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Abstract
The computational study of equilibria involving
constraints on players’ strategies has been largely
neglected. However, in real-world applications,
players are usually subject to constraints ruling
out the feasibility of some of their strategies, such
as, e.g., safety requirements and budget caps.
Computational studies on constrained versions
of the Nash equilibrium have lead to some re-
sults under very stringent assumptions, while find-
ing constrained versions of the correlated equilib-
rium (CE) is still unexplored. In this paper, we
introduce and computationally characterize con-
strained Phi-equilibria—a more general notion
than constrained CEs—in normal-form games.
We show that computing such equilibria is in gen-
eral computationally intractable, and also that the
set of the equilibria may not be convex, providing
a sharp divide with unconstrained CEs. Never-
theless, we provide a polynomial-time algorithm
for computing a constrained (approximate) Phi-
equilibrium maximizing a given linear function,
when either the number of constraints or that of
players’ actions is fixed. Moreover, in the spe-
cial case in which a player’s constraints do not
depend on other players’ strategies, we show that
an exact, function-maximizing equilibrium can be
computed in polynomial time, while one (approx-
imate) equilibrium can be found with an efficient
decentralized no-regret learning algorithm.

1. Introduction
Over the last years, equilibrium computation problems
have received a terrific attention from AI and ML re-
search (Brown & Sandholm, 2019; Bakhtin et al., 2022),
as game-theoretical equilibrium notions provide a princi-
pled framework to deal with multi-player decision-making
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problems. Most of the works on equilibrium computation
problems focus on classical solution concepts—such as the
well-known Nash equilibrium (NE) (Nash, 1951) and corre-
lated equilibrium (CE) (Aumann, 1974)—, thus neglecting
the presence of constraints entirely. However, in most of
the real-world applications, the players are usually subject
to constraints that rule out the feasibility of some of their
strategies, such as, e.g., safety requirements and budget
caps. Thus, addressing equilibrium notions involving con-
straints is a crucial step needed for the operationalization of
game-theoretic concepts into real-world settings.

The study of equilibrium notions involving constraints was
initiated by Arrow & Debreu (1954), who define the concept
of generalized NE (GNE). The GNE can be interpreted as an
NE of a game where players’ strategies are subject to some
constraints, which must be satisfied at the equilibrium and
also determine which are the feasible players’ deviations.
However, given that computing a GNE is clearly PPAD-
hard (Daskalakis et al., 2009), all the works dealing with
the computation of GNEs (see, e.g., (Facchinei & Kanzow,
2010)) provide efficient algorithms only in specific settings
that require very stringent assumptions.

Most of the computationally challenges in finding GNEs are
inherited from the NE. In settings in which constrained are
not involved, the computational issues of NEs are usually
circumvented by considering weaker equilibrium notions.
Among them, those that have received most of the attention
in the literature are the CE and its variations, which have
been shown to be efficiently computable in several settings
of interest (Papadimitriou & Roughgarden, 2008; Celli et al.,
2020). Surprisingly, with the only exception of (Chen et al.,
2022) (see Section 1.2 for a detailed discussion on it), no
work has considered the problem of computing CEs in con-
strained settings. Thus, investigating whether the CE retains
its nice computational properties when adding constraints
on players’ strategies is an open interesting question.

1.1. Original Contributions

In this paper, we introduce and computationally characterize
constrained Phi-equilibria, starting, as it is customary, from
the setting of normal-form games. Our equilibria include
the constrained versions of the classical CE and all of its
variations as special cases, by generalizing the notion of Phi-
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equilibria introduced by Greenwald & Jafari (2003) to con-
strained settings. In particular, constrained Phi-equilibria
are defined as Phi-equilibria, but in games where players
are subject to some constraints. Such constraints must be
satisfied at the equilibrium, and, additionally, players are
only allowed to undertake safe deviations, namely those that
are feasible according to the constraints. Crucially, the set
of safe deviations of a player does not only depend on the
strategy of that player, but also on those of the others.

We start by showing that one of the most appealing compu-
tational properties of Phi-equilibria, namely that the set of
the equilibria of a game is convex, is lost when moving to
their constrained version. This raises considerable computa-
tional challenges in computing constrained Phi-equilibria.
Indeed, we formally prove a strong intractability result: for
any factor α > 0, it is not possible, unless P = NP, to
find in polynomial time a constrained (approximate) Phi-
equilibrium which achieves a multiplicative approximation
α of the optimal value of a given linear function. Then, in
the rest of the paper, we show several ways in which such a
negative result can be circumvented.

We prove that a constrained approximate Phi-equilibrium
which maximizes a given linear function can be found in
polynomial time, when either the number of constraints or
that of players’ actions is fixed. Our results are based on a
general algorithm that employs a non-standard “Lagrangifi-
cation” of the constraints defining the set of safe deviations
of a player. Moreover, the algorithm needs a way of dealing
with the non-convexity of the set of the equilibria, which we
provide in the form of a clever discretization of the space of
the Lagrange multipliers.

Finally, we focus on the special case in which the constraints
defining the safe deviations of a player do not depend on
the the strategies of the other players, but only on the strat-
egy of that player. This includes constrained Phi-equilibria
identifying a particular constrained version of the coarse
CE by Moulin & Vial (1978a), in which the players’ strate-
gies are subject to marginal cost constraints. These arise
in several real-world applications in which the players have
bounded resources, such as, e.g., budget-constrained bid-
ding in auctions. In such a special case, we prove that a con-
strained (exact) Phi-equilibrium maximizing a given linear
function can be computed in polynomial time, and we pro-
vide an efficient decentralized no-regret learning algorithm
for finding one constrained (approximate) Phi-equilibrium.

1.2. Related Works

GNEs Rosen (1965) initiated the study of the computa-
tional properties of GNEs. After that, several other works
addressed the problem of computing GNEs by mainly ex-
ploiting techniques based on quasi-variational inequalities
(see (Facchinei & Kanzow, 2010) for a survey). More re-

cently, some works (Kanzow & Steck, 2016; Bueno et al.,
2019; Jordan et al., 2022; Goktas & Greenwald, 2022) also
studied the convergence of iterative optimization algorithms
to GNEs. In order to provide efficient algorithms, all these
works need to introduce very stringent assumptions, which
are even stronger than those required for the efficient com-
putation of NEs.

Constrained Markov Games Equilibrium notions involv-
ing constraints have also been addressed in the literature on
Markov games, with (Altman & Shwartz, 2000; Alvarez-
Mena & Hernández-Lerma, 2006) being the first works
introducing GNEs in such a field. More recently, Hakami
& Dehghan (2015) defined a notion of constrained CE in
Markov games. However, the incentive constraints in their
notion of equilibrium only predicate on “pure” deviations,
which, in presence of constraints, may lead to empty sets
of safe deviations. Very recently, Chen et al. (2022) gener-
alize the work of Hakami & Dehghan (2015) by consider-
ing “mixed” deviations. However, their algorithm provides
rather weak convergence guarantees, as it only ensures that
the returned solution satisfies incentive constraints in expec-
tation. Indeed, as we show in Proposition 3.1, the set of
constrained equilibria may not be convex (it is easy to see
that Example 1 also applies to the setting studied by Chen
et al. (2022)), and, thus, the fact that incentive constraints
are only satisfied in expectation does not necessarily imply
that the “true” incentive constraints defining the equilib-
rium are satisfied. We refer the reader to Appendix A for
additional details on these aspects.

2. Preliminaries
In this section, we introduce all the preliminary definitions
and results that are needed in the rest of the paper.

2.1. Cost-constrained Normal-form Games

In a normal-form game, there is a finite setN := {1, . . . , n}
of n players. Each player i ∈ N has a finite setAi of actions
available, with s := |Ai| for i ∈ N being the number of
players’ actions.1 We denote by a ∈ A :=×i∈N Ai an
action profile specifying an action ai for each player i ∈ N .
Moreover, for i ∈ N , we let a−i ∈ A−i :=×j 6=i∈N Ai be
an action profile of all players other than i, while (a,a−i)
is the action profile obtained by adding a ∈ Ai to a−i.
Finally, we let ui : A → [0, 1] be the utility function of
player i ∈ N , with ui(a) being the utility perceived by that
player when the action profile a ∈ A is played.

We extend classical normal-form games by considering the

1For ease of presentation, in this paper we assume that all the
players have the same number of actions. All the results can be
easily generalized to the case of different numbers of actions.

2



Constrained Phi-Equilibria

case in which each player i ∈ N has mi cost functions,
namely ci,j : A → [−1, 1] for j ∈ [mi].2 Each player
i ∈ N is subject to mi constraints, which require that all
player i’s costs are less than or equal to zero.3 For ease
of notation, we assume w.l.o.g. that all players have the
same number of constraints, namely m := mi for all i ∈ N .
Moreover, we encode the costs of player i ∈ N by a vector-
valued function ci : A → [−1, 1]m such that, for every
a ∈ A, the j-th component of the vector ci(a) is ci,j(a).

Correlated Strategies In this paper, we deal with solu-
tion concepts defined by correlated strategies. A correlated
strategy z ∈ ∆A is a probability distribution defined over
the set of actions profiles, with z[a] denoting the probability
assigned to a ∈ A.4 With an abuse of notation, for every
player i ∈ N , we let ui(z) be player i’s expected utility
when the action profile played by the players is drawn from
z ∈ ∆A. In particular, it holds ui(z) :=

∑
a∈A ui(a)z[a].

Similarly, we let ci(z) :=
∑
a∈A ci(a)z[a] be the vector

of player i’s expected costs, so that player i’s constraints
can be compactly written as ci(z) � 0. Finally, we define
S ⊆ ∆A as the set of safe correlated strategies, which are
those satisfying the cost constraints of all players. Formally:

S := {z ∈ ∆A | ci(z) � 0 ∀i ∈ N} .

In the following, we assume w.l.o.g. that S 6= ∅.

2.2. Constrained Phi-equilibria

We generalize the notion of Phi-equilibria (Greenwald &
Jafari, 2003) to cost-constrained normal-form games. Such
equilibria are defined as correlated strategies z ∈ ∆A that
are robust against a given set Φ of players’ deviations, in
the sense that, if a mediator draws an action profile a ∈ A
according to z and recommends to play action ai to each
player i ∈ N , then no player has an incentive to deviate
from their recommendation by selecting a deviation in Φ.

For every i ∈ N , we let Φi be the set of player i’s deviations,
i.e., linear transformations φi : Ai → ∆Ai that prescribe
a probability distribution over player i’s actions for every
possible action recommendation. For ease of notation, we
encode a deviation φi by means of its matrix representation.
Formally, an entry φi[b, a] of the matrix represents the prob-
ability assigned to action a ∈ Ai by φi(b). We denote the
set of all the possible deviations by Φ := {Φi}i∈N .

Given a correlated strategy z ∈ ∆A and a deviation φi ∈ Φi,
we define φi � z as the modification of z induced by φi,

2In this paper, given some x ∈ N>0, we let [x] := {1, . . . , x}
be the set of the first x natural numbers.

3Since z ∈ ∆A, we can assume w.l.o.g. that all the constraints
are of the form ≤ 0, as any constraint can always be cast in such a
form by suitably manipulating the cost function ci,j .

4In this paper, given a finite set X , we denote by ∆X the set of
all the probability distributions defined over the elements of X .

which is a linear transformation that can be expressed as
follows in terms of matrix representation:

(φi � z)[ai,a−i] :=
∑
b∈Ai

φi[b, ai]z[b,a−i],

for every ai ∈ Ai and a−i ∈ A−i. Moreover, given a set Φi
of deviations of player i ∈ N , in the following we denote by
ΦSi (z) := {φi ∈ Φi | φi � z ∈ S} the set of safe deviations
for player i at a given correlated strategy z ∈ ∆A.

We are now ready to provide our definition of constrained
Phi-equilibria in cost-constrained normal-form games.

Definition 2.1 (Constrained ε-Phi-equilibria). Given a set
Φ := {Φi}i∈N of deviations and an ε > 0, a constrained
ε-Phi-equilibrium is a safe correlated strategy z ∈ S such
that, for all i ∈ N , the following holds:

ui(z) ≥ ui(φi � z)− ε ∀φi ∈ ΦSi (z).

A constrained Phi-equilibrium is defined for ε = 0.

2.3. Computing Constrained Phi-equilibria

In the following, we formally introduce the computational
problem that we study in the rest of the paper.

We denote by I := (Γ,Φ) an instance of the problem, where
the tuple Γ := (N ,A, {ui}i∈N , {ci,j}i∈N ,j∈[m]) is a cost-
constrained normal-form game and Φ := {Φi}i∈N is a set
of deviations. Moreover, we let |I| be the size (in terms
of number of bits) of the instance I . We assume that the
number n of players is fixed, so that |I| does not grow
exponentially in n.5 We also make the following assumption
on how the sets of deviations are represented:

Assumption 1. For every i ∈ N , the set Φi is a polytope
encoded by a finite of linear inequalities.6

Let us remark that, in games without constraints, this as-
sumption is met by all the sets Φ which determine the clas-
sical notions of Phi-equilibria (Greenwald & Jafari, 2003).

Next, we formally define our computational problem:

Definition 2.2 (APXCPE(α, ε)). For any α, ε > 0, we
define APXCPE(α, ε) as the problem of finding, given an
instance I := (Γ,Φ) and a linear function ` : ∆A → R as
input, a constrained ε-Phi-equilibrium z ∈ ∆A such that
`(z) ≥ α`(z′) for all constrained Phi-equilibria z′ ∈ ∆A.

5Notice that the size of the representation of a normal-form
game is O(sn), and, thus, exponential in n. Any algorithm that
runs in time polynomial in such instance size is not computation-
ally appealing, as even its input has size exponential in n. For this
reason, we focus on the case in which n is fixed, and, thus, the
instance size does not grow exponentially with n.

6Notice that, since each φi ∈ Φi is represented as a matrix,
a linear inequality is expressed as

∑
b,a∈AiM [b, a]φi[b, a] ≤ d,

for some matrix M and scalar d.
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Intuitively, APXCPE(α, ε) asks to compute a constrained
ε-Phi-equilibrium whose value for the linear function ` is
at least a fraction α of the maximum value which can be
achieved by an (exact) constrained Phi-equilibrium.

In order to ensure that an instance of our problem is well
defined, we make the following “Slater-like” assumption on
how the players’ cost constraints are defined.
Assumption 2. For every correlated strategy z ∈ ∆A,
player i ∈ N , and index j ∈ [m], there exists φ◦i ∈ ΦSi (z):

ci,j(φ
◦
i � z) ≤ −ρ,

where ρ > 0 and 1/ρ is O(poly(|I|)), with poly(|I|) being
a polynomial function of the instance size |I|.

In Assumption 2, the condition ρ > 0 is required to guar-
antee the existence of a constrained Phi-equilibrium (see
Theorem 2.1) and that the sets ΦSi (z) are non-empty (other-
wise our solution concept would be ill defined). Moreover,
the second condition on ρ in Assumption 2 is equivalent to
requiring that our algorithms run in time polynomial in 1

ρ .

Assumption 2 also allows us to prove the existence of our
equilibria, by showing that the constrained Nash equilibria
introduced by Altman & Shwartz (2000), which always exist
under Assumption 2, are also constrained Phi-equilibria.
Theorem 2.1. Given a cost-constrained normal-form game
Γ and a set Φ of deviations, if Assumption 2 is satisfied, then
Γ admits a constrained Phi-equilibrium.

2.4. Relation with Unconstrained Phi-equilibria

We conclude the section by discussing the relation between
our constrained Phi-equilibria and classical equilibrium con-
cepts for unconstrained games.

Correlated Equilibrium When there are no constraints,
the correlated equilibrium (CE) (Aumann, 1974) is a special
case of Phi-equilibrium. As shown by Greenwald & Jafari
(2003), the CE is obtained when the sets Φi contain all the
possible deviations. Formally, the CE is defined by the set
ΦALL := {Φi,ALL} of deviations such that:

Φi,ALL :=

{
φi

∣∣∣ ∑
a∈Ai

φi[b, a] = 1 ∀b ∈ Ai

}
.

Coarse Correlated Equilibrium The coarse correlated
equilibrium (CCE) (Moulin & Vial, 1978b) is a special
(unconstrained) Phi-equilibrium whose set of deviations is
ΦCCE := {Φi,CCE}i∈N such that:

Φi,CCE :=
{
φi

∣∣∣∃h ∈ ∆Ai : φi[b, a] = h[a] ∀b, a ∈ Ai
}
.

Intuitively, such sets contain all the possible deviations that
prescribe the same probability distribution independently of
the received action recommendation.

Thus, our constrained Phi-equilibria include the generaliza-
tion of CEs and CCEs to cost-constrained games.

Our definition of constrained Phi-equilibrium needs to em-
ploy “mixed” deviations that map action recommendations
to probability distributions over actions. This is necessary in
presence of constraints. Instead, without them, one can sim-
ply consider “pure” deviations that map recommendations
to actions deterministically (Greenwald & Jafari, 2003).

3. Challenges of Constrained Phi-equilibria
In this section, we show that, in cost-constrained normal-
form games, Phi-equilibria loose the nice computational
properties that they exhibit in unconstrained settings. This
is crucially determined by the fact that the set of constrained
Phi-equilibria may not be convex in general.
Proposition 3.1. Given any instance I := (Γ,Φ), the set of
constrained Phi-equilibria may not be convex.

Proposition 3.1 is proved by the following example.
Example 1. Let ΦALL be the set of all the possible devia-
tions in a two-player game in which each player has two
actions, namely A1 = A2 = {a0, a1}. The first player’s
utility is such that u1(a, a′) = 0 for all a ∈ A1 and a′ ∈ A2,
while the second player’s utility is such that u2(a0, a1) = 1,
and 0 otherwise. Both players share the same single cost
constraint (m = 1). Their cost functions are defined as
ci(a0, a1) = 1, ci(a0, a0) = − 1

2 , and ci(a1, a) = −1 for
all a ∈ A2. Notice that the instance defined above satis-
fies Assumption 2 for ρ = 1/2. It is easy to see that the
correlated strategy z1 ∈ ∆A such that z1[a0, a0] = 2

3 and
z1[a0, a1] = 1

3 is a constrained Phi-equilibrium. More-
over, the “pure” correlated strategy z2 ∈ ∆A such that
z2[a1, a0] = 1 is also a constrained Phi-equilibrium. How-
ever, the combination z3 = 1

2 (z1 +z2) is not a constrained
Phi-equilibrium. Indeed, the second player has an incentive
to deviate by using a deviation φ2 such that φ2[a0, a1] = 1
and φ2[a1, a1] = 1. Such a deviation prescribes to play
action a1 when a0 is recommended, and to play action a1

when the recommendation is a1. Straightforward calcula-
tions show that, for every a ∈ A1:

(φ2 � z3)[a, a′] =

{
1
2 if a′ = a1

0 otherwise,

and u2(φ2 � z3) = 1
2 > u2(z3) = 1

6 . Moreover, the
deviation is safe, since φ2 ∈ ΦS2 (z3) as c2(φ2 � z3) = 0.

In order to formally asses the computational challenges of
computing constrained Phi-equilibria, we prove the follow-
ing strong inapproximability result:
Theorem 3.1 (Hardness). For any constant α > 0, the
problem APXCPE(α, (α/s)2) is NP-hard, where s is the
number of players’ actions in the instance given as input.
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Intuitively, Theorem 3.1 states that, for every multiplicative
approximation factor α > 0, it is not possible to find a
constrained ε-Phi-equilibrium having value of ` at least a
fraction α of its optimal value in time polynomial in 1

ε .
Moreover, as a byproduct of Theorem 3.1, we also get the
inapproximability up to within any factor of the problem of
computing an optimal constrained (exact) Phi-equilibrium.

Notice that the hardness result in Theorem 3.1 cannot hold
for values of ε that are independent from the instance size.
Indeed, as we prove in Corollary 4.3 in Section 4, problem
APXCPE(1, ε) can be solved in quasi-polynomial time in
the instance size whenever ε > 0 is a given constant. Thus,
any NP-hardness result for APXCPE(α, ε) would contradict
the exponential-time hypothesis.7

4. Computing Optimal Constrained
ε-Phi-equilibria Efficiently

In this section, we show how to circumvent the negative
result established by Theorem 3.1. In particular, we prove
that, when the number of cost constraints is fixed, problem
APXCPE(1, ε) can be solved in time polynomial in the
instance size and 1

ε for ε > 0 (Corollary 4.2). Moreover, we
also prove that, in general, for any constant ε > 0 problem
APXCPE(1, ε) admits a quasi-polynomial-time algorithm,
whose running time becomes polynomial when the number
of players’ actions is fixed (Corollary 4.3).

First, in Section 4.1, we provide a general algorithm that
is at the core of the two main results of this section. Then,
in Section 4.1, we show how the algorithm can be suitably
instantiated in order to prove each result. In the rest of this
section, unless stated otherwise, we always assume that an
ε > 0 has been fixed, and that I := (Γ,Φ) and ` : ∆A → R
are the inputs of a given instance of problem APXCPE(1, ε).

4.1. General Algorithm

The main technical tool that we employ in order to design
our algorithm is a “Lagrangification” of the constraints defin-
ing the sets ΦSi (z) of safe deviations. First, we prove the
following preliminary result, which shows that strong dual-
ity holds for the problem maxφi∈ΦSi (z) ui(φi �z) of finding
the best safe deviation for player i ∈ N at z ∈ ∆A.

Lemma 4.1. For every z ∈ ∆A and i ∈ N , it holds

max
φi∈ΦSi (z)

ui(φi � z)

= sup
φi∈Φi

inf
ηi∈Rm+

(
ui(φi � z)− η>i ci(φi � z)

)
= inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
.

7The exponential-time hypothesis conjectures that solving
3SAT requires at least exponential time.

Then, by exploiting Lemma 4.1, we can prove that, under
Assumption 2, strong duality continues to hold even when
restricting the Lagrange multipliers ηi to have `1-norm less
than or equal to 1/ρ. Formally:

Lemma 4.2. Let D :=
{
η ∈ Rm+ | ||η||1 ≤ 1/ρ

}
. Then,

for every z ∈ ∆A and i ∈ N , it holds:

max
φi∈ΦSi (z)

ui(φi � z)

= max
φi∈Φi

min
ηi∈D

(
ui(φi � z)− η>i ci(φi � z)

)
= min
ηi∈D

max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
.

Lemma 4.2 allows us to write player i’s incentive constraints
in the definition of constrained ε-Phi-equilibria as

ui(z) ≥ min
ηi∈D

max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
−ε. (1)

This crucially allows us to show the following result: solv-
ing problem APXCPE(1, ε) is equivalent to computing
max(η1,...,ηn)∈Dn Fε(η1, . . . ,ηn), where Fε(η1, . . . ,ηn)
is the optimal value of a suitable maximization problem pa-
rameterized by tuples of Lagrange multipliers ηi ∈ D, one
per player i ∈ N . Such a problem asks to compute a safe
correlated strategy maximizing the linear function ` subject
to players’ incentive constraints that are re-formulated by
means of Lemma 4.2. Formally, we define Fε(η1, . . . ,ηn)
as the maximum of `(z) over those z ∈ S that additionally
satisfy the following constraint for every i ∈ N :

ui(z) ≥ max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
− ε. (2)

Notice that the min operator that appears in the right-hand
side of Constraints (1) is dropped by adding the outer max-
imization over the tuples (η1, . . . ,ηn) ∈ Dn, as the maxi-
mum of ` is always achieved when the right-hand side of
such constraints is as small as possible.

Next, we show that Fε(η1, . . . ,ηn) can be computed in
polynomial time by means of the ellipsoid algorithm.

Lemma 4.3. For every tuple (η1, . . . ,ηn) ∈ Dn, the value
of Fε(η1, . . . ,ηn) can be computed in time polynomial in
the instance size |I| and 1

ε .

Proof. We show that Fε(η1, . . . ,ηn) can be solved in poly-
nomial time by means of the ellipsoid algorithm. Let us
notice that Constraints (2) can be equivalently encoded by
a set of linear inequalities, one for each player i ∈ N
and deviation φi ∈ vert(Φi), where vert(Φi) denotes the
set of vertexes of the polytope Φi (recall Assumption 1).
Thus, solving Fε(η1, . . . ,ηn) is equivalent to solving an
LP with a (possibly) exponential number of constraints, but
polynomially-many variables. Such an LP can be solved
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in polynomial time by means of the ellipsoid algorithm,
provided that a polynomial-time separation oracle for the
linearized version of Constraints (2) is available. Such an
oracle can be implemented by solving the maximization in
the right-hand side of Constraints (2) for a correlated strat-
egy z ∈ ∆A given as input. Formally, the separation oracle
solves the following problem for each player i ∈ N :

φ?i ∈ arg max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
,

which can be done efficiently thanks to Assumption 1. Then,
if the separation oracle finds any φ?i such that:

ui(z) ≥ ui(φ?i � z)− η>i ci(φ?i � z),

it outputs the above inequality as a separating hyperplane to
be used in the ellipsoid algorithm.

Lemma 4.3 is not enough to complete our algorithm, since
we need an efficient way of optimizing Fε(η1, . . . ,ηn) over
all the tuples of Lagrange multipliers. This problem is non-
trivial, since Fε(η1, . . . ,ηn) is non-concave in ηi. Never-
theless, we show that, by restricting the domain D of the
Lagrange multipliers to a suitably-defined finite “small” sub-
set, we can still find a constrained ε-Phi-equilibrium whose
value of ` is at least as large as that of any constrained (ex-
act) Phi-equilibrium. This is enough to solve APXCPE(1, ε).
In particular, we need a finite subset of “good” Lagrange
multipliers, in the sense of the following definition.

Definition 4.1. Given any δ > 0, a set D̃ ⊆ D is δ-optimal
if, for every z ∈ ∆A and i ∈ N , the following holds:

min
ηi∈D̃

max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≤ max
φi∈ΦSi (z)

ui(φi � z) + δ.

Intuitively, thanks to Lemma 4.2, if we optimize the La-
grange multipliers over a δ-optimal set D̃ ⊆ D, instead of
optimizing them over D, then we are allowing the players
to violate incentive constraints by at most δ.

In the following, we assume that a finite δ-optimal set D̃ ⊆
D is available. In Section 4.2, se show how to design two
particular δ-optimal sets that allow to prove our main results.
For ease of presentation, we let

LD̃,ε := max
(η1,...,ηn)∈D̃n

Fε(η1, . . . ,ηn)

be the optimal value of Fε(η1, . . . ,ηn) when the Lagrange
multipliers are constrained to be in a δ-optimal set D̃ ⊆ D.
Next, we show that, given any δ-optimal set D̃ with δ ≤ ε,
the value of LD̃,ε is at least that achieved by constrained
(exact) Phi-equilibria, namely LD,0. Formally:

Lemma 4.4. Given any 0 < δ ≤ ε and a δ-optimal set
D̃ ⊆ D, the following holds: LD̃,ε ≥ LD,0.

Intuitively, Lemma 4.4 is proved by noticing that, provided
that δ ≤ ε, the incentive constraints violation introduced
by using D̃ instead of D is at most ε. Moreover, the set of
feasible correlated strategies can only expand by allowing
incentive constraints to be violated, and, thus, the value of
the objective ` can only increase.

Lemma 4.4 suggests a way of solving APXCPE(1, ε). In-
deed, given a finite δ-optimal set D̃ ⊆ D with δ ≤ ε, by enu-
merating over all the tuples of Lagrange multipliers ηi ∈ D̃,
one per player i ∈ N , we can find the desired constrained
ε-Phi-equilibrium. The following theorem shows that this
procedure gives an algorithm for APXCPE(1, ε) that runs
in time polynomial in the instance size, |D̃|, and 1

ε .

Theorem 4.1. Given a finite δ-optimal set D̃ ⊆ D with
δ ≤ ε, there exists an algorithm that solves APXCPE(1, ε)
and runs in time polynomial in the instance size |I|, the
number |D̃| of elements in D̃, and 1

ε for every ε > 0.

Proof. The algorithm works by enumerating over all the
possible tuples of Lagrange multipliers ηi ∈ D̃, one per
player i ∈ N . These are polynomially many in the size
|D̃| when the number of players n is fixed. For every tuple
(η1, . . . ,ηn) ∈ D̃n, the algorithm solves Fε(η1, . . . ,ηn),
which can be done in time polynomial in |I| and 1

ε thanks
to Lemma 4.3. Finally, the algorithm returns the correlated
strategy z ∈ ∆A with the highest value of ` among those
computed while solving Fε(η1, . . . ,ηn). It is easy to see
that the returned solution solves problem APXCPE(1, ε) by
applying Lemma 4.4. This concludes the proof.

4.2. Instantiating the General Algorithm

Next, we show how to build δ-optimal sets D̃ that, when
they are plugged in the algorithm in Theorem 4.1, allow us
to derive our results. In particular, we consider the set:

Dτ :=
{
η ∈ D

∣∣∣ ηj = kτ, k ∈ {0, . . . , b1/τρc} ∀j ∈ [m]
}
,

which is a discretization of D with a regular lattice of
step τ ∈ R+ (notice that ηj is the j-th component of η).
By a simple stars and bars combinatorial argument, we
have that |Dτ | =

(b1/τρc+m
m

)
. Thus, since it holds that

|Dτ | = O((1/τρ)
m

), if the number of constraints m is fixed,
|Dτ | is bounded by a polynomial in 1/τρ. Moreover, simple
combinatorial arguments show that |Dτ | ≤ (1 +m)b1/τρc.8

Thus, it also holds that |Dτ | = O(m1/τρ). Notice that the
two bounds on |Dτ | are non-comparable, and, thus, they
give rise to two distinct results, as we show in the following.

8See Appendix D for a formal proof.
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By using the first bound on |Dτ |, we can show that the set
Dτ is δ-optimal for δ = mτ . Formally:

Lemma 4.5. For any τ > 0, the set Dτ is (τm)-optimal.

Thus, whenever the number m of cost constraints is fixed,
Lemma 4.5, together with Theorem 4.1, allows us to provide
a polynomial-time algorithm. Indeed, it is sufficient to apply
Theorem 4.1 for the (τm)-optimal set Dτ with τ := ε/m
to obtain the following first main result:

Corollary 4.2. There exists an algorithm that solves prob-
lem APXCPE(1, ε) in time polynomial in |I| and 1

ε for every
ε > 0, when the number m of cost constraints is fixed.

On the other hand, by using the second bound on |Dτ |, we
can show that Dτ is δ-optimal for δ depending logarithmi-
cally on the number of players’ actions. Formally:

Lemma 4.6. For any τ > 0, the setDτ is δ-optimal for δ =
2
√

2τ log s/ρ, where s is the number of players’ actions.

Lemma 4.6 (together with Theorem 4.1) immediately gives
us a quasi-polynomial-time for solving APXCPE(1, ε) for a
given constant ε > 0. Moreover, its running time becomes
polynomial when the number of players’ actions is fixed.

Corollary 4.3. For any constant ε > 0, there exists an algo-
rithm that solves APXCPE(1, ε) in time O(|I|log s). More-
over, when the number s of players’ actions is fixed, the
algorithm runs in time polynomial in |I|.

Notice that it is in general not possible to design an algo-
rithm that runs in time polynomial in 1

ε , since this would
contradict the hardness result in Theorem 3.1.

5. A Special Case: Deviation-dependent Costs
We complete our computational study of constrained Phi-
equilibria by considering a special case in which player i’s
costs associated to a deviation φi only depend on φi and not
on the (overall) modified correlated strategy φi � z.

We consider instances satisfying the following assumption.

Assumption 3. For every player i ∈ N and player i’s de-
viation φi ∈ Φi, there exists a function c̃i : Φi → [−1, 1]m

such that c̃i(φi) := ci(φi � z) for every z ∈ ∆A.

Notice that, whenever Assumption 3 holds, the set ΦSi (z)
of safe deviations does not depend on z. Thus, in the rest of
this section, we write w.l.o.g. ΦSi rather than ΦSi (z).

A positive effect of Assumption 3 is that it recovers the
convexity of the set of constrained Phi-equilibria, rendering
them more akin to unconstrained ones. Formally:

Proposition 5.1. For instances I := (Γ,Φ) satisfying As-
sumption 3, the set of constrained ε-Phi-equilibria is convex.

Proposition 5.1 suggests that constrained Phi-equilibria are

much more computationally appealing under Assumption 3
than in general, as we indeed show in the rest of this section.

First, in Section 5.1, we show that APXCPE(1, 0) admits a
polynomial-time algorithm under Assumption 3. Then, in
Section 5.2, we design a no-regret learning algorithm that
efficiently computes one constrained ε-Phi equilibrium with
ε = O(1/

√
T) as the number of rounds T grows. Finally, in

Section 5.3, we provide a natural example of constrained
Phi-equilibria satisfying Assumption 3.

5.1. A Poly-time Algorithm for Optimal Equilibria

We prove that, whenever Assumption 3 holds, the prob-
lem of computing an (exact) Phi-equilibrium maximizing
a given linear function can be solved in polynomial time.
This is done by formulating the problem as an LP with
polynomially-many variables and exponentially-many con-
straints, which can be solved by means of the ellipsoid
method, similarly to how we compute Fε(η1, . . .ηn) in
Section 4 (see the proof of Lemma 4.3). Formally:

Theorem 5.1. Restricted to instances I := (Γ,Φ) which
satisfy Assumption 3, APXCPE(1, 0) admits a polynomial-
time algorithm.

5.2. An Efficient No-regret Learning Algorithm

Next, we show how Assumption 3 allows us to find a con-
strained ε-Phi-equilibrium by means of a polynomial-time
decentralized no-regret learning algorithm. Our algorithm is
based on the Phi-regret minimization framework introduced
by Greenwald & Jafari (2003), which needs to be extended
in order to be able to work with polytopal sets ΦSi of safe
deviations, rather than finite sets of “pure” deviations.

Algorithm 1 Learning a Constrained ε-Phi-equilibria
Require: Regret minimizers Ri for the sets ΦSi , for i ∈ N

1: Initialize the regret minimizers Ri

2: for t = 1, . . . , T do
3: for each player i ∈ N do
4: φi,t ← Ri.RECOMMEND()
5: Play according to a distribution xi,t ∈ ∆Ai s.t.

xi,t[a] =
∑
b∈Ai

φi,t[b, a]xi,t[b] ∀a ∈ Ai

6: end for
7: zt ← ⊗i∈N xi,t
8: Ri.OBSERVE(φi 7→ ui(φi � zt))
9: end for

10: return z̄T := 1
T

∑T
t=1 zt

Algorithm 1 outlines our no-regret algorithm. It instantiates
a regret minimizer Ri for the polytope ΦSi for each i ∈ N .
Ri is an object that, at each round t ∈ [T ], recommends a
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safe deviation φi,t ∈ ΦSi to player i (Line 4 of Algorithm 1),
and, then, observes a function φi 7→ ui(φi�zt) that specifies
the utility that would have been obtained by selecting any
safe deviation φi ∈ ΦSi at round t (Line 8 of Algorithm 1).
Ri guarantees that the regret RTi cumulated by player i over
[T ] grows sublinearly, i.e., RTi = o(T ), where:

RTi := max
φi∈Φi

T∑
t=1

ui(φi � zt)−
T∑
t=1

ui(φi,t � zt),

which is how much player i loses by selecting φi,t at each t
rather than choosing the same best-in-hindsight deviation
at all rounds. Notice that, by taking inspiration from the
Phi-regret framework (Greenwald & Jafari, 2003), given
a recommended deviation φi,t, player i actually plays ac-
cording to a probability distribution xi,t ∈ ∆Ai , which
is a stationary distribution of the matrix representing φi,t.
This is crucial in order to implement the algorithm in a
decentralized fashion and to provide convergence guaran-
tees to constrained ε-Phi-equilibria (see Theorem 5.2). All
the distributions xi,t jointly determine a correlated strategy
zt ∈ ∆A at each round t ∈ [T ], defined as zt := ⊗i∈N xi,t,
where ⊗ denotes the product among distributions; formally,
zt[a] :=

∏
i∈N xi,t[ai] for all a ∈ A.

Algorithm 1 provides the following guarantees:

Theorem 5.2. Given an instance I := (Γ,Φ) satisfying
Assumption 3, after T ∈ N>0 rounds, Algorithm 1 returns a
correlated strategy z̄T ∈ ∆A that is a constrained εT -Phi-
equilibrium with εT = O(1/

√
T). Moreover, each round of

Algorithm 1 runs in polynomial time.

Let us remark that the crucial property which allows us to de-
sign Algorithm 1 is that the sets ΦSi of safe deviations do not
depend on players other than i. Finally, from Theorem 5.2,
the following result follows:

Corollary 5.3. In instances I := (Γ,Φ) satisfying Assump-
tion 3, a constrained ε-Phi-equilibrium can be computed in
time polynomial in the instance size and 1

ε by means of a
decentralized learning algorithm.

5.3. Marginally-constrained CCE

We conclude the section by introducing a particular (natural)
notion of constrained ε-Phi-equilibrium for which Assump-
tion 3 is satisfied. This is a constrained version of the clas-
sical CCE in cost-constrained normal-form games where
a player’s costs only depend on the action of that player.
We call it marginally-constrained ε-CCE. Formally, such an
equilibrium is defined for games in which, for every player
i ∈ N , it holds ci(a) = ci(a

′) for all a,a′ ∈ A such that
ai = a′i, and for the set ΦCCE of CCE deviations that we
have previously introduced in Section 2.4. Next, we prove
that, with the definition above, Assumption 3 is satisfied.

Theorem 5.4. For instances I := (Γ,ΦCCE) such that
ci(a) = ci(a

′) for every player i ∈ N and action pro-
files a,a′ ∈ A : ai = a′i, Assumption 3 holds.

Thanks to Theorem 5.4, we readily obtain the two following
corollaries of Theorems 5.1 and 5.1.

Corollary 5.5. The problem of computing a marginally-
constrained (exact) CCE that maximizes a linear function
` : ∆A → R can be solved in polynomial time.

Corollary 5.6. A marginally-constrained ε-CCE can be
computed in time polynomial in the instance size and 1

ε by
means of a decentralized learning algorithm.

6. Discussion and Open Problems
The main positive results that we provide in this paper
(Corollaries 4.2 and 4.3) show that a constrained ε-Phi equi-
librium maximizing a given linear function can be computed
in time polynomial in the instance size and 1

ε , when either
the number of constraints or that of players’ actions is fixed.
Clearly, this implies that, under the same assumptions, a con-
strained ε-Phi-equilibrium can be found efficiently. More-
over, in Section 5, we designed an efficient no-regret learn-
ing algorithm that finds a constrained ε-Phi-equilibrium in
settings enjoying special properties (Corollary 5.3). How-
ever, the problem of efficiently computing a constrained
ε-Phi-equilibrium remains open in general. Formally:

Definition 6.1 (Open Problem). Given any instance I :=
(Γ,Φ), find a constrained ε-Phi-equilibrium in time polyno-
mial in the instance size and 1

ε .

Solving the problem above is non-trivial. Proposition 3.1 in
Section 3 proves that the set of constrained ε-Phi-equilibria
is non-convex, and, thus, solving the problem in Defini-
tion 6.1 is out of scope for most of the known equilibrium
computation techniques. On the other hand, it is unlikely
that such a problem is NP-hard. Indeed, a constrained ε-Phi-
equilibrium always exists and, given any z ∈ ∆A, it is pos-
sible to verify whether z is an equilibrium or not in polyno-
mial time. Formally, such a problem is said to belong to the
TFNP complexity class, and, thus, standard arguments show
that, if the problem is NP-hard, then NP = coNP (Megiddo
& Papadimitriou, 1991). Thus, one should try to reduce the
problem in Definition 6.1 to problems in TFNP, such as
that of computing a Nash equilibrium. However, while the
problem in Definition 6.1 shares some properties with that
of computing a Nash equilibrium, such as the non-convexity
of the set of the equilibria, the former is fundamentally dif-
ferent from the latter, since it exhibits correlation among
the players. Thus, a reduction from such a problem to that
of computing Nash equilibria would require a gadget to
break the correlation among the players, and doing that is
highly non-trivial as cost constraints are expressed by linear
functions.
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A. On the Weaknesses of the Guarantees of the Algorithm of Chen et al. (2022)
The Algorithm of Chen et al. (2022) finds a distribution µ ∈ ∆∆A over correlated strategies such that:

Ez∼µ
[

max
φi∈ΦSi (z)

ui(φi � z)− ui(z)

]
≤ 0. (3)

However, here we claim that this solution concept inherits some weaknesses from the non-convexity of the equilibria
set that we proved in Theorem 5.1. Indeed, consider the same instance of Theorem 5.1 and consider the uniform distri-
bution µ over {z1, z2}. In Theorem 5.1 we proved that maxφi∈ΦSi (z1) ui(φi � z1) − ui(z1) ≤ 0 for all i ∈ {1, 2} and
maxφi∈ΦSi (z2) ui(φi � z2)− ui(z2) ≤ 0 for all i ∈ {1, 2} and thus Equation (3) holds over the distribution µ.

However we show that the expected correlated strategy z3 derived from distribution µ, i.e., z3 = Ez∼µ[z] = 1
2z

1 + 1
2z

2, it
is not a feasible equilibrium, or an approximate one.

Indeed, in Theorem 5.1, we proved that maxφ2∈ΦS2 (z3) u2(φ2 � z3) − u2(z3) ≥ 1
3 , showing that the average correlated

strategies returned by their Algorithm is not an equilibrium nor close to it.

This comes from the peculiar fact about Constrained Phi-equilibria that exhibit non-convex set of solutions, which is
in striking contrast with the unconstrained case. Indeed the guarantees of Equilibria (3) would imply that Ez∼µ[z] is a
equilibrium in the unconstrained case in which the set of equilibria is convex.

B. Proofs Omitted from Section 2
Theorem 2.1. Given a cost-constrained normal-form game Γ and a set Φ of deviations, if Assumption 2 is satisfied, then Γ
admits a constrained Phi-equilibrium.

Proof. With assumption 2 Altman & Shwartz (2000, Theorem 2.1) proves the existence of a constrained Nash equilibrium.
In our setting this is equivalent to a product distribution z = ⊗i∈[N ]xi so that it is a Constrained Phi-equilibrium for any set
of deviations Φi.9 This is easily seen by observing that a Constrained Nash Equilibria is defined as:

∑
a∈A

ui

 ∏
j∈[N ]

xj(aj)

 ≥∑
a∈A

ui

x̃i(aj) ∏
j∈[N ]\{i}

xi(ai)


for all x̃i ∈ ∆(Ai) s.t. xi ⊗ x−i ∈ S.

On the other hand it easily seen that for all φi ∈ Φi(z) there exists some x̃i ∈ ∆(Ai) such that

φi �
(
⊗j∈[N ]xj

)
= x̃i ⊗ x−i

and x̃i ⊗ x−i ∈ S.

This is proved by the following calculations:

φi �
(
⊗j∈[N ]xj

)
[ai,a−i] :=

∑
b∈Ai

φi[b, ai]xi(b)x−i(a−i) (4)

= x̃i(ai)⊗ x−i(a−i), (5)

where x̃i(ai) :=
∑
b∈Ai φi[b, ai]xi(b) and x̃i ∈ ∆(Ai) since, by definition,

∑
ai∈Ai φi[b, ai] = 1 for all b ∈ Ai.

This proves that a Constrained Nash Equilibrium is a Phi-Constrained Equilibrium for all Φ.

C. Proofs Omitted from Section 3
Theorem 3.1 (Hardness). For any constant α > 0, the problem APXCPE(α, (α/s)2) is NP-hard, where s is the number of
players’ actions in the instance given as input.

9As common in the normal form game literature, for any distribution x ∈ ∆(X) and y ∈ ∆(Y ), x⊗ y ∈ ∆(X × Y ) is the product
distribution defined as (x⊗ y)[a, b] = x[a]y[b] for a ∈ X and b ∈ Y .
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Proof. We reduce from GAP-INDEPENDENT-SET, which is a promise problem that formally reads as follows: given an
δ > 0 and a graph G = (V,E), with set of nodes V and set of edges E, determine whether G admits an independent set of
size at least |V |1−δ or all the independent sets of G have size smaller than |V |δ . GAP-INDEPENDENT-SET is NP-hard
for every δ > 0 (Håstad, 1999; Zuckerman, 2007).

Let ` = |V | and α > 0 be the desired approximation factor. Given an instance of GAP-INDEPENDENT-SET, we build
an instance such that if there exists an independent set of size `1−δ, then there exists a Constrained Phi-equilibrium with
social welfare 1. Otherwise, if all the independent sets have size at most `δ , all the Constrained ε-Phi-equilibria have social
welfare at most α/2. We can use any δ > 0, since we simply need `δ < `1−δ . Moreover, we take ε = α2

128`2 . As we will see,
` will be smaller than the number of action of the players, satisfying the condition in the statement.

Construction. The first player has a set of actions A1 that includes actions a0, a1, a2 and an action av for each v ∈ V .
Moreover, the first player has an action aF .10 The second player has a set of actions A2 that includes actions av and āv for
each v ∈ V . Moreover, the second player has an action aF . Let γ = η = α/8. The utility of the first agent is as follows:

• u1(a0, a) = γ + 1
2η for all a ∈ A2 \ {aF },

• u1(a1, av) = γ + η and u1(a2, av) = γ for all v ∈ V .

• u1(a1, āv) = γ and u1(a2, āv) = γ + η for all v ∈ V .

• u1(av, av) = u1(av, āv) = γ for all v ∈ V

• u1(av, av′) = γ and u1(av, āv′) = γ + `−`1−δ
`−`1−δ−1

η for all v′ 6= v.

• u1(aF , a) = 0 for each a ∈ A2.

• u1(a, aF ) = 0 for each a ∈ A1.

The utility of the second agent is u2(a0, a) = 1 for each a ∈ A2 \ {aF } and 0 otherwise.

There is a cost function cv for each v ∈ V , which is common to both the agents. For each v ∈ V , the cost function cv is
such that

• cv(av, av′) = −1 for each v′ 6= v, (v, v′) ∈ E,

• cv(av, av′) = 0 for each v′ 6= v, (v, v′) /∈ E,

• cv(av, av) = 1 for each v ∈ V .

• cv(aF , a) = − 1
4`2 for each a ∈ A2.

• cv(a, aF ) = − 1
4`2 for each a ∈ A1.

• For every other action profile the cost is 0.

We dropped the player index from the cost functions c as they are equal to both players.

Moreover, we set of deviations Φi = Φi,ALL for both players i ∈ {1, 2}.

Notice that the instance satisfies Assumption 2. Indeed, the deviation φi such that φi[a, aF ] = 1 for all a ∈ Ai for
i ∈ {1, 2}, that deviates deterministically to aF is always strictly feasible for both player 1 and player 2. Moreover, its cost
is polynomial in the instance size.

10This action is needed only to satisfy the strictly feasibility assumption.
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Completeness. We show that if there exists an independent set of size `1−δ, then the social welfare of an optimal
Constrained Phi-equilibria is at least 1. Let V ∗ be an independent set of size `1−δ. We build a Constrained Phi-equilibria
z with social welfare at least 1. Consider the correlated strategy such that z[a0, av] = 1

2`1−δ
for all v ∈ V ∗, while

z[a0, āv] = 1
2(`−`1−δ) for all v /∈ V ∗. All the other action profiles have probability 0.

It is easy to see that the correlated strategy has social welfare at least 1 since player 1 always plays action a0 and u2(a0, a) = 1
for all a ∈ A2. Moreover, it is easy to verify that it is safe since cv(a0, a) ≤ 0 for each a ∈ A2. Hence, to show that z is an
Constrained Phi-equilibria we only need to prove that it satisfies the incentive constraints. The incentive constraints of the
second player are satisfied since they obtain the maximum possible utility, i.e., 1.

Consider now a possible deviation of the first player φ1 ∈ Φ1. As a first step, we compute the expected utility of a strategy
φ1. Let us define the following quantities:

• T 1 =
∑
v∈V ∗ φ1[a0, av]

[(
z[a0, av] + z[a0, āv] +

∑
v′ 6=v z[a0, av′ ]

)
γ +

(
γ + `−`1−δ

`−`1−δ−1
η
)∑

v′ 6=v z[a0, āv]
]

• T 2 =
∑
v/∈V ∗ φ1[a0, av]

[(
z[a0, av] + z[a0, āv] +

∑
v′ 6=v z[a0, av′ ]

)
γ +

(
γ + `−`1−δ

`−`1−δ−1
η
)∑

v′ 6=v z[a0, āv]
]

• T 3 =
(
γ + η

2

)
φ1[a0, a0] + γ+η

2 (φ1[a0, a1] + φ1[a0, a2]) + γ
2 (φ1[a0, a1] + φ1[a0, a2])

We bound each component individually.

T 1 =
∑
v∈V ∗

φ1[a0, av]

z[a0, av] + z[a0, āv] +
∑
v′ 6=v

z[a0, av′ ]

 γ +

(
γ + η

`− `1−δ

`− `1−δ − 1

)∑
v′ 6=v

z[a0, āv]


=
∑
v∈V ∗

φ1[a0, av]

[
1

2
γ +

1

2

(
γ + η

`− `1−δ

`− `1−δ − 1

)]

=
∑
v∈V ∗

φ1[a0, av]

(
γ +

η

2

`− `1−δ

`− `1−δ − 1

)
≤
∑
v∈V ∗

φ1[a0, av](γ + η),

where in the last inequality we use `−`1−δ
`−`1−δ−1

≤ 2 for ` large enough. while

T 2 =
∑
v/∈V ∗

φ1[a0, av]

z[a0, av] + z[a0, āv] +
∑
v′ 6=v

z[a0, av′ ]

 γ +

(
γ + η

`− `1−δ

`− `1−δ − 1

)∑
v′ 6=v

z[a0, āv]


=
∑
v/∈V ∗

φ1[a0, av]

[(
1

2
+

1

2(`− `1−δ)

)
γ +

(
1

2
− 1

2(`− `1−δ)

)(
γ + η

`− `1−δ

`− `1−δ − 1

)]

=
∑
v/∈V ∗

φ1[a0, av]

[
γ +

η

2

(
`− `1−δ

`− `1−δ − 1
− 1

`− `1−δ − 1

)]
=
∑
v/∈V ∗

φ1[a0, av]
(
γ +

η

2

)
.

Finally,

T 3 = [a0, a0]
(
γ +

η

2

)
+
γ + η

2
([a0, a1] + [a0, a2]) +

γ

2
([a0, a1] + [a0, a2])

=
(
γ +

η

2

)
([a0, a0] + φ1[a0, a1] + φ1[a0, a2])

Finally, the utility of a deviation φ1 is∑
a1∈A1,a2∈A2

∑
a∈A1

φ1[a1, a]z[a1, a2]u1(a, a2)

12
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=
∑

a∈A1,a2∈A2

φ1[a0, a]z[a0, a
2]u1(a, a2)

= T 1 + T 2 + T 3

≤ (γ + η)
∑
v∈V ∗

φ1[a0, av] +
(
γ +

η

2

) ∑
v/∈V ∗

φ1[a0, av] +
(
γ +

η

2

)
(φ[a0, a0] + φ1[a0, a1] + φ1[a0, a2])

=
η

2

∑
v∈V ∗

φ1[a0, av] +
(
γ +

η

2

)
(1− φ1[a0, aF ])

Now, we show that no deviation φ1 ∈ Φ1 is both safe and increases player 1 utility. In particular, we show that if a strategy
φ1 increases the utility than it is not safe. Indeed, if φ1 increases the utility, then∑

a1∈A1,
a2∈A2

∑
a∈A1

φ1[a1, a]z[a1, a2]u1(a, a2) > γ +
η

2

This implies that

η

2

∑
v∈V ∗

φ1[a0, av] +
(
γ +

η

2

)
(1− φ1[a0, aF ]) > γ +

η

2

and ∑
v∈V ∗

φ1[a0, av] >
1

2
φ1[a0, aF ] (6)

Next, we show that any φ1 that increases the utility (and hence that satisfies Eq (6)) is not a feasible deviation. First, notice
that equation (6) implies that there is a v̄ ∈ V ∗ such that

φ1[a0, av̄] >
1

2`
φ1[a0, aF ]. (7)

Then, we show that the deviation φ1 violates the constraint cv̄ . In particular,∑
a1∈A1,a2∈A2

∑
a∈A1

φ1[a1, a]z[a1, a2]cv(a, a
2) = φ1[a0, av̄]z[a0, av̄]1−

1

4`2
φ1[a0, aF ]−

∑
v∈V ∗:(v,v̄)∈E

φ1[a0, av̄]z[a0, av]1

= φ1[a0, av̄]z[a0, av̄]−
1

4`2
φ1[a0, aF ]

=
1

2`1−
1
`

φ1[a0, av̄]−
1

4`2
φ1[a0, aF ]

> φ1[a0, av̄]

(
1

2`1−
1
`

− 1

2`

)
≥ 0,

where the second inequality holds since V ∗ is an independent set, and the second-to-last inequality by Equation (7). Hence,
there is no deviation φ1 that increases players 1 utility and that is safe. This concludes the first part of the proof.

Soundness. We show that if there exists a Constrained w-Phi-equilibria with social welfare α/2, then there exists an
independent set of size strictly larger than `δ, reaching a contradiction. Suppose by contradiction that there exists a
Constrained ε-Phi-equilibrium z with social welfare strictly greater than α/2. Thus,∑

a′∈A2\{aF }

z[a0, a
′] · 1 +

∑
a∈A1,a′∈A2

(γ + η) ≥
∑

a∈A1,a′∈A2

z[a, a′](u1(a, a′) + u2(a, a′)) ≥ α/2,

where the first inequality comes from u2(a0, a
′) = 1 for each a′ ∈ A2 \ {aF } and 0 otherwise, and u1(a, a′) ≤ γ + η for

each a ∈ A1 and a′ ∈ A2. This implies ∑
a′∈A2

z[a0, a
′] ≥ α/4. (8)

13
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Then, we show that z assigns similar probabilities on the set of action profiles {a0, av}v∈V and {a0, āv}v∈V Given an
a ∈ A1, let φa ∈ Φ1 be a deviation of the first player such that φa[a0, a] = 1 and φa[a′, a′] = 1 for each a′ 6= a0. Since z
is an Constrained ε-Phi-equilibrium there is no feasible deviation φa that increases the utility of player 1 by more than ε.
This implies that ∣∣∣∣∣∑

v∈V
z[a0, av]−

∑
v∈V

z[a0, āv]

∣∣∣∣∣ ≤ 2ε

η
. (9)

Indeed, if ∑
v∈V

z[a0, av] >
∑
v∈V

z[a0, āv] +
2ε

η
, (10)

then the deviation φa1 has utility at least∑
v∈V

z[a0, av]φa1 [a0, a1](γ + η) + z[a0, āv]φa1 [a0, a1]γ +
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

= η
∑
v∈V

z[a0, av] + γ
∑
v∈V

(z[a0, av] + z[a0, āv]) +
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

>
η

2

(
2ε

η
+
∑
v∈V

(z[a0, av] + z[a0, āv])

)
+ γ

∑
v∈V

(z[a0, av] + z[a0, āv])

+
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

≥ ε+
(η

2
+ γ
)∑
v∈V

(z[a0, av] + z[a0, āv]) +
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

≥ u1(z) + ε,

where the first inequality comes from adding
∑
v∈V z[a0, av] to both sides of Equation (10). Moreover, φa1 is feasible

since for each constraint cv̄ , v̄ ∈ V , it has cost∑
v∈V

(z[a0, av]φa1 [a0, a1]cv̄(a1, av) + z[a0, āv]φa1 [a0, a1]cv̄(a1, av))

+
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]cv̄(a, a
′)

=
∑
v∈V

(z[a0, av]φa1 [a0, a1]cv̄(a0, av) + z[a0, āv]φa1 [a0, a1]cv̄(a0, āv))

+
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]cv̄(a, a
′)

= cv̄(z) ≤ 0.

A similar argument shows that if
∑
v∈V z[a0, av] <

∑
v∈V z[a0, āv]− 2ε

η then the deviation φa2 is safe and increases the
utility. As a consequence of Equation (9), it holds

2
∑
v∈V

z[a0, āv] ≥
∑
v∈V

(z[a0, av] + z[a0, āv])−
ε

η
=

∑
a∈A2\{aF }

z[a0, a]− 2ε

η
, (11)

where the first inequality comes from adding
∑
v∈V z[a0, āv] to both sides of

∑
v∈V z[a0, āv]| ≥

∑
v∈V z[a0, av]− 2ε

η

The next step is to show that it is if there is no safe deviation φav , v ∈ V , that increases the utility, then there exists an
independent set of size larger than `δ . Since z is an Constrained ε-Phi-equilibrium, for each av , v ∈ V one of the following
two conditions holds: i) φav /∈ ΦS1 (z) or ii) u1(φav � z) ≤ u1(z) + ε. Let V 1 ⊆ V be the set of vertexes v such that φav
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is not safe, i.e., φav /∈ ΦS1 (z), and V 2 = V \ V 1 be the set of v such that φav does not increase the utility by more than ε
and are not in V 1, i.e., u1(φav � z) ≤ u1(z) and φav ∈ ΦS1 (z). We show that |V 2| ≤ `− `1−δ. Indeed, for each v ∈ V 2,
deviation φav does not increase the utility and hence it holds:

γ
∑

a∈A2\{aF }

z[a0, a] + η
`− `1−δ

`− `1−δ − 1

∑
v′ 6=v

z[a0, āv′ ] +
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

=

(∑
v′∈V

z[a0, a] + z[a0, āv]

)
φ[a0, av]γ +

∑
v′ 6=v

φ[a0, av]z[a0, āv′ ]

(
γ + η

`− `1−δ

`− `1−δ − 1

)
+

∑
a∈A1\{a0}

∑
a′∈A2

z[a, a′]φa1 [a, a]ui(a, a′)

≤ u1(z) + ε

=
(
γ +

η

2

) ∑
a∈A2\{aF }

z[a0, a] +
∑

a∈A1\{a0}

∑
a′∈A2

z[a, a′]ui(a, a′) + ε,

where the inequality holds since the lhs is the utility of the deviation φav .

This implies(∑
v′

z[a0, āv′ ]− z[a0, āv]

)
η

`− `1−δ

`− `1−δ − 1
≤ η

2

∑
a∈A2\{aF }

z[a0, a] + ε ≤ η
∑
v∈V

z[a0, āv] + 2ε,

where the last inequality holds by Equation (11). Hence,

z[a0, āv]
`− `1−δ

`− `1−δ − 1
≥
(

`− `1−δ

`− `1−δ − 1
− 1

)∑
v′

z[a0, āv′ ]− 2ε/η,

and

z̄[a0, av] ≥
1

`− `1−δ
∑
v′

z[a0, āv′ ]− 2ε/η. (12)

Suppose that |V 2| > `− `1−δ , and hence Equation (12) is satisfied by at least |V 2| ≥ `− `1−δ + 1 vertexes. We need the
following inequality.

1

`

∑
v′

z[a0, āv′ ] ≥
1

`

∑
a∈A2\{aF }

z[a0, a]− 2ε

`η
≥ α

4`
− 2ε

`η
=

α

4`
− α

8`3
≥ α

8`
=

2`

η

(
α2

16`2

)
=

2`

η
ε (13)

where the first inequality comes from Equation (11), and the second one by Equation (8). Then, summing over the |V 2|
inequalities we get

∑
v∈V 2

z̄[a0, av] ≥ (`− `1−δ + 1)

(
1

`− `1−δ
∑
v′

z[a0, āv′ ]− 2ε/η

)

≥
∑
v′

z[a0, āv′ ] +
1

`

∑
v′

z[a0, āv′ ]− 2`
ε

η

>
∑
v′

z[a0, āv′ ],

where the last inequality follows from equation (13). Hence, we reach a contradiction and |V 2| ≤ `− `1−δ .
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To conclude the proof, we show that V 1 is an independent set. Since |V 1| ≥ |V | − |V 2| = `1−δ we reach a contradiction.
Let v and v′ be two nodes in V 1 and w.l.o.g. let z[a0, av] ≥ z[a0, av′ ]. We show that (v, v′) /∈ E. Since v′ ∈ V 1, φav is
not a safe deviation for player 1 with respect to constraint cv

′
. if (v, v′) ∈ E, then∑

a1∈A1,a2∈A2

∑
a∈ A1

φ[a1, a]z[a1, a2]cv(a, a
2)

= z[a0, a
′
v]−

∑
v′′:(v′′,v′)∈E

z[a0, av′′ ]−
1

4`
z[a0, aF ]cv(a, a

2)

+
∑

a1∈A1\{a0},a2∈A2

∑
a∈A1

φ[a1, a]z[a1, a2]cv(a, a
2)

≤ z[a0, a
′
v]− z[a0, av]−

1

4`
z[a0, aF ]cv(a, a

2)+

+
∑

a1∈A1\{a0},a2∈A2

∑
a∈A1

φ[a1, a]z[a1, a2]cv(a, a
2)

≤ − 1

4`
z[a0, aF ]cv(a, a

2) +
∑

a1∈A1\{a0},a2∈A2

∑
a∈A1

φ[a1, a]z[a1, a2]cv(a, a
2)

= cv(z) ≤ 0.

Hence, (v, v′) /∈ E. Since V 1 is an independent set of size at least `1−δ we reach a contradiction. This concludes the
proof.

D. Proofs Omitted from Section 4
Lemma 4.1. For every z ∈ ∆A and i ∈ N , it holds

max
φi∈ΦSi (z)

ui(φi � z)

= sup
φi∈Φi

inf
ηi∈Rm+

(
ui(φi � z)− η>i ci(φi � z)

)
= inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
.

Proof. First, it is easy to see that

sup
φi∈ΦSi (z)

ui(φi � z) = sup
φi∈Φi

inf
ηi∈Rm+

(
ui(φi � z)− η>i ci(φi � z)

)
.

Indeed, for every φi /∈ ΦSi (z), it holds that the vector ci(φi � z) has at least one positive component, and, thus, the vector of
Lagrange multipliers ηi can be selected so that ui(φi �z)−η>i ci(φi �z) goes to−∞. This implies that the supremum over
Φi cannot be attained in ΦSi (z). On the other hand, for every φi ∈ ΦSi (z), all the components of ci(φi � z) are negative,
and, thus, the inf is achieved by ηi = 0. This proves the first equality.

Then, the second equality directly follows from the generalization of the max-min theorem for unbounded domains
(see (Ekeland & Temam, 1999, Proposition 2.3)), which allows us to swap the sup and the inf .

Lemma D.1. For any two real-valued functions f(x) and g(x) with g(x) ≤ c then min(f(x), g(x)) ≤ min(f(x), c).

Proof. We can identify three sets I1, I2 and I3 defined as follows:

I1 := {x s.t. f(x) ≥ c} (14)
I2 := {x s.t. g(x) ≤ f(x) ≤ c} (15)
I3 := {x s.t. f(x) ≤ g(x) ≤ c}. (16)

Then for all x ∈ I1 we have that min(f(x), c) = c ≥ min(f(x), g(x)) = g(x), while for all x ∈ I2 we have
that min(f(x), c) = f(x) ≥ min(f(x), g(x)) = g(x). Finally for all x ∈ I3 we have min(f(x), c) = f(x) =
min(f(x), g(x)) = f(x). In all three sets we have that min(f(x), c) ≥ min(f(x), g(x)).
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Lemma D.2. For all ηi ∈ Dc it holds that

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≥ 1

Proof. Thanks to Assumption 2 we have that for all z ∈ ∆(A) we have that there exists φ̃i ∈ ΦSi (z) such that ci(φ̃i � z) �
−ρ1. Then, for all ηi ∈ Dc we have:

η>i ci(φ̃i � z) ≤ −ρ‖ηi‖1 ≤ −1.

This easily concludes the proof of the statement

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≥ ui(φ̃i � z)− η>i ci(φ̃i � z) ≥ 1,

as ui is positive.

Lemma D.3. For all ηi ∈ D we have

inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≤ 1

Proof. Since ui ≤ 1 we have that

inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≤ 1− sup

ηi∈D
inf
φi∈Φi

η>i ci(φi � z).

Next we claim that sup
ηi∈D

inf
φi∈Φi

η>i ci(φi � z) ≥ 0. This follows from the fact that for all negative components of ci(φi � z)

then the corresponding components of ηi will be 0. This concludes the statement.

Lemma 4.2. Let D :=
{
η ∈ Rm+ | ||η||1 ≤ 1/ρ

}
. Then, for every z ∈ ∆A and i ∈ N , it holds:

max
φi∈ΦSi (z)

ui(φi � z)

= max
φi∈Φi

min
ηi∈D

(
ui(φi � z)− η>i ci(φi � z)

)
= min
ηi∈D

max
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
.

Proof. In Lemma 4.1 we already showed that:

sup
φi∈ΦSi (z)

ui(φi � z) = sup
φi∈Φi

inf
ηi∈Rm+

(
ui(φi � z)− η>i ci(φi � z)

)
=

inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
.

Note that to prove the statement it is enough to prove that:

inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
= inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
and more specifically that:

inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
≥ inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
since the reverse inequality holds trivially. We can show this by the following inequalities:

inf
ηi∈Rm+

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
= min

(
inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
, inf
ηi∈Dc

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

))
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≥ min

(
inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
, 1

)
= inf
ηi∈D

sup
φi∈Φi

(
ui(φi � z)− η>i ci(φi � z)

)
,

where the first inequality hold thanks to Lemma D.1 and Lemma D.2, while that last equation follows from Lemma D.3.

Lemma 4.4. Given any 0 < δ ≤ ε and a δ-optimal set D̃ ⊆ D, the following holds: LD̃,ε ≥ LD,0.

Proof. By definition we have that: LD̃,ε = `(z̃?), where z̃? is a solution to the problem

P1 :=


z̃? ∈ arg max

z∈S
`(z) s.t.

ε+ ui(z̃
?) ≥ max

φi∈Φi

(
ui(φi � z̃?)− η̃?,>i ci(φi � z̃?)

)
η̃?i ∈ arg inf

ηi∈D̃
sup
φi∈Φi

(
ui(φi � z̃?)− η>i ci(φi � z̃

?)
)

On the other hand, call z? the optimal Constrained Phi-equilibrium. This is a solution to the problem:

P2 :=


z? ∈ arg max

z∈S
`(z) s.t.

ui(z
?) ≥ max

φi∈Φi

(
ui(φi � z?)− η?,>i ci(φi � z?)

)
η?i ∈ arg inf

ηi∈D
sup
φi∈Φi

(
ui(φi � z?)− η>i ci(φi � z?)

)
which has value LD,0 = `(z?).

Moreover, thanks to Lemma 4.2 and since D̃ is δ-optimal we have that:

max
φi∈Φi

(
ui(φi � z̃?)− η̃?,>i ci(φi � z̃?)

)
≤ max
φi∈Φi

(
ui(φi � z?)− η?,>i ci(φi � z?)

)
+ δ

which implies that feasible correlated strategies of problem P2 are feasible correlated strategies of problem P1, and thus
problem P1 as long as δ ≥ ε. Thus problem P1 is the problem of maximizing the same objective function over a larger set
then problem P2 and thus LD̃,ε ≥ LD,0.

Lemma 4.5. For any τ > 0, the set Dτ is (τm)-optimal.

Proof. By Lemma 4.2, we know that for each player there exists an η?i ∈ D such that maxφ∈ΦSi (z) ui(φi � z) =

max
φi∈Φi

(
ui(φi � z)− η?,>i ci(φi � z)

)
. By construction of Dε there exists a η̄i ∈ Dε such that ||η̄i − η?i ||∞ ≤ ε. Thus

max
φ∈ΦSi (z)

ui(φi � z) = max
φi∈Φi

(
ui(φi � z)− η?,>i ci(φi � z)

)
≤ max
φi∈Φi

(
ui(φi � z)− η̄>i ci(φi � z)

)
+mε,

where the last inequality comes the fact that:

|(η?i − η̄i)>ci(φi � z)| ≤ ‖ci(φi � z)‖1‖η?i − η̄i‖∞ ≤ mε

as ci ∈ [−1, 1]m.

Lemma 4.6. For any τ > 0, the set Dτ is δ-optimal for δ = 2
√

2τ log s/ρ, where s is the number of players’ actions.

18



Constrained Phi-Equilibria

Proof. The proof exploits a probability interpretation of the Lagrange multipliers. Let η? be the optimal multipliers,
i.e., η? ∈ argminη∈Dmaxφi∈Φi

(
ui(φi � z)− η>ci(φi � z)

)
. Now consider a basis Γ = { 1

ρej}j∈[m] ∪ {0} for D. By
Carathoedory’s theorem there exists a distribution γ ∈ ∆(Γ) such that η? =

∑
η∈Γ γηη. Assume that ε and ρ are such that

1/ερ is an integer and take 1/ρε samples from the distribution γ and call η̃ the resulting empirical mean.

First, we argue that η̃ ∈ Dε. Indeed η̃j =
kj
1/ρε

1
ρ = ε

(
kj
1/ρε

1
ρε

)
= εkj where kj ∈ N and thus we have that η̃ ∈ Dε.11

Now we show that with high probability η̃ ∈ Dε is close (in terms of utilities) to the optimal multiplier η?. First observe
that:

η?,>i ci(φi � z) :=
∑

ai∈Ai,bi∈Ai

φi[b, ai] ∑
a−i∈A−i

η?,>ci(ai,a−i)z[b,a−i]

 (17a)

≤
∑

ai∈Ai,bi∈Ai

φi[b, ai]
δai,b +

∑
a−i∈A−i

η̃>ci(ai,a−i)z[b,a−i]

 (17b)

=
∑

ai∈Ai,bi∈Ai

φi[b, ai] ∑
a−i∈A−i

η̃>ci(ai,a−i)z[b,a−i]

+
∑

ai∈Ai,bi∈Ai
φi[b, ai]δai,b (17c)

= η̃>i ci(φi � z) +
∑

ai∈Ai,bi∈Ai
φi[b, ai]δai,b (17d)

where the inequality comes from applying the Hoeffeding’s inequality to every ai, b ∈ Ai:∣∣∣∣∣∣
∑

a−i∈A−i
(η̃ − η?)> ci(ai, a−i)z[b,a−i]

∣∣∣∣∣∣ ≤ δai,b
where δai,b = 2

ρ

√
2

1/ρε log
(

2
pai,b

)( ∑
a−i∈A−i

z[b,a−i]

)
since the range of the each sample is 1

ρ

(∑
a−i∈A−i z[b,a−i]

)
.

Moreover, for Hoeffeding’s inequality, for every ai, b ∈ Ai the above inequality holds with probability at least 1− pai,b and
thus holds for all the ai, b ∈ Ai simultaneously, with probability at least p :=

∑
ai,b∈Ai pai,b. If then we take pai,b := 1

2|Ai|2

for all ai, b ∈ Ai, then we have that p = 1/2 > 0 and δ := δai,b = 2
ρ

√
2

1/ρε log (|Ai|)

( ∑
a−i∈A−i

z[b,a−i]

)
Now the following holds with probability at lest 1/2:∣∣∣∣∣∣

∑
a−i∈A−i

(η̃ − η?)> ci(ai, a−i)z[b,a−i]

∣∣∣∣∣∣ ≤ δ
 ∑
a−i∈A−i

z[b,a−i]

 , ∀ai, b ∈ Ai

The proof is concluded by observing plugging this definition of δ = δai,b in Equation (17) yields∑
ai∈Ai,bi∈Ai φi[b, ai]δai,b = δ, and we can conclude that:

η?,>i ci(φi � z) ≤ η̃>i ci(φi � z) + δ.

This holds with positive probability, and thus shows the existence of such η̃ ∈ Dε for which the above inequality holds and
thus Dε is

(
2
√

2ε
ρ log(|Ai|)

)
-optimal.

E. Proofs Omitted from Section 5
Proposition 5.1. For instances I := (Γ,Φ) satisfying Assumption 3, the set of constrained ε-Phi-equilibria is convex.

11If ε if not such that 1/ρε ∈ N then the one can take d1/ρεe samples from γ ∈ ∆(Γ) and then the statement hold for a slightly smaller
ε′ < ε defined as ε′ := 1

d1/ρεe
1
ρ

.
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Proof. Let z′ and z′′ be Constrained ε-Phi-equilibria that is for all i ∈ [N ]:

ε+ ui(z
′) ≥ ui(φ′i � z′)

for φ′ ∈ arg max
φi∈ΦSi

ui(φi � z′). Equivalently it holds for all i ∈ [N ] that:

ε+ ui(z
′′) ≥ ui(φ′′i � z′′)

where φ′′ ∈ arg max
φi∈ΦSi

ui(φi � z′′). For any z := αz′ + (1− α)z′′ we have that:

ε+ ui(z) = α (ε+ ui(z
′)) + (1− α) (ε+ ui(z

′′))

≥ αui(φ′i � z′) + (1− α)ui(φ
′′
i � z′′)

≥ max
φi∈ΦSi

ui(φi � z),

where the inequality holds for the linearity of ui, the first inequality as both z′ and z′′ are Constrained ε-Phi-equilibria and
the last inequality holds since the max is a convex operator.

Theorem 5.1. Restricted to instances I := (Γ,Φ) which satisfy Assumption 3, APXCPE(1, 0) admits a polynomial-time
algorithm.

Proof. APXCPE(1, 0) amounts to solving the following problem:

max
z∈S

`(z) s.t.

ui(z) ≥ max
φi∈ΦSi

ui(φi � z) ∀i ∈ N ,

which can be written as an LP with (possibly) exponentially-many constraints, by writing a constraint for each vertex of
ΦSi . We can find an exact solution to such an LP in polynomial time by means of the ellipsoid algorithm that uses suitable
separation oracle. Such an oracle solves the following optimization problem for every i ∈ N :

φ?i ∈ arg max
φi∈ΦSi

ui(φi � z).

Then, the oracle returns as a separating hyperplane the incentive constraint corresponding to a φ?i (if any) such that
ui(z) ≥ ui(φ

?
i � z). Since all the steps of the separation oracle can be implemented in polynomial time, the ellipsoid

algorithm runs in polynomial time, concluding the proof.

Theorem 5.2. Given an instance I := (Γ,Φ) satisfying Assumption 3, after T ∈ N>0 rounds, Algorithm 1 returns a
correlated strategy z̄T ∈ ∆A that is a constrained εT -Phi-equilibrium with εT = O(1/

√
T). Moreover, each round of

Algorithm 1 runs in polynomial time.

Proof. Any regret minimizer Ri for ΦSi guarantees that, for every φi ∈ ΦSi :

T∑
t=1

ui(φi � zt)−
T∑
t=1

ui(φi,t � zt) ≤ εi,T T, (19)

where εi,T = o(T ). Since xi,t[a] =
∑
b∈Ai φi,t[b, a]xi,t[b] for all a ∈ Ai, for every t ∈ [T ] and a = (ai,a−i) ∈ A:

(φi,t � zt)[ai,a−i] =
∑
b∈Ai

φi,t[b, ai]z[b,a−i]

=
∑
b∈Ai

φi,t[b, ai]
(
xi,t[b]⊗ x−i,t[a−i]

)
=

(∑
b∈Ai

φi,t[b, ai]xi,t[b]

)
⊗ x−i,t[a−i]
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= xi,t[ai]⊗ x−i,t[a−i]
= zt[ai,a−i],

Plugging the equation above into Equation (19), we get:

T∑
t=1

ui(φi � zt)−
T∑
t=1

ui(zt) ≤ εi,T T.

Now, since z̄T := 1
T

∑T
t=1 zt and ui(z) is linear in z, we can conclude that, for every i ∈ N and φi ∈ ΦSi :

ui(z̄T ) ≥ ui(φi � z̄T )− εi,T ,

and, thus, by letting εT := maxi∈N εi,T we get that z̄T satisfies the incentivize constrained for being a constrained
εT -Phi-equilibrium. We are left to verify that z̄T ∈ S, namely ci(z̄T ) ≤ 0 for all i ∈ N . This readily proved as:

ci(z̄T ) =
1

T

T∑
t=1

ci(zt)

=
1

T

T∑
t=1

ci(φi,t � zt)

=
1

T

T∑
t=1

c̃i(φi,t)

≤ 0,

where the first equality holds since ci is linear, the second equality holds thanks to zt = φi,t � zt, the third one by
Assumption 3, while the inequality holds since φi,t ∈ ΦSi . This concludes the proof of the first part of the statement.

In conclusion, Algorithm 1 runs in polynomial time as finding xi,t[a] =
∑
b∈Ai φi,t[b, ai]xi,t[b] for all a ∈ Ai is equivalent

to finding a stationary distribution of a Markov Chain, which can be done in polynomial time. Moreover, we can implement
the regret minimizers Ri over the polytopes ΦSi so that their operations run in polynomial time, such as, e.g., online gradient
descent; see (Hazan et al., 2016).

Theorem 5.4. For instances I := (Γ,ΦCCE) such that ci(a) = ci(a
′) for every player i ∈ N and action profiles

a,a′ ∈ A : ai = a′i, Assumption 3 holds.

Proof. Since the costs ci(a) of player i ∈ N only depends on player i’s action ai and not on the actions of other players, it
is possible to show that there exists c̃i : ΦCCE → [−1, 1]m such that the following holds for every z ∈ ∆A:

c̃i(φi) := ci(φi � z).

Indeed, for every φi ∈ ΦCCE, by definition of ΦCCE there exists a probability distribution h ∈ ∆Ai : φi[b, a] = h[a] for all
b, a ∈ Ai. Then, for every ai ∈ Ai and a−i ∈ A−i, we can write:

(φi � z)[ai,a−i] =
∑
b∈Ai

φi[b, ai]z[b,a−i]

=
∑
b∈Ai

h[ai]z[b,a−i]

= h[ai]
∑
b∈Ai

z[b,a−i].

Moreover, it holds:

ci(φi � z)[ai,a−i] =
∑
a∈A

ci(a)(φi � z)[ai,a−i]
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=
∑
a∈A

ci(a)h[ai]
∑
b∈Ai

z[b,a−i]

=
∑
ai∈Ai

ci(ai, ·)h[ai]
∑

a−i∈A−i

∑
b∈Ai

z[b,a−i]

=
∑
ai∈Ai

ci(ai, ·)h[ai],

which only depends on φi, as desired. Notice that, in the equations above, for every a ∈ Ai we let ci(a, ·) be the (unique)
value of ci(a) for all a ∈ A : ai = a.
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