
Under review as a conference paper at ICLR 2022

ITERATIVE DECODING FOR COMPOSITIONAL GENER-
ALIZATION IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models do well at generalizing to in-distribution data but struggle
to generalize compositionally, i.e., to combine a set of learned primitives to solve
more complex tasks. In particular, in sequence-to-sequence (seq2seq) learning,
transformers are often unable to predict correct outputs for even marginally longer
examples than those seen during training. This paper introduces iterative decod-
ing, an alternative to seq2seq learning that (i) improves transformer compositional
generalization and (ii) evidences that, in general, seq2seq transformers do not
learn iterations that are not unrolled. Inspired by the idea of compositionality—
that complex tasks can be solved by composing basic primitives—training exam-
ples are broken down into a sequence of intermediate steps that the transformer
then learns iteratively. At inference time, the intermediate outputs are fed back to
the transformer as intermediate inputs until an end-of-iteration token is predicted.
Through numerical experiments, we show that transfomers trained via iterative de-
coding outperform their seq2seq counterparts on the PCFG dataset, and solve the
problem of calculating Cartesian products between vectors longer than those seen
during training with 100% accuracy, a task at which seq2seq models have been
shown to fail. We also illustrate a limitation of iterative decoding, specifically,
that it can make sorting harder to learn on the CFQ dataset.

1 INTRODUCTION

Deep learning architectures achieve state-of-the-art results in a wide array of machine learning prob-
lems, where their impressive performance is attributed to their ability to generalize (Goodfellow
et al., 2016; LeCun et al., 2015). However, this ability is typically limited to generalization under
the statistical learning paradigm, i.e., in-distribution generalization, and does not encompass gen-
eralizing compositionally. Compositional generalization is the ability of a model to combine a set
of learned primitives to execute more complex tasks. For instance, for a ground robot whose mo-
tion planner has learned to execute the instructions “walk”, “jump”, and “jump right”, generalizing
compositionally would be to be able to execute the instruction “walk right” (Lake & Baroni, 2018).

In machine learning models, compositional generalization is desirable for two reasons. First, be-
cause it is a crucial aspect of intelligence observed in both humans and classical artificial intelligence
techniques. In humans, a prevailing example is the way children can solve complicated mathemati-
cal expressions after being taught basic arithmetics. Second, because it can increase a model’s data
efficiency. By endowing models with the ability to extrapolate to unseen examples that are more
complex, or complex in different ways than seen at training, compositionality acts as an implicit
mechanism for data augmentation.

In this paper, our goal is to increase compositional generalization in transformers, with particular
focus on natural language-like tasks—where compositionality is key. Understanding that for models
to be able to execute composite tasks they need to be taught how to compose, we introduce iterative
decoding, an alternative to sequence-to-sequence (seq2seq) learning that decomposes the process
of mapping the inputs to the outputs of each example into a sequence of intermediate steps which
the transformer learns to perform iteratively. During training, each input-output pair is converted
into a sequence of “intermediate input-intermediate output” pairs, which are task specific. During
prediction, the intermediate outputs predicted by the transformer are adapted into the subsequent in-
termediate inputs, which are fed back to the transformer until an end-of-iteration token is produced.
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Our main contributions are (i) showing that iterative decoding, especially when combined with other
architectural modifications such as relative attention (Shaw et al., 2018) and copy decoders (Ontañón
et al., 2021), largely improves compositional generalization in transformers, and (ii) evidencing that,
in general, seq2seq transformers cannot learn iterations unless they are unrolled. We show this
through numerical experiments on two compositionally hard splits of PCFG (Hupkes et al., 2020),
a string editting dataset; and on a cartesian product dataset, where the goal is to generalize to longer
input vectors than those on which the model is trained. We also present numerical results on CFQ
(Keysers et al., 2019), a semantic parsing dataset consisting of natural language questions paired
with SPARQL queries. Importantly, the results obtained in this dataset evidence a limitation of
iterative decoding, which is that it can be sensitive to the ordering of the intermediate steps.

The rest of this paper is organized as follows. Section 2 discusses related work on compositional
generalization, transformers and on the PCFG, cartesian product, and CFQ datasets. Section 3
introduces iterative decoding. Iterative decoding strategies specific to each dataset and numerical
results are presented and discussed in Section 4. Section 5 presents future research directions and
concluding remarks.

2 BACKGROUND

In this section, we introduce some background and related work on compositional generalization,
transformer architectures and on the PCFG, Cartesian product and CFQ datasets, used in our exper-
iments.

2.1 COMPOSITIONAL GENERALIZATION

Compositional generalization (or compositionality) refers to the ability of a model that has learned
to perform a set of basic operations—primitives—to generalize to more complex operations, i.e.,
operations consisting of compositions of the learned primitives (Lake & Baroni, 2018). Examples
of operations requiring compositionality are shown in Figure 1 for three datasets. For instance, the
top-left corner shows an example from the PCFG (Hupkes et al., 2020) dataset. In some versions
of this dataset, the model is trained to solve several atomic string editing operations (such as copy
and swap first last), and how to compose them. During testing, the model is tested by asking
it to compose a longer number of operations than seen during training. Hence, the model has to
be able to generalize compositionally. This string editing example can be seen as an instance of
productivity, one of the five types of compositional generalization identified by Hupkes et al. (2020)
which involves generalizing to longer examples than those seen during training. Another type of
compositional generalization is systematicity, the ability to recombine known parts and rules in
ways different than those seen during training.

Early works on compositionality have explored the limitations of different machine learning models
in generalizing compositionally. Liška et al. (2018) showed that, while it is theoretically possible
for a recurrent neural network (RNN) to generalize in this way, only a small fraction of the models
they trained behaved compositionally. Lake & Baroni (2018) proposed SCAN, a dataset consisting
of navigation commands to be mapped to action sequences, and observed that while RNNs trained
on it only generalized well when the differences between the training and test sets where small,
they failed when more systematic compositional skills were required. Other datasets created with
the purpose of measuring compositionality include PCFG (Hupkes et al., 2020) and CFQ (Keysers
et al., 2019), where both long-short term memory (LSTM) and transformer-based architectures have
been shown to perform poorly.

More recently, a popular research direction is to try to endow these machine learning models with a
“compositional generalization bias”. Kim et al. (2021) saw benefits in converting CFQ into a classi-
fication task and using structural annotations (e.g., entity links) as attention masks in transformers.
Ontañón et al. (2021) were able to improve transformer compositional generalization on a variety
of compositionally hard datasets by making architectural modifications such as relative attention,
copy decoders, and weight sharing. Taking a similar approach, Csordás et al. (2021) observed per-
formance improvements from relative position encodings and scaled embeddings. Other strategies
to improve compositional generalization include increased pretraining (Furrer et al., 2020), data
augmentation (Andreas, 2019) and differentiable neurocomputers (Graves et al., 2016).
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Figure 1: Examples of input-output pairs in the PCFG, cartesian product, and CFQ datasets.

Closely related to our work, PonderNet (Banino et al., 2021) trains a model that iterates internally
to achieve a better compromise between training accuracy and generalization. It predicts both an
output and a halting probability at each step, operating recurrently. Iterative decoding also operates
recurrently, but two important differences are that (i) in iterative decoding the intermediate steps
are supervised and interpretable, and (ii) rather than predicting a halting probability at each step,
iterative decoding trains the model to produce a special token to indicate end of iteration.

2.2 TRANSFORMER MODEL

In this paper we focus on transformer models. Despite struggling to generalize compositionally,
transformer-based architectures such as BERT (Devlin et al., 2018) and T5 (Raffel et al., 2019) were
popularized by their remarkable performance in machine translation (Zhu et al., 2020), question
answering (Ainslie et al., 2020), summarization (Zhang et al., 2019) and other natural language
processing (NLP) tasks.

Introduced by Vaswani et al. (2017), the basic transformer model is composed of an encoder and a
decoder. The encoder is made up of layers consisting of a self-attention sublayer and a feedforward
sublayer. The decoder has the same structure, but with an additional attention sublayer to compute
the decoder-to-encoder attention. The input to the transformer is a sequence of token embeddings.
Since these embeddings do not carry information about the position of each token in the sequence,
a position encoding is typically added to the input embeddings. These are then fed to the encoder,
which encodes all tokens at once and forwards the result to the decoder. From the encoded input and
the decoded output tokens generated so far, the decoder generates the distribution of the next output
token, one token at a time.

We experiment with two extensions to the original transformer architecture that were previously
shown to improve compositional generalization (Ontañón et al., 2021): relative position encodings
and copy decoding. To each pair of tokens in the input, relative position encodings assign a label that
is equal to the minimum between their relative distance and a fixed relative attention radius. An im-
portant characteristic of relative position encodings is that they are position invariant, which means
that two tokens that are k positions apart will attend to each other in the same way regardless of their
absolute positions in the sequence. Copy decoding involves adding a learnable parameter that allows
to switch between the decoder and a copy decoder which produces an independent embedding that
can be interpreted as a “copy” from the input sequence.

2.3 DATASETS

We consider three datasets—PCFG, cartesian product, and CFQ—which are discussed in detail in
the following sections.

2.3.1 PCFG

PCFG is an artificial translation dataset proposed by Hupkes et al. (2020) and generated by a proba-
bilistic context free grammar. The input data consists of string editing instructions with four types of
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Figure 2: Prediction routines for the seq2seq transformer (left) and iterative decoding transformer
(right).

tokens: unary operation tokens (e.g., reverse), binary operation tokens (e.g., append), a string
separation token “,” (to separate arguments of binary operations), and string elements (e.g., B10,
D2). The output data consists of the strings resulting from the application of the operations; see the
top left corner of Figure 1 for an example.

There are six training-test splits of the PCFG dataset. The first is a random split which we use as
a baseline. The other five are compositionally hard splits used to measure the five different types
compositional generalization. We focus on two of them: productivity and systematicity. In the
productivity split, the training samples have up to 8 string operations, while the test samples have 9
or more. In the systematicity split, there is no restriction on the number of operations in either set,
but in the test set they are combined in different ways than in the training set.

The main challenge of the PCFG dataset is that it requires learning ten string editing operations,
some of which are very similar. The unary operation echo, for instance, only differs from copy
by repeating the last element of the string. While transformers generally achieve good performance
in the random split of the PCFG dataset, the productivity and systematicity splits are harder because
transformers tend to learn shortcuts (instead of learning the mechanics of each operation). In partic-
ular, a key difficulty of the productivity split is that the model needs to learn to do ”recursion” and
apply an arbitrary number of operations when input examples grow in length. In some cases, the
strings to modify can also be very long, which places an additional capacity burden on transformers
by requiring them to learn how to copy strings.

2.3.2 CARTESIAN PRODUCT

In the cartesian product dataset, the inputs are two vectors and the outputs are their cartesian product.
The first input vector is a vector of numbers. The second is a vector of letters, separated from the
numbers by the special token [SEP]. Both numbers and letters are picked at random, without
repetition, from the decimal digits and the first ten letters of the alphabet respectively. A possible
input-output pair is shown on the bottom left corner of Figure 1.

We consider four splits of the cartesian product dataset. In the first split, both the training and test
set consists of samples with up to five numbers and letters drawn i.i.d and split at random. This is the
“easy split”. In the other splits, the training set is the same as in the first split, but the test set consists
of examples with six numbers and five letters for the second split, five numbers and six letters for the
third, and six numbers and letters for the fourth respectively. These are “hard splits”, which we use to
measure productivity. The productivity splits of the cartesian product dataset are remarkably hard;
even transformers with some compositional generalization ability in other mathematical datasets
have been seen to fail (Ontañón et al., 2021). This is due to the fact that, in order to solve cartesian
products, models need to learn to execute two nested loops. Moreover, the output is quadratic on the
size of the inputs. For models that have to learn to predict an end-of-sequence token, extrapolating
to longer sequences than those seen during training has been shown to be difficult (Newman et al.,
2020).
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Figure 3: Examples of intermediate input-output pairs in the PCFG and cartesian product datasets.

2.3.3 CFQ

Introduced by Keysers et al. (2019), the CFQ dataset consists of natural language questions and
their corresponding SPARQL queries against the Freebase knowledge base. Hence, it can be used
to perform semantic parsing by taking the questions as the inputs and the queries as the outputs. As
detailed in (Keysers et al., 2019), compositionally hard splits of the CFQ dataset can be generated by
maximizing its compound divergence and minimizing its atom divergence. In this paper, we focus
on the MCD1 split of the CFQ dataset. An example of question and query from this split are shown
on the right hand side of Figure 1.

One of the difficulties of the CFQ dataset is that some of its examples require solving cartesian
products. As such, CFQ may face similar challenges to the ones described in the previous section.
Another difficulty is associated with the ordering of the clauses in the SPARQL query, which are
ordered alphabetically by convention. Not only is this ordering different than the one implied by the
question, it also requires transformers to learn how to sort.

3 ITERATIVE DECODING

To improve compositional generalization in transformers, we introduce iterative decoding. As il-
lustrated on the right hand side of Figure 2, iterative decoding consists of predicting a series of
intermediate outputs y1, y2, y3, . . . from an input x = x0, and then adapting these outputs into in-
termediate inputs xi = yi, i > 0, that are fed back to the model until the final output yN = y is
predicted. This can be visualized by considering the PCFG example x = “swap first last
repeat copy J4 A9 N7 V8” on the left hand side of Figure 3. A seq2seq transformer trained
on the PCFG dataset is expected to output y = “V8 A9 N7 V8 J4 A9 N7 J4 [END]” in one
forward pass (i.e, to go from top to bottom in the figure). However, in iterative decoding, the trans-
former’s output to the input x0 = x would be y1 = “swap first last repeat J4 A9 N7
V8”, which is the first intermediate output of iterative decoding (the second string from the top),
and corresponds to just executing one of the operations in the input, copy. Setting x1 = y1 and
feeding this instruction back to the transformer, we obtain y2= “swap first last J4 A9 N7
V8 J4 A9 N7 V8” (the third string from the top). The intermediate output y2 then becomes the
intermediate input x2, which the transformer processes to produce the final output y3 = “V8 A9
N7 V8 J4 A9 N7 J4 [END]”.
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The main motivation for iterative decoding comes from the very idea of compositional
generalization—by decomposing complex instructions into intermediate steps, iterative decoding
essentially teaches models how to compose. Another motivation, related to the first, is that iterative
decoding mimics how humans are taught how to perform many compositional tasks. For example,
when teaching how to solve the arithmetic expression 2× (1+1), first we demonstrate how to solve
the inner sum, then how to eliminate the parentheses, and finally how to compute the product. A
third motivation for iterative decoding is that learning step by step can potentially prevent shortcut
learning, one of the biggest obstacles to compositional generalization in seq2seq, because it reduces
the difficulty of the tasks that the transformer needs to learn to execute in a single forward pass.

To implement iterative decoding, we need to modify both how models are trained and how they pre-
dict. The most important change in training is that, instead of being trained on the original inputs and
outputs, iterative decoding transformers are trained on the “intermediate input-intermediate output”
pairs (xi−1, yi) for 1 ≤ i ≤ N . These intermediate inputs and outputs are pre-generated, and their
form is specific to each task (see Section 4 for examples for the PCFG, cartesian product and CFQ
datasets). Additionally, an end-of-iteration token has to be added to the training outputs so that the
model learns when to stop. Intuitively, the intermediate outputs correspond to providing supervision
to the transformers on which are the steps that it should execute to solve the task, similar to how
humans are taught how to perform mathematical operations step by step, rather then learning from
input-output mappings of complex expressions.

Depending on the number of intermediate steps necessary to iteratively decode a given example,
the prediction requires multiple forward passes of the transformer. Hence, it is implemented as a
while loop where the stopping condition is finding the end-of-iteration token. This is illustrated
on Figure 2, which compares seq2seq (left) with iterative decoding predictions (right). After each
intermediate prediction, in this paper we use some data processing step to adapt the intermediate
outputs into the following intermediate inputs in some datasets. As we could see from the example
above, this is not necessary for the PCFG dataset, because it has a built-in recursive structure. But
it will be for the cartesian product and CFQ datasets as we detail in Section 4. While, ideally this
processing step should be learned, we provide it manually in this paper to being to understand the
possibilities of iterative decoding.

4 RESULTS AND DISCUSSION

In this section we describe the iterative decoding schemes for the PCFG, cartesian product and
CFQ datasets, and present and discuss numerical results obtained for seq2seq and iterative decoding
transformers. All transformers have ` = 6 encoder/decoder layers, embedding dimension d = 64,
feedforward dimension f = 256 and h = 4 attention heads. For each dataset, each experiment is
repeated 3 times. Additional implementation details can be found in Appendix A.

4.1 PCFG

We apply iterative decoding to the PCFG dataset by breaking down each example into a number
of intermediate steps equal to the number of string editing operations present in the original input.
Each intermediate step solves the rightmost instruction in the current intermediate input. Up until
the last step, all of the intermediate outputs are themselves string editing instructions. Hence, the
intermediate outputs do not need to be adapted and serve as the intermediate inputs to the next step.
Hence, the only additional processing of the dataset needed for iterative decoding is the addition
of the end-of-iteration token [END] at the end of the final output. An iterative decoding PCFG
example with three intermediate steps is shown on the left hand side of Figure 3.

To compare iterative decoding with seq2seq, we start by considering a basic transformer model
with absolute position encodings as in the original architecture by Vaswani et al. (2017). This is
so we can observe the advantages of iterative decoding in the absence of any other compositional
generalization biases. The sentence level-accuracy achieved by these models on the training and test
sets of the random, productivity and systematicity splits of the PCFG dataset is shown in the first
two rows of Table 1. From the first row, we see that in the random split of the data the test accuracy
of the seq2seq model is close to its training accuracy. This indicates that the model generalizes
well to in-distribution samples. In contrast, in the productivity and systematicity splits there is a

6



Under review as a conference paper at ICLR 2022

Table 1: Sentence accuracy on the training and test sets for the random, productivity and system-
aticity splits of the PCFG dataset.

Model Random Productivity Systematicity
train test train test train test

seq2seq-abs 87.2% 85.9% 90.6% 34.2% 89.5% 64.8%
it-dec-abs 96.5% 93.2% 96.6% 45.7% 94.6% 82.9%
seq2seq-rel 98.1% 97.4% 98.8% 65.1% 98.2% 85.7%
it-dec-rel 99.8% 99.2% 100% 91.9% 99.7% 97.0%
seq2seq-rel&copy 97.7% 97.0% 98.3% 63.9% 98.2% 85.1%
it-dec-rel&copy 99.7% 99.4% 100% 93.3% 99.8% 97.8%

dramatic drop in test accuracy. This shows that the basic seq2seq transformer struggles to generalize
compositionally. In the second row of Table 1, we see that for the iterative decoding transformer the
gap between training and test accuracy is much smaller, especially in the systematicity split. This
indicates that iterative decoding increases the ability of transformers to generalize compositionally.

Although iterative decoding helps with compositionality, the test accuracy achieved by the iterative
decoding transformers is still low compared to their training accuracy. This implies that composing
individual operations into complex instructions is only one facet of compositionality, which makes
sense as decomposing complex instructions into individual operations only helps if the model can
execute each operation correctly (see Appendix B for more details). To verify this claim numeri-
cally, we repeat our experiments with transformers including modifications shown to increase com-
positional generalization in seq2seq learning (Ontañón et al., 2021). These modifications are: (a)
replacing absolute attention by relative attention (Shaw et al., 2018), and (b) adding a learnable
parameter that allows to switch between the decoder and a copy decoder (Ontañón et al., 2021).

The results for seq2seq and iterative decoding with relative attention are shown in the third and fourth
rows of Table 1. The relative attention radius is r = 8. As expected, relative attention helps both
models with compositionality, particularly in the productivity split. However, iterative decoding
achieves a much better test accuracy, of over 90%, on both the productivity and systematicity splits.
Results for transformers with relative attention and copy decoders are shown in the fifth and sixth
rows of Table 1. While adding a copy decoder does not improve compositional generalization in the
seq2seq transformer, it helps in iterative decoding, nearly closing the gap between training and test
accuracy on the systematicity split, and leading to a 2% increase in test accuracy on the productivity
split—which can be attributed to the ability to copy the longer strings in this split.

4.2 CARTESIAN PRODUCT

To iteratively decode a cartesian product, we first need to define what are going to be the iterative
decoding intermediate steps. There are many possibilities; we could, for instance, define an inter-
mediate step as predicting one output token at a time, or a sequence of tokens with fixed length. In
this paper we consider two options. The first is decoding one row at a time. As illustrated on the top
right corner of Figure 3, this entails decoding the cartesian product between one element from the
first vector and all elements of the second vector at each intermediate step. The second is decoding
one token pair at a time. As illustrated on the bottom right corner of Figure 3, this entails decoding
only the product between one element of the first vector and one element of the second vector at
each intermediate step. If the lengths of the input vectors are `1 and `2 respectively, decoding row
by row requires `1 and token by token `1 × `2 intermediate steps.

When decoding one row at a time, the intermediate output at a given step is the current row. Sim-
ilarly, when decoding one pair of tokens at a time, the intermediate outputs are the current token
pairs. Since these intermediate outputs do not carry any information about the next row or pair of
tokens to predict, they cannot be used as intermediate inputs. To construct intermediate inputs, we
thus concatenate a copy of the original input—the two vectors separated by the [SEP] token—with
a second separation token [SEP2] followed by either (i) the last intermediate output, or (ii) all
the intermediate outputs so far. Scenario (i), which is illustrated on the right hand side of Figure
3, yields short intermediate inputs where the last intermediate output acts as a “pointer” to where
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the decoding process stopped in the previous step. Scenario (ii) produces long intermediate inputs.
While in both scenarios the intermediate outputs need to be appended to produce the final predic-
tion, their prediction routines are slightly different because scenario (i) only needs to concatenate the
current intermediate output to the input vectors to produce the next intermediate output, but scenario
(ii) needs to append the current intermediate output to the last intermediate input to produce the next
intermediate input. Note that there are many other possibilities to construct intermediate inputs (e.g.,
only including the last two, three, four, etc. intermediate outputs). There are also different options
for the intermediate outputs. Instead of being only the next row or pair of tokens, for instance, they
could be all the rows or all the token pairs so far.

Table 2: Sentence accuracy achieved by the seq2seq and iterative decoding transformers with relative
attention (r = 8) on the training set and on multiple test sets of the cartesian product dataset.

Iterative

Split Seq2seq short inputs long inputs
row token row token

train (up to 5 numbers/letters) 100% 100% 100% 100% 100%
test (up to 5 numbers/letters) 97.8% 100% 100% 100% 100%
test (6 numbers, 5 letters) 14.3% 89.2% 100% 100% 100%
test (5 numbers, 6 letters) 12.2% 0% 99.5% 0% 100%
test (6 numbers/letters) 1.1% 0% 98.7% 0% 100%

To analyze the compositional generalization ability of seq2seq and iterative decoding transformers
on the cartesian product dataset, we consider the following experimental setup. Both transformers
are trained on samples with up to five numbers and letters. Then, they are tested on the four different
test sets described in Section 2.3.2: up to five numbers and letters; six numbers and five letters; five
numbers and six letters; and six numbers and letters. The second, third and fourth test sets can be
seen productivity tests. Additionally, we only report results for transformers with relative attention
(relative radius r = 8) as they were the best performing architecture in our experiments.

The average training and test accuracies achieved by the seq2seq model, as well as by the iterative
decoding model in the short/long intermediate input and row/token scenarios, are reported in Table 2.
We observe that the seq2seq model (first column) achieves 100% accuracy on the training set and
close to that on the “easy” test set with up to five numbers and letters. However, it pretty much fails
in all of the “hard” test sets, implying that it cannot generalize compositionally to even one extra
token being added to the input. The iterative decoding models that decode one row at a time (second
and fourth columns) do slightly better as they achieve accuracy closer to the training accuracy in the
test set with six numbers and five letters. However, they still fail at the test sets with six letters, which
means that the iterative decoding transformer trained to decode one row at a time only generalizes
well to calculating cartesian products with a larger number of numbers or, equivalently, of rows.

In contrast, the iterative decoding models that decode one pair of tokens at a time (third and fifth
columns) achieve close to or exactly 100% accuracy in all of the compositionally hard splits. This
means that the iterative decoding transformer can only generalize to longer iterations when these
iterations are the ones that were unrolled during training via iterative decoding. If we take a trans-
former that has been trained to decode rows, and add one more letter to the input—resulting in one
more pair of tokens in each row— it will not be able to predict this additional token pair because it
has learned how to unroll more rows through iterative decoding but not more token pairs within a
row. We thus conclude that in the cartesian product dataset transformers struggle to learn iteration
by themselves, i.e., without the help of iterative decoding. This is an important result because, de-
spite being universal function approximators in theory (Yun et al., 2019), it sheds light onto what
transformers can actually learn in practice. Finally, the difference between long and short inputs is
not substantial, but longer inputs seem to be better, probably because they provide the transformer
with more memory (i.e., more information about the previous intermediate steps).

4.3 CFQ

Both PCFG and cartesian product were well adapted for iterative decoding because, in PCFG, the
recursive structure of the inputs makes it easy to define the intermediate steps, and in cartesian prod-
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uct we have the flexibility to choose their granularity. On the CFQ dataset, defining the intermediate
steps is less obvious. The natural choice is to define each intermediate output as a clause of the query
as illustrated on the bottom of Figure 3. However, unlike in PCFG—where the order of the interme-
diate steps was defined by the recursion—and in cartesian product—where the order of the tokens
in the input determines the order of the intermediate steps— this ordering of the intermediate steps
is not very “natural” because the clauses are sorted alphabetically. Hence, on CFQ transformers also
have to learn how to sort.

To make learning this ordering easier for the transformer, we define long intermediate inputs for the
intermediate steps. These intermediate inputs are constructed by concatenating the question with all
of the previous intermediate outputs so far. As such, on CFQ the iterative decoding prediction routine
is the same as for cartesian product with long inputs: we append the current intermediate output to
the previous intermediate input to obtain the next intermediate input, and, once the end-of-iteration
token is predicted, concatenate all of the intermediate outputs to obtain the query prediction.

Table 3: Sentence accuracy achieved by the seq2seq and iterative decoding transformers with relative
attention (r = 8) on the training and test sets of the MCD1 split of the CFQ dataset.

Split Seq2seq Iterative
train 99.8% 99.7%
test 37.1% 32.5%

Following this iterative decoding scheme, we compare the compositional generalization abilities
of a seq2seq and an iterative decoding transformer on the MCD1 split of the CFQ dataset. The
average training and test accuracies are shown in Table 3, where we only report results for the
best performing model in our experiments—relative attention with relative radius r = 8. Both
the seq2seq and the iterative decoding transformer exhibit low compositionality, however, iterative
decoding performs worse than seq2seq. This reinforces the limitations of iterative decoding that we
observed in cartesian product, namely, that iterative decoding performance is largely dependent on
how we define the intermediate steps. In the case of CFQ specifically, we also hypothesize that the
worse performance of iterative decoding can be tied to the alphabetical ordering of the clauses, as
it does not follow naturally from the grammatical structure of the input. Even though sorting these
clauses is something that both the seq2seq and the iterative decoding transformer have to learn how
to do, in iterative decoding the transformer has to sort at all intermediate steps, so there are more
opportunities to make mistakes. In other words, the error probability is larger in iterative decoding,
because it compounds with each intermediate step.

5 CONCLUSIONS

This paper introduces iterative decoding, an alternative to seq2seq learning that consists of predicting
a series of intermediate outputs from an input, and then adapting these outputs into intermediate in-
puts that are fed back to the model until a sequence containing an end-of-iteration token is predicted.
Through numerical experiments on the PCFG and cartesian product datasets, we demonstrate that,
in general, seq2seq transformers do not learn iterations that are not unrolled. By unrolling them,
iterative decoding improves transformer compositional generalization. Additional experiments on
the CFQ dataset illustrate a limitation of iterative decoding, which is that it depends on how the
intermediate steps are defined. In particular, we hypothesize that their ordering is the reason why
the seq2seq transformer outperforms iterative decoding on CFQ, as any ordering that is not inherent
to the data requires transformers to learn how to sort and iterative decoding may increase the overall
sorting error probability.

As part of our future work, we aim to apply iterative decoding strategies to more datasets and under-
stand whether some of the iterative steps can be traded for transformer depth. We also intend to use
iterative decoding to investigate the aspects of compositional generalization that transformers can
and cannot learn. A clear next step is understanding the effect of the order of the intermediate steps
in iterative decoding, and what that effect has to say about the transformer’s ability to sort.
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A APPENDIX A: IMPLEMENTATION DETAILS

Across all experiments, the transformer parameters were the same as in the original implementation
in (Vaswani et al., 2017), including the learning rate schedule. All experiments were run on machines
with a single CPU and four Tesla V100 GPUs with batch size 64 per device.

Table 4: Vocabulary size, training and test samples, and number of training steps for all seq2seq and
iterative decoding datasets.

Seq2seq Iterative
vocabulary train test vocabulary train test steps

PCFG-i.i.d. 534 82662 9721 535 426558 9721 33325
PCFG-prod. 534 81010 11333 535 346222 11333 27049
PCFG-syst. 534 82168 10175 535 403808 10175 31458
Cartesian-row 26 200000 1024 28 600036 1024 4688
Cartesian-token 26 200000 1024 28 1801869 1024 14077
CFQ 181 95743 11968 186 682470 11968 53318

For each dataset, and for both the seq2seq and iterative decoding splits, the vocabulary size, the size
of the training and test sets, and the total number of training steps is shown in Table 4. The iterative
decoding vocabularies are larger due to the addition of special start, end and separation tokens.
The number of training samples is larger for the iterative decoding splits because they include all
intermediate steps. To make for a fair comparison, the number of training steps is the same for
iterative decoding and seq2seq.

B APPENDIX B: ADDITIONAL ITERATIVE DECODING RESULTS FOR PCFG

To assess the advantages of iterative decoding under no other sources of compositional general-
ization, we consider the base transformer (i.e., without relative attention and copy decoder) and
analyze its performance on PCFG per number of string editing operations. Namely, in Figure 4 we
plot the number of correct predictions achieved by seq2seq (orange) and iterative decoding (blue)
on the productivity and systematicity splits of PCFG. We observe that, in the productivity split, the
performance improvement comes mostly from samples with a small number of string editing in-
structions. Consistent with Table 1, without any other form of compositional generalization bias
iterative decoding is more helpful with systematicity.

Figure 4: Number of correct predictions versus number of string operations in the input for seq2seq
(orange) and iterative decoding (blue), on the productivity (left) and systematicity (right) splits of
PCFG.

We draw a similar conclusion from Figure 5, which plots the error per intermediate step
((test error)1/N , where N is the number of operations) versus the number of operations in the input
for both splits. The error per intermediate step can be seen as the probability of making a mistake
at any given intermediate step. On the left, this error approaches one for a smaller number of opera-
tions than on the right, indicating that errors compound faster in the productivity split. Interestingly,
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Figure 5: Error per intermediate step versus number of string operations in the input for the iterative
decoding transformer on the productivity (left) and systematicity (right) splits of PCFG.

this figure also corroborates our claim from Section 4.1 that decomposing complex instructions into
individual operations only helps if the model can execute each operation correctly. In other words,
composing individual operations into complex instructions is only one facet of compositionality, but
one with which iterative decoding helps.
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