. This could attributed to the
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Figure 1. Robust Accuracy (%) of GTSONO and DDP-GTSONO
for varying standard deviation of the injected Gaussian noise

fact that while FGSM is a single step attack method not as
potent as the iterative PGD, failing to effectively mislead
the optimizers. Finally, regarding the efficiency of each opti-
mizer their run-times per epoch on the MNIST dataset were
comparable. More specifically, Adam and SGD completed
an epoch in 13.6 and 12.2 seconds respectively. SNOpt
required 15.5 seconds per epoch, while GTSONO required
15.7 seconds per epoch.

Similarly, we see that our proposed robust optimizers can
significantly improve the robust accuracy of the model on
the SVHN dataset. We observe robust accuracy up to almost
93% for PGD with ϵ = 0.02, which is an outperforms al-
most by 10% the Adam optimizer, which is the more robust
of the benchmark optimizers. It is shown that the perfor-
mance gap widens as the disturbance in the test set increases
under the PGD attack. Conversely for the FGSM attacks, we
see that all optimizers have similar performance, verifying
our comment about FGSM failing to generate perturbations
that fool the optimizers. However, it is demonstrated that
our optimizer still edges the rest optimizers delivering the
best robust accuracy. Regarding the efficiency of each opti-
mizer, it was observed that the run-times for each optimizer
were comparable. Adam and SGD completed an epoch in
33.8 and 29.9 seconds respectively. SNOpt required 37.6
seconds per epoch, while GTSONO required 41.1 seconds
per epoch.

4.3. Comparison between Open Loop and Vanilla
GTSONO

We explore the robustness offered by the different update
schemes of our methodology. Figures 1 and 2 demonstrate

Figure 2. Robust Accuracy (%) of GTSONO and DDP-GTSONO
for varying degree of pertubation generated from the FGSM attack

the accuracy of our methodology for varying degree of at-
tack, under noise injection and FGSM attack on the MNIST
dataset. We can see that for no-pertubation GTSONO edges
DDP-GTSONO, which is aligned with what is demonstrated
in Table 1, while this is also true for relatively small distur-
bances. However, we see that for large perturbations and
severe noise injection, DDP-GTSONO is able to outperform
its counterpart with a significant margin especially under
the FGSM attack.

5. Conclusion
In this paper, we introduce a Game Theoretic Second Or-
der Neural Optimizer. Drawing inspriration from OCP
paradigms, such as min-max Differential Dynamic Program-
ming, GTSONO showcases significant robustness against
adversarial attacks, surpassing the performance of well-
established optimizers like SGD and Adam. Experimental
evaluations conducted in this study demonstrate the robust-
ness of GTSONO against adversarial attacks, achieving
higher accuracy rates and maintaining higher performance
even when exposed to sophisticated adversarial techniques.
Finally, two update rules are introduced for our optimizer.
The first constitutes an approximation of Natural Gradient
Descent, and a secondly a generalization of this update law
based on the open loop Min-Max DDP. Our experiments
showed that the additional terms in the latter capturing the
interaction of the two control variables render the model
more robust against large pertubations.



Game Theoretic Neural ODE Optimizer

References
Carrara, F., Caldelli, R., Falchi, F., and Amato, G. On the

robustness to adversarial examples of neural ode image
classifiers. In 2019 IEEE International Workshop on In-
formation Forensics and Security (WIFS), pp. 1–6. IEEE,
2019.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. Advances
in neural information processing systems, 31, 2018.

Chu, H., Wei, S., and Zhao, Y. Towards natural ro-
bustness against adversarial examples. arXiv preprint
arXiv:2012.02452, 2020.

Dormand, J. R. and Prince, P. J. A family of embedded
Runge-Kutta formulae. Journal of Computational and Ap-
plied Mathematics, 6(1):19–26, 1980. ISSN 0377-0427.
doi: https://doi.org/10.1016/0771-050X(80)90013-3.
URL https://www.sciencedirect.com/
science/article/pii/0771050X80900133.

George, T., Laurent, C., Bouthillier, X., Ballas, N., and
Vincent, P. Fast approximate natural gradient descent
in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

Huang, Y., Yu, Y., Zhang, H., Ma, Y., and Yao, Y. Adver-
sarial robustness of stabilized neural ode might be from
obfuscated gradients. In Mathematical and Scientific
Machine Learning, pp. 497–515. PMLR, 2022.

Lecun, Y. A theoretical framework for back-propagation.
In Touretzky, D., Hinton, G., and Sejnowski, T. (eds.),
Proceedings of the 1988 Connectionist Models Summer
School, CMU, Pittsburg, PA, pp. 21–28. Morgan Kauf-
mann, 1988.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

Liu, G.-H., Chen, T., and Theodorou, E. Second-order
neural ode optimizer. Advances in Neural Information
Processing Systems, 34:25267–25279, 2021a.

Liu, G.-H., Chen, T., and Theodorou, E. A. Ddpnopt: Dif-
ferential dynamic programming neural optimizer, 2021b.

Liu, X., Xiao, T., Si, S., Cao, Q., Kumar, S., and Hsieh, C.-J.
How does noise help robustness? explanation and explo-
ration under the neural sde framework. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 282–290, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional conference on machine learning, pp. 2408–2417.
PMLR, 2015.

Massaroli, S., Poli, M., Park, J., Yamashita, A., and Asama,
H. Dissecting neural odes. Advances in Neural Informa-
tion Processing Systems, 33:3952–3963, 2020.

Morimoto, J., Zeglin, G., and Atkeson, C. G. Minimax dif-
ferential dynamic programming: Application to a biped
walking robot. In Proceedings 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS 2003)(Cat. No. 03CH37453), volume 2, pp. 1927–
1932. IEEE, 2003.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. Reading digits in natural
images with unsupervised feature learning. In
NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning 2011, 2011. URL http:
//ufldl.stanford.edu/housenumbers/
nips2011_housenumbers.pdf.

Sun, W., Theodorou, E. A., and Tsiotras, P. Game theoretic
continuous time differential dynamic programming. In
2015 American control conference (ACC), pp. 5593–5598.
IEEE, 2015.

Sun, W., Pan, Y., Lim, J., Theodorou, E. A., and Tsiotras, P.
Min-max differential dynamic programming: Continuous
and discrete time formulations. Journal of Guidance,
Control, and Dynamics, 41(12):2568–2580, 2018.

Todorov, E. et al. Optimal control theory. Bayesian brain:
probabilistic approaches to neural coding, pp. 268–298,
2006.

Tramèr, F., Kurakin, A., Papernot, N., Goodfellow, I.,
Boneh, D., and McDaniel, P. Ensemble adversar-
ial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://www.sciencedirect.com/science/article/pii/0771050X80900133
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf


Game Theoretic Neural ODE Optimizer

A. Appendix
A.1. Missing Derivations from Section 3

We recall the formulation of the objective of the Neural ODE framework expressd in a fashion easily interpretable through
the prism of game theoretic OCP.

min
u

max
v

[
Φ(xtf ) +

∫ tf

t0

ℓ(t,x,u,v)dt

]
, subjected to


dx
dt = F (t,x,u,v), x(t0) = x0

du
dt = 0, u(t0) = θ
dv
dt = 0, v(t0) = η

(27)

, where x ≡ x(t) ∈ Rm, u ≡ u(t) ∈ Rn, and v ≡ v(t) ∈ Rn. It is clear that (27) describes (10) without loss of generality
by taking (Φ, ℓ) = (L, 0). The function F (t,x,u,v) characterizes the vector field and is parameterized by a Deep Neural
Network (DNN). We consider that the dynamics of the system are symetric with respect to the two sets of weights (u,v).
The functions Φ, and ℓ are known as the terminal and running cost in the context of OCP. This problem is understood as
particular type of OCP that searches for the optimal initial condition of the time-invariant controls ut,vt. In the DNN setting,
the terminal cost is equivalent to the loss function, for instance Categorical Cross Entropy for multi-label classification, and
the running cost is equivalent to the weight decay, or some other regularization techniques that acts on the weights of the
intermediate hidden layers. Next, the accumulated loss Q(t,x,u,v) is defined as follows:

Q(t,x,u,v) = Φ(x(tf )) +

∫ tf

t

ℓ(τ,x(τ),u(τ),v(τ))dτ (28)

From this definition of the accumulated loss implies that Q we can readily obtain:

0 = ℓ(t,x,u,v) +
dQ(t,x,u,v)

dt
(29)

Proof of Theorem 3.1 Considering the nominal trajectory (x̄, ū, v̄), that satisfies the ODEs in the constraints of (27), we
take the Taylor expansion of the terms in Eq.29 keeping up to second order terms:

ℓ(x,u,v) = ℓ(x̄, ū, v̄) + ℓxδxt + ℓuδu+ ℓvδv +
1

2

δxt

δut

δvt

⊺ ℓxx ℓxu ℓxv
ℓux ℓuu ℓuv
ℓvx ℓvu ℓvv

δxt

δut

δvt

 (30a)

Q(x,u,v) = Q(x̄, ū, v̄) +Qxδxt +Quδu+Qvδv +
1

2

δxt

δut

δvt

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

δxt

δut

δvt

 (30b)

We differentiate 30b, in order to utilize Eq. 29, and taking into account that dδu
dt = δv

dt = 0, we obtain:

dQ

dt
≈ dQ(x̄, ū, v̄)

dt
+ (

dQx

dt
δxt +Qx

dδx

dt
) + (

dQu

dt
δu+Qu

dδu

dt
) + (

dQv

dt
δv +Qv

dδv

dt
)+

+
1

2

δxt

δut

δvt

⊺  dQxx

dt
dQxu

dt
Qxv

dt
dQux

dt
Quu

dt
Quv

dt
dQvx

dt
Qvu

dt
Qvv

dt

δxt

δut

δvt

+
1

2

 δxt

dt
0
0

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

δxt

δut

δvt


+

1

2

δxt

δut

δvt

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

 δxt

dt
0
0


(31)

Next, we need to compute the term δx
dt :

dδx

dt
=

dx

dt
− x̄

dt
= Fxδx+ Fuδu+ Fvδv (32)

The second equation comes from the fact that the time derivative evaluated for fixed x̄ yields the dynamics F (x̄, ū, v̄),
whereas for the first time derivative we take the Taylor expansion around the nominal trajectory. Finally, substituting Eq. 32
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into Eq. 31, and back into 29, we obtain the following ODE for Q and its derivatives

−dQx

dt
= FxQx + ℓx, −dQxx

dt
= ℓxx + FxQxx +QxxF

⊺
x , −dQxu

dt
= ℓxu + FxQxu +QxxF

⊺
u (33a)

−dQu

dt
= FuQx + ℓu, −dQuu

dt
= ℓuu + FuQxu +QuxF

⊺
u , −dQuv

dt
= ℓuv + FuQxv +QuxF

⊺
v (33b)

−dQv

dt
= FvQx + ℓv, −dQvv

dt
= ℓvv + FvQxv +QvxF )⊺v − dQxv

dt
= ℓxv + FxQxv +QxxF

⊺
v (33c)

Proof Theorem 3.2 We recall 3.2, where it was assumed the matrix Qxx(t1) to be a symmetric matrix of rank R ≤ m, it
may be represented as: Qxx =

∑R
i=1 yiy

⊺
i , where yi ∈ Rm. Additionally, we had that Quu(tf ) = 0, Qvv(tf ) = 0. Then

∀t ∈ [t0, tf ], the second order matrices in (33) that contain derivative with respect to the state can be decomposed as follows:

Qxx(t) =

R∑
i=1

qi(t)qi(t)
⊺, Qxu(t) =

R∑
i=1

qi(t)pi(t)
⊺, Qxv(t) =

R∑
i=1

qi(t)si(t)
⊺,

Quu(t) = ℓuu +

R∑
i=1

pi(t)pi(t)
⊺, Quv(t) =

R∑
i=1

pi(t)si(t)
⊺, Qvv(t) = ℓvv +

R∑
i=1

si(t)si(t)
⊺,

(34)

Taking the ODEs from 33, and substituting in 34, we yield:

−dQuu

dt
(t) = ℓuu + FuQxu +QuxF

⊺
u = Ru + FuQxu +QuxF

⊺
u ⇒∫ t

tf

−dQuu

dt
(t)dτ =

∫ t

tf

[
I + FuQxu +QuxF

⊺
u

]
dτ =⇒

Quu(t) = I(t− tf) +

∫ t

tf

R∑
i=1

(
pi(F

⊺
uqi) + (F ⊺

uqi)⊗ pi

)
dτ

(35)

−dQuu

dt
(t) = ℓuu + FuQxu +QuxF

⊺
u = Ru + FuQxu +QuxF

⊺
u ⇒∫ t

tf

−dQuu

dt
(t)dτ =

∫ t

tf

[
I + FuQxu +QuxF

⊺
u

]
dτ =⇒

Quu(t) = I(t− tf) +

∫ t

tf

R∑
i=1

(
pi(F

⊺
uqi) + (F ⊺

uqi)⊗ pi

)
dτ

(36)

Therefore, we define Quu(t) = RuI(t− tf) +
∑R

i=1 pi ⊗ pi, from which we can readily obtain that:

−dpi(t)

dt
= F ⊺

uqi(t) (37)

Similarly, we define Qvv = RvI(t− tf) +
∑R

i=1 si ⊗ si, we obtain for dsi(t)
dt :

−dsi(t)

dt
= F ⊺

vqi(t) (38)
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The second order matrices can be rewritten as follows:

Quu(t) = RuI(t− tf ) +

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

(39a)

Qvv(t) = RvI(t− tf ) +

R∑
i=1

(∫ t

tf

Fvqidt
)(∫ t

tf

Fvqidt
)⊺

(39b)

Quv(t) =

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fvqidt
)⊺

(39c)

Qux(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fuqidt
)⊺

, Qvx(t) =

R∑
i=1

(∫ t

tf

Fxqidt
)(∫ t

tf

Fvqidt
)⊺

(39d)

We denote zj , hj , uj , and vj as the activation, pre-activation (linear combination), and the parameters of layer j, respectively.
Furthermore, we consider the the preactivation vector hj(t), as an affine combination of the weights with the input to the
jth layer. We recall the symmetricity of our dynamics with respect to u, and v, resulting in the partial derivatives of the
preactivation vector at the jth layer with respect to the control variables: hj

u = hj
v = zj , and hj

x = (u+ v). This implies
that:

Fxj
qi = (u+ v)⊺(

∂F

∂hj
qi) for Feed Forward layers (40a)

Fujqi ==
∂F

∂hj
(zj ⊗ I)qi = zj ⊗ (

∂F

∂hj
qi) for Feed Forward layers (40b)

Fxj
qi = (u+ v)∗̂( ∂F

∂hj
qi) for the Convolution layers (40c)

Fujqi = zj ∗̂(
∂Fuj

∂hj
qi) for the Convolution layers (40d)

where ⊗ denotes the Kronecker product, and ∗̂ denotes the de-convolution operator. The layer-wise notation used above
was adopted as a manner to circumvent dimensionality and tensor representations issues. In this vein, the integrations in
equations (39) are broken down into each layer j of the network structure, where using the expression from 40, we obtain

∫ t0

tf

(
Fxqi

)
dt =

[
. . . ,

∫ t0

tf

(
Fxnqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
(u+ v)⊺(

∂F

∂hj
qi)

)
dt, . . .

]
(41a)∫ t0

tf

(
Fuqi

)
dt =

[
. . . ,

∫ t0

tf

(
Funqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
zj ⊗ (

∂F

∂hj
qi)

)
dt, . . .

]
(41b)∫ t0

tf

(
Fvqi

)
dt =

[
. . . ,

∫ t0

tf

(
Fvnqi

)
dt, . . .

]
=
[
. . . ,

∫ t0

tf

(
zj ⊗ (

∂F

∂hj
qi)

)
dt, . . .

]
(41c)

Derivation of Equation 22 Following the layer-wise representation, We recall that to derive 22 these expressions, we first
use the Kronecker product property: (A⊗B)(C ⊗D) = AC ⊗BD. Additionally, during the process of this derivation
some approximations are necessary. First it is assumed that z(t)j , and g(t)j = ∂F

∂hj
are uncorrelated across time, which

is a rather strong assumption. Secondly, the last of our derivation entails an approximation that zj(t), gj(t) are pair-wise
independent (Liu et al. 2021 NIPS). For the sake of brevity we demonstrate the analytic proof only for the Hessian Quu, the
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others follow similarly.

Qujuj (t0) = RuI(t− tf ) +

R∑
i=1

(∫ t

tf

Fuqidt
)(∫ t

tf

Fuqidt
)⊺

= RuI(t− tf ) +

R∑
i=1

(∫ t

tf

zj ⊗ (
∂F

∂hj
qi)dt

)(∫ t

tf

zj ⊗ (
∂F

∂hj
qi)dt

)⊺

≈ RuI(t− tf ) +

R∑
i=1

∫ t

tf

(
zj ⊗ (

∂F

∂hj
qi)

)(
zj ⊗ (

∂F

∂hj
qi)dt

)⊺

= RuI(t− tf ) +

R∑
i=1

∫ t

tf

(
zjz

⊺
j⊗

( ∂F
∂hj

qi

)( ∂F
∂hj

qi

)⊺)
dt

≈ RuI(t− tf ) +

∫ t0

tf

(
zjz

⊺
j

)
dt︸ ︷︷ ︸

Aj(t)

⊗
∫ t0

tf

R∑
i=1

(( ∂F
∂hj

qi

)( ∂F
∂hj

qi

)⊺)
︸ ︷︷ ︸

Bj(t)

(42)

Remark The first assumption while maybe deemed as a strong assumption is almost essential in order to yield Kronecker
factorized matrices (Liu et al. 2021). While relaxation of this assumption is possible via graphical models at the expense
of computational cost (Martens et al. 2018), empirically the uncorrelated assumption has been shown to yield better
performance (Laurent et al. 2018). The second approximation has been verified in (Wu et al. 2020) through an empirical
study and can be made exact under certain conditions (Martens & Grosse 2015).

Derivation of Proposition 3.3 We begin by trying to simplifying the expressions for Quu, and Qvv . Setting: (ΣA⊗ΣB) =
Suv , (ΣA ⊗ ΣB + λu) = Su, and (ΣA ⊗ ΣB + λv) = Sv , we obtain:

Q̃uu = (Quu −QuvQ
−1
vv Qvu)

= (UA ⊗ UB)Su(UA ⊗ UB)
⊺ − (UA ⊗ UB)Suv(UA ⊗ UB)

⊺

(UA ⊗ UB)S
−1
v (UA ⊗ UB)

⊺(UA ⊗ UB)Suv(UA ⊗ UB)
⊺

= (UA ⊗ UB)Su(UA ⊗ UB)
⊺ − (UA ⊗ UB)(SuvS

−1
v Suv)(UA ⊗ UB)

⊺

= (UA ⊗ UB)(Su − SuvS
−1
v Suv)(UA ⊗ UB)

⊺

(43)

Similarly, for Q̃vv = (UA ⊗ UB)(Sv − SuvS
−1
u Suv)(UA ⊗ UB)

⊺. At this point, using the following properties of the
Kronecker product, based on the eigenvalue decomposition:

(A⊗B + λI) = (UA ⊗ UB)(ΣA ⊗ ΣB + λ)(UA ⊗ UB)
⊺ (44)

(A⊗B + λI)−1 = (UA ⊗ UB)(ΣA ⊗ ΣB + λ)−1(UA ⊗ UB)
⊺ (45)

we can easily obtain the inverse of the matrices in 43 as follows:

Q̃−1
uu = (UA ⊗ UB)(Su − SuvS

−1
v Suv)

−1(UA ⊗ UB)
⊺,

Q̃−1
vv = (UA ⊗ UB)(Sv − SuvS

−1
u Suv)

−1(UA ⊗ UB)
⊺.

Derivation of Proposition 3.4 Now, substituting into 23 the expression for 25, this formulation along with the property in
(A⊗B)vec(X) = vec(BXA⊺), and setting for brevity: Quxδxt = δqu, Qvxδxt = δqv, the feed-forward and feedback
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gains in (24) can be compactly rewritten as follows

lu =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )vec(U⊺

BQ̄vUA)︸ ︷︷ ︸
guv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1vec(U⊺
BQ̄uUA)︸ ︷︷ ︸

guu

=vec(UBGuvU
⊺
A)− vec(UBGuuU

⊺
A)

(46a)

(46b)

lv =(UA ⊗ UB) (Sv − SuvS
−1
u Suv)

−1(SuvS
−1
u )vec(U⊺

BQ̄uUA)︸ ︷︷ ︸
gvu

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1vec(U⊺
BQ̄vUA)︸ ︷︷ ︸

gvv

=vec(UBGvuU
⊺
A)− vec(UBGvvU

⊺
A)

(46c)

(46d)

Ku =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )δqv︸ ︷︷ ︸

yvv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1δqu︸ ︷︷ ︸
yvv

=vec(UBYuvU
⊺
A)− vec(UBYuuU

⊺
A)

(46e)

(46f)

Kv =(UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1(SuvS
−1
v )δqu︸ ︷︷ ︸

yvv

− (UA ⊗ UB) (Su − SuvS
−1
v Suv)

−1δqv︸ ︷︷ ︸
yvv

=vec(UBYvuU
⊺
A)− vec(UBYvvU

⊺
A)

(46g)

where vec−1(Qi) = Q̄i, vec−1(gij) = Gij , and vec−1(yij) = Yij i = {u, v}, denote the inverse of the vectoriza-
tion operation of the corresponding vectors. Inverting the diagonal S matrices is tractable, rendering the computation of the
terms in 46 tractable to compute.

B. Differential Dynamic Programming in Continuous Time
B.1. Problem Formulation

Consider a min-max game problem, with dynamics described the following ODE:

dx(t)

dt
= F (x(t),u(t),v(t), t), x(t0) = x0 (47)

where x(t) ∈ X is the state of the dynamic system at t ∈ [t0, tf ], and u(t) ∈ U1 ⊂ U and v(t) ∈ U2 ⊂ V denote conflicting
controls, with U1 and U2 are convex sets containing all admissible controls of u and v respectively. Our goal is to find
non-anticipating strategies for both players, namely we wish to maps: γu : [t0, tf ]×X → U1 and γv : [t0, tf ]×X → U2

for the two players respectively. Additionally, we define the cost function as follows:

J(γu, γv) = ϕ(tf , x(tf )) +

∫ tf

t0

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ (48)

where ϕ : [t0, tf ]×X → R+ is the terminal cost, and L : X ×U ×V × [t0, tf ]→ R+ is the running cost incorporating the
state and the control cost for both players. The conflict between the two players enters in our problem formulation as one
tries through control u to minimize the above cost function, whereas the other one tries to maximize it through control v.
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We proceed to define the value function for our problem as the function expressing the minmax value of the cost function at
time t = t0 and x = x0.

V (t0, x0) = min
γu

max
γv

{
ϕ(tf ,x(tf )) +

∫ tf

t0

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ

}
(49)

Using the Bellman principle, we write (49), as follows:

V (t, x(t)) = min
γu(t→tf )

max
γv(t→tf )

{
ϕ(tf ,x(tf )) +

∫ t+dt

t

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ

+

∫ tf

t+dt

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ

}

= min
γu(t→t+dt)

max
γv(t→t+dt)

{
min

γu(t+dt→tf )
max

γv(t+dt→tf )

{
ϕ(tf ,x(tf )) +

∫ tf

t+dt

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ
}

+

∫ t+dt

t

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ

}

= min
γu(t→t+dt)

max
γv(t→t+dt)

{∫ t+dt

t

L(x(t), γu(t,x(t)), γv(t,x(t)), t)dτ + V (t+ dt,x(t+ dt)

}

(50)

Then we can readily obtain:

0 = min
γu(t)

max
γv(t)

[
L(x(t), γu(t,x(t)), γv(t,x(t)), t) +

dV
dt

]
(51)

We can express dV as follows:

dV ≈ ∂V
∂t

dt+
∂V
∂xt

⊺

dxt =
∂V
∂t

dt+
∂V
∂xt

⊺

Fdt (52)

This form enables us to obtain the min-max Hamilton Jacobi Bellman through substitution to (51):

0 = min
γu(t)

max
γv(t)

[
L(x(t), γu(t,x(t)), γv(t,x(t)), t) +

∂V
∂t

+
∂V
∂xt

⊺

F
]
=>

−∂V
∂t

= min
γu(t)

max
γv(t)

[
L(x(t), γu(t,x(t)), γv(t,x(t)), t) +

∂V
∂xt

⊺

F
] (53)

with its terminal condition being: V (tf ,x(tf )) = ϕ(tf ,x(tf )).

B.2. Backwards Propagation

First, we consider equation function Q as: Q(x,u,v, t) = L(x(t), γu(t,x(t)), γv(t,x(t)), t) + dV
dt . We set γu(t,x(t) =

u(t), and γv(t,x(t) = v(t) and expand the terms inside the minimization in (51) along with function Q up to second order
terms, with respect to the nomimal trajectory (x̄(t), ū(t), v̄(t)) and we obtain:

L(x̄(t) + δxt, ū(t) + δut, v̄ + δvt) =

L(x̄(t), ū(t), v̄(t)) + L⊺
xδx+ L⊺

uδu+ L⊺
vδvt +

1

2

δxt

δut

δvt

⊺ Lxx Lxu Lxv

Lux Luu Luv

Lvx Lvu Lvv

δxt

δut

δvt

 (54)

V(t+ dt, x̄(t) + δxt) = V(t, x̄(t) + Vx(t,x(t))δxt +
1

2
δx⊺

t Vxxδxt (55)
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At this point, we take the derivative with respect to time, of the expanded expression of the value function from (23). We
note that V,Vx,Vxx are only functions of time, since they are expanded with respect to the nominal x̄(t). Additionally,
we also notice that from the system dynamics the infinitesimal perturbation around the nominal trajectory δxt are also a
function of time, so the differentiation of the second and third term below follow the product differentiation rule.

dV
dt

=
dV
dt

∣∣∣x=x̄(t)
u=ū(t)
v=v̄(t)

+
d

dt

(
Vx(t, x̄(t))δxt

)
+

d

dt

(1
2
δx⊺Vxxδxt

)

=
dV
dt

+
(dV
dt

⊺

δxt + V⊺
x

dδxt

dt

)
+

1

2

(dδx
dt

⊺

Vxxδxt + δx⊺
t

dVxx
dt

δxt + δx⊺
t Vxx

dδxt

dt

) (56)

Returning to the system dynamics, we can write dδx
dt , as follows:

dδx

dt
=

d

dt

(
x(t)− x̄(t)

)
= F (x(t),u(t),v(t), t))− F (x̄(t), ū(t), v̄(t), t)

= F (x̄(t), ū(t), v̄(t), t) + F̄xδxt + F̄uδut + F̄vδvt − F (x̄(t), ū(t), v̄(t), t)

= F̄xδxt + F̄uδut + F̄vδvt

(57)

where F̄x, F̄u, F̄v stands for Fx(x̄, ū, v̄), Fu(x̄, ū, v̄), Fv(x̄, ū, v̄) respectively. If we substitute (57) in (56), we obtain:

dV
dt

=
dV
dt

∣∣∣x=x̄(t)
u=ū(t)
v=v̄(t)

+
(dV
dt

⊺

δxt + V⊺
x (F̄xδxt + F̄uδut + F̄vδvt)

)

+
1

2

(
((F̄xδxt + F̄uδut + F̄vδvt))

⊺Vxxδxt + δx⊺
t

dVxx
dt

δxt + δx⊺
t Vxx((F̄xδxt + F̄uδut + F̄vδvt))

) (58)

Now, if we substitute (58) and (54) in (51), separate the terms that differentiate with respect to time the value function or any
of its derivatives with respect to the state, we obtain:

− dV
dt
− dVx

dt

⊺

δxt −
1

2
δx⊺

t

dVxx
dt

δxt =

= min
δu(t)

max
δv(t)

[
L(x̄(t), ū(t), v̄(t)) + L⊺

xδx+ L⊺
uδu+ L⊺

vδv +
1

2

δxt

δut

δvt

⊺ Lxx Lxu Lxv

Lux Luu Luv

Lvx Lvu Lvv

δxt

δut

δvt


+ V⊺

xFxδxt + V⊺
xFuδut + V⊺

xFvδvt +
1

2

δxt

δut

δvt

⊺ F̄ ⊺
x Vxx + VxxF̄x VxxF̄u VxxF̄v

F̄ ⊺
uVxx 0 0

F̄ ⊺
v Vxx 0 0

δxt

δut

δvt

]

= min
δu(t)

max
δv(t)

[
L(x̄(t), ū(t)) + (L⊺

x + V⊺
xFx)δxt + (L⊺

u + V⊺
xFu)δut + (L⊺

v + V⊺
xFv)δvt

+
1

2

δxt

δut

δvt

⊺ Lxx + F̄ ⊺
x Vxx + VxxF̄x Lxu + VxxF̄u VxxF̄v

Lux + F̄ ⊺
uVxx Luu Luv

Lvx + F̄ ⊺
v Vxx Lvu Lvv

δxt

δut

δvt

]

(59)

Following the definition of Q and (51), we can expand Q up to second order terms as following:

0 = min
γu(t)

max
γv(t)

[
Q(x̄, ū, v̄, t) +Q⊺

xδx+Q⊺
uδut +Q⊺

vδvt +
1

2

δxt

δut

δvt

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

δxt

δut

δvt

 (60)

Therefore, we can equate the terms from (59) with the terms of the quadratic expansion of (60), and yield the following:
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Q0(t) = L(x̄(t), ū(t), t)
Qx(t) = (L⊺

x + V⊺
xFx)

⊺ = Lx + F ⊺
x Vx

Qu(t) = (L⊺
u + V⊺

xFu)
⊺ = Lu + F ⊺

uVx
Qv(t) = (L⊺

v + V⊺
xFv)

⊺ = Lv + F ⊺
v Vx

Qxx(t) = Lxx + VxxFx + F ⊺
x Vxx

Qxu(t) = Lxu + VxxFu = Q⊺
ux

Qxv(t) = Lxv + VxxFv = Q⊺
vx

Quu(t) = Luu

Qvv(t) = Lvv

(61)

Additionally, taking the derivative in (60) with respect to δut and δvt and setting them equal to 0, yields:

δu∗ = −Q−1
uu (Quxδxt +Quvδv

∗
t +Qu)

δv∗ = −Q−1
vv (Qvxδxt +Quvδu

∗
t +Qv)

(62)

However, we notice that the optimal control of the opponent is present in the expression of the optimal control of each
player, so we try to eliminate this dependency:

δu∗ = −Q−1
uu (Quxδxt +Quv(−Q−1

vv (Qvxδxt +Quvδu
∗
t +Qv)) +Qu)

⇒(Quu −QuvQ
−1
vv Qvu)δu

∗ = −(Qux −QuvQ
−1
vv Qvx)δxt +QuvQ

−1
vv Qv −Qu

⇒δu∗ = (Quu −QuvQ
−1
vv Qvu)

−1(QuvQ
−1
vv Qv −Qv − (Qux −QuvQ

−1
vv Qvx)δxt)

⇒δu∗ = lu +Kuδxt

(63)

where lu = (Quu−QuvQ
−1
vv Qvu)

−1(QuvQ
−1
vv Qv−Qu), and Ku = (Quu−QuvQ

−1
vv Qvu)

−1((Qux−QuvQ
−1
vv Qvx)δxt).

Similarly we can express δv∗ = lv + Kvδxt, where equivalently the coefficients lv, and Kv are defined as: lv =
(Qvv −QvuQ

−1
uuQuv)

−1(QuvQ
−1
uuQu −Qv), Ku = (Qvv −QvuQ

−1
uuQuv)

−1((Qvx −QuvQ
−1
vv Qvx)). From (59) and

(60), the value function and its first and second order derivatives with respect to x are expressed through the following
backward ordinary differential equations:

− dV
dt
− dVx

dt

⊺

δxt −
1

2
δx⊺

t

dVxx
dt

δxt =

= min
γu(t)

max
γv(t)

Q(x̄, ū, v̄, t) +Q⊺
xδx+Q⊺

uδut +Q⊺
vδvt +

1

2

δxt

δut

δvt

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

δxt

δut

δvt


= Q(x̄, ū, v̄, t) +Q⊺

xδx+Q⊺
u(lu +Kuδxt) +Q⊺

v(lv +Kvδxt)+

+
1

2

 δxt

(lu +Kuδxt)
(lv +Kvδxt)

⊺ Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv

 δxt

(lu +Kuδxt)
(lv +Kvδxt)


(64)

=



−dV
dt = L̄+ l⊺uQu + l⊺vQv +

1
2 l

⊺
uQuulu + 1

2 l
⊺
vQvvlv + l⊺uQuvlv

−dVx

dt = Qx +K⊺
uQu +K⊺

vQv +Q⊺
uxlu +Q⊺

vxlv +K⊺
uQuulu+

+K⊺
uQuvlv +K⊺

vQvulu +K⊺
vQvvlv

−dVxx

dt = Qxx +K⊺
uQux +Q⊺

uxKu +K⊺
vQvx +Q⊺

vxKv +K⊺
vQvuKu+

+K⊺
uQuvKv +K⊺

uQuuKu +KvQvvKv

(65)
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under terminal conditions:

V̄ (tf ) = ϕ(x̄(tf ), tf )

V̄x(tf ) = ϕx(x̄(tf ), tf )

V̄xx(tf ) = ϕxx(x̄(tf ), tf )

(66)


