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Introduction: Recently, learning-based neural 

rendering techniques using artificial intelligence have 

achieved remarkable advancements in various 

computer vision and graphics tasks such as view 

synthesis, 3D reconstruction, pose estimation, re-

lighting, etc. In this study, we perform an experiment 

of 3D reconstruction based on neural rendering 1  for 

lunar terrain imagery.  

As our target area, we have selected the Tycho 

crater (43.37°S, 348.68°E), which already possesses 

high-resolution 3D terrain data obtained through LRO 

LOLA and NAC observations. Notably, the central 

peak of the crater rises approximately 2 km above the 

crater floor, spanning about 15 km in width. This 

region is relatively young in lunar standards, estimated 

to be around 110 million years old. Consequently, it 

has maintained its sharp and steep appearance with 

minimal erosion, making it an ideal candidate for 

detecting visually prominent features and incorporating 

them into various matching algorithms for 3D 

reconstruction. 

Objective: To the best of our knowledge, this 

study marks the pioneering application of neural 

rendering techniques in reconstructing 3D lunar terrain, 

with the goal of validating the effectiveness of data-

driven learning-based algorithms. Specifically, the 

objective is to compare the reconstruction performance 

across various quantities of training data under sparse 

viewpoint scenarios.  

Dataset: Our experiment aims to assess the 

degradation in the performance of neural networks 

under different sparse view scenarios on the same 

lunar terrain. To implement these specific experimental 

conditions, we created a photorealistic dataset utilizing 

the LROC QuickMap [1]. Initially, we visualize the 

target data2 [2] in the 3D interface and export images 

from randomly dense viewpoints. We capture a total of 

455 images, after which we perform data 

preprocessing by applying structure-from-motion and 

bundle adjustment algorithms using COLMAP [3]. 

Figure 1 shows our region of interest, illustrating the 

optimized camera pose results obtained from the 

collected images. Once the complete dataset is 

                                                                 
1 The motivation behind employing learning-based rendering 

techniques from the field of graphics, as opposed to 

traditional methods such as multi-view stereo and structure-

from-motion in computer vision, is to facilitate the 

development of more intricate photometric and optical 

modeling of the lunar surface in forthcoming research. 
2 Data name: NAC_ROI_TYCHOFLRLOA_E430S3486. 

constructed, we randomly sample adjacent sparse 

views (e.g., 2, 3, …, 50 views) and feed them as 

training data for the neural rendering network. 

Neural Rendering for 3D Reconstruction: The 

quote, “What I cannot create, I do not understand” by 

Richard Feynman underscores the connection between 

the act of creation and the comprehension of complex 

concept. In the realm of 3D computer graphics, neural 

rendering achieves an understanding of the 3D scene 

by training on feature representations from multi-view 

RGB images. It synthesizes realistic novel-view 

images with high-fidelity rendering, leveraging both 

neural networks and traditional computer graphics 

methods.  

The pioneer deep learning framework of novel 

view synthesis [4,5] improve the feature representation 

of neural network to generate the novel view with the 

geometrical pixel relations. Volumetric scene 

representation is applied to view synthesis [6], 

leveraging the differentiable density fields to exploit 

geometric constraints. Neural Radiance Fields (NeRF) 

[7] introduce view-dependent radiance fields with 

positional encodings and hierarchical ray-marching 

sampling, rendering high-fidelity generated images. 

   
 

  

Figure 1. (a) A LROC WAC image of Tycho 

Crater. Yellow box is location of the central peak, 

which is our modeling target. (b) A visualization of 

LROC NAC ROI Mosaics on QuickMap 3D 

interface. (c) Dataset preprocessing using 

COLMAP. Sparsely sampled viewpoints for 

training are represented in blue as an example, 

while all viewpoints are depicted in red. 
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The rendering weights obtained from the 

volumetric representation and sampling z-value can be 

calculated to depth as summarized in Figure 2. 

Intuitively, regions with higher rendering weight 

correspond to object surface area, while lower 

rendering weights regions correspond to vast area. 

Finally, we rescale the obtained depth values to the 

original scale of optimized poses from COLMAP using 

least-squares. Note that this rescaling is performed on 

the training samples to ensure a fair comparison. 

Results and Discussion: We validate the 

performance of 3D reconstruction with depth 

estimation by rendering the depth map at the same 

view direction using models trained with different 

numbers of viewpoints (2-, 3-, 4-, 5-, 10-, 20-, 50-

view). Note that models trained with a larger number 

of viewpoints include the viewpoints learned by 

models with fewer viewpoints.  

Figure 3 illustrates that as the number of 

viewpoints decreases, rendering weights become 

broader in their representation, leading to a more 

uniform distribution. This indicates that the model 

struggles to capture sufficient radiance variations. As a 

result, the model fails to accurately discern the overall 

shape and boundaries of the target scene. However, we 

have also confirmed that performance can be quickly 

restored with a relatively small increase in the number 

of viewpoints (≥ 5-view). 

Future Works: Sparse view scenarios pose an 

inherent challenge in remote sensing. In our upcoming 

research, we aim to introduce neural rendering 

techniques capable of achieving enhanced precision in 

3D reconstruction within these limited conditions. 

Based on observations from the Korea Pathfinder 

Lunar Orbiter (KPLO)’s Lunar Terrain Imager (LUTI) 

and Wide-angle Polarimetric Camera (PolCam), we 

expect the sophisticated design of a learning-based 

optical modeling for the lunar surface. 
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Figure 2. Overall pipeline of our experiments: 

dataset preprocessing and 3D reconstruction tasks. 

 

Figure 3. Comparison of depth estimation results 

from models trained with different numbers of 

training viewpoints (visualized using the ‘plasma’ 

colormap in the Python package).  
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