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Abstract

Despite incredible advances, deep learning has been shown to be susceptible to
adversarial attacks. Numerous approaches were proposed to train robust networks
both empirically and certifiably. However, most of them defend against only a
single type of attack, while recent work steps forward at defending against mul-
tiple attacks. In this paper, to understand multi-target robustness, we view this
problem as a bargaining game in which different players (adversaries) negotiate
to reach an agreement on a joint direction of parameter updating. We identify a
phenomenon named player domination in the bargaining game, and show that with
this phenomenon, some of the existing max-based approaches such as MAX and
MSD do not converge. Based on our theoretical results, we design a novel frame-
work that adjusts the budgets of different adversaries to avoid player domination.
Experiments on two benchmarks show that employing the proposed framework to
the existing approaches significantly advances multi-target robustness.

1 Introduction

Machine learning models have been shown to be susceptible to adversarial examples (Szegedy et al.,
2014), where human-imperceptible perturbations added to a clean example might arbitrarily change
the output of machine learning models. The adversarial examples are generated by maximizing the
loss within a small perturbation region around a clean example, e.g., ℓ∞, ℓ1 and ℓ2 balls. On the other
hand, numerous heuristic defenses have been proposed to be robust against adversarial examples, e.g.,
distillation (Papernot et al., 2016), logit-pairing (Kannan et al., 2018) and adversarial training (Madry
et al., 2018).
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However, most of the existing defenses are only robust against one type of attacks (Madry et al.,
2018; Raghunathan et al., 2022; Wong & Kolter, 2018; Engstrom et al., 2018), while they fail to
defend against other adversaries. For example, existing work (Kang et al., 2019b; Maini et al., 2020)
showed that robustness in the ℓp threat model does not necessarily generalize to other ℓq threat models.
However, for the sake of the safety of machine learning systems, one should target robustness against
multiple adversaries simultaneously (Croce & Hein, 2020a).

Recently, various methods (Schott et al., 2019; Tramer & Boneh, 2019; Maini et al., 2020) have been
proposed to address this problem. Multi-target adversarial training, which targets defending against
multiple adversarial perturbations, has attracted significant attention: a variational autoencoder-based
model (Schott et al., 2019) learns a classifier robust to multiple perturbations; after that, MAX and
AVG strategies, which aggregate different adversaries for adversarial training against multiple threat
models, have been shown to enjoy improved performance (Tramer & Boneh, 2019). To further
advance the robustness against multiple adversaries, Maini et al. (2020) achieved better performance
than MAX and AVG by taking the worst-case over all steepest descent directions. These methods
follow a general scheme as the (single-target) adversarial training.

This general scheme for multi-target adversarial training can be seen as an implementation of a
cooperative bargaining game (Thomson, 1994). In this game, different parties have to decide how to
maximize the surplus they jointly get. In the multi-target adversarial training, we view each party as
an adversary, and they negotiate to reach an agreed gradient direction that maximizes their utility
function. We can then utilize the results from a game-theoretic perspective to analyze the multi-target
adversarial training.

Inspired by the bargaining game for multi-target adversarial training, we first analyze the existing
methods, i.e., MAX (Tramer & Boneh, 2019), MSD (Maini et al., 2020), and AVG (Tramer & Boneh,
2019), and categorize them into two types, MAX-based and AVG-based algorithms. We identify
a phenomenon where one player dominates the bargaining game at any time t, where the agreed
gradient at any time t is the same as this player’s gradient. Following that, we show that MAX-based
algorithms, i.e., MAX and MSD, do not converge. Based on our theoretical results, we propose a
novel mechanism which adaptively adjusts the budget of adversaries to avoid any player dominating
the bargaining game. We show that with our proposed mechanism, the robust accuracy of MAX,
AVG and MSD improves on both the MNIST and CIFAR-10 datasets.

1.1 Cooperative Bargaining Game

Cooperative bargaining game (Thomson, 1994) is a process in which several parties jointly decide
how to share a surplus that they can jointly gain. The multi-target adversarial training can be viewed
as a cooperative game in which each target (perturbation) represents a player, whose utility is derived
from its gradient, and all the players negotiate to reach an agreed direction.

In the cooperative bargaining game, we have K players with their own utility function ui : A
⋃
{d} →

R, where A is the set of possible agreements and d is the disagreement point. The feasible set of
utility is defined as S = {(u1(γ) . . . , uK(γ)) : γ ∈ A}. The goals of players are to maximize their
own utility functions. S is assumed to be convex and compact throughout this paper while there
exists a point γ ∈ A satisfying ui(γ) > ui(d),∀i ∈ [K].

We formalize the multi-target adversarial training problem as a bargaining game as follows. This
bargaining game has K players, as we are targeting at multi-target adversarial training. For each player,
they generate a data-dependent perturbation δk(x),∀k ∈ [K] to complete the adversarial training,
where [K] = {1, 2, 3, · · · ,K}. The possible agreements A are {

∑
k∈[K] γk = 1,γk ≥ 0,∀k ∈ [K]}

and the disagreement point at 0, i.e., staying at the current parameters w. The utility function for the
player k is uk(γ) = g⊤k

∑
i∈[K] γigi, where gk is the gradient of the player k. We note that since the

agreement set A is compact and convex and the utilities are linear, the set of possible payoffs S is
also compact and convex.

2 Convergence Analysis

We start the section by showing our theoretical results based on two machine learning models.
Furthermore, we design a general framework for the multi-target adversarial training problem to
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avoid the player domination phenomenon which might lead to the non-convergence of MAX and
MSD in the next section. All missing proofs are in the appendix.

2.1 Convergence analysis on SVM model

Consider the binary classification setup introduced in Tsipras et al. (2019), where data (x, y) is
sampled from a distribution D defined by

y
u.a.r∼ {+1,−1}, x1 =

{
+y, w.p. p;
−y, w.p. 1− p,

x2, . . . , xd+1
i.i.d.∼ N (µy, 1),

where x = [x1, . . . , xd+1] ∈ Rd+1, y is a Rademacher random variable, and N (µ, σ2) is a normal
distribution with mean µ and variance σ2. In our setting, p ∈ [0.5, 1]. x1 is a robust feature while
x2, . . . ,xd+1 are non-robust features that are weakly correlated with the label. Similarly, we set µ
to be large enough such that almost any classifier can get a high standard accuracy (> 99%), i.e.,
µ ≥ 1/

√
d. We train a linear model fw(·) with soft-SVM loss on the data shown above:

min
w

E(x,y)∼D
∑

p∈{1,2,∞}

γp max (0, 1− yfw(x+ δ(x)p)) , s.t. ∥w∥2 = 1 , (1)

where fw(x) = w⊤x, and γ = [γ1,γ2,γ∞] satisfies
∑

i∈{1,2,∞} γi = 1. With the linearity property
of SVM, the closed form of optimal perturbations could be calculated as

δ∗∞(w) = −yϵ∞ sign(w), δ∗1(w) =
−yϵ1w

∥w∥1
, δ∗2(w) =

−yϵ2w

∥w∥2
. (2)

Let wt and δt be the weight vector of classifier and the perturbation at time t, respectively. The
training procedures of AVG, MAX and MSD are illustrated as follows:

0. Initialize the weights with natural training, i.e., minimizing the soft-SVM loss without
perturbation

min
w

E(x,y)∼D
[
max(0, 1− yw⊤x)

]
, s.t. ∥w∥2 = 1 . (3)

1. Solve the inner maximization problem using AVG, MAX and MSD, and return the optimal
perturbations, i.e., δt1, δ

t
2 and δt∞.

2. Update the weight of the classifier by

wt = argminw E(x,y)∼D
∑

p∈{1,2,∞}

γt
p max(0, 1− yw⊤(x+ δtp)), s.t. ∥wt∥2 = 1 ,

where γt = [1/3, 1/3, 1/3] if the algorithm is AVG; γt ∈ {[1, 0, 0], [0, 1, 0], [0, 0, 1]} if the
algorithm is MAX or MSD.

3. Loop Steps 1 and 2 for predefined epochs or until convergence.

We first present the following negative result:

Theorem 1. Let µ ≥ 4/
√
d, ϵ∞ ≥ 2µ, p ≤ 0.977. If one uses MAX and MSD to train the SVM

model and ϵ∞ ≥ 2
dϵ1 and ϵ∞ ≥

√
2
dϵ2, the loss incurred by the ∞-player (∞-adversary) is

larger than that by the 1-player (1-adversary) and the 2-player (2-adversary) at any time t, i.e.,
ℓwt(x+ δ∞(x)) ≥ max(ℓwt(x+ δ1(x)), ℓwt(x+ δ2(x))),∀t,∀x.

This theorem shows that under certain conditions, the SVM learning dynamics will be affected by
only one player, i.e., the ∞-player, during the whole training procedure. And we further observe that
this phenomenon leads to non-convergence of the SVM model as the sign of weights of the model
will be flipped. We define the phenomenon that one player “dominate” the multi-target adversarial
training procedure (the training procedure only depends on one player) as follows
Definition 2 (Player dominates the cooperative game). If ∃i ∈ [k] such that γt

i = 1 and γt
j = 0,∀j ∈

[K]/{i},∀t, then we call that player dominates the bargaining game.
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Further, after analyzing the training dynamics of SVM, we notice that when the ∞-player dominates
the bargaining game, and given ϵ∞ > µ, the SVM model may not converge as the weights for the
non-robust features flips over time.
Theorem 3. Consider Problem equation 1 trained with MAX and MSD. If ∞-player dominates
the bargaining game and ϵ∞ > µ, the weights for the non-robust features flips over time, i.e.,
sign(wt

i) = − sign(wt−1
i ),∀i ≥ 2. Thus, the training procedure does not converge.

As the ∞-player dominates this game, the multi-target adversarial training problem reduces to the
single-target problem (equation 6). Further, with Lemma 8, for non-robust feature i, if η∞ > η, we
have sign(wt

i) = − sign(wt−1
i ). Therefore, the training procedure does not converge.

Though we only analyze the case when an ∞-player dominates the bargaining game, we notice that
when other players dominate this bargaining game (i.e., multi-target adversarial training), with certain
conditions, e.g., ϵ1 > 4µ, a similar phenomenon can be observed empirically. Motivated by the
negative results of the SVM model, we next testify a conjecture that player domination may lead to
non-convergence of the linear model as well.

2.2 Player Domination Leads to Non-convergence

To testify our conjecture, we introduce a linear model as follows. The linear model is parameterized by
w and optimized by gradient-based algorithms, e.g., AdaGrad (Duchi et al., 2011) or Adam (Kingma
& Ba, 2015). The parameter at time (epoch) t is denoted by wt. The loss function of each player is
denoted as ℓk, k ∈ [K], which is L-smooth and µ-strongly convex, and the corresponding gradient is
denoted as ∇wℓk(w

t) or gtk, k ∈ [K],∀t. We assume that for a sequence {wt}t=[1,∞] generated by
any optimization algorithm, the set of the gradient vectors gtk, k ∈ [K] at any time t and at any partial
limit are linearly independent unless that point is locally optimal. All loss functions are differentiable
and all sub-level sets are bounded. The learning rate is denoted as η and η < 2

L . We also assume that
the input domain is open and convex.

To generalize our theoretical results, we show that in this linear model, MAX and MSD still may not
converge if one player dominates the game.
Theorem 4. Consider using MAX and MSD to train the linear model described above. If the
bargaining game is dominated by one player during the whole game (see Definition 2), then the loss
of all players and the overall loss would increase as time t grows. That means the training procedure
on the above linear model might not converge.

While we have shown that MAX and MSD may not converge under the two models that we study,
we notice that AVG provably converges as the loss is decreasing w.r.t the number of epochs. See the
following theorem.
Theorem 5. Using AVG to train the linear model, the overall loss decrease as time t grows.

This theorem shows that under the same setting, while the loss of each player and the overall loss will
be increasing as time grows with MSD and MSD, the overall loss will be decreasing with AVG. And
the key component in the proof is the player domination phenomenon, which directly leads to the
increase of loss with MAX and MSD. That indicates that the training procedure with MAX and MSD
might not converge while AVG might converge, which is also a consequence of player domination.

3 Avoiding Player Domination with Adaptive Budgets

Our theoretical results indicate that when player domination (Def. 2) occurs, MAX and MSD may
not converge while the loss of AVG decreases as time grows. Inspired by this analysis, we design a
novel general-purpose algorithm for multi-target adversarial robustness, which adaptively changes the
budget of different adversaries. The resulting AdaptiveBudget method is presented in Algorithm 1.

The core idea of this algorithm is to avoid player domination by adaptively assigning proper attack
budgets to different adversaries (players). Such an assignment is to make no single player achieve
significantly better than others. Concretely, for each batch of data, we first get the adversarial pertur-
bations δ∞, δ1 and δ2 for the ℓ∞, ℓ1, and ℓ2 adversaries. Then based on the norms of the gradients
by forwarding their adversarial examples through our model, the algorithm adaptively adjusts the
budgets ϵ for different adversaries to avoid the player domination phenomenon. Specifically, our
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Algorithm 1 Framework of Multi-target Adversarial Training with Adaptive Budget
Require: Training Epochs E, Training samples (X ,Y), adversarial budgets (ϵ∞, ϵ1, ϵ2), model f(·), loss function ℓ.
1: for e ∈ [E] do
2: for x, y ∈ (X ,Y) do
3: gp ← ℓ

′
(x + δp(x)), δp(x)← PGD(x, k, η, ℓ, ϵp, ℓ), ∀p ∈ {1, 2,∞}

4: Get adaptive budgets ϵ̂1, ϵ̂2, ϵ̂∞ ← AdaptiveBudget([g1, g2, g∞], [ϵ1, ϵ2, ϵ∞]);
5: Adversarial training using MAX, MSD or AVG with budgets (ϵ̂1, ϵ̂2, ϵ̂∞);
6: end for
7: end for
8: Return the classifier f .
9:
10: AdaptiveBudget(Gradients[g1, g2, g∞], Epsilon[ϵ1, ϵ2, ϵ∞]):
11: pmax ← argmaxp∈{∞,1,2} ∥gp∥, pmin ← argminp∈{∞,1,2} ∥gp∥;
12: pmid ← {1, 2,∞}/{pmax, pmin};
13: ϵpmax ← ϵpmax ·

∥gpmax ∥
∥gpmid ∥ , ϵpmin ← ϵpmin ·

∥gpmin ∥
∥gpmid ∥ ;

14: Return ϵ1, ϵ2, ϵ∞.

proposed method keeps the budget of the adversary whose norm of gradient is the middle one. This
increases the budget of the adversary whose norm of gradient is the maximum and decreases the
budget of the adversary whose norm of gradient is the minimum. The intuition behind our method
is to focus on the hardest task in the current round so that this task might be easier to model in the
next round. After obtaining the adjusted adversarial budgets, the model utilizes MSD, MAX or AVG
to approximately solve the inner maximization problem and then updates its parameter with any
gradient descent algorithm.

The proposed framework is general and can be applied to all existing multi-target adversarial training
algorithms. The adaptive budget module is employed to break the curse of player domination
which might occur when applying MAX and MSD to train a robust model. In the next section, we
corroborate the consistent effectiveness of AdaptiveBudget method with extensive experiments.

4 Experiments

4.1 Experimental setup and implementation details

Datasets. We conducted extensive experiments on a synthetic data (Sec. 2.1) to complement our
theoretical results and MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky & Hinton, 2009) to
show the superiority of our proposed methods over the existing methods of multi-target adversarial
training. Methods. We train models that defend multiple adversaries using MAX (Tramer & Boneh,
2019), AVG (Tramer & Boneh, 2019) and MSD (Maini et al., 2020). Attacks used for evaluation. To
fully understand the performance of the defense, we employ PGD adversary and Autoattack (Croce
& Hein, 2020b)1 to test the effectiveness of our method. We make 10 random restarts for presenting
all the results presented later for both MNIST and CIFAR-10. The budgets for three adversaries, i.e.,
ϵ1, ϵ2, and ϵ∞, are the same with the setting at training for both two datasets, while for the number of
iterations, we increase them to (100, 200, 100) for (ℓ∞, ℓ2, ℓ1) on MNIST and (100, 500, 100) for
(ℓ∞, ℓ2, ℓ1) on CIFAR-10.

4.2 Results on MNIST

Here we present results on the MNIST dataset, summarized in Table 1. Though MNIST has been
treated as an “easy” benchmark compared with CIFAR-10 or bigger datasets, e.g., ImageNet (Deng
et al., 2009), we notice that all the single target adversarial training methods, i.e., ℓ1, ℓ2, and ℓ∞, fail
to defend only three attacks, while the best is ℓ∞ training which defends almost three attacks and
outperforms the MAX on the overall Accuracy. From Table 1, with our proposed method, we notice
that the robust accuracy against the ℓ∞ PGD attack is improved with three methods, i.e., MAX, MSD,
and AVG, using both ℓ1 and ℓ2 norms. The ℓ1 and ℓ2 robust accuracy against ℓ1 and ℓ2 PGD attacks
is improved on MAX by 4.3% and 2.2% (with adaptive budget using ℓ1 norm), 2.6% and 2.3% (with
adaptive budget using ℓ2 norm) as well. Maini et al. (2020) and Tramer & Boneh (2019) mentioned

1We only consider white-box attack based on gradient, while not using the attack based on gradient estimation,
as the gradient for the standard architectures used here are readily available.

5



Table 1: Summary of robust accuracy for MNIST (higher is better). “w. adaptive budget” refers to
employing our proposed framework which enables adaptive budget to avoid any player dominating
the game. “*” means that the results are reproduced from the implementation of Maini et al. (2020)
by the hyperparameters of Maini et al. (2020). “ℓ1 (ours)” and “ℓ2 (ours)” refers to employing our
proposed adaptive budget method w.r.t ℓ1 and ℓ2 norms.

Models ℓ1 ℓ2 ℓ∞ MAX MSD AVG
w. adaptive budget ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours)

Clean Accuracy (%) 97.2 99.1 99.2 98.6 98.9 98.9 98.2 98.3 98.9 99.1 99.1 99.1

ℓ1 PGD Robust Acc (%) 47.3* 67.8* 54.6* 67.1* 71.4↑ 69.7↑ 67.3* 66.8↓ 65.9↓ 70.6* 68.2↓ 68.9↓
ℓ2 PGD Robust Acc (%) 24.1* 66.8* 61.8* 67.2* 69.4↑ 69.5↑ 68.0* 67.9↓ 65.3↓ 69.4* 68.3↓ 68.3↓
ℓ∞ PGD Robust Acc (%) 0* 0.1* 88.9* 21.2* 67.2↑ 67.6↑ 62.4* 69.7↑ 69.7↑ 59.5* 67.7↑ 65.6↑
All PGD Robust Acc (%) 0* 0.1* 52.1* 21.2* 61.3↑ 61.4↑ 59.7* 62.1↑ 61.0↑ 55.4* 59.2↑ 58.2↑

Table 2: Summary of robust accuracy for CIFAR-10 (higher is better). “w. adaptive budget” refers to
employing our proposed framework which enables adaptive budget to avoid any player dominating the
game. “AA” refers to AutoAttack. “*” means that the results are reproduced from the implementation
of Maini et al. (2020) by the hyperparameters of Maini et al. (2020). “ℓ1 (ours)” and “ℓ2 (ours)”
refers to employing our proposed adaptive budget method w.r.t ℓ1 and ℓ2 norms.

Models ℓ1 ℓ2 ℓ∞ MAX MSD AVG
w. adaptive budget ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours) ℓ1 (ours) ℓ2 (ours)

Clean Accuracy 92.4 87.5 84.2 79.6 76.9 78.7 79.2 77.6 79.0 83.8 81.6 81.5

ℓ1 PGD Robust Acc (%) 90.8 31.7 17.3 44.0* 50.7↑ 51.7↑ 50.8* 51.2↑ 52.6↑ 55.7* 57.3↑ 56.3↑
ℓ2 PGD Robust Acc (%) 0.1 64.0 60.6 55.6* 63.4↑ 65.1↑ 64.3* 63.6↓ 65.5↑ 67.0* 66.6↓ 67.0

ℓ∞ PGD Robust Acc (%) 0 27.8 51.2 41.3* 47.5↑ 47.6↑ 45.7* 48.4↑ 47.2↑ 39.4* 45.5↑ 44.2↑
All PGD Robust Acc (%) 0 23.8 17.3 40.4* 46.0↑ 46.8↑ 44.1* 47.2↑ 46.4↑ 39.2* 45.2↑ 43.6↑

ℓ1 AA Robust Acc (%) 0 23.8 6.2 41.4* 45.7↑ 45.5↑ 45.5* 46.4↑ 46.7↑ 49.7* 52.7↑ 50.8↑
ℓ2 AA Robust Acc (%) 0 63.0 57.4 53.7* 60.4↑ 63.2↑ 61.9* 62.3↑ 62.1↑ 65.4* 64.6↓ 65.5↑
ℓ∞ AA Robust Acc (%) 0 26.1 48.0 38.4* 44.7↑ 44.1↑ 43.1* 45.2↑ 44.4↑ 37.0* 43.1↑ 42.1↑
All AA Robust Acc (%) 0 19.5 6.2 37.6* 42.9↑ 42.3↑ 41.6* 43.4↑ 43.0↑ 36.6* 42.5↑ 41.2↑

that there is a trade-off between the robust accuracy against the ℓ∞ attack and the robust accuracy
against the ℓ1 and ℓ2 attacks. Similar observations can be obtained from our experimental results. For
MSD and AVG, the robust accuracy defending ℓ1 and ℓ2 PGD attacks drops a bit, which might be
due to that trade-off. We also observe that the proposed adaptive budget method avoids the player
domination phenomenon well as it improves the robust accuracy of MAX by approximately 40%.
The all PGD robust accuracy of the vanilla MAX also shows that the player domination phenomenon
hinders MAX from achieving a satisfying robust accuracy for the non-convex scenarios as well.

4.3 Results on CIFAR-10

The results are shown in Table 2, and the curve of robust accuracy is shown in Figures 5 and 4. Due
to the limitation of space, we present the most important results in the main paper while leaving the
left results in the Appendix.

Main Results. The results presented in Table 2 show the generalization ability of our proposed
method, which improves the robust accuracy of three methods, i.e., MSD, MAX, and AVG, against
ℓ1, ℓ2, ℓ∞, and all attacks by PGD and AutoAttack. We notice that the robust accuracy of all attacks
for PGD and AutoAttack is mainly restricted by how well the model defends the ℓ∞ attack. It might
be caused by the fact that the radius of ℓ∞ attack might be too small compared with the radius
of ℓ1 and ℓ2 attacks such that with the updates by gradient-based algorithms, the gradient of ℓ∞
adversary is covered by others. In this way, the model ignores the ℓ∞ adversary. And we notice that
employing the adaptive budget with either the ℓ1 or ℓ2 norm helps models to pay attention to the
tasks that are not well learnt as the robust accuracy on ℓ∞ adversary is relatively improved by the
most. For example, the ℓ∞ PGD robust accuracy of MAX with the adaptive budget w.r.t the ℓ1 norm
experiences a relative 15.01% improvement while there is only a 14.03% relative improvement on
the ℓ2 PGD robust accuracy. Besides, the trade-off between the three attacks is different from the
trade-off on MNIST. On MNIST, the robust accuracy of ℓ2 adversary is related to that of ℓ1 adversary
while on CIFAR-10, it seems that ℓ2 robust accuracy is more likely to relate to ℓ∞ robust accuracy.
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5 Conclusion

In this paper, to achieve the ultimate goal of robustness, i.e., defending any terms of attacks, we first
formalized this problem within the scope of the bargaining game, and investigated the convergence
property of MAX, MSD, and AVG under two linear cases. We found that MSD and MSD did not
converge theoretically due to a phenomenon named player domination while AVG did not suffer from
this. To avoid player domination in the training of robust models, we designed a novel framework for
multi-target adversary training with an adaptive budget method. Specifically, the adaptive budget
method adaptively changed the budget of different attacks to avoid player domination. Finally, to
evaluate the proposed framework, we conducted experiments on two benchmarks, i.e., MNIST and
CIFAR-10. Experimental results showed that our proposed adaptive budget method improved the
robust accuracy on two benchmarks, which complemented our theoretical results and also supported
our finding that player domination might interfere with the training of robust models.
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A Related work

Adversarial Training. Goodfellow et al. (2015) has shown that a single, small step in the direction
of the sign of the gradient may fool deep learning models for the image classification task. Later
it was extended to a multi-step attack (Kurakin et al., 2017) namely the Basic Iterative Method
(now typically referred to as the PGD attack), which significantly improves the success of creating
adversarial examples. After that, different variations of PGD attack (Brendel et al., 2019; Li et al.,
2019; Croce & Hein, 2020b) have been proposed to overcome heuristic defenses and create stronger
adversaries. To defend the adversaries, numerous defend methods (Papernot et al., 2016; Kannan
et al., 2018; Madry et al., 2018; Zhang et al., 2019b,a, 2020; Wu et al., 2020; Wang et al., 2020; Pang
et al., 2020b; Shi et al., 2020; Zhang et al., 2022a) have been discovered. Among these methods,
the most successful defense method is adversarial training (Madry et al., 2018), which formulates
the defense problem as a min-max optimization problem and has become one of the few adversarial
defenses that is still robust to the following stronger attacks (Carlini & Wagner, 2017; Athalye et al.,
2018; Mosbach et al., 2018). Following that, the empirical robustness (Pang et al., 2020a, 2021; Gao
et al., 2022; Zhang et al., 2022b; Wang et al., 2021) has been significantly advanced during the past
few decades.

Multi-target Adversarial Training. Robustness against multiple types of attacks simultaneously re-
lates to our work very closely. In 2019, Schott et al. (2019) used multiple variational autoencoders and
constructed an architecture named analysis by synthesis for the MNIST dataset. Their experimental
results showing that even for MNIST, it is hard to train a model robust to three different adversaries.
Following that, (Tramer & Boneh, 2019) investigated the theoretical and empirical trade-offs of
adversarial robustness when defending against aggregations of multiple adversaries. Their results
showed that the model robust to the ℓ∞ adversary might not be able to defend other attacks, i.e., ℓ1
and ℓ2 attacks, on MNIST. To alleviate this problem, they designed a augmentation-based method
to get ℓ2 robustness instead of using the ℓ2 ball. Later, Croce & Hein (2020a) proposed a provable
adversarial defense against all ℓp norms for p ≥ 1 with regularization methods. From a greedy
search perspective, Maini et al. (2020) suggested that taking the worst-case over all steepest descent
directions helps achieve better performance than MAX and AVG empirically. Recently, while not
studied as a defense method, (Kang et al., 2019a) investigated the transferability of adversarial
robustness between models trained against different perturbation models.

B Preliminaries

B.1 Problem Formulation

The goal of multi-target adversarial training is to learn a function fw : X → {−1,+1} that
is robust to adversarial examples generated by multiple adversaries2, where f is parameterized
by w. The multi-target robust loss of fw is defined as E(x,y)[maxδ∈B ℓ(fw(x + δ), y)] where
B = B1(ϵ1)

⋃
B2(ϵ2)

⋃
B∞(ϵ∞) and Bp(ϵ) = {δ : ∥δ∥p ≤ ϵ}, and δ is the perturbation. In deep

learning scenarios, Adversarial Training (Madry et al., 2018) is frequently used to train a robust
classifier. Previous multi-target adversarial training work, e.g., MSD, MAX and AVG, employs the
following minimax objective to update the algorithm,

min
w

E(x,y) max
δ∈B

ℓ(fx(x+ δ), y) . (4)

In the deep learning scenario, as this problem is often non-convex and hard to derive the closed-form
solution, the above objective is optimized by iteratively optimizing δ and w for several rounds as
shown below,

1. Algorithm gets the optimal perturbation δt for the t-th round as

δt(x) = argmaxδ∈B ℓ(fwt−1(x+ δ), y) . (5)

2. Algorithm gets the optimal parameter wt for the t-th round as

wt = argminw E(x,y)ℓ(fx(x+ δt(x)), y) .

2In our paper, we analyze the case where three adversaries are involved, i.e., ℓ1, ℓ2 and ℓ∞.
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Algorithm 2 MAX, AVG and MSD algorithms

1: MAX(input data x, steps k, stepsize η, perturbation budgets (ϵ∞, ϵ1, ϵ2), loss function ℓ):
2: δp(x) = PGD(x, k, η, ℓp, ϵp, ℓ), p ∈ {1, 2,∞};
3: Return argmaxδ∈{δ1(x),δ2(x),δ∞(x)} ℓ(x+ δ, y).

4:
5: AVG(input data x, steps k, stepsize η, perturbation budgets (ϵ∞, ϵ1, ϵ2), loss function ℓ):
6: Return {δp(x) = PGD(x, k, η, ℓp, ϵp, ℓ)}p∈{1,2,∞}.
7:
8: MSD(input data x, steps k, stepsize η, perturbation budgets (ϵ∞, ϵ1, ϵ2), loss function ℓ):
9: δ0 = 0;

10: for i ∈ [k] do
11: δip = PGDStep(x, δ

i, η, ℓp, ϵp, ℓ);
12: δi+1 = argmaxδp∈{δi

1,δ
i
2,δ

i
∞} loss(x+ δtp, y);

13: end for
14: Return δk.

To find the approximate optimal perturbation δ and the approximate optimal parameter w under the
non-convex scenario, stochastic gradient descent and projected gradient descent (PGD) methods
are used to approximately solve the above minimization on w and maximization on δ problems.
Specifically, PGD runs several predefined PGD step PGDstep = ProjBallp(0,ϵp)(δ + η sign(∇ℓ(x+

δ, y))) to approximately find a worst-case adversarial example, where ∇ℓ(x+ δ, y) is the gradient
of ℓ(x+ δ, y).

Tramer & Boneh (2019) first proposed to solve the inner maximization problem of the problem equa-
tion 4, i.e., problem (5), by the MAX (the worst-case perturbation, Algorithm 2) and AVG (augmen-
tation of all perturbations, Algorithm 2) as below

MAX: E(x,y)ℓ(fw(x+MAX(x)), y), AVG: E(x,y)
1

3

∑
δ∈AVG(x)

ℓ(fw(x+ δ), y),

where δ1, δ2 and δ∞ are obtained by l1, l2 and l∞ PGD adversaries.

Later, Maini et al. (2020) designed a “greedy” algorithm named MSD, which solves the inner
maximization problem by simultaneously maximizing the worst-case loss overall perturbation models
at each projected steepest descent step as shown in Algorithm 2. And then the inner maximization
becomes as follows

E(x,y)ℓ(fw(x+MSD(x)), y) .

C Additional Lemmas

We denote the following single-target adversarial training problem

min
w

E(x,y)∼Dmax(0, 1− yw⊤(x+ δ∗p))

s.t.∥w∥2 = 1 ,
(6)

where p ∈ {1, 2,∞} is given before the training procedure.
Lemma 6 (lemma D.1 (Tsipras et al., 2019)). The optimal solution w∗ = (w1, ..., wd+1) of our
optimization problem equation 3 must satisfy w2 = ... = wd+1 and sign(w2) = sign(µ).
Lemma 7 (lemma D.2 (Tsipras et al., 2019)). The optimal solution w∗ = (w1, ..., wd+1) of our
optimization problem equation 3 must satisfy w1 ≤ 1/

√
2 and w2 = ... = wd+1 ≥ 1/

√
2d.

Lemma 8. In the adversarial training framework, for arbitrary step t, if ϵ > µ and

p ≤1−max(
E[max(0, 1−N ((ϵ− µ)

√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ− µ)

√
d
2 , 0.5))]

,
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E[max(0, 1−N ((ϵ+ µ)
√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ+ µ)

√
d
2 , 0.5))]

) ,

the optimal solution w∗t = (w1
t , ..., w

d+1
t ) of our optimization problem must satisfy w1

t ≤ 1/
√
2 and

w2
t = ... = wd+1

t and |w2
t | ≥ 1/

√
2d. Moreover, sign(wi

t) = −sign(wi
t+1), i ∈ [2, d+ 1]

Proof. t = 0, by Theorem 7 the result holds and sign(wi
0) = sign(µ), i ∈ [2, d+ 1].

t = 1, the perturbed distribution is given by

y ∼ {−1, 1}, x1 ∼
{

y(1− ϵ), with prob p;

−y(1 + ϵ), with prob 1− p,
xi ∼ N ((µ− ϵ)y, 1), i ≥ 2

Assume for the sake of contradiction that w1
1 ≥ 1/

√
2, by Theorem 6 we have 0 ≥ w2

1 = ... =

wd+1
1 ≥ −1/

√
2d. Then, with probability at least 1− p, the first feature predicts the wrong label and

without enough weight, the remaining features cannot compensate for it. Concretely,

E[max(0, 1− yw∗T1 (x− δ∞))] ≥ (1− p)E[max(0, 1 + w1
1(1 + ϵ)− |w2

1|
d+1∑
i=2

N (ϵ− µ, 1))]

≥ (1− p)E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ− µ)

√
d

2
, 0.5))]

We will now show that a solution that assigns zero weight on the first feature (w2
1 = 1/

√
d and

w1
1 = 0), achieves a better margin loss,

E[max(0, 1− yw1(x− δ∞))] = E[max(0, 1−N ((ϵ− µ)
√
d, 1))]

Because

p ≤ 1− E[max(0, 1−N ((ϵ− µ)
√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ− µ)

√
d
2 , 0.5))]

,

we have E[max(0, 1−yw∗T1 (x−δ∞))] ≥ E[max(0, 1−yw1(x−δ∞))], which yields contradiction.
Besides, in this case sign(wi

1) = sign(µ− ϵ) = −sign(µ) = −sign(wi
0), i ∈ [2, d+ 1]

t = 2, the perturbed distribution is given by

y ∼ {−1, 1}, x1 ∼
{

y(1− ϵ), with prob p;

−y(1 + ϵ), with prob 1− p,
xi ∼ N ((µ+ ϵ)y, 1), i ≥ 2

Assume for the sake of contradiction that w1
2 ≥ 1/

√
2, by Theorem 6 we have 0 ≥ w2

2 = ... =

wd+1
2 ≥ −1/

√
2d. Then, with probability at least 1− p, the first feature predicts the wrong label and

without enough weight, the remaining features cannot compensate for it. Concretely,

E[max(0, 1− yw∗T2 (x− δ∞))] ≥ (1− p)E[max(0, 1 + w1
2(1 + ϵ)− |w2

2|
d+1∑
i=2

N (ϵ+ µ, 1))]

≥ (1− p)E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ+ µ)

√
d

2
, 0.5))]

We will now show that a solution that assigns zero weight on the first feature (w2
2 = 1/

√
d and

w1
2 = 0), achieves a better margin loss.

E[max(0, 1− yw2(x− δ∞))] = E[max(0, 1−N ((ϵ+ µ)
√
d, 1))]

Because

p ≤ 1− E[max(0, 1−N ((ϵ+ µ)
√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ+ µ)

√
d
2 , 0.5))]

,

12



we have E[max(0, 1−yw∗T1 (x−δ∞))] ≥ E[max(0, 1−yw1(x−δ∞))], which yields contradiction.
Besides, in this case sign(wi

2) = sign(µ+ ϵ) = sign(µ) = −sign(wi
1), i ∈ [2, d+ 1]

By induction we can easily derive that w1
t ≤ 1/

√
2, w2

t = ... = wd+1
t , |w2

t | ≥ 1/
√
2d and

sign(wi
t) = −sign(wi

t+1), i ∈ [2, d+ 1] for all t ≥ 0.

Lemma 9. If z ∼ N (µ, σ2),

Ez[zIz≥0] =
∫ ∞
0

z
1√
2πσ2

exp(− (z − µ)2

2σ2
)dz =

σ√
2π

exp(− µ2

2σ2
) +

µ

2
(erf(

µ√
2σ

) + 1)

Lemma 10. When µ ≥ 4/
√
d, ϵ ≥ 2µ, and p ≤ 0.977, the optimal solution w∗t = (w1

t , ..., w
d+1
t ) of

our optimization problem must satisfy w1
t ≤ 1/

√
2 and w2

t = ... = wd+1
t and |w2

t | ≥ 1/
√
2d.

Proof. Let µ = m/
√
d,m ≥ 4, ϵ = kµ, k ≥ 2

E[max(0, 1−N ((ϵ− µ)
√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ− µ)

√
d
2 , 0.5))]

=
E[max(0,N (1 +m− km, 1))]

E[max(0,N (1 + (1 +m)/
√
2 + km/

√
2d− km/

√
2, 0.5))]

≤ E[max(0,N (1 +m− km, 1))]

E[max(0,N (1 + (1 +m− km)/
√
2, 0.5))]

E[max(0, 1−N ((ϵ+ µ)
√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ+ µ)

√
d
2 , 0.5))]

=
E[max(0,N (1−m− km, 1))]

E[max(0,N (1 + (1−m)/
√
2 + km/

√
2d− km/

√
2, 0.5))]

≤ E[max(0,N (1−m− km, 1))]

E[max(0,N (1 + (1−m− km)/
√
2, 0.5))]

Consider the function h(a) = E[max(0,N (a,1))]

E[max(0,N (1+a/
√
2,0.5))]

=
1√
2π

exp(− a2

2 )+ a
2 (erf( a√

2
)+1)

1
2
√

π
exp(−(1+ a√

2
)2)+

1+ a√
2

2 (erf((1+ a√
2
))+1)

h′(a) =((
1

2
+

1

2
erf(

a√
2
))(

1

2
√
π
exp(−(1 +

a√
2
)2) +

1 + a√
2

2
(erf((1 +

a√
2
)) + 1))− (

1

2
√
2

+
1

2
√
2

erf(1 +
a√
2
))(

1√
2π

exp(−a2

2
) +

a

2
(erf(

a√
2
) + 1))))/(

1

2
√
π
exp(−a2) +

a

2
(erf(a) + 1))2

By numerical simulation we have h′(a) ≥ 0, when a ≤ 0, so h(a) is increasing with a when a ≤ 0,
thus

1−max(
E[max(0, 1−N ((ϵ− µ)

√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ− µ)

√
d
2 , 0.5))]

,
E[max(0, 1−N ((ϵ+ µ)

√
d, 1))]

E[max(0, 1 + 1/
√
2(1 + ϵ)−N ((ϵ+ µ)

√
d
2 , 0.5))]

)

≥1− h(−3) = 0.9775 > p,

by Theorem 8 we have the optimal solution w∗t = (w1
t , ..., w

d+1
t ) of our optimization problem must

satisfy w1
t ≤ 1/

√
2 and w2

t = ... = wd+1
t and |w2

t | ≥ 1/
√
2d.

Lemma 11. When w1
t ≤ 1/

√
2 and w2

t = ... = wd+1
t and |w2

t | ≥ 1/
√
2d, if ϵ∞ ≥ 2

dϵ1 and

ϵ∞ ≥
√

2
dϵ2, ∞-player dominates 1-player and 2-player.. In another word, the training procedure

cannot converge.
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Proof. Let ℓp = 1− yw⊤(x+ δp), we have

ℓ∞ − ℓ1 =yw⊤t (δ1 − δ∞) = ϵ∞∥w∥1 − ϵ1
∥wt∥22
∥wt∥1

≥ ϵ1(
2

d
||wt||21 − 1)

≥ ϵ1(
2

d
(|w1

t |+ d|w2
t |)2 − 1)

≥ ϵ1(
2

d
(
1√
2
+ d

1√
2d

)2 − 1) > 0

ℓ∞ − ℓ2 =yw⊤(δ2 − δ∞) = ϵ∞∥w∥1 − ϵ1
∥w∥22
∥w∥2

≥ ϵ2(

√
2

d
||wt||1 − 1)

≥ ϵ2(

√
2

d
(|w1

t |+ d|w2
t |)− 1)

≥ ϵ2(

√
2

d
(
1√
2
+ d

1√
2d

)− 1) > 0

∥w∥21 − d∥w∥22 = (w1 + dw2)
2 − dw2

1 − dw2
2 ≥ (1− d)w2

1 + d(d− 1)w2
2 ≥ 0 ,

Now, we have proved that ∞-player dominates others and sign(wt
i) = − sign(wt−1

i ). With Lemma 8,
we know that at any time t, we have |wi

t −wi
t−1| ≥

√
1/d,∀i ∈ [2, d+ 1], which means the training

procedure cannot converge.

Lemma 12. MAX and MSD are the same under the SVM scenario.

Proof. Under the deep learning cases (non-linear and non-convex), MSD follows the steepest di-
rection (ℓ1, ℓ2 or ℓ∞) in each PGD step to find the perturbation which approximately maximizes
the loss function, while MAX uses PGD to find the perturbations empirically and then chooses the
perturbation maximizing the loss function. MSD and MAX are different approaches in deep learning
cases (non-linear and non-convex).

On the other side, under the SVM (convex and linear) case, the optimal perturbations with ℓ1, ℓ2
and ℓ∞ constraints have analytical solutions as shown in Eq. equation 2. In this way, both MSD and
MAX can directly determine which perturbation maximizes the loss within one step, which means
MSD and MAX are the same under the SVM case.

Standard classification is easy. Remind that the data consists of a robust feature x1, which is
strongly related to the label and d non-robust features xi, i ∈ [2, d + 1], which are weakly related
to the label y. But with the non-robust features, we can construct a simple linear classifier f that
achieves over 99% natural accuracy as

f(x) = sign([0,
1

d
, . . . ,

1

d
]⊤x) .

For the natural accuracy, we have

Pr[f(x) = y] = Pr[sign([0,
1

d
, . . . ,

1

d
]⊤x) = y] = Pr[

y

d

d∑
i=1

N (ηy, 1) > 0]

=Pr[N (η,
1

d
) > 0] ≥ 0.99 ,

when η ≥ 3√
d

.
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Robust classification is not easy. We have the opposite observation when facing ℓ∞ adversarial
training. The robust accuracy is shown as

min
∥δ∞∥∞≤ϵ∞

Pr[f(x+ δ∞) = y] ≤ Pr[N (η,
1

d
)− ϵ > 0] = Pr[N (−η,

1

d
) > 0] ≤ 0.01 ,

when ϵ∞ = 2η. In the following part of our paper, we show that it is not only difficult to get a fairly
good robust accuracy, but also a converged model under the multi-target adversarial training problem.

D Proofs

D.1 Proof of Theorem 1

Proof. Combining Lemma 8, Lemma 11, and Lemma 12 yields this theorem.

D.1.1 Proof of Theorem 3

Proof. As the ∞-player dominates this game, the multi-target adversarial training problem reduces
to the single-target problem equation 6. Further, with Lemma 8, for non-robust feature i, at any time
t, we have sign(wt

i) = − sign(wt−1
i ) . Thus the training procedure does not converge.

D.1.2 Proof of Theorem 4

Proof. For the i-th player’s loss (the i-th player dominates the bargaining game at the time t), as the
loss function is µ-strongly convex, we have

ℓi(w
t+1) ≥ ℓi(w

t)− ℓ
′

i(w
t)⊤(wt+1 − wt) +

µ

2
∥wt+1 − wt∥22

ℓi(w
t+1) ≥ ℓi(w

t) + ηℓ
′

i(w
t)⊤ℓ

′

i(w
t) +

µη2

2
∥ℓ

′

i(w
t)∥22 > ℓi(w

t) .

For the j-th player’s loss and j ̸= i, as the loss function is µ-strongly convex, we have

ℓj(w
t+1) ≥ ℓj(w

t)− ℓ
′

j(w
t)⊤(wt+1 − wt) +

µ

2
∥wt+1 − wt∥22

ℓj(w
t+1) ≥ ℓj(w

t) +
µη2

2
∥ℓ

′

i(w
t)∥22 > ℓj(w

t) . (ℓ
′

i(w
t)⊤ℓ

′

j(w
t) = 0,∀i ̸= j)

That means at time t, the loss of all player will keep increasing. And thus, if one player dominate the
bargaining game throughout the whole game, the loss of all players and will keep increasing during
the whole game, which means the bargaining game might not converge.

D.1.3 Proof of Theorem 5

Proof. As the loss function is L-smooth, ∀i, we have

ℓi(w
t+1) ≤ℓi(w

t) + ηℓi(w
t)⊤(wt+1 − wt) +

L

2
∥η

∑
k∈[K]

gtk/K∥2, (as L-smooth)

ℓt+1
i ≤ℓti − ηgt⊤i

∑
k∈[K]

gtk/K +
L

2
∥η

∑
k∈[K]

gtk/K∥2,

=ℓti − ηgt⊤i gi/K +
Lη2

2K2

∑
k∈[K]

gt⊤k gk .

Summing the above inequality from i = 1 to K, we have

ℓt+1 ≤ ℓt − η

K

∑
k∈[K]

gt⊤k gk +
Lη2

2K

∑
k∈[K]

gt⊤k gk < ℓt . (as η <
2

L
) (7)

The proof is completed.
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E Extra Experiments

Due to the limitation of space, we put the experimental verification of our negative results and
Figure 4 here.

E.1 Implementation Details

For each algorithm, we employ the default hyper-parameter introduced in their original papers. We
implement all the methods on PyTorch (Paszke et al., 2019) with a single NVIDIA A100 GPU and
optimized by the mini-batch SGD with the size of 128 and weight decay. The raw image is resized to
28× 28 pixels for MNIST and 32× 32 pixels for CIFAR-10 as inputs.

Models. Following Maini et al. (2020) and Madry et al. (2018), for MNIST, we use a four-layer
convolutional network which consists of two convolutional layers of 32 and 64 5×5 filters and 2 units
of padding, followed by a fully connected layer with 1024 hidden units, where both convolutional
layers are followed by 2× 2 Max Pooling layers and ReLU activations. Similarly, following Maini
et al. (2020), for CIFAR-10, we use the pre-activation version of the ResNet18 architecture that
consists of nine residual units with two convolutional layers (He et al., 2016).

Attacks used for training. For MNIST, following Maini et al. (2020), the setting of three adversaries
is shown below. The ℓ∞ adversary uses a step size α = 0.01 within a radius of ϵ = 0.3 for 50
iterations. The ℓ2 adversary uses a step size of α = 0.1 within a radius of ϵ = 2.0 for 100 iterations,
and the ℓ1 adversary uses a step size of α = 0.8 within a radius of ϵ = 10 for 50 iterations. By default,
the attack is run with two restarts, one starting with δ = 0 and another by randomly initializing δ in
the allowable perturbation ball. Similarly, following Maini et al. (2020), for CIFAR-10, the setting of
three adversaries is shown as follows. The ℓ∞ adversary used a step size α = 0.003 within a radius
of ϵ = 0.03 for 40 iterations. The ℓ2 adversary used a step size α = 0.05 within a radius of ϵ = 0.5
for 50 iterations, and the ℓ1 adversary used a step size α = 1.0 with ϵ = 12 for 50 iterations.

Hyperparameter setting and tuning. We did not tune any hyperparameters as our work is to show a
phenomenon and solve it with our proposed adaptivebudget method. All the hyperparameters are
directly copied from Maini et al. (2020). Specifically, on MNIST, for all the models, we used the
Adam (Kingma & Ba, 2015) without weight decay, and used a variation of the learning rate schedule
from Smith (2018), which is piecewise linear from 0 to 10−3 over the first 6 epochs, and down to
0 over the last 9 epochs. On CIFAR-10, for all the models, we used the SGD optimizer Robbins &
Monro (1951) with momentum 0.9 and weight decay 5× 10−4. We used a variation of the learning
rate schedule from Smith (2018) to achieve superconvergence in 50 epochs, which is piecewise linear
from 0 to 0.1 over the first 20 epochs, down to 0.005 over the next 20 epochs, and finally back down
to 0 in the last 10 epochs.

E.2 Verifying effects of player domination on the SVM case
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Figure 1: We illustrate the training loss and the number of weights that flip between two epochs.
Figure 1(a) shows the data of model trained with MAX and MSD using the SVM model (Sec 2.1)
while Figure 1(b) shows the number of model trained with AVG.
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To verify our theoretical results, we conduct experiments and the corresponding results are shown in
Figure 1. We use a fully connected network (Fully Connected Layer (in=d, out=1), where d = 1000).
For the data generation, we set p = 0.95, µ = 4/

√
d, and ϵ1 = ϵ2 = ϵ∞ = 2µ, and the sample size

is 100000.

We notice that with MAX or MSD (they are equal under the SVM scenario, Lemma 12), the training
procedure cannot converge as the training loss is fluctuating while the number of weights whose signs
are flipped compared with last epoch is almost 1000. At the same time, AVG does converge. That
complements our theoretical results (Theorem 1).

Besides, we also conduct experiments verifying the conjecture that when ℓ1 or ℓ2 player dominates the
bargaining game, the training procedure does not converge as well. For the case when ℓ1 dominates,
we set ϵ1 = 4µ, ϵ2 = ϵ∞ = 2µ, while when ℓ2 dominates, we set ϵ2 = 4µ, ϵ1 = ϵ∞ = 2µ. We
observe exactly the same curves as Figure 1, showing that when ℓ1 and ℓ2 dominates, the training
procedure with MAX and MSD cannot converge while with AVG, training procedure does converge.
We present the results in Figures 2 and 3.
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Figure 2: We illustrate the training loss and the number of weights that flip between two epochs. We
set ϵ1 = 4µ, ϵ2 = ϵ∞ = 2µ. Figure 2(a) shows the data of model trained with MAX and MSD using
the SVM model (Sec 2.1) while Figure 2(b) shows the number of model trained with AVG.
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Figure 3: We illustrate the training loss and the number of weights that flip between two epochs. We
set ϵ2 = 4µ, ϵ1 = ϵ∞ = 2µ. Figure 3(a) shows the data of model trained with MAX and MSD using
the SVM model (Sec 2.1) while Figure 3(b) shows the number of model trained with AVG.

Norm choice in adaptive budget. We use ℓ1 and ℓ2 norms for the adaptive budget and the corre-
sponding results are shown in Table 1. There is no significant difference between the experiments
with ℓ1 and ℓ2 norms when using our proposed method. The differences in overall robust accuracy
are only 0.1%, 1.1%, and 1.0% on MAX, MSD, and AVG respectively. The difference in each robust
accuracy is also small.
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E.3 Results on CIFAR10

Similar, for the CIFAR10 dataset, we require that the adapted epsilon are bigger than the half of and
smaller that twice of the original epsilon.

Norm choice in adaptive budget. We notice that the choice of norm in the adaptive budget barely
influences the robust accuracy as shown in Table 2. On both three methods, i.e., MAX, MSD, and
AVG, our proposed adaptive budget is able to improve the performance with both ℓ1 and ℓ2 norms,
while the difference between ℓ1 and ℓ2 norm is only 0.6% and 1.7%, 0.4% and 2.8%, 1.3% and 0.9%
on MAX, MSD, and AVG against PGD and AutoAttack adversaries.

0 20 40 60
ℓ1 radius

0.2

0.4

0.6

ℓ 1
 P
GD

 A
cc
ur
ac

y

0.0 0.5 1.0 1.5 2.0
ℓ2 radius

0.2

0.4

0.6

0.8

ℓ 2
 P
GD

 A
cc
ur
ac

y

0.00 0.02 0.04 0.06 0.08
ℓ∞ radius

0.2

0.4

0.6

ℓ ∞
 P
GD

 A
cc
ur
ac
y

0 20 40 60
ℓ1 radius

0.0

0.2

0.4

0.6

ℓ 1
 A
A 
Ac

cu
ra
cy

0.0 0.5 1.0 1.5 2.0
ℓ2 radius

0.2

0.4

0.6

0.8

ℓ 2
 A
A 
Ac

cu
ra
cy

0.00 0.02 0.04 0.06 0.08
ℓ∞ radius

0.2

0.4

0.6

ℓ ∞
 A
A 
Ac

cu
ra
cy

0 20 40 60
ℓ1 radius

0.2

0.4

0.6

ℓ 1
 P
GD

 A
cc
ur
ac

y

0.0 0.5 1.0 1.5 2.0
ℓ2 radius

0.2
0.3
0.4
0.5
0.6
0.7

ℓ 2
 P
GD

 A
cc
ur
ac
y

0.00 0.02 0.04 0.06 0.08
ℓ∞ radius

0.2

0.4

0.6

ℓ ∞
 P
GD

 A
cc
ur
ac
y

0 20 40 60
ℓ1 radius

0.0

0.2

0.4

0.6

ℓ 1
 A
A 
Ac

cu
ra
cy

0.0 0.5 1.0 1.5 2.0
ℓ2 radius

0.2

0.4

0.6

ℓ 2
 A
A 
Ac

cu
ra
cy

0.00 0.02 0.04 0.06 0.08
ℓ∞ radius

0.2

0.4

0.6

ℓ ∞
 A
A 
Ac

cu
ra
cy

Figure 4: Robustness curves show the adversarial accuracy on CIFAR-10 trained with MSD and AVG
against ℓ1 (left), ℓ2 (middle), and ℓ∞ (right) perturbation models over a range of epsilon.

Robustness curves. The robustness curves are shown in Figures 5 and 4. The lines of MAX with
either ℓ1 or ℓ2 norm-based adaptive budget method are higher than the lines without the adaptive
budget method. The gap between lines with the adaptive budget method and lines without is biggest
when the budget of the adversary is small. Similar observation can be obtained from the line of MSD
and AVG in Figure 4.
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Figure 5: Robustness curves show the adversarial accuracy on CIFAR-10 trained with MAX against
ℓ1 (left), ℓ2 (middle), and ℓ∞ (right) PGA and AutoAttack (“AA” in the figures) perturbation models
over a range of epsilon. Plots of MSD and AVG are similar and thus deferred to Appendix.
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