
A Novel Framework for Policy Mirror Descent
with General parameterization and Linear

Convergence

Carlo Alfano
Department of Statistics

University of Oxford
carlo.alfano@stats.ox.ac.uk

Rui Yuan
LTCI, Télécom Paris

Institut Polytechnique de Paris
yy42606r@gmail.com

Patrick Rebeschini
Department of Statistics

University of Oxford

Abstract

Modern policy optimization methods in reinforcement learning, such as
Trust Region Policy Optimization and Proximal Policy Optimization, owe
their success to the use of parameterized policies. However, while theoretical
guarantees have been established for this class of algorithms, especially in
the tabular setting, the use of general parameterization schemes remains
mostly unjustified. In this work, we introduce a novel framework for
policy optimization based on mirror descent that naturally accommodates
general parameterizations. The policy class induced by our scheme recovers
known classes, e.g., softmax, and generates new ones depending on the
choice of mirror map. Using our framework, we obtain the first result that
guarantees linear convergence for a policy-gradient-based method involving
general parameterization. To demonstrate the ability of our framework
to accommodate general parameterization schemes, we provide its sample
complexity when using shallow neural networks and show that it represents
an improvement upon the previous best results.

1 Introduction

Policy optimization is one of the most widely-used classes of algorithms for reinforcement learn-
ing (RL). Among policy optimization techniques, policy gradient (PG) methods [e.g., Williams
and Peng, 1991, Sutton et al., 1999, Konda and Tsitsiklis, 2000, Baxter and Bartlett, 2001]
are gradient-based algorithms that optimize the policy over a parameterized policy class and
have emerged as a popular class of algorithms for RL [e.g., Kakade, 2002, Peters and Schaal,
2008, Bhatnagar et al., 2009, Mnih et al., 2016, Schulman et al., 2015a, 2017, Lan, 2022].
The design of gradient-based policy updates has been key to achieving empirical success in
many settings, such as games [Berner et al., 2019] and autonomous driving [Shalev-Shwartz
et al., 2016]. In particular, a class of PG algorithms that has proven successful in practice
consists of building updates that include a hard constraint (e.g., a trust region constraint) or
a penalty term ensuring that the updated policy does not move too far from the previous one.
Two examples of algorithms belonging to this category are trust region policy optimization
(TRPO) [Schulman et al., 2015a], which imposes a Kullback-Leibler (KL) divergence [Kullback

16th European Workshop on Reinforcement Learning (EWRL 2023).

and Leibler, 1951] constraint on its updates, and policy mirror descent (PMD) [e.g. Tomar
et al., 2022, Lan, 2022, Xiao, 2022, Kuba et al., 2022, Vaswani et al., 2022], which applies
mirror descent (MD) [Nemirovski and Yudin, 1983] to RL. Shani et al. [2020] propose a
variant of TRPO that is actually a special case of PMD, thus linking TRPO and PMD.
From a theoretical perspective, motivated by the empirical success of PMD, there is now a
concerted effort to develop convergence theories for PMD methods. For instance, it has been
established that PMD converges linearly to the global optimum in the tabular setting by using
a geometrically increasing step-size [Lan, 2022, Xiao, 2022], by adding entropy regularization
[Cen et al., 2021], and more generally by adding convex regularization [Zhan et al., 2021].
Linear convergence of PMD has also been established for the negative entropy mirror map in
the linear function approximation regime, i.e., for log-linear policies, either by adding entropy
regularization [Cayci et al., 2021], or by using a geometrically increasing step-size [Chen and
Theja Maguluri, 2022, Alfano and Rebeschini, 2022, Yuan et al., 2023]. The proofs of these
results are based on specific policy parameterizations, i.e., tabular and log-linear, while PMD
remains mostly unjustified for general policy parameterizations and mirror maps, leaving out
important practical cases such as neural networks. In particular, it remains to be seen whether
the theoretical results obtained for tabular policy classes transfer to this more general setting.
In this work, we introduce Approximate Mirror Policy Optimization (AMPO), a novel
framework designed to incorporate general parameterization into PMD in a theoretically
sound manner. In summary, AMPO is a MD-based method that recovers PMD in different
settings, such as tabular MDPs, is capable of generating new algorithms by varying the
mirror map, and is amenable to theoretical analysis for any parameterization class. Since
the MD update can be viewed as a two-step procedure, i.e., a gradient update step on
the dual space and a mapping step onto the probability simplex, our starting point is to
define the policy class based on this second MD step (Definition 3.1). This policy class
recovers the softmax policy class as a special case (Example 3.2) and accommodates any
parameterization class, such as tabular, linear, or neural network parameterizations. We
then develop an update procedure for this policy class based on MD and PG.
We provide an analysis of AMPO and establish theoretical guarantees that hold for any
parameterization class and any mirror map. More specifically, we show that our algorithm
enjoys quasi-monotonic improvements (Proposition 4.2), sublinear convergence when the step-
size is non-decreasing, and linear convergence when the step-size is geometrically increasing
(Theorem 4.3). To the best of our knowledge, AMPO is the first gradient-based policy
optimization algorithm with linear convergence that can accommodate any parameterization
class. Furthermore, the convergence rates hold for any choice of mirror map. The generality
of our convergence results allows us not only to unify several current best-known results with
specific policy parameterizations, i.e., tabular and log-linear, but also to achieve new state-
of-the-art convergence rates with neural policies. Tables 1 and 2 in Appendix A.2 provide
an overview of our results. We also refer to Appendix A.2 for a thorough literature review.
The key point of our analysis is Lemma 4.1, which is an application of the three-point
descent lemma by Chen and Teboulle [1993, Lemma 3.2], typically used in the tabular
setting, to the general parameterization setting. The application of this existing lemma
is only possible thanks to our formulations of the policy class and the policy update, which
allows us to keep track of the errors incurred by the algorithm (Proposition 4.2). The
convergence rates of AMPO are obtained by building on Lemma 4.1 and leveraging the
PMD proof techniques of Xiao [2022].
In addition, we show that for a large class of mirror maps, i.e., the ω-potential mirror
maps in Definition 3.4, AMPO can be implemented in Õ(|A|) computations. We give two
examples of mirror maps belonging to this class, Examples 3.5 and 3.6, that illustrate
the versatility of our framework. Lastly, we examine the important case of shallow neural
network parameterization. In this setting, we provide the sample complexity of AMPO,
i.e., Õ(ε−4) (Corollary 4.4), and show how it improves upon previous results.

2

2 Preliminaries

Let M = (S,A, P, r, γ, µ) be a discounted Markov Decision Process (MDP), where S is a
possibly infinite state space, A is a finite action space, P (s′|s, a) is the transition probability
from state s to s′ under action a, r(s, a) ∈ [0, 1] is a reward function, γ is a discount factor,
and µ is a target state distribution. The behavior of an agent on an MDP is then modeled
by a policy π ∈ (∆(A))S , where a ∼ π(· | s) is the density of the distribution over actions at
state s ∈ S, and ∆(A) is the probability simplex over A.
Given a policy π, let V π : S → R denote the associated value function. Letting st and at

be the current state and action at time t, the value function V π is defined as the expected
discounted cumulative reward with the initial state s0 = s, namely,

V π(s) := Eat∼π(·|st),st+1∼P (·|st,at)

[∞∑
t=0

γtr(st, at)
∣∣∣∣π, s0 = s

]
.

Now letting V π(µ) := Es∼µ[V π(s)], our objective is for the agent to find an optimal policy
π⋆ ∈ argmaxπ∈(∆(A))S V π(µ). (1)

Similarly to the value function, for each pair (s, a) ∈ S ×A, the state-action value function,
or Q-function, associated to a policy π is defined as

Qπ(s, a) := Eat∼π(·|st),st+1∼P (·|st,at)

[∞∑
t=0

γtr(st, at) | π, s0 = s, a0 = a

]
.

We also define the discounted state visitation distribution by

dπ
µ(s) := (1− γ)Es0∼µ

[∞∑
t=0

γtP (st = s | π, s0)
]
, (2)

where P (st = s | π, s0) represents the probability of the agent being in state s at time t
when following policy π and starting from s0. The probability dπ

µ(s) represents the time
spent on state s when following policy π.
The gradient of the value function V π(µ) with respect to the policy can be easily expressed
by the policy gradient theorem [Sutton et al., 1999]:

∇sV π(µ) := ∂V π(µ)
∂π(·|s) = 1

1− γ
dπ

µ(s)Qπ(s, ·). (3)

2.1 Mirror descent

The first tools we recall from the MD framework are mirror maps and Bregman divergences
[Bubeck, 2015, Chapter 4]. Let Y ⊆ R|A| be a convex set. A mirror map h : Y → R is
a strictly convex, continuously differentiable and essentially smooth function1 such that
∇h(Y) = R|A|. The convex conjugate of h, denoted by h∗, is given by

h∗(x∗) := supx∈Y⟨x∗, x⟩ − h(x), x∗ ∈ R|A|.

The gradient of the mirror map ∇h : Y → R|A| allows to map objects from the primal
space Y to its dual space R|A|, x 7→ ∇h(x), and viceversa for ∇h∗, i.e., x∗ 7→ ∇h∗(x∗). In
particular, from ∇h(Y) = R|A|, we have: for all (x, x∗) ∈ Y × R|A|,

x = ∇h∗(∇h(x)) and x∗ = ∇h(∇h∗(x∗)). (4)
Furthermore, the mirror map h induces a Bregman divergence [Bregman, 1967] , defined as

Dh(x, y) := h(x)− h(y)− ⟨∇h(y), x− y⟩,

where Dh(x, y) ≥ 0 for all x, y ∈ Y. We can now present the standard MD algorithm
[Nemirovski and Yudin, 1983, Bubeck, 2015]. Let X ⊆ Y be a convex set and V : X → R be

1h is essentially smooth if limx→∂Y ∥∇h(x)∥2 = +∞, where ∂Y denotes the boundary of Y.

3

a differentiable function. The MD algorithm can be formalized2 as the following iterative
procedure in order to solve the minimization problem minx∈X V (x): for all t ≥ 0,

yt+1 = ∇h(xt)− ηt∇V (x)|x=xt , (5)
xt+1 = ProjhX (∇h∗(yt+1)), (6)

where ηt is set according to a step-size schedule (ηt)t≥0 and ProjhX (·) is the Bregman projection

ProjhX (y) := argminx∈X Dh(x, y). (7)

Precisely, at time t, xt ∈ X is mapped to the dual space through ∇h(·), where a gradient
step is performed as in (5) to obtain yt+1. The next step is to map yt+1 back in the primal
space using ∇h∗(·). In case ∇h∗(yt+1) does not belong to X , it is projected as in (6).

3 Approximate Mirror Policy Optimization

The starting point of our framework is the introduction of a novel parameterized policy class
based on the Bregman projection expression recalled in (7).
Definition 3.1. Given a parameterized function class FΘ = {fθ : S × A → R, θ ∈ Θ}, a
mirror map h : Y → R, where Y ⊆ R|A| is a convex set with ∆(A) ⊆ Y, and η > 0, the
Bregman projected policy class associated with FΘ and h consists of all the policies of the form:{

πθ : πθ
s = Projh∆(A)(∇h∗(ηfθ

s)), s ∈ S; θ ∈ Θ
}

,

where for all s ∈ S, πθ
s , fθ

s ∈ R|A| denote vectors [πθ(a|s)]a∈A and [fθ(s, a)]a∈A, respectively.

In this definition, the policy is induced by a mirror map h and a parameterized function
fθ, and is obtained by mapping fθ to Y with the operator ∇h∗(·), which may not be a
well-defined probability distribution, and is thus projected on the convex probability simplex
∆(A). Note that the choice of h will be key to deriving convenient expressions for the policy
πθ. The Bregman projected policy class contains large families of policy classes. Below is
an example of h that recovers widely used policy classes [Beck, 2017, Example 9.10].

Example 3.2 (Negative entropy mirror map). If Y = R|A|
+ and h is the negative entropy

mirror map, i.e., h(π(·|s)) =
∑

a∈A π(a|s) log(π(a|s)), then Projh∆(A)(∇h∗(ηfθ
s)) is equivalent

to the following popular policy class{
πθ : πθ

s = exp(ηfθ
s)

∥exp(ηfθ
s)∥1

, s ∈ S; θ ∈ Θ
}

, (8)

where the exponential and the fraction are element-wise and ∥·∥1 is ℓ1 norm. In particular,
when fθ(s, a) = θs,a, the policy class (8) becomes tabular softmax policy; when fθ is a linear
function, (8) becomes log-linear policy; and when fθ is a neural network, (8) becomes the
neural policy class defined by Agarwal et al. [2021]. We refer to Appendix C.1 for details.

We now construct a policy mirror descent type algorithm to optimize V πθ over the Bregman
projected policy class associated with a mirror map h and a parameterization class FΘ by
adapting Section 2.1 to our setting. First, we use the following shorthand: at each time t,
let πt := πθt , f t := fθt , V t := V πt , Qt := Qπt , and dt

µ := dπt

µ . Further, for any function y :
S×A → R and distribution v over S×A, let ys := y(s, ·) ∈ R|A| and ∥y∥2

L2(v) = Ev[(y(s, a))2].
Ideally, we would like to execute the exact MD-based algorithm: for all t ≥ 0 and for all s ∈ S,

f t+1
s = ∇h(πt

s) + ηt(1− γ)∇sV t(µ)/dt
µ(s) (3)= ∇h(πt

s) + ηtQ
t
s, 3 (9)

πt+1
s = Projh∆(A)(∇h∗(ηtf

t+1
s)). (10)

2See a different formulation of MD in (11) and in Appendix B (Lemma B.1).

4

Algorithm 1: Approximate Mirror Policy Optimization
Input: Initial policy π0, mirror map h, parameterization class FΘ, iteration number T ,
step-size schedule (ηt)t≥0, state-action distribution sequence (vt)t≥0.

for t = 0 to T − 1 do
1 Obtain θt+1 ∈ Θ such that

θt+1 ∈ argminθ∈Θ
∥∥fθ −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt).

2 Update
πt+1

s = argmin
π′∈∆(A)

Dh(π′,∇h∗(ηtf
θt+1

s)) = Projh∆(A)(∇h∗(ηtf
t+1
s)), ∀s ∈ S.

Here, (10) reflects our Bregman projected policy class 3.1. However, we usually cannot
perform the update (9) exactly. In general, if fθ belongs to a parameterized class FΘ, there
may not be any θt+1 ∈ Θ such that (9) is satisfied for all s ∈ S.
To remedy this issue, we propose Approximate Mirror Policy Optimization (AMPO), de-
scribed in Algorithm 1. At each iteration, AMPO consists of minimizing a surrogate loss
function and projecting the result onto the simplex to obtain the updated policy. In particu-
lar, the surrogate loss in Line 1 of Algorithm 1 is a standard regression problem where we
try to approximate Qt + η−1

t ∇h(πt) with f t+1, and has been studied extensively when fθ

is a neural network [Allen-Zhu et al., 2019a]. We can then readily use (10) to update πt+1

within the Bregman projected policy class defined in 3.1, which gives Line 2 of Algorithm 1.
Remark 3.3. Line 1 associates AMPO with the compatible function approximation framework
developed by Sutton et al. [1999], Kakade [2002], Agarwal et al. [2021], as both frameworks
define the updated parameters θt+1 as the solution to a regression problem aimed at
approximating the current Q-function Qt. A crucial difference is that, Agarwal et al. [2021]
approximate Qt linearly w.r.t. ∇θ log πt, while in Line 1 we approximate Qt and the gradient
of the mirror map of the previous policy with any function fθ. In particular, the regression
problem in Line 1 appears often in deep learning and has been well studied both theoretically
[Allen-Zhu et al., 2019a] and empirically [Goodfellow et al., 2016], meaning that existing
methods can be used to solve it. Furthermore, the regression problem proposed by Agarwal
et al. [2021] depends on the distribution dt

µ, while ours has no such constraint and allows
off-policy updates involving an arbitrary distribution vt. See Appendix A.3 for more details.

To better illustrate the novelty of our framework, we now give a comparison between
AMPO and previous approximations of PMD [Vaswani et al., 2022, Tomar et al., 2022].
In both approaches, the algorithm provides an expression to be optimized. For AMPO this
expression is the one in Line 1 of Algorithm 1, while, for instance, Vaswani et al. [2022]
aim to maximize an expression equivalent to

πt+1 = argmax
πθ∈Π(Θ)

Es∼dt
µ
[ηt⟨Qt

s, πθ
s⟩ − Dh(πθ

s , πt
s)], (11)

where Π(Θ) is a given parameterized policy class. When the policy class Π(Θ) is the entire
policy space ∆(A)S , this is equivalent to the two-step procedure (9)-(10) thanks to the policy
gradient theorem (3). A derivation of this observation is given in Appendix B for completeness.
The improvement of AMPO over this type of update is twofold. Firstly, the parameterized
policy class Π(Θ) is often non-convex with respect to θ in practice, which prevents the
application of the three-point-descent lemma [Xiao, 2022], which relies on the convexity of
the tabular parameterization. On the contrary, AMPO avoids this problem thanks to the
definition of the Bregman projected policy class and the update in Line 2 of Algorithm 1, as
we will see in the theoretical analysis. Secondly, AMPO involves a subroutine optimization
procedure that is structurally different from the update in (11). Unlike the update in (11), our
approach employs a standard regression procedure, which has been extensively researched and
benefits from established solving methods. Additionally, we provide in Appendix A.4 a setting
where the optimization problem in Line 1 of Algorithm 1 inherits curvature from the param-
eterization function, i.e., strong convexity, while the optimization problem in (11) does not.

3The update is (5) up to a scaling (1 − γ)/dt
µ(s) of ηt.

5

3.1 ω-potential mirror maps

In this section, we provide a class of mirror maps that allows to compute the Bregman
projection in Line 2 with Õ(|A|) operations and simplifies the minimization problem in Line 1.
Definition 3.4 (ω-potential mirror map [Krichene et al., 2015]). For a ∈ (−∞, +∞], ω ≤ 0,
let an ω-potential be an increasing C1-diffeomorphism ϕ : (−∞, a)→ (ω, +∞) such that

lim
u→−∞

ϕ(u) = ω, lim
u→a

ϕ(u) = +∞,

∫ 1

0
ϕ−1(u)du ≤ ∞.

For any ω-potential ϕ, the associated mirror map hϕ, called ω-potential mirror map, is
defined as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1
ϕ−1(u)du.

Thanks to Krichene et al. [2015, Proposition 2], the policy πt+1 in Line 2 induced by the
ω-potential mirror map can be obtained with Õ(|A|) computations and can be written as

πt+1(a|s) = σ(ϕ(ηtf
t+1(s, a) + λt+1

s)) ∀s ∈ S, a ∈ A,

where λs ∈ R is a normalization factor to ensure
∑

a∈A πt+1(a|s) = 1 for all s ∈ S, and
σ(z) = max(z, 0) for z ∈ R. We call this policy class the ω-potential policy class. The
minimization problem in Line 1 is simplified to be

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f t, ϕ−1(0)− λt

s)
∥∥2

L2(vt) . (12)

We refer to Appendix C.2 for its derivation and an efficient implementation of the framework.
This class of mirror maps allows AMPO to generate a wide range of algorithms by simply
choosing an ω-potential ϕ. In fact, it recovers existing approaches to policy optimization,
as we show in the next two examples.
Example 3.5 (Squared ℓ2-norm). If Y = R|A| and ϕ is the identity function, then hϕ is the
squared ℓ2-norm, that is hϕ(πs) = ∥πs∥2

/2, Line 1 in Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ(s, a)−Qt(s, a)− η−1
t πt(a|s)

∥∥2
L2(vt) , (13)

and the policy update is given for all s ∈ S by

πt+1
s = Projl2

∆(A)(ηtf
t+1
s), (14)

where Projl2
∆(A) represents the Euclidean projection on the probability simplex. In the

tabular setting, where S and A are finite and fθ(s, a) = θs,a, (13) can be solved exactly,
and Equations (13) and (14) recover the projected Q-descent algorithm [Xiao, 2022]. For
detailed derivations, we refer to Appendix C.2. As a by-product, we generalize the projected
Q-descent algorithm from the tabular setting to a general parameterization class FΘ, which
is a novel algorithm in the RL literature.

Example 3.6 (Negative entropy). If Y = R|A|
+ and ϕ(u) = exp(u − 1), then hϕ is the

negative entropy mirror map from Example 3.2 and Line 1 in Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥∥∥f t+1 −Qt − ηt−1

ηt
f t

∥∥∥∥2

L2(vt)
. (15)

Consequently, based on Example 3.2, we have πt+1
s ∝ exp(ηtf

t+1
s) for all s ∈ S. In this

example, AMPO recovers tabular NPG [Shani et al., 2020] when fθ(s, a) = θs,a, and NPG
with log-linear polices [Yuan et al., 2023] when fθ and Qt are linear functions for all t ≥ 0.
We refer to Appendix C.2 for detailed derivations.

6

In addition to the ℓ2-norm and the negative entropy, several other mirror maps that have
been studied in the optimization literature fall into the class of ω-potential mirror maps,
such as the Tsallis entropy [Orabona, 2020, Li and Lan, 2023] and the hyperbolic entropy
[Ghai et al., 2020], as well as a generalization of the negative entropy proposed by Krichene
et al. [2015] that has an exact solution for the associated Bregman projection. These
examples illustrate how the ω-potential mirror map class recovers known methodologies
and can be used to explore new algorithms in policy optimization. We leave the study of
the application of these mirror maps in RL as future work, both from an empirical and
theoretical point of view, and provide additional discussions and details in Appendix C.2.

4 Theoretical analysis

This section is devoted to the theoretical analysis of AMPO, which will be based on the
following lemma. For convenience, denote Dπ

π̄(s) = Dh(πs, π̄s) for all s ∈ S.
Lemma 4.1. For any policies π and π̄, for any function fθ ∈ FΘ and for η > 0, we have

⟨ηfθ
s −∇h(π̄s), πs − π̃s⟩ ≤ Dπ

π̄(s)−Dπ̃
π̄(s)−Dπ

π̃(s), ∀s ∈ S,

where π̃ is the Bregman projected policy induced by fθ and h according to Definition 3.1,
that is π̃s = argminπ′∈∆(A)Dh(π′,∇h∗(ηfθ

s)) for all s ∈ S.

The proof of Lemma 4.1 is given in Appendix D.1. Lemma 4.1 describes a relation between
any two policies and a policy belonging to the Bregman projected policy class associated with
FΘ and h. It can be interpreted as an application of the three point descent lemma [Xiao,
2022] to the policy class we consider. Similar lemmas have been obtained and exploited
for the negative entropy mirror map [Liu et al., 2019, Hu et al., 2022, Yuan et al., 2023].
Lemma 4.1 becomes useful when we set π̄ = πt, fθ = f t+1, η = ηt and π = πt or π = π⋆.
In particular, when ηtf

t+1
s −∇h(πt

s) ≈ ηtQ
π
s , Lemma 4.1 allows us to obtain telescopic sums

and recursive relations, and to handle error terms efficiently, as we show in Appendix D.
This is possible thanks to our two-step formulation (5)-(6) applied in Algorithm 1, while
Lemma 4.1 cannot be applied to algorithms based on the update in (11) [Tomar et al., 2022,
Vaswani et al., 2022] due to the non-convexity of the optimization problem.

4.1 Convergence for general policy parameterization

In this section, we consider the parameterization class FΘ and the fixed but arbitrary
mirror map h. We show that AMPO enjoys quasi-monotonic improvement and sublinear
or linear convergence, depending on the step-size schedule. The first step is to control the
approximation error of AMPO by Assumption (A1) below.

(A1) (Approximation error). There exists εapprox ≥ 0 such that, for all times t ≥ 0,

E
[∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤ εapprox,

where (vt)t≥0 is a sequence of distributions over states and actions and the expecta-
tion is taken over the randomness of the algorithm that obtains f t+1.

Assumption (A1) characterizes the loss incurred by Algorithm 1 in solving the regression
problem in Line 1. When the step-size ηt is sufficiently large, Assumption (A1) measures
how well f t+1 approximates the current Q-function Qt. Hence, εapprox depends on both
the accuracy of the policy evaluation method employed to obtain an estimate of Qt [Sutton
et al., 1998, Schulman et al., 2015b, Espeholt et al., 2018] and the error incurred by the
function fθ ∈ FΘ that best approximates Qt, that is the representation power of FΘ. Later
in Section 4.2, we show how to solve the minimization problem in Line 1 when FΘ is a class
of shallow neural networks so that Assumption (A1) holds. We highlight that Assumption
(A1) is weaker than the assumptions made by Agarwal et al. [2020, Chapter 6], since we
do not constrain the minimization problem to be linear in the parameters (see (24)). We
refer to Appendix E for a relaxed version of this assumption and further discussion.

7

As mentioned in Remark 3.3, the distribution vt does not depend on the current policy
πt for all times t ≥ 0. Therefore, Assumption (A1) allows off-policy policy updates and the
use of replay buffers [Mnih et al., 2015]. To quantify how the choice of these distributions
affects the error terms in the convergence rates, we introduce the following coefficient.

(A2) (Concentrability coefficient). There exists Cv ≥ 0 such that, for all times t,

E(s,a)∼vt

[(
dπ

µ(s)π(a|s)
vt(s, a)

)2]
≤ Cv,

whenever (dπ
µ, π) is either (d⋆

µ, π⋆), (dt+1
µ , πt+1), (d⋆

µ, πt), or (dt+1
µ , πt).

The concentrability coefficient Cv quantifies how much the distribution vt overlaps with
the distributions (d⋆

µ, π⋆), (dt+1
µ , πt+1), (d⋆

µ, πt) and (dt+1
µ , πt). Assumption (A2) highlights

that the distribution vt should have full support over the environment, in order to avoid
large values of Cv. Assumption (A2) is weaker than the previous best known concentrability
coefficient in Yuan et al. [2023, Assumption 9], in the sense that we have the full control
over vt. We refer to Appendix F for a more detailed discussion. We can now present our
first result on the performance of Algorithm 1.
Proposition 4.2 (Quasi-monotonic updates). Let (A1), (A2) be true. We have, for all t ≥ 0,

E
[
V t+1(µ)− V t(µ)

]
≥ −

2
√

Cvεapprox

1− γ
,

where the expectation is taken over the randomness of AMPO.

We refer to Appendix D.3 for a proof and a tighter bound. Proposition 4.2 ensures that
an update of Algorithm 1 cannot lead to a performance degradation, up to an error term.
The next assumptions concerns the coverage of the state space for the agent at each time t.

(A3) (Distribution mismatch coefficient). Let d⋆
µ := dπ⋆

µ . There exists νµ ≥ 0 such that

max
s∈S

d⋆
µ(s)

dt
µ(s) ≤ νµ, for all times t ≥ 0.

Since dt
µ(s) ≥ (1−γ)µ(s) for all s ∈ S, obtained from the definition of dµ in (2), we have that

max
s∈S

d⋆
µ(s)

dt
µ(s) ≤

1
1− γ

max
s∈S

d⋆
µ(s)

µ(s) ,

where assuming boundedness for the term on the right-hand side is standard in the literature
on the PG convergence analysis [e.g., Zhang et al., 2020, Wang et al., 2020] and the NPG
convergence analysis [e.g., Agarwal et al., 2021, Cayci et al., 2021, Xiao, 2022]. We refer
to Appendix F for a more detailed discussion.
We also introduce the weighted Bregman divergence between the optimal policy π⋆ and
the initial policy π0 as D⋆

0 = Es∼d⋆
µ
[Dh(π⋆

s , π0
s)]. We then have our main results below.

Theorem 4.3 (Convergence rates). Let (A1), (A2) and (A3) be true. If the step-size
schedule is non-decreasing, i.e., ηt ≤ ηt+1 for all t ≥ 0, the iterates of Algorithm 1 satisfy:
for every T ≥ 0,

V ⋆(µ)− 1
T

∑
t<T

E
[
V t(µ)

]
≤ 1

T

(
D⋆

0
(1− γ)η0

+ νµ

1− γ

)
+

2(1 + νµ)
√

Cvεapprox

1− γ
.

Furthermore, if the step-size schedule is geometrically increasing, i.e., satisfies

ηt+1 ≥
νµ

νµ − 1ηt ∀t ≥ 0, (16)

we have: for every T ≥ 0,

V ⋆(µ)− E
[
V T (µ)

]
≤ 1

1− γ

(
1− 1

νµ

)T(
1 + D⋆

0
η0(νµ − 1)

)
+

2(1 + νµ)
√

Cvεapprox

1− γ
.

8

Theorem 4.3 is, to the best of our knowledge, the first result that establishes linear conver-
gence for a PG-based method involving general policy parameterization. For the same setting,
it is also the first result that establishes O(1/T) convergence without regularization. Lastly,
it is the first result that provides a convergence rate for a PMD-based algorithm that allows
any mirror map and non-tabular policies. We give here a brief discussion of Theorem 4.3
w.r.t. previous results and refer to Tables 1 and 2 in Appendix A.2 for a detailed comparison.
In terms of iteration complexity, Theorem 4.3 recovers the best known convergence rates
in the tabular setting [Xiao, 2022], for both non-decreasing and exponentially increasing
step-size schedules. While considering a more general setting, Theorem 4.3 matches or
improves upon the convergence rate of previous works on policy gradient methods for
non-tabular policy parameterizations that consider constant step-size schedules [Liu et al.,
2019, Shani et al., 2020, Liu et al., 2020, Wang et al., 2020, Agarwal et al., 2021, Vaswani
et al., 2022, Cayci et al., 2022] and matches the convergence speed of previous works that
employ NPG, log-linear policies, and geometrically increasing step-size schedules [Alfano
and Rebeschini, 2022, Yuan et al., 2023].
In terms of generality, the results in Theorem 4.3 hold without need to implement regulariza-
tion [Cen et al., 2021, Zhan et al., 2021, Cayci et al., 2021, 2022, Lan, 2022], to impose bounded
updates or smoothness of the policy [Agarwal et al., 2021, Liu et al., 2020], or to restrict the
analysis to the case where the mirror map h is the negative entropy [Liu et al., 2019, Hu et al.,
2022]. In particular, we improve upon the latest results for PMD with general policy param-
eterization by Vaswani et al. [2022], which only allow bounded step-sizes, where the bound
can be particularly small, e.g., (1− γ)3/(2γ|A|), and can slow down the learning process.
When S is a finite state space, a sufficient condition for νµ in (A3) to be bounded is requiring
µ to have full support on S. When µ does not have full support, one can still obtain a linear
convergence rate for V ⋆(µ′)−V T (µ′), for an arbitrary state distribution µ′ with full support,
and relate this quantity to V ⋆(µ) − V T (µ). We refer to Appendix F for a more detailed
discussion on the distribution mismatch coefficient.
An interpretation of our theory can be provided by connecting AMPO to the Policy Iteration
algorithm (PI), which shares the linear convergence of AMPO. To see this, we first rewrite
the Bregman projection step of AMPO (Line 2 of Algorithm 1) as

πt+1
s = argmin

π∈∆(A)
⟨−ηtf

θt+1

s +∇h(πt
s), π⟩+Dh(π, πt

s), ∀s ∈ S,

= argmin
π∈∆(A)

⟨−fθt+1

s + 1
ηt
∇h(πt

s), π⟩+ 1
ηt
Dh(π, πt

s), ∀s ∈ S.

We refer to Appendix D.1 for a proof. Secondly, solving Line 1 of Algorithm 1 leads to
f t+1

s − 1
ηt
∇h(πt

s) ≈ Qπt

s . When the step-size ηt →∞, and 1/ηt → 0, the above viewpoint of
the AMPO policy update thus becomes

πt+1
s = argmin

π∈∆(A)
⟨−Qπt

s , π⟩, ∀s ∈ S,

= argmax
π∈∆(A)

⟨Qπt

s , π⟩, ∀s ∈ S,

which is the PI algorithm. Here we ignore the Bregman divergence term Dh(π, πt
s), as it is

multiplied by 1/ηt that goes to 0. So AMPO behaves more and more like PI with a large
enough step-size and is able to converge linearly as PI does.

4.2 Sample complexity for neural network parameterization

Neural networks are widely used in RL due to their empirical success in applications [Mnih
et al., 2013, 2015, Silver et al., 2017]. However, few theoretical guarantees exist for using this
parameterization class in policy optimization [Liu et al., 2019, Wang et al., 2020, Cayci et al.,
2022]. Here, we show how we can use our framework and Theorem 4.3 to fill this gap by
deriving a sample complexity result for AMPO when using neural network parameterization.
We will consider the case where the parameterization class FΘ from Definition 3.1 belongs to
the family of shallow ReLU networks, which have been shown to be universal approximators

9

[Jacot et al., 2018, Allen-Zhu et al., 2019b, Du et al., 2019b, Ji et al., 2019]. That is, for (s, a) ∈
(S ×A) ⊆ Rd, define fθ(s, a) = c⊤σ(W (s, a) + b), where σ(y) = max(y, 0) for all y ∈ R is the
ReLU activation function and is applied element-wisely, c ∈ Rm, W ∈ Rm×d and b ∈ Rm.
At each iteration t of AMPO, we set vt = dt

µ and solve the regression problem in Line 1 of
Algorithm 1 through stochastic gradient descent (SGD). In particular, we initialize entry-wise
W0 and b as i.i.d. random Gaussians from N (0, 1/m), and c as i.i.d. random Gaussians
from N (0, ϵA) with ϵA ∈ (0, 1]. Assuming access to a simulator with starting state-action
distribution vt, we run SGD for K steps on the matrix W , that is, for k = 0, . . . , K − 1,

Wk+1 = Wk − α
(
f (k)(s, a)− Q̂t(s, a)− η−1

t ∇h(πt
s)
)
∇W f (k)(s, a), (17)

where f (k)(s, a) = c⊤σ((W0 + Wk)(s, a) + b), (s, a) ∼ vt and Q̂t(s, a) is an unbiased estimate
of Qt(s, a) obtained through Algorithm 4. We can then present our result on the sample
complexity of AMPO for neural network parameterization, which is based on our convergence
Theorem 4.3 and an analysis of neural networks by Allen-Zhu et al. [2019a, Theorem 1].
Corollary 4.4. In the setting of Theorem 4.3, let the parameterization class FΘ consist of
sufficiently wide shallow ReLU neural networks. Using an exponentially increasing step-size
and solving the minimization problem in Line 1 with SGD as in (17), the number of samples
required by AMPO to find an ε-optimal policy with high probability is Õ(C2

v ν5
µ/ε4(1− γ)6),

where ε has to be larger than a fixed and non-vanishing error floor.

We provide a proof for Corollary 4.4 and an expression for the error floor in Appendix G.
Note that in the case considered here, the sample complexity might be impacted by an
additional poly(ε−1) term. We refer to Appendix G for more details and a derivation which
does not include an additional poly(ε−1) term, enabling comparison with prior works.

5 Conclusion

We have introduced a novel framework for RL which, given a mirror map and any pa-
rameterization class, induces a policy class and an update rule. We have proven that this
framework enjoys sublinear and linear convergence for non-decreasing and geometrically
increasing step-size schedules, respectively. Future venues of investigation include studying
the sample complexity of AMPO in on-policy and off-policy settings other than neural
network parameterization, exploiting the properties of specific mirror maps to take advantage
of the structure of the MDP and efficiently including representation learning in the algorithm.
We refer to Appendix A.5 for a thorough discussion of future work. We believe that the
main contribution of AMPO is to provide a general framework with theoretical guarantees
that can help the analysis of specific algorithms and MDP structures. AMPO recovers and
improves several convergence rate guarantees in the literature, but it is important to keep in
consideration how previous works have exploited particular settings, while AMPO tackles
the most general case. It will be interesting to see whether these previous works combined
with our fast linear convergence result can derive new efficient sample complexity results.

References
Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality and

approximation with policy gradient methods in markov decision processes. Conference on
Learning Theory, 2020. (Cited on pages 7 and 23.)

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of
policy gradient methods: Optimality, approximation, and distribution shift. Journal of
Machine Learning Research, 2021. (Cited on pages 4, 5, 8, 9, 19, 20, 21, 22, 23, 35, and 37.)

Carlo Alfano and Patrick Rebeschini. Linear convergence for natural policy gradient with
log-linear policy parametrization. arXiv preprint arXiv:2209.15382, 2022. (Cited on pages
2, 9, 18, 19, 20, 22, and 35.)

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overpa-
rameterized neural networks, going beyond two layers. Advances in Neural Information
Processing Systems, 2019a. (Cited on pages 5, 10, 36, and 37.)

10

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via
over-parameterization. In International Conference on Machine Learning, 2019b. (Cited
on pages 10 and 39.)

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 1998.
(Cited on page 19.)

Jonathan Baxter and Peter L. Bartlett. Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 2001. (Cited on page 1.)

Amir Beck. First-Order Methods in Optimization. SIAM-Society for Industrial and Applied
Mathematics, 2017. (Cited on pages 4 and 23.)

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization. Operations Research Letters, 2003. (Cited on pages 19 and 24.)

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota
2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.
(Cited on page 1.)

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods.
arXiv preprint arXiv:1906.01786, 2019. (Cited on page 20.)

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for
finite MDPs. In International Conference on Artificial Intelligence and Statistics, 2021.
(Cited on pages 20 and 22.)

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural
actor-critic algorithms. Automatica, 2009. (Cited on pages 1 and 19.)

Lev M. Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 1967. (Cited on page 3.)

Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 2015. (Cited on pages 3, 24, 28, and 29.)

Semih Cayci, Niao He, and R Srikant. Linear convergence of entropy-regularized natural
policy gradient with linear function approximation. arXiv preprint arXiv:2106.04096, 2021.
(Cited on pages 2, 8, 9, 20, 22, 23, and 35.)

Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural
natural actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022. (Cited on pages 9,
18, 20, 21, 35, 39, and 40.)

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 2021.
(Cited on pages 2, 9, 20, 22, and 35.)

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization
algorithm using bregman functions. SIAM Journal on Optimization, 1993. (Cited on pages
2 and 28.)

Zaiwei Chen and Siva Theja Maguluri. Sample complexity of policy-based methods under
off-policy sampling and linear function approximation. In International Conference on
Artificial Intelligence and Statistics, 2022. (Cited on pages 2, 20, 22, and 35.)

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex
sgd. In Advances in Neural Information Processing Systems, 2019. (Cited on pages 20
and 23.)

Yuhao Ding, Junzi Zhang, and Javad Lavaei. On the global optimum convergence of
momentum-based policy gradient. In International Conference on Artificial Intelligence
and Statistics, 2022. (Cited on page 20.)

11

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John
Langford. Provably efficient rl with rich observations via latent state decoding. In
International Conference on Machine Learning, 2019a. (Cited on page 23.)

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and
Ruosong Wang. Bilinear classes: A structural framework for provable generalization in
RL. In International Conference on Machine Learning, 2021. (Cited on page 23.)

Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In International Conference on Learning
Representations, 2019b. (Cited on page 10.)

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International conference on
machine learning, 2018. (Cited on page 7.)

Ilyas Fatkhullin, Jalal Etesami, Niao He, and Negar Kiyavash. Sharp analysis of stochastic op-
timization under global Kurdyka- lojasiewicz inequality. In Advances in Neural Information
Processing Systems, 2022. (Cited on page 20.)

Ilyas Fatkhullin, Anas Barakat, Anastasia Kireeva, and Niao He. Stochastic policy gradient
methods: Improved sample complexity for fisher-non-degenerate policies. arXiv preprint
arXiv:2302.01734, 2023. (Cited on page 20.)

Maryam Fazel, Rong Ge, Sham Kakade, and Mehran Mesbahi. Global convergence of
policy gradient methods for the linear quadratic regulator. In International Conference on
Machine Learning, 2018. (Cited on page 20.)

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized Markov
decision processes. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 2160–2169.
PMLR, 09–15 Jun 2019. (Cited on page 24.)

Udaya Ghai, Elad Hazan, and Yoram Singer. Exponentiated gradient meets gradient descent.
In International Conference on Algorithmic Learning Theory, 2020. (Cited on pages 7
and 28.)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
(Cited on page 5.)

Yuzheng Hu, Ziwei Ji, and Matus Telgarsky. Actor-critic is implicitly biased towards high
entropy optimal policies. In International Conference on Learning Representations, 2022.
(Cited on pages 7, 9, 18, 20, and 21.)

Feihu Huang, Shangqian Gao, and Heng Huang. Bregman gradient policy optimization. In
International Conference on Learning Representations, 2022. (Cited on pages 20 and 21.)

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in Neural Information Processing
Systems, 2018. (Cited on page 10.)

Ziwei Ji, Matus Telgarsky, and Ruicheng Xian. Neural tangent kernels, transportation
mappings, and universal approximation. In International Conference on Learning Repre-
sentations, 2019. (Cited on pages 10, 34, 39, and 40.)

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, 2020.
(Cited on pages 20 and 23.)

Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In International Conference on Machine Learning, 2002. (Cited on page 31.)

12

Sham M. Kakade. A natural policy gradient. Advances in Neural Information Processing
Systems, 2002. (Cited on pages 1, 5, and 19.)

William Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, Department of Mathematics, University of Chicago, Chicago, IL, USA,
1939. (Cited on page 25.)

Michael J. Kearns and Daphne Koller. Efficient reinforcement learning in factored mdps. In
International Joint Conference on Artificial Intelligence, 1999. (Cited on page 23.)

Sajad Khodadadian, Zaiwei Chen, and Siva Theja Maguluri. Finite-sample analysis of
off-policy natural actor-critic algorithm. In International Conference on Machine Learning,
2021a. (Cited on pages 19 and 21.)

Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja
Maguluri. On the linear convergence of natural policy gradient algorithm. In IEEE
Conference on Decision and Control, 2021b. (Cited on pages 20 and 22.)

Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja
Maguluri. On linear and super-linear convergence of natural policy gradient algorithm.
Systems and Control Letters, 2022. (Cited on pages 20 and 22.)

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, 2000. (Cited on page 1.)

Walid Krichene, Syrine Krichene, and Alexandre Bayen. Efficient bregman projections onto
the simplex. In IEEE Conference on Decision and Control, 2015. (Cited on pages 6, 7, 25,
26, and 27.)

Jakub Grudzien Kuba, Christian A Schroeder De Witt, and Jakob Foerster. Mirror learning:
A unifying framework of policy optimisation. In International Conference on Machine
Learning, 2022. (Cited on pages 2, 18, and 20.)

Harold W. Kuhn and Albert W. Tucker. Nonlinear programming. In Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, 1951. (Cited on
page 25.)

Solomon Kullback and Richard A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics, 1951. (Cited on page 1.)

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new
sampling complexity, and generalized problem classes. Mathematical programming, 2022.
(Cited on pages 1, 2, 9, 19, 20, 22, and 35.)

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643,
2020. (Cited on page 24.)

Yan Li and Guanghui Lan. Policy mirror descent inherently explores action space. arXiv
preprint arXiv:2303.04386, 2023. (Cited on page 7.)

Yan Li, Tuo Zhao, and Guanghui Lan. Homotopic policy mirror descent: Policy convergence,
implicit regularization, and improved sample complexity. arXiv preprint arXiv:2201.09457,
2022. (Cited on pages 20 and 22.)

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtarik. PAGE: A simple and optimal
probabilistic gradient estimator for nonconvex optimization. In International Conference
on Machine Learning, 2021. (Cited on pages 20 and 23.)

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy
optimization attains globally optimal policy. Advances in Neural Information Processing
Systems, 2019. (Cited on pages 7, 9, 20, and 21.)

13

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin. An improved analysis of (variance-
reduced) policy gradient and natural policy gradient methods. Advances in Neural
Information Processing Systems, 2020. (Cited on pages 9, 20, 21, and 23.)

Stanislaw Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les
équations aux dérivées partielles, 1963. (Cited on page 20.)

Saeed Masiha, Saber Salehkaleybar, Niao He, Negar Kiyavash, and Patrick Thiran. Stochas-
tic second-order methods improve best-known sample complexity of SGD for gradient-
dominated functions. In Advances in Neural Information Processing Systems, 2022. (Cited
on page 20.)

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global
convergence rates of softmax policy gradient methods. In International Conference on
Machine Learning, 2020. (Cited on page 20.)

Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvari, and Dale Schuurmans. Leveraging
non-uniformity in first-order non-convex optimization. In International Conference on
Machine Learning, 2021. (Cited on page 20.)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013. (Cited on page 9.)

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski,
Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 2015. (Cited on pages 8 and 9.)

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine Learning, 2016. (Cited
on page 1.)

Arkadi Nemirovski and David B. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley Interscience, 1983. (Cited on pages 2, 3, and 19.)

Yurii E. Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its
global performance. Mathematical Programming, 2006. (Cited on page 20.)

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized
markov decision processes. arXiv preprint arXiv:1705.07798, 2017. (Cited on page 19.)

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In International Conference
on Machine Learning, 2017. (Cited on pages 20 and 23.)

Francesco Orabona. A modern introduction to online learning, 2020. URL https://open.
bu.edu/handle/2144/40900. (Cited on pages 7 and 27.)

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 2008. (Cited on pages 1
and 19.)

Boris T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 1963. (Cited on page 20.)

Bruno Scherrer. Approximate policy iteration schemes: A comparison. In International
Conference on Machine Learning, 2014. (Cited on page 36.)

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning, 2015a.
(Cited on pages 1 and 17.)

14

https://open.bu.edu/handle/2144/40900
https://open.bu.edu/handle/2144/40900

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b. (Cited on page 7.)

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. (Cited on pages 1
and 17.)

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforce-
ment learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016. (Cited on
page 1.)

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization:
Global convergence and faster rates for regularized MDPs. In AAAI Conference on
Artificial Intelligence, 2020. (Cited on pages 2, 6, 9, 19, and 21.)

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. Nature, 2017. (Cited on
page 9.)

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Model-
based rl in contextual decision processes: Pac bounds and exponential improvements over
model-free approaches. In Conference on Learning Theory, 2019. (Cited on page 23.)

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018. (Cited on page 17.)

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. MIT press
Cambridge, 1998. (Cited on page 7.)

Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems, 1999. (Cited on pages 1, 3, and 5.)

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent
policy optimization. In International Conference on Learning Representations, 2022. (Cited
on pages 2, 5, 7, and 17.)

Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu
Geist, Marlos C Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class
of surrogate functions for stable and efficient reinforcement learning. In International
Conference on Artificial Intelligence and Statistics, 2022. (Cited on pages 2, 5, 7, 9, 18,
and 20.)

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods:
Global optimality and rates of convergence. In International Conference on Learning
Representations, 2020. (Cited on pages 8, 9, 20, and 21.)

Weiran Wang and Miguel A Carreira-Perpinán. Projection onto the probability simplex: An
efficient algorithm with a simple proof, and an application. arXiv preprint arXiv:1309.1541,
2013. (Cited on page 26.)

Ronald J. Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 1991. (Cited on page 1.)

Lin Xiao. On the convergence rates of policy gradient methods. Journal of Machine Learning
Research, 2022. (Cited on pages 2, 5, 6, 7, 8, 9, 18, 19, 20, 21, 22, 26, 28, 30, 31, 35,
and 36.)

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for
(natural) actor-critic algorithms. In Advances in Neural Information Processing Systems,
2020. (Cited on pages 20 and 21.)

15

Long Yang, Yu Zhang, Gang Zheng, Qian Zheng, Pengfei Li, Jianhang Huang, and Gang
Pan. Policy optimization with stochastic mirror descent. AAAI Conference on Artificial
Intelligence, 2022. (Cited on pages 20 and 21.)

Rui Yuan, Robert M. Gower, and Alessandro Lazaric. A general sample complexity analysis of
vanilla policy gradient. In International Conference on Artificial Intelligence and Statistics,
2022. (Cited on pages 20 and 23.)

Rui Yuan, Simon Shaolei Du, Robert M. Gower, Alessandro Lazaric, and Lin Xiao. Linear
convergence of natural policy gradient methods with log-linear policies. In International
Conference on Learning Representations, 2023. (Cited on pages 2, 6, 7, 8, 9, 18, 19, 20, 21,
22, 35, and 36.)

Andrea Zanette, Ching-An Cheng, and Alekh Agarwal. Cautiously optimistic policy opti-
mization and exploration with linear function approximation. In Conference on Learning
Theory, 2021. (Cited on pages 18, 20, and 21.)

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear
convergence. arXiv preprint arXiv:2105.11066, 2021. (Cited on pages 2, 9, 20, 22, and 35.)

Junyu Zhang, Alec Koppel, Amrit Singh Bedi, Csaba Szepesvari, and Mengdi Wang. Varia-
tional policy gradient method for reinforcement learning with general utilities. In Advances
in Neural Information Processing Systems, 2020. (Cited on pages 8 and 20.)

Junyu Zhang, Chengzhuo Ni, Zheng Yu, Csaba Szepesvari, and Mengdi Wang. On the
convergence and sample efficiency of variance-reduced policy gradient method. In Advances
in Neural Information Processing Systems, 2021. (Cited on page 20.)

16

Appendix
Here we provide the related work discussion, the deferred proofs from the main paper and
some additional noteworthy observations.

A Related work

We provide an extended discussion for the context of our work, including a comparison of
different PMD frameworks and a comparison of the convergence theories of PMD in the
literature. Furthermore, we discuss future work, such as extending our analysis to the dual
averaging updates and developing sample complexity analysis of AMPO.

A.1 Comparisons with other policy optimization frameworks

In this section, we give a comparison with some of the most popular policy optimization
algorithms in the literature.

Generalised Policy Iteration [Sutton and Barto, 2018]. The update consists in
evaluating the Q-function of the policy and obtaining the new policy by acting greedily with
respect to the estimated Q-function. That is, for all s ∈ S,

πt+1
s ∈ argmax

πs∈∆(A)
⟨Qt

s, πs⟩. (18)

AMPO recovers this algorithm when we have access to the value of Qt
s and ηt → +∞ for all

times t.

Trust Region Policy Optimization [Schulman et al., 2015a]. The TRPO update is
as follows:

πt+1 ∈ argmax
π∈Π

Es∼dt
µ

[
⟨At

s, πs⟩
]

, (19)

such that Es∼dt
µ

[
Dh(πt

s, πs)
]
≤ δ,

where At
s = Qt

s − V t represents the advantage function, h is the negative entropy and
δ > 0. TRPO is equivalent to AMPO when at each time t, the admissible policy class is
Πt = {π ∈ ∆(A)S : Es∼dt

µ
Dh(πt

s, πs) ≤ δ}, we have access to the value of Qt
s and ηt → +∞.

Proximal Policy Optimization [Schulman et al., 2017]. The Proximal Policy Opti-
mization (PPO) update consists in maximizing a surrogate function depending on the policy
gradient with respect to the new policy. Namely,

πt+1 ∈ argmax
π∈Π

Es∼dt
µ

[
L(πs, πt

s)
]

, (20)

with
L(πs, πt

s) = Ea∼πt [min
(
rπ(s, a)At(s, a), clip(rπ(s, a), 1± ϵ)At(s, a)

)
],

where rπ(s, a) = π(s, a)/πt(s, a) is the probability ratio between the current policy πt and
the new one, and the function clip(rπ(s, a), 1± ϵ) clips the probability ratio rπ(s, a) to be
no more than 1 + ϵ and no less than 1− ϵ. PPO has also a KL variation [Schulman et al.,
2017, Section 4], where the objective function L is defined as

L(πs, πt
s) = ηt⟨At

s, πs⟩ −Dh(πt
s, πs),

where h is the negative entropy. In an exact setting and when Π = ∆(A)S , the KL variation
of PPO differs from AMPO because it inverts the terms in the Bregman divergence penalty.

Mirror Descent Policy Optimization [Tomar et al., 2022]. The algorithm consists
in the following update:

πt+1 ∈ argmax
π∈Π

Es∼dt
µ
[⟨At

s, πs⟩ −Dh(πs, πt
s)], (21)

where Π is a parameterized policy class. While it is equivalent to AMPO in an exact setting
and when Π = ∆(A)S , as we show in Appendix B, the difference between the two algorithms
lies on the approximation of the exact algorithm.

17

Functional Mirror Ascent Policy Gradient [Vaswani et al., 2022]. The algorithm
consists in the following update:

πt+1 ∈ argmax
πθ: θ∈Θ

Es∼dt
µ
[V πt

(µ) + ⟨∇πs
V πt

(µ)
∣∣
π=πt , πθ

s − πt
s⟩ −Dh(πθ

s , πt
s)] (22)

= argmax
πθ, θ∈Θ

Es∼dt
µ
[⟨Qt

s, πθ
s⟩ −Dh(πθ

s , πt
s)],

The second line is obtained by the definition of V t and the policy gradient theorem (3). The
discussion is the same as the previous algorithm.

Mirror Learning [Kuba et al., 2022]. The on-policy version of the algorithm consists
in the following update:

πt+1 = argmax
π∈Π(πt)

Es∼dt
µ
[⟨Qt

s, πs⟩ −D(πs, πt
s)], (23)

where Π(πt) is a policy class that depends on the current policy πt and the drift functional D is
defined as a map D : ∆(A)×∆(A)→ R such that D(πs, π̄s) ≥ 0 and ∇πsD(πs, π̄s)

∣∣
πs=π̄s

= 0.
The drift functional D recovers the Bregman divergence as a particular case, in which case
Mirror Learning is equivalent to AMPO in an exact setting and when Π = ∆(A)S . Once
more, the main difference between the two algorithms lies on the approximation of the exact
algorithm.

A.2 Discussion on related work

Our Contributions. Our work provides a framework for policy optimization – AMPO.
For AMPO, we establish in Theorem 4.3 both O(1/T) convergence guarantee by using a
non-decreasing step-size and linear convergence guarantee by using a geometrically increasing
step-size. Our contributions, with respect to previous literature on sublinear and linear
convergence of policy optimization methods, can be summarized as follows.

• The generalities of our framework and of Lemma 4.1 allow Theorem 4.3 to unify
previous results in the literature and generate new theoretically sound algorithms
under one guise. Indeed, both the sublinear and the linear convergence analysis of
natural policy gradient (NPG) with softmax tabular policies [Xiao, 2022] or with
log-linear policies [Alfano and Rebeschini, 2022, Yuan et al., 2023] are special cases of
our general analysis. Thus, Theorem 4.3 recovers the best known convergence rates
in both the tabular setting [Xiao, 2022] and the non-tabular setting [Cayci et al.,
2022, Alfano and Rebeschini, 2022, Yuan et al., 2023]. AMPO also generates new
algorithms by selecting mirror maps, e.g., ϵ-negative entropy mirror map in Appendix
C.2 associated with Algorithm 2, and generalizes the projected Q-descent algorithm
[Xiao, 2022] from the tabular setting to a general parameterization class FΘ.

• As discussed in Section 4.1, the results in Theorem 4.3 hold for a general setting
with less restrictions than previous works. The generality of the assumptions of
Theorem 4.3 allows the application of our theory to specific settings, where existing
sample complexity analyses could be improved thanks to the linear convergence
of AMPO. For instance, since Theorem 4.3 holds for any structural MDP, AMPO
could be directly applied to the linear MDP setting to derive a sample complexity
analysis of AMPO which may improve that of Zanette et al. [2021] and Hu et al.
[2022]. As we discuss in Appendix A.5, this is a promising direction for future work.

• From a technical point of view, our main contributions are: Definition 3.1 introduces
a novel method of incorporating general parameterization in the policy; the update
in Line 1 of Algorithm 1 simplifies the policy optimization step into a regression
problem; and Lemma 4.1 establishes a key result for policies belonging to the class
in Definition 3.1. Together, these innovations have allowed us to establish new
state-of-the-art results in Theorem 4.3.

In particular, our technical novelty with respect to Xiao [2022], Alfano and Rebeschini [2022],
and Yuan et al. [2023] can be summarized as follows.

18

• As to the algorithm design, AMPO represents an innovation. The PMD algorithm
proposed by Xiao [2022] is strictly constrained to the tabular setting and, while
it is well defined for any mirror map, it cannot include general parameterization.
Alfano and Rebeschini [2022] and Yuan et al. [2023] propose a first generalization of
the PMD algorithm, but are limited to consider log-linear parameterization and the
entropy mirror map. On the contrary, AMPO solves the problem of incorporating
general parameterization in the policy thanks to Definition 3.1 and the policy
update in Line 1 of Algorithm 1. This innovation is key for the generality of the
algorithm, as it allows AMPO to employ any mirror map and any parameterization
class. Moreover, AMPO is computationally efficient for a large class of mirror
maps (see Appendix C.2). We expect our design to be useful in deep RL, where
the policy is usually parameterized by a neural network whose last layer is a
softmax transformation. Our policy definition can be implemented in this setting
by replacing the softmax layer with a Bregman projection.

• As to the assumptions necessary for convergence guarantees, we have weaker assump-
tions. Xiao [2022] requires an L∞ supremum norm bound on the approximation error
of Qt, i.e., ∥Q̂t −Qt∥∞ ≤ εapprox, for all t ≤ T . Alfano and Rebeschini [2022] and
Yuan et al. [2023] require an L2-norm bound on the error of the linear approximation
of Qt, i.e., ∥w⊤ϕ−Qt∥∞ ≤ εapprox for some feature function ϕ : S × A → Rd and
vector w ∈ Rd, for all t ≤ T . Our approximation error assumption (A1) represents
an improvement as it does not constrain the bound to hold in L∞-norm or involve
linear function approximation. On the contrary, Assumption (A1) allows any
regression model, in particular neural networks. We further relax Assumption (A1)
in Appendix E and show that the approximation error bound can be larger for
earlier iterations. Additionally, we improve upon the concentrability coefficients
of Yuan et al. [2023] as we define them with respect to an arbitrary distribution.

• As to the analysis of the algorithm, while we borrow tools from Xiao [2022], our
results are not simple extensions. In fact, it is not clear from Xiao [2022], Alfano and
Rebeschini [2022], and Yuan et al. [2023] whether PMD could have theoretical guaran-
tees in a setting with general parameterization and an arbitrary mirror map. The two
main problems on this front are the non-convexity of the policy class, which prevents
using the three-point descent lemma by Xiao [2022, Lemma 6], and the fact that
the three-point identity by Alfano and Rebeschini [2022, Equation 4] only holds for
the negative entropy mirror map. Our Lemma 4.1 is the first result that successfully
addresses general policy parameterization and arbitrary mirror maps. Additionally,
we provide a sample complexity analysis of AMPO when employing shallow neural
networks that improves upon previous state-of-the-art results in this setting. We
further improve this sample complexity analysis in Appendix G, where we consider
an approximation assumption weaker than Assumption (A1) (see Appendix E).

Related literature. Lately, the impressive empirical success of policy gradient (PG) - type
methods has catalyzed the development of theoretically sound gradient-based algorithms
for policy optimization. In particular, there has been a lot of attention around algorithms
inspired by mirror descent (MD) [Nemirovski and Yudin, 1983, Beck and Teboulle, 2003]
and, more specifically, by natural gradient descent [Amari, 1998]. These two approaches
led to policy mirror descent (PMD) methods [Shani et al., 2020, Lan, 2022] and natural
policy gradient (NPG) methods [Kakade, 2002], which as first shown by Neu et al. [2017] is
a particular case of PMD. Leveraging different techniques from the MD literature, it has
been established that PMD, NPG and their variants converge to the global optimum in
different settings. We refer to global optimum convergence as an analysis that guarantees
that V ⋆(µ)− E

[
V T (µ)

]
≤ ϵ after T iterations with ϵ > 0. As an important variant of NPG,

we will also discuss the literature of the convergence analysis of natural actor-critic (NAC)
[Peters and Schaal, 2008, Bhatnagar et al., 2009].

Sublinear convergence analyses of PMD, NPG and NAC. For softmax tabular
policies, Shani et al. [2020] establish a O(1/

√
T) convergence rate for unregularized NPG

and O(1/T) for regularized NPG. Agarwal et al. [2021], Khodadadian et al. [2021a] and Xiao

19

[2022] improve the convergence rate for unregularized NPG and NAC to O(1/T) and Xiao
[2022] extends the same convergence rate to projected Q-descent.
In the function approximation regime, Zanette et al. [2021] and Hu et al. [2022] achieve
O(1/

√
T) convergence rate by developing variants of PMD methods for the linear MDP [Jin

et al., 2020] setting. The same O(1/
√

T) convergence rate is obtained by Agarwal et al. [2021]
for both log-linear and smooth policies, while Yuan et al. [2023] improve the convergence rate
to O(1/T) for log-linear policies. For smooth policies, the convergence rate is later improved
to O(1/T) either by adding an extra Fisher-non-degeneracy condition on the policies [Liu
et al., 2020] or by analyzing NAC under Markovian sampling [Xu et al., 2020]. Yang et al.
[2022] and Huang et al. [2022] consider Lipschitz and smooth policies [Yuan et al., 2022],
obtain O(1/

√
T) convergence rates for PMD-type methods and faster O(1/T) convergence

rates by applying the variance reduction techniques SARAH [Nguyen et al., 2017] and
STORM [Cutkosky and Orabona, 2019], respectively. As for neural policy parameterization,
Liu et al. [2019] establish a O(1/

√
T) convergence rate for two-layer neural PPO. The same

O(1/
√

T) convergence rate is established by Wang et al. [2020] for two-layer neural NAC,
which is later improved to O(1/T) by Cayci et al. [2022], using entropy regularization.
We highlight that all the sublinear convergence analyses mentioned above, for both softmax
tabular policies and the function approximation regime, are obtained by either using a
decaying step-size or a constant step-size. We refer to Table 1 for an overview of recent
sublinear convergence analyses of NPG/PMD.

Linear convergence analysis of PMD, NPG, NAC and other PG methods. In
the softmax tabular policy settings, the linear convergence guarantees of NPG and PMD are
achieved by either adding regularization [Cen et al., 2021, Zhan et al., 2021, Lan, 2022, Li
et al., 2022] or by varying the step-sizes [Bhandari and Russo, 2021, Khodadadian et al.,
2021b, 2022, Xiao, 2022].
In the function approximation regime, the linear convergence guarantees are achieved for
NPG with log-linear policies, either by adding entropy regularization [Cayci et al., 2021] or
by choosing geometrically increasing step-sizes [Alfano and Rebeschini, 2022, Yuan et al.,
2023]. It can also be achieved for NAC with log-linear policy by using adaptive increasing
step-sizes [Chen and Theja Maguluri, 2022].
We refer to Table 2 for an overview of recent linear convergence analyses of NPG/PMD.
Alternatively, by leveraging a Polyak-Lojasiewicz (PL) condition [Polyak, 1963, Lojasiewicz,
1963], fast linear convergence results can be achieved for PG methods under different settings,
such as linear quadratic control problems [Fazel et al., 2018] and softmax tabular policies
with entropy regularization [Mei et al., 2020, Yuan et al., 2022]. The PL condition is widely
explored by Bhandari and Russo [2019] to identify more general MDP settings. Similar
to the cases of NPG and PMD, by choosing adaptive step-sizes through exact line search
[Bhandari and Russo, 2021] or by exploiting non-uniform smoothness [Mei et al., 2021], linear
convergence of PG can also be obtained for the softmax tabular policy without regularization.
When the PL condition is relaxed to other weaker conditions, PG methods combined with
variance reduction methods such as SARAH [Nguyen et al., 2017] and PAGE [Li et al.,
2021] can also achieve linear convergence. This is shown by Fatkhullin et al. [2022, 2023]
when the PL condition is replaced by the weak PL condition [Yuan et al., 2022], which is
satisfied by Fisher-non-degenerate policies [Ding et al., 2022]. It is also shown by Zhang
et al. [2021], where the MDP satisfies some hidden convexity property which contains a
similar property to the weak PL condition studied by Zhang et al. [2020]. Lastly, linear
convergence is established for the cubic-regularized Newton method [Nesterov and Polyak,
2006], a second-order method, applied on Fisher-non-degenerate policies combined with
variance reduction [Masiha et al., 2022].
Outside the literature focusing on finite time convergence guarantees, Vaswani et al. [2022]
and Kuba et al. [2022] provide a theoretical analysis for variations of PMD, showing monotonic
improvements for their frameworks. Additionally, Kuba et al. [2022] give an infinite time
convergence guarantee for their framework.

20

Table 1: Overview of sublinear convergence results for NPG and PMD methods with
constant step-size in different settings. The dark blue cells contain our new results. The
light blue cells contain previously known results that we recover as particular cases of our

analysis. The pink cells contain previously best known results upon which we improve by
providing a faster convergence rate. White cells contain existing results that are already
improved by other literature or that we could not recover under our general analysis.

Algorithm Rate Comparisons to our works
Setting: Softmax tabular policies

[Shani et al., 2020]
Adaptive TRPO O(1/

√
T) They employ regularization

[Khodadadian et al., 2021a]
Tabular off-policy NAC O(1/T) asm. with L2 instead of L∞

We have a weaker approximation error

[Agarwal et al., 2021]
Tabular NPG O(1/T)

Q-descent [Xiao, 2022]
Tabular NPG/projected O(1/T)

instead of L∞

approximation error asm. with L2

fθ(s, a) = θs,a; we have a weaker
We recover their results when

Setting: Log-linear policies

[Agarwal et al., 2021]
Q-NPG O(1/

√
T)

[Yuan et al., 2023]
Q-NPG/NPG O(1/T) is linear

We recover their results when fθ(s, a)

Setting: Softmax two-layer neural policies

[Liu et al., 2019]
Neural PPO O(1/

√
T)

[Wang et al., 2020]
Neural NAC O(1/

√
T)

[Cayci et al., 2022]
Regularized neural NAC O(1/T) They employ regularization

Setting: Linear MDP

[Hu et al., 2022]
[Zanette et al., 2021]

NPG
O(1/

√
T)

Setting: Smooth policies

[Agarwal et al., 2021]
NPG O(1/

√
T)

[Xu et al., 2020]
NAC under Markovian sampling O(1/T)

[Liu et al., 2020]
Fisher-non-degenerate policies

NPG with
O(1/T)

Setting: Lipschitz and Smooth policies

[Yang et al., 2022, Huang et al., 2022]
Variance reduced PMD O(1/T)

Setting: Bregman projected policies with general parameterization and mirror map

(Theorem 4.3, this work)
AMPO O(1/T)

21

Table 2: Overview of linear convergence results for NPG and PMD methods in different
settings. The darker cells contain our new results. The light cells contain previously
known results that we recover as special cases of our analysis, and extend the permitted
concentrability coefficients settings. White cells contain existing results that we could not
recover under our general analysis.

Algorithm Reg. C.S. A.I.S. N.I.S.∗ Error assumption
Setting: Softmax tabular policies

[Cen et al., 2021]
NPG

✓ ✓ L∞

[Zhan et al., 2021]
PMD

✓ ✓ L∞

[Lan, 2022]
NPG

✓ ✓ L∞

[Li et al., 2022]
NPG

✓ ✓ L∞

[Bhandari and Russo, 2021]
NPG

✓

[Khodadadian et al., 2022]
[Khodadadian et al., 2021b]

NPG
✓ L∞

Q-descent [Xiao, 2022]
NPG / Projected

✓ L∞

Setting: Log-linear policies

[Cayci et al., 2021]
NPG

✓ ✓ L2

[Chen and Theja Maguluri, 2022]
Off-policy NAC

✓ L∞

[Alfano and Rebeschini, 2022]
Q-NPG

✓ L2

[Yuan et al., 2023]
Q-NPG/NPG

✓ L2

Setting: Bregman projected policies with general parameterization and mirror map

(Theorem 4.3, this work)
AMPO

✓ L2

∗ Reg.: regularization; C.S.: constant step-size; A.I.S.: Adaptive increasing step-size; N.I.S.:
Non-adaptive increasing step-size.

A.3 Comparison with previous compatible function approximation frameworks

Agarwal et al. [2021] study NPG with smooth policies through compatible function approxi-
mation and propose the following algorithm. Let {πθ : θ ∈ Θ} be a policy class such that
log πθ(a|s) is a β-smooth function of θ for all s ∈ S, a ∈ A. At each iteration t, update θt as

θt+1 = θt + ηwt,

with
wt ∈ argmin

∥w∥2≤W

∥∥At − w⊤∇θ log πt
∥∥

L2(dt
µ·πt) , (24)

where W > 0 and At
s = Qt

s − V t represents the advantage function. While both the
algorithms proposed by Agarwal et al. [2021] and AMPO involve regression problems, the
one in (24) is restricted to linearly approximate At with ∇θ log πt, whereas the one in Line 1
of Algorithm 1 is widely relaxed to approximate At with an arbitrary class of functions FΘ.
Additionally, (24) depends on the distribution dt

µ, while Line 1 of Algorithm 1 does not and
allows off-policy updates involving an arbitrary distribution vt. Thus our framework not only
recovers the NPG setting in Agarwal et al. [2021], but also greatly improve the performance
of the framework thanks to a much richer representation power of FΘ and the flexibility of
choosing different distributions vt in either an on-policy or an off-policy setting.

22

A.4 Benefits of the structure of AMPO compared to (11)

We provide here a setting where the optimization problem in Line 1 of Algorithm 1 inherits
curvature from the parameterization function, i.e., strong convexity, while the optimization
problem in (11) does not. Let ϕ : S×A → Rk be a feature vector and let the parameterization
class be defined as FΘ = {θ⊤ϕ : θ ∈ Θ}. For this setting and for any mirror map, the
minimization problem in Line 1 of Algorithm 1 is convex, as

∇2
θ

[∥∥θ⊤ϕ−Qt − η−1
t ∇h(πt)

∥∥2
L2(vt)

]
= 2E(s,a)∼vt

[
ϕ(s, a)ϕ(s, a)⊤] ,

and is strongly convex when E(s,a)∼vt [ϕ(s, a)ϕ(s, a)⊤] is definite positive, which is a standard
assumption in the literature on linear function approximation [Agarwal et al., 2020, 2021].
This assumption is easily satisfied. For instance, Cayci et al. [2021, Proposition 3] shows
that with vt chosen as the stationary distribution dt

µ · πt over S ×A and ϕ(s, a) ∼ N (0, Ik)
sampled as Gaussian random features, the assumption holds with high probability guarantee.
More generally, with k ≪ |S||A|, it is easy to find k linearly independent ϕ(s, a) among all
|S||A| features such that E(s,a)∼vt

[
ϕ(s, a)ϕ(s, a)⊤] has full rank.

On the contrary, one can compute the convexity condition for the optimization problem in
(11) when the policy is parameterized as log-linear and verify that it does not hold everywhere.
We refer to the attached Julia file for an example.

A.5 Future work

The results we have obtained open up several experimental questions related to the param-
eterization class and the choice of mirror map in APMO. We leave such questions as an
important direction to further support our theoretical findings.
On the other hand, our work also opens several interesting research directions in both
algorithmic and theoretical aspects.
From an algorithmic point of view, the updates in Line 1 and 2 of AMPO are not explicit.
This might be an issue in practice, especially for large scale RL problems. It would be
interesting to design efficient regression solver for minimizing the approximation error in
Line 1 of Algorithm 1. For instance, by using the dual averaging algorithm [Beck, 2017,
Chapter 4], it could be possible to replace the term ∇h(πt

s) with f t
s for all s ∈ S, to make

the computation of the algorithm more efficient. That is, it could be interesting to consider
the following variation of Line 1 in Algortihm 1:∥∥∥∥f t+1 −Qt − ηt−1

ηt
f t

∥∥∥∥2

L2(vt)
≤ εapprox. (25)

Notice that (25) has the same update as (15), however (25) is not restricted to using
the negative entropy mirror map. To efficiently solve the regression problem in Line 1 of
Algorithm 1, one may want to apply the modern variance reduction techniques [Nguyen
et al., 2017, Cutkosky and Orabona, 2019, Li et al., 2021]. This has been done by Liu et al.
[2020] for NPG method.
From a theoretical point of view, it would be interesting to derive a sample complexity
analysis for AMPO in specific settings, by leveraging its linear convergence. As mentioned
for the linear MDP [Jin et al., 2020] in Appendix A.2, one can apply the linear convergence
theory of AMPO to other structural MDPs, e.g., block MDP [Du et al., 2019a], factored
MDP [Kearns and Koller, 1999, Sun et al., 2019], RKHS linear MDP and RKHS linear
mixture MDP [Du et al., 2021], to build new sample complexity results for these settings,
since the assumptions of Theorem 4.3 do not impose any constraint on the MDP. On the
other hand, it would be interesting to explore the interaction between the Bregman projected
policy class and the expected Lipschitz and smooth policies [Yuan et al., 2022] and the
Fish-non-degenerate policies [Liu et al., 2020] to establish new improved sample complexity
results in these settings, again thanks to the linear convergence theory of AMPO.
Additionally, it would be interesting to study the application of AMPO to the offline setting.
In the main text, we have discussed how to extend Algorithm 1 and Theorem 4.3 to the offline

23

setting, where vt can be set as the state-action distribution induced by an arbitrary behavior
policy that generates the data. However, we believe that this direction requires further
investigation. One of the major challenges of offline RL is dealing with the distribution shifts
that stem from the mismatch between the trained policy πt and the behaviour policy. Several
methods have been introduced to deal with this issue, such as constraining the current policy
to be close to the behavior policy [Levine et al., 2020]. We leave introducing offline RL
techniques in AMPO as future work.
Another direction for future work is extending the policy update of AMPO to mirror
descent algorithm based on value iteration and Bellman operators, such as mirror descent
modified policy iteration [Geist et al., 2019], in order to extend existing results to the general
parametrization setting.
Finally, this work theoretically indicates that, perhaps the most important future work
of PMD-type algorithms is to design efficient policy evaluation algorithms to make the
estimation of the Q-function as accurate as possible, such as using offline data for training,
and to construct adaptive representation learning for FΘ to closely approximate Q-function,
so that ϵapprox is guaranteed to be small. This matches one of the most important research
questions for deep Q-learning type algorithms for general policy optimization problems.

B Equivalence of (9)-(10) and (11) in the tabular case

To demonstrate the equivalence between the two-step update (9)-(10) and the one-step update
(11) for policy mirror descent in the tabular case, it is sufficient to validate the following
lemma, which comes from the optimization literature. The proof of this lemma can be found in
Bubeck [2015, Chapter 4.2]. However, for the sake of completeness, we present the proof here.
Lemma B.1 (Right after Theorem 4.2 in Bubeck [2015]). Consider the mirror descent
update in (5)-(6) for the minimization of a function V (·), that is,

yt+1 = ∇h(xt)− ηt∇V (x)|x=xt , (26)
xt+1 = ProjhX (∇h∗(yt+1)). (27)

Then the mirror descent update can be rewritten as

xt+1 = argmin
x∈X

ηt⟨x,∇V (x)|x=xt⟩+Dh(x, xt). (28)

Proof. From definition of the Bregman projection step, starting from (26) we have

xt+1 = ProjhX (∇h∗(yt+1)) = argmin
x∈X

Dh(x,∇h∗(yt+1))

= argmin
x∈X

∇h(x)−∇h(∇h∗(yt+1))−
〈
∇h(∇h∗(yt+1)), x−∇h∗(yt+1)

〉
(4)= argmin

x∈X
∇h(x)− yt+1 −

〈
yt+1, x−∇h∗(yt+1)

〉
= argmin

x∈X
∇h(x)− ⟨x, yt+1⟩

(26)= argmin
x∈X

∇h(x)− ⟨x,∇h(xt)− ηt∇V (x)|x=xt⟩

= argmin
x∈X

ηt⟨x,∇V (x)|x=xt⟩+∇h(x)−∇h(xt)−
〈
∇h(xt), x− xt

〉
= argmin

x∈X
ηt⟨x,∇V (x)|x=xt⟩+Dh(x, xt),

where the second and the last lines are both obtained by the definition of the Bregman
divergence.

The one-step update in (28) is often taken as the definition of mirror descent [Beck and
Teboulle, 2003], which provides a proximal view point of mirror descent, i.e., a gradient step
in the primal space with a regularization of Bregman divergence.

24

C AMPO for specific mirror maps

In this section, we give the derivations for Example 3.2, which is based on the Karush-Kuhn-
Tucker (KKT) conditions [Karush, 1939, Kuhn and Tucker, 1951], and then provide details
about the ω-potential mirror map class from Section 3.1.

C.1 Derivation of Example 3.2

We give here the derivation of Example 3.2. Let h be the negative entropy mirror map, that is

h(πs) =
∑
a∈A

π(a|s) log(π(a|s)).

We solve the minimization problem

πθ
s = argmin

πs∈∆(A)
Dh(πs,∇h∗(ηt−1f t

s))

through the KKT conditions. We formalize it as

argmin
πs∈R|A|

Dh(πs,∇h∗(ηt−1f t
s))

subject to ⟨πs, 1⟩ = 1
π(a|s) ≥ 0 ∀ a ∈ A,

where 1 denotes a vector in R|A| with coordinates equal to 1 element-wisely. The conditions
then become

(stationarity) log(πs)− ηt−1f t
s + λs1−

∑
a∈A

ca
sea = 0,

(complementary slackness) ca
sπ(a|s) = 0 ∀ a ∈ A,

(primal feasibility) ⟨πs, 1⟩ = 1, π(a|s) ≥ 0 ∀ a ∈ A,

(dual feasibility) ca
s ≥ 0 ∀ a ∈ A,

where log(πs) is applied element-wisely, λs and (ca
s)a∈A are the dual variables, and ea is

a vector with zero entries except one non-zero entry 1 corresponding to the action a, for
all a ∈ A. It is easy to verify that the solution

πθ
s = exp(ηfθ

s)
∥exp(ηfθ

s)∥1
,

with λs = log
∑

a∈A expq(ηt−1f t(s, a)) and ca
s = 0 for all a ∈ A, satisfies all the conditions.

When fθ(s, a) = θs,a we obtain the tabular softmax policy πθ(a|s) ∝ exp(ηθs,a). When
fθ(s, a) = θ⊤ϕ(s, a) is a linear function, for θ ∈ Rd and for a feature function ϕ : S×A → Rd,
we obtain the log-linear policy πθ(a|s) ∝ exp(ηθ⊤ϕ(s, a)). When fθ : S ×A → R is a neural
network, we obtain the softmax neural policy πθ(a|s) ∝ exp(ηf(s, a)).

C.2 More on ω-potential mirror maps

In this section, we provide details about the ω-potential mirror map class from Section 3.1,
including the derivation of (12), several instantiations of ω-potential mirror map mentioned
in Section 3.1 with their derivations, and an iterative algorithm to find approximately the
Bregman projection induced by ω-potential mirror map when an exact solution is not available.
We give a different but equivalent formulation of Proposition 2 of Krichene et al. [2015].
Proposition C.1. For a ∈ (−∞, +∞] and ω ≤ 0, an increasing C1-diffeomorphism
ϕ : (−∞, a)→ (ω, +∞) is called an ω-potential if

lim
u→−∞

ϕ(u) = ω, lim
u→a

ϕ(u) = +∞,

∫ 1

0
ϕ−1(u)du ≤ ∞.

25

Let the mirror map hϕ be defined as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1
ϕ−1(u)du.

We have then that πt
s is a solution to the Bregman projection

min
π∈∆s

Projh∆(A)(∇h∗(ηt−1f t
s)),

if and only if there exist a normalization constant λs ∈ R such that
πt(a|s) = σ(ϕ(ηt−1f t(s, a) + λs)) a ∈ A,

and
∑

a∈A πt(a|s) = 1, where for all s ∈ S and σ(z) = max(z, 0) for z ∈ R.

We can now use Proposition C.1 to instantiate AMPO for mirror maps belonging to this
class. We highlight that due to the definition of the Bregman divergence, two mirror maps
that only differ for a constant term are equivalent and generate the same algorithm. We
start with the negative entropy, which leads to a closed solution for λs and therefore for the
Bregman projection.

Negative entropy Let ϕ(u) = exp(u − 1). The mirror map hϕ becomes the negative
entropy, as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1
(log(u) + 1)du =

∑
a∈A

π(a|s) log(π(a|s)),

and the associated Bregman divergence becomes the KL divergence, i.e., Dhϕ
(πs, π̄s) =

KL(πs, π̄s). Equation (15) follows from Equation (12) and the fact that ϕ−1(0) = −∞, which
means that max(ηt−1f t, ϕ−1(0)−λt

s) = ηt−1f t. As we showed in Appendix C.1, the Bregman
projection for the negative entropy has a closed form.
We next present the squared ℓ2-norm and the ϵ-negative entropy. For these two mirror maps,
the Bregman projection can be computed exactly but has no closed form.

Squared ℓ2-norm Let ϕ be the identity function. The mirror map hϕ becomes the squared
ℓ2-norm, up to a constant term, as

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1
u du = 1

2

(∑
a∈A

π(a|s)2 − 1
)

,

the associated Bregman divergence becomes the Euclidean distance, i.e., Dhϕ
(πs, π̄s) =

∥πs − π̄s∥2
2, and ∇h∗(·) is the identity function. The update in (13) follows immediately and

the projection step with the Euclidean distance becomes, for all s ∈ S,

πt+1
s = Projl2

∆(A)(∇h∗(ηtf
t+1
s)) = Projl2

∆(A)(ηtf
t+1
s) = argmin

π∈∆(A)

∥∥π − ηtf
t+1
s

∥∥2
2 , (29)

giving in Equations (13)-(14) a generalization of the projected-Q descent algorithm developed
by Xiao [2022] for tabular policies. The Euclidean projection onto the probability simplex
can be obtained exactly, as shown by Wang and Carreira-Perpinán [2013].

ϵ-negative entropy [Krichene et al., 2015] Let ϵ ≥ 0 and define the ϵ-exponential
potential as ϕ(x) = exp(x− 1)− ϵ. The mirror map hϕ becomes

hϕ(πs) =
∑
a∈A

∫ π(a|s)

1
(log(u+ϵ)+1)du =

∑
a∈A

[(π(a|s) + ϵ) ln(π(a|s) + ϵ)− (1 + ϵ) ln(1 + ϵ)] .

An exact solution to the associated projection can then be found in Õ(|A|) computations using
Algorithm 2, which has been proposed by Krichene et al. [2015, Algorithm 4]. Additionally,
following (12), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f t, 1 + log(ϵ)− λt

s)
∥∥2

L2(vt) ,

26

Algorithm 2: Bregman projection for ϵ-negative entropy
Input: vector to project x ∈ R|A|, parameter ϵ.

1 Initialize y = exp(x) element-wisely.
2 Let y(i) be the i-th smallest element of y.
3 Let i⋆ be the smallest index for which

(1 + ϵ(|A| − i + 1))y(i) − ϵ
∑
j≥i

y(j) > 0.

Set
λ =

∑
i≥i⋆ y(i)

1 + ϵ(|A| − i⋆ + 1) .

Return: the projected vector (σ (−ϵ + ya/λ))a∈A.

Algorithm 3: Bregman projection for ω-potential mirror maps
Input: vector to project x ∈ R|A|, ω-potential ϕ, precision ε.

1 Initialize

ν̄ = ϕ−1(1)−max
a∈A

xa

¯
ν = ϕ−1(1/|A|)−max

a∈A
xa

2 Define x̃(ν) = (σ(ϕ (xa + ν)))a∈A.
while ∥x̃(ν̄)− x̃(

¯
ν)∥1 > ε do

3 Let ν+ ← (ν̄ +
¯
ν)/2

4 if
∑

a∈A x̃a(ν+) > 1 then
5 ν̄ ← ν+

6 else
7

¯
ν ← ν+

8 Return x̃(ν̄)

where λt
s can be obtained through Algorithm 2.

The Bregman projection for generic mirror maps can be computed approximately in Õ(|A|)
computations through a bisection algorithm. Krichene et al. [2015] propose one such
algorithm, which we report in Algorithm 3 for completeness. We next provide two mirror
maps that have appeared before in the optimization literature, but do not lead to an exact
solution to the Bregman projection. We leave them as object for future work.

Negative Tsallis entropy [Orabona, 2020] Let q > 0 and define ϕ as

ϕq(u) =

exp(u− 1) if q = 1,[
σ
(

(q−1)u
q

)] 1
q−1 else.

The mirror map hϕq becomes the negative Tsallis entropy, that is

hϕq
(πs) =

∑
π(a|s) logq(π(a|s)),

where, for y > 0,

logq(y) =
{

log(y) if q = 1,
− yq−1

q−1 else.

If q ̸= 1 and following (12), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f t,−λt

s)
∥∥2

L2(vt) ,

27

Hyperbolic entropy [Ghai et al., 2020] Let b > 0 and define ϕ as
ϕb(u) = b sinh(u)

The mirror map hϕb
becomes the hyperbolic entropy, that is

hϕb
(πs) =

∑
a∈A

π(a|s) arcsinh(π(a|s)/b)−
√

π(a|s)2 + b2,

and, following (12), the regression problem in Line 1 of Algorithm 1 becomes

θt+1 ∈ argmin
θ∈Θ

∥∥fθ −Qt − η−1
t max(ηt−1f t,−λt

s)
∥∥2

L2(vt) .

Regarding the limitations of the ω-potential mirror map class, we are aware of two previously
used mirror maps that cannot be recovered using ω-potentials: h(x) = 1

2 x⊤Ax, for some
matrix A, which generates the Mahalanobis distance, and p-norms, i.e. h(x) = ∥x∥2

p. Note
that the case where h(x) = ∥x∥p

p can be recovered.

D Deferred proofs from Section 4.1

D.1 Proof of Lemma 4.1

Here we provide the proof of Lemma 4.1, a variant of the three-point descent lemma with the
integration of an arbitrary parameterized function, which is the key tool for our analysis of
AMPO. It is a variation of both Xiao [2022, Lemma 6] and Chen and Teboulle [1993, Lemma
3.2]. First, we recall some technical conditions of the mirror map [Bubeck, 2015, Chapter 4].

Suppose that Y ⊂ R|A| is a closed convex set, we say a function h : Y → R is a mirror map
if it satisfies the following properties:

(i) h is strictly convex and differentiable;
(ii) h is essentially smooth, i.e., the graident of h diverges on the boundary of Y , that is

lim
x→∂Y

∥∇h(x)∥ → ∞;

(iii) the gradient of h takes all possible values, that is ∇h(Y) = R|A|.

To prove Lemma 4.1, we also need the following rather simple properties, i.e., the three-point
identity and the generalized Pythagorean theorem, satisfied by the Bregman divergence. We
provide their proofs for self-containment.
Lemma D.1 (Three-point identity, Lemma 3.1 in Chen and Teboulle [1993]). Let h be a
mirror map. For any a, b in the relative interior of Y and c ∈ Y, we have that:

Dh(c, a) +Dh(a, b)−Dh(c, b) = ⟨∇h(b)−∇h(a), c− a⟩ . (30)

Proof. Using the definition of the Bregman divergence Dh, we have
⟨∇h(a), c− a⟩ = h(c)− h(a)−Dh(c, a), (31)
⟨∇h(b), a− b⟩ = h(a)− h(b)−Dh(a, b), (32)
⟨∇h(b), c− b⟩ = h(c)− h(b)−Dh(c, b). (33)

Subtracting (31) and (32) from (33) yields (30).

Lemma D.2 (Generalized Pythagorean Theorem of Bregman divergence, Lemma 4.1 in
Bubeck [2015]). Let X ⊆ Y be a closed convex set. Let h be a mirror map defined on Y. Let
x ∈ X , y ∈ Y and y⋆ = ProjhX (y), then

⟨∇h (y⋆)−∇(y), y⋆ − x⟩ ≤ 0,

which also implies
Dh (x, y⋆) +Dh (y⋆, y) ≤ Dh(x, y). (34)

28

Proof. From the definition of y⋆, which is

y⋆ ∈ argmin
y′∈X

Dh(y′, y),

and from the first-order optimality condition [Bubeck, 2015, Proposition 1.3], with

∇y′Dh(y′, y) = ∇h(y′)−∇h(y), for all y′ ∈ Y,

we have

⟨∇y′Dh(y′, y)|y′=y⋆ , y⋆ − x⟩ ≤ 0 =⇒ ⟨∇h (y⋆)−∇(y), y⋆ − x⟩ ≤ 0,

which implies (34) by applying the definition of Bregman divergence and rearranging terms.

Now we are ready to prove Lemma 4.1.
Lemma D.3 (Lemma 4.1). Let Y ⊂ R|A| be a closed convex set with ∆(A) ⊆ Y. For any
policies π ∈ ∆(A) and π̄ in the relative interior of ∆(A), any function fθ with θ ∈ Θ, any
s ∈ S and for η > 0, we have that,

⟨ηfθ
s −∇h(π̄s), πs − π̃s⟩ ≤ Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(π, π̃s),

where π̃ is induced by fθ and η according to Definition 3.1, that is, for all s ∈ S,

π̃s = Projh∆(A)
(
∇h∗(ηfθ

s)
)

= argmin
π′

s∈∆(A)
Dh(π′

s,∇h∗(ηfθ
s)). (35)

Proof. For clarity of exposition, let ps = ∇h∗(ηfθ
s). Plugging a = π̄s, b = ps and c = πs in

the three-point identity lemma D.1, we obtain

Dh(πs, π̄s)−Dh(πs, ps) +Dh(π̄s, ps) = ⟨∇h(π̄s)−∇h(ps), π̄s − πs⟩ . (36)

Similarly, plugging a = π̄s, b = ps and c = π̃s in the three-point identity lemma D.1, we
obtain

Dh(π̃s, π̄s)−Dh(π̃s, ps) +Dh(π̄s, ps) = ⟨∇h(π̄s)−∇h(ps), π̄s − π̃s⟩ . (37)

From (36), we have

Dh(πs, π̄s)−Dh(πs, ps) +Dh(π̄s, ps)
= ⟨∇h(π̄s)−∇h(ps), π̄s − πs⟩
= ⟨∇h(π̄s)−∇h(ps), π̄s − π̃s⟩+ ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩

(37)= Dh(π̃s, π̄s)−Dh(π̃s, ps) +Dh(π̄s, ps) + ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ .

By rearranging terms, we have

Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(πs, ps) +Dh(π̃s, ps) = ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ . (38)

From the Generalized Pythagorean Theorem of the Bregman divergence in Lemma D.2, also
known as non-expansivity property, and from the fact that π̃s = Projh∆(A)(ps), we have that

Dh(πs, π̃s) +Dh(π̃s, ps) ≤ Dh(πs, ps) ⇐⇒ −Dh(πs, ps) +Dh(π̃s, ps) ≤ −Dh(πs, π̃s).

Plugging the above inequality into the left hand side of (38) yields

Dh(πs, π̄s)−Dh(π̃s, π̄s)−Dh(πs, π̃s) ≥ ⟨∇h(π̄s)−∇h(ps), π̃s − πs⟩ ,

which concludes the proof with ∇h(ps) = ηfθ
s .

29

We also provide a sketch of an alternative proof for Lemma 4.1, which involves the three-point
descent lemma from Xiao [2022]. Starting from the definition of π̃, we have

π̃s = argmin
π′∈∆(A)

Dh(π′,∇h∗(ηfθ
s))

= argmin
π′∈∆(A)

h(π′)− h(∇h∗(ηfθ
s))− ⟨∇h(∇h∗(ηfθ

s)), π′ −∇h∗(ηfθ
s)⟩

= argmin
π′∈∆(A)

h(π′)− ⟨ηfθ
s , π′⟩

= argmin
π′∈∆(A)

⟨−ηfθ
s +∇h(π̄s), π′⟩+ h(π′)− h(π̄s)− ⟨∇h(π̄s), π′⟩

= argmin
π′∈∆(A)

⟨−ηfθ
s +∇h(π̄s), π′⟩+Dh(π̄s, π′), (39)

where the second and the last lines are obtained using the definition of the Bregman
divergence, and the third line is obtained using (4) (∇h(∇h∗(x∗)) = x∗ for all x∗ ∈ R|A|).
Lemma 4.1 is obtained by applying the three-point descent lemma in Xiao [2022] to (39).

D.2 Bounding errors

In this section, we will bound error terms of the type
Es∼dπ

µ,a∼πs

[
Qt(s, a) + η−1

t [∇h(πt
s)]a − f t+1(s, a)

]
, (40)

where (dπ
µ, π) ∈ {(d⋆

µ, π⋆), (dt+1
µ , πt+1), (d⋆

µ, πt), (dt+1
µ , πt)}. These error terms appear in the

forthcoming proofs of our results and directly induce the error floors in the convergence rates.

In the rest of Appendix D, let qt : S ×A → R such that, for every s ∈ S,

qt
s := f t+1

s − η−1
t ∇h(πt

s) ∈ R|A|.

So (40) can be rewritten as

Es∼dπ
µ,a∼πs

[
Qt(s, a) + η−1

t [∇h(πt
s)]a − f t+1(s, a)

]
= Es∼dπ

µ,a∼πs

[
Qt(s, a)− qt(s, a)

]
. (41)

To bound it, let (vt)t≥0 be a sequence of distributions over states and actions. By using
Cauchy-Schwartz’s inequality, we have

Es∼dπ
µ,a∼πs

[
Qt(s, a)− qt(s, a)

]
=
∫

s∈S,a∈A

dπ
µ(s)π(a | s)√

vt(s, a)
·
√

vt(s, a)(Qt(s, a)− qt(s, a))

≤

√√√√∫
s∈S,a∈A

(
dπ

µ(s)π(a | s)
)2

vt(s, a) ·
∫

s∈S,a∈A
vt(s, a)(Qt(s, a)− qt(s, a))2

=

√√√√E(s,a)∼vt

[(
dπ

µ(s)π(a | s)
vt(s, a)

)2]
· E(s,a)∼vt [(Qt(s, a)− qt(s, a))2]

≤
√

CvE(s,a)∼vt [(Qt(s, a)− qt(s, a))2],

where the last line is obtained by Assumption (A2). Using the concavity of the square root
and Assumption (A1), we have that

E
[
Es∼dπ

µ,a∼πs

[
Qt(s, a)− qt(s, a)

]]
≤
√

Cvεapprox. (42)

D.3 Quasi-monotonic updates – Proof of Proposition 4.2

In this section, we show that the AMPO updates guarantee a quasi-monotonic property, i.e.,
a non-decreasing property up to a certain error floor due to the approximation error, which

30

allows us to establish an important recursion about the AMPO iterates next. First, we recall
the performance difference lemma [Kakade and Langford, 2002] which is the second key tool
for our analysis and a well known result in the RL literature. Here we use a particular form
of the lemma presented by Xiao [2022, Lemma 1].
Lemma D.4 (Performance difference lemma, Lemma 1 in [Xiao, 2022]). For any policy
π, π′ ∈ ∆(A)S and µ ∈ ∆(S),

V π(µ)− V π′
(µ) = 1

1− γ
Es∼dπ

µ

[〈
Qπ′

s , πs − π′
s

〉]
.

For clarity of exposition, we introduce the notation

τ :=
2
√

Cvεapprox

1− γ
.

The following result characterizes the non-decreasing property of AMPO. The error bound
(42) in the Appendix D.2 will be used to prove the lemma. It is a slightly stronger result
than Proposition 4.2.
Lemma D.5. For the iterates of Algorithm 1, at each time t ≥ 0, we have

E[V t+1(µ)− V t(µ)] ≥ E
[
Es∼dt+1

µ

[
Dh(πt+1

s , πt
s) +Dh(πt

s, πt+1
s)

ηt(1− γ)

]]
− τ.

Proof. Using Lemma 4.1 with π̄ = πt, fθ = f t+1, η = ηt, thus π̃ = πt+1 by Definition 3.1
and Algorithm 1, and πs = πt

s, we have

⟨ηtq
t
s, πt

s − πt+1
s ⟩ ≤ Dh(πt

s, πt
s)−Dh(πt+1

s , πt
s)−Dh(πt

s, πt+1
s). (43)

By rearranging terms and noticing Dh(πt
s, πt

s) = 0, we have

⟨ηtq
t
s, πt+1

s − πt
s⟩ ≥ Dh(πt+1

s , πt
s) +Dh(πt

s, πt+1
s) ≥ 0. (44)

Then, by the performance difference lemma D.4, we have

(1− γ)E[V t+1(µ)− V t(µ)] = E
[
Es∼dt+1

µ

[
⟨Qt

s, πt+1
s − πt

s⟩
]]

= E
[
Es∼dt+1

µ

[
⟨qt

s, πt+1
s − πt

s⟩
]]

+E
[
Es∼dt+1

µ

[
⟨Qt

s − qt
s, πt+1

s − πt
s⟩
]]

(43)
≥ E

[
Es∼dt+1

µ

[
Dh(πt+1

s , πt
s) +Dh(πt

s, πt+1
s)

ηt

]]
−
∣∣∣E [Es∼dt+1

µ

[
⟨Qt

s − qt
s, πt+1

s − πt
s⟩
]]∣∣∣

≥ E
[
Es∼dt+1

µ

[
Dh(πt+1

s , πt
s) +Dh(πt

s, πt+1
s)

ηt

]]
− τ(1− γ),

which concludes the proof after dividing both sides by (1− γ). The last line follows from∣∣∣E [Es∼dt+1
µ

[
⟨Qt

s − qt
s, πt+1

s − πt
s⟩
]]∣∣∣ ≤

∣∣∣E [Es∼dt+1
µ ,a∼πt+1

s

[
Qt(s, a)− qt(s, a)

]]∣∣∣ (45)

+
∣∣∣E [Es∼dt+1

µ ,a∼πt
s

[
Qt(s, a)− qt(s, a)

]]∣∣∣
(42)
≤ 2

√
C1εerror = τ(1− γ), (46)

where both terms are upper bounded by
√

Cvεapprox through (42) with (dπ
µ, π) = (dt+1

µ , πt+1)
and (dπ

µ, π) = (dt+1
µ , πt), respectively.

31

D.4 Main passage – An important recursion about the AMPO method

In this section, we show an important recursion result for the AMPO updates, which will be
used for both the sublinear and the linear convergence analysis of AMPO.
For clarity of exposition in the rest of Appendix D, let

νt :=
∥∥∥∥ d⋆

µ

dt+1
µ

∥∥∥∥
∞

:= max
s∈S

d⋆
µ(s)

dt+1
µ (s)

.

For two different time t, t′ ≥ 0, let Dt
t′ denote the expected Bregman divergence between the

policy πt and policy πt′ , where the expectation is taken over the discounted state visitation
distribution of the optimal policy d⋆

µ, that is,

Dt
t′ := Es∼d⋆

µ

[
Dh(πt

s, πt′

s)
]

.

Similarly, let D⋆
t denote the expected Bregman divergence between the optimal policy π⋆

and πt, that is,
D⋆

t := Es∼d⋆
µ

[
Dh(π⋆

s , πt
s)
]

.

Let ∆t := V ⋆(µ)− V t(µ) be the optimality gap.

We can now state the following important recursion result for the AMPO method.
Proposition D.6. Consider the iterates of Algorithm 1, at each time t ≥ 0, we have

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

Proof. Using Lemma 4.1 with π̄ = πt, fθ = f t+1, η = ηt, and thus π̃ = πt+1 by Definition
3.1 and Algorithm 1, and πs = π⋆

s , we have that

⟨ηtq
t
s, π⋆

s − πt+1
s ⟩ ≤ Dh(π⋆, πt)−Dh(π⋆, πt+1)−Dh(πt+1, πt),

which can be decomposed as

⟨ηtq
t
s, πt

s − πt+1
s ⟩+ ⟨ηtq

t
s, π⋆

s − πt
s⟩ ≤ Dh(π⋆, πt)−Dh(π⋆, πt+1)−Dh(πt+1, πt).

Taking expectation with respect to the distribution d⋆
µ over states and with respect to the

randomness of AMPO and dividing both sides by ηt, we have

E
[
Es∼d⋆

µ

[
⟨qt

s, πt
s − πt+1

s ⟩
]]

+ E
[
Es∼d⋆

µ

[
⟨qt

s, π⋆
s − πt

s⟩
]]
≤ 1

ηt
E[D⋆

t −D⋆
t+1 −Dt+1

t]. (47)

We lower bound the two terms on the left hand side of (47) separately. For the first term,
we have that

E
[
Es∼d⋆

µ

[
⟨qt

s, πt
s − πt+1

s ⟩
]] (44)

≥
∥∥∥∥ d⋆

µ

dt+1
µ

∥∥∥∥
∞

E
[
Es∼dt+1

µ

[
⟨qt

s, πt
s − πt+1

s ⟩
]]

= νt+1E
[
Es∼dt+1

µ

[
⟨Qt

s, πt
s − πt+1

s ⟩
]]

+νt+1E
[
Es∼dt+1

µ

[
⟨qt

s −Qt
s, πt

s − πt+1
s ⟩

]]
(a)= νt+1(1− γ)E

[
V t(µ)− V t+1(µ)

]
+νt+1E

[
Es∼dt+1

µ

[
⟨qt

s −Qt
s, πt

s − πt+1
s ⟩

]]
(45)
≥ νt+1(1− γ)E

[
V t(µ)− V t+1(µ)

]
− νt+1τ(1− γ)

= νt+1(1− γ)E [∆t+1 −∆t]− νt+1τ(1− γ),

32

where (a) follows from Lemma D.4. For the second term, we have that

E
[
Es∼d⋆

µ

[
⟨qt

s, π⋆
s − πt

s⟩
]]

= E
[
Es∼d⋆

µ

[
⟨Qt

s, π⋆
s − πt

s⟩
]]

+ E
[
Es∼d⋆

µ

[
⟨qt

s −Qt
s, π⋆

s − πt
s⟩
]]

(b)= E[∆t](1− γ) + E
[
Es∼d⋆

µ

[
⟨qt

s −Qt
s, π⋆

s − πt
s⟩
]]

(c)
≥ E[∆t](1− γ)− τ(1− γ),

where (b) follows from Lemma D.4 and (c) follows similarly to (45), i.e., by applying (42)
twice with (dπ

µ, π) = (d⋆
µ, π⋆) and (dπ

µ, π) = (d⋆
µ, πt).

Plugging the two bounds in (47), dividing both sides by (1− γ) and rearranging, we obtain

E
[
Dt+1

t

(1− γ)ηt
+ νt+1 (∆t+1 −∆t − τ) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ τ.

From Proposition 4.2, we have that ∆t+1 −∆t − τ ≤ 0. Consequently, since νt+1 ≤ νµ by
the definition of νµ in Assumption (A3), one can lower bound the left hand side of the above
inequality by replacing νt+1 by νµ, that is,

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t − τ) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ τ,

which concludes the proof.

D.5 Proof of the sublinear convergence analysis

In this section, we derive the sublinear convergence result of Theorem 4.3 with non-decreasing
step-size.

Proof. Starting from Proposition D.6

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

If ηt ≤ ηt+1,

E
[
Dt+1

t

(1− γ)ηt
+ νµ (∆t+1 −∆t) + ∆t

]
≤ E

[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt+1

]
+ (1 + νµ)τ. (48)

Summing up from 0 to T − 1 and dropping some positive terms on the left hand side and
some negative terms on the right hand side, we have∑

t<T

E [∆t] ≤
D⋆

0
(1− γ)η0

+ νµ∆0 + T (1 + νµ)τ ≤ D⋆
0

(1− γ)η0
+ νµ

1− γ
+ T (1 + νµ)τ.

Notice that ∆0 ≤ 1
1−γ as r(s, a) ∈ [0, 1]. By dividing T on both side, we yield the proof of

the sublinear convergence

V ⋆(µ)− 1
T

∑
t<T

E
[
V t(µ)

]
≤ 1

T

(
D⋆

0
(1− γ)η0

+ νµ

1− γ

)
+ (1 + νµ)τ.

D.6 Proof of the linear convergence analysis

In this section, we derive the linear convergence result of Theorem 4.3 with exponentially
increasing step-size.

33

Proof. Starting from Proposition D.6 by dropping Dt+1
t

(1−γ)ηt
on the left hand side, we have

E [νµ (∆t+1 −∆t) + ∆t] ≤ E
[
D⋆

t

(1− γ)ηt
−

D⋆
t+1

(1− γ)ηt

]
+ (1 + νµ)τ.

Dividing νµ on both side and rearranging, we obtain

E
[
∆t+1 +

D⋆
t+1

(1− γ)νµηt

]
≤
(

1− 1
νµ

)
E
[
∆t + D⋆

t

(1− γ)ηt(νµ − 1)

]
+
(

1 + 1
νµ

)
τ.

If the step-sizes satisfy ηt+1(νµ − 1) ≥ ηtνµ with νµ ≥ 1, then

E
[
∆t+1 +

D⋆
t+1

(1− γ)ηt+1(νµ − 1)

]
≤
(

1− 1
νµ

)
E
[
∆t + D⋆

t

(1− γ)ηt(νµ − 1)

]
+
(

1 + 1
νµ

)
τ.

Now we need the following simple fact, whose proof is straightforward and thus omitted.
Suppose 0 < α < 1, b > 0 and a nonnegative sequence {at}t≥0 satisfies

at+1 ≤ αat + b ∀t ≥ 0.

Then for all t ≥ 0,
at ≤ αta0 + b

1− α
.

The proof of the linear convergence analysis follows by applying this fact with at =
E
[
∆t + D⋆

t

(1−γ)ηt(νµ−1)

]
, α = 1− 1

νµ
and b =

(
1 + 1

νµ

)
τ .

E Discussion on Assumption (A1)

Assumption (A1) encodes a form of realizability assumption for the parameterization class
FΘ, that is, we assume that for all t ≤ T there exists a function fθ ∈ FΘ such that∥∥fθ −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt) ≤ εapprox.

When FΘ is a class of sufficiently large shallow neural networks, this realizability assumption
holds as it has been shown that shallow neural networks are universal approximators [Ji
et al., 2019]. It is, however, possible to relax Assumption (A1). In particular, the condition

1
T

∑
t<T

√
E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤ √εapprox (49)

can replace Assumption (A1) and is sufficient for the sublinear convergence rate in Theorem 4.3
to hold. Equation (49) shows that the realizability assumption does not need to hold for all
t < T , but only needs to hold on average over T iterations. Similarly, the condition∑

t≤T

(
1− 1

νµ

)T −t 1
νµ

√
E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤ √εapprox (50)

can replace Assumption (A1) and is sufficient for the linear convergence rate in Theorem 4.3
to hold. Additionally, requiring, for all t < T ,

E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤

ν2
µ

T 2

(
1− 1

νµ

)−2(T −t)
εapprox (51)

is sufficient for Equation (50) to hold. Equation (51) shows that the error floor in the linear
convergence rate is less influenced by approximation errors made in early iterations, which
are discounted by the term

(
1− 1

νµ

)
. On the other hand, the realizability assumption

becomes relevant once the algorithm approaches convergence, i.e., when t ≃ T and Qt ≃ Q⋆,
as the discount term

(
1− 1

νµ

)
is applied fewer times.

34

F Discussion on the concentrability coefficients and the
distribution mismatch coefficients

In our convergence analysis, Assumptions (A2) and (A3) involve the concentrability coefficient
Cv and the distribution mismatch coefficient νµ, which are potentially large. We give extensive
discussions on them, respectively.

Concentrability coefficient Cv. As discussed in Yuan et al. [2023, Appendix H], the issue
of having (potentially large) concentrability coefficient (Assumptions (A2)) is unavoidable
in all the fast linear convergence analysis of approximate PMD due to the approximation
error εapprox of the Q-function [Cen et al., 2021, Zhan et al., 2021, Lan, 2022, Cayci et al.,
2022, Xiao, 2022, Chen and Theja Maguluri, 2022, Alfano and Rebeschini, 2022, Yuan et al.,
2023]. Indeed, in the fast linear convergence analysis of PMD, the concentrability coefficient
is always along with the approximation error εapprox under the form of Cvεapprox, which is
the case in Theorem 4.3. To not get the concentrability coefficient involved yet maintain the
linear convergence of PMD, one needs to consider the exact PMD in the tabular setting [see
Xiao, 2022, Theorem 10]. Consequently, the PMD update is deterministic and the full policy
space ∆(A)S is considered. In this setting, at each time t, it exists θt+1 such that, for any
state-action distribution vt,∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt) = 0 = εapprox,

and Cv is ignored in the convergence analysis thanks to the vanishing of εapprox. Note
that the PMD analysis in the seminal paper by Agarwal et al. [2021] does not use such a
coefficient, but a condition number instead. The condition number is controllable to be
relatively small, so that the error term in their PMD analysis is smaller than ours. However,
their PMD analysis has only a sublinear convergence rate, while ours enjoys a fast linear
convergence rate. And their proof is quite different from ours. It remains an open question
whether one can both avoid using the concentrability coefficient and maintain the linear
convergence of PMD.
Now we compare our concentrability coefficient Cv with others used in the fast linear
convergence analysis of approximate PMD [Cen et al., 2021, Zhan et al., 2021, Lan, 2022,
Cayci et al., 2021, Xiao, 2022, Chen and Theja Maguluri, 2022, Alfano and Rebeschini,
2022, Yuan et al., 2023]. Previously, as discussed in Yuan et al. [2023, Appendix H], their
concentrability coefficient Cv was the “best” known one among others in the literature. First,
theirs took the weakest assumptions on errors among Lan [2022], Xiao [2022] and Chen
and Theja Maguluri [2022] by using the ℓ2-norm instead of the L∞ supremum norm over
the approximation error εapprox. Second, it did not impose any restrictions on the MDP
dynamics compared to Cayci et al. [2021], as the concentrability coefficient of Yuan et al.
[2023] was independent to the iterates.
Indeed, Yuan et al. [2023] choose vt such that, for all (s, a) ∈ S ×A,

vt(s, a) = (1− γ)E(s0,a0)∼ν

[∞∑
t′=0

γt′
P (st′ = s, at′ = a | πt, s0, a0)

]
,

where ν is an initial state-action distribution chosen by the user. In this setting, we have
vt(s, a) ≥ (1− γ)ν(s, a).

From the above lower bound of vt, we obtain that

E(s,a)∼vt

[(
dπ

µ(s)π(a|s)
vt(s, a)

)2]
=
∫

(s,a)∈S×A

dπ
µ(s)2π(a|s)2

vt(s, a)

≤
∫

(s,a)∈S×A

1
vt(s, a) ≤

1
(1− γ) min(s,a)∈S×A ν(s, a) ,

where the finite upper bound is independent to t.
As mentioned right after Assumption (A2), the assumption on our concentrability coefficient
Cv is weaker than the one in Yuan et al. [2023, Assumption 9], as we have the full control over

35

vt while Yuan et al. [2023] only has the full control over the initial state-action distribution
ν. In particular, our concentrability coefficient Cv recovers the previous best known one in
Yuan et al. [2023] as a special case. Consequently, our concentrability coefficient Cv becomes
the ”best” with the full control over vt when other concentrability coefficients are infinite or
require strong assumptions [Scherrer, 2014].

In general, for the ratio E(s,a)∼vt

[(
dπ

µ(s)π(a|s)
vt(s,a)

)2
]

to have a finite upper bound Cv, it is

important that vt covers well the state and action spaces so that the upper bound is
independent to t. However, the upper bound 1

(1−γ) min(s,a)∈S×A ν(s,a) in Yuan et al. [2023] is
very pessimistic. Indeed, when πt and πt+1 converge to π⋆, one reasonable choice of vt is to
choose vt ∈ {d⋆

µ · π⋆, dt+1
µ · πt+1, d⋆

µ · πt, dt+1
µ · πt} such that Cv is closed to 1.

We also refer to Yuan et al. [2023, Appendix H] for more discussions on the concentrability
coefficient.

Distribution mismatch coefficient νµ. As mentioned right after (A3), we have that

max
s∈S

d⋆
µ(s)

dt
µ(s) ≤

1
1− γ

max
s∈S

d⋆
µ(s)

µ(s) := ν′
µ,

which is a sufficient upper bound for νµ. As discussed in Yuan et al. [2023, Appendix H],
1/(1− γ) ≤ ν′

µ ≤ 1/((1− γ) min
s

µ(s)).

The upper bound 1/((1 − γ) mins µ(s)) of ν′
µ is very pessimistic and the lower bound

ν′
µ = 1/(1− γ) is often achieved by choosing µ = d⋆

µ.
Furthermore, if µ does not have full support on the state space, i.e., the upper bound
1/((1− γ) mins µ(s)) might be infinite, one can always convert the convergence guarantees
for some state distribution µ′ ∈ ∆(S) with full support such that

V ⋆(µ)− E[V T (µ)] = E
[∫

s∈S

µ(s)
µ′(s)µ′(s)

(
V ⋆(s)− V T (s)

)]
≤ max

s∈S

µ(s)
µ′(s)

(
V ⋆(µ′)− E[V T (µ′)]

)
.

Then by the linear convergence result of Theorem 4.3, we only transfer the original convergence
guarantee to V ⋆(µ′)−E[V T (µ′)] up to a scaling factor max

s∈S
µ(s)
µ′(s) with an arbitrary distribution

µ′ such that ν′
µ is finite.

Finally, if dt
µ converges to d⋆

µ which is the case of AMPO through the proof of our Theorem
4.3, then maxs∈S

d⋆
µ(s)

dt
µ(s) converges to 1. This might imply superlinear convergence results as

discussed in Xiao [2022, Section 4.3]. In this case, the notion of the distribution mismatch
coefficients νµ no longer exists for the superlinear convergence analysis.
We also refer to Yuan et al. [2023, Appendix H] for more discussions on the distribution
mismatch coefficient.

G Sample complexity for neural network parameterization

We prove here Corollary 4.4 through a result by Allen-Zhu et al. [2019a, Theorem 1 and
Example 3.1]. We first give a simplified version of this result and then we show how to use it
to prove Corollary 4.4.
Consider learning some unknown distribution D of data points z = (x, y) ∈ Rd × Y, where
x is the input point and y is the label. Without loss of generality, assume ∥x∥2 = 1 and
xd = 1/2. Consider a loss function L : Rk × Y → R such that for every y ∈ Y, the function
L(·, y) is non-negative, convex, 1-Lipschitz continuous and L(0, y) ∈ [0, 1]. This includes
both the cross-entropy loss and the ℓ2-regression loss (for bounded Y).

36

Let g : R → R be a smooth activation function such that g(z) = ez, sin(z), sigmoid(z),
tanh(z) or is a low degree polynomial.
Define F ⋆ : Rd → Rk such that OPT = ED[L(F ⋆(x), y)] is the smallest population error
made by a neural network of the form F ⋆ = A⋆g(W ⋆x), where A⋆ ∈ Rk×p and W ⋆ ∈ Rp×d.
Assume for simplicity that the rows of W ∗ have ℓ2-norm 1 and each element of A∗ is less or
equal than 1.
Define a ReLU neural network F (x, W0) = A0σ(W0x + b0), where A0 ∈ Rk×m, W0 ∈ Rm×d,
the entries of W0 and b0 are i.i.d. random Gaussians from N (0, 1/m) and the entries of A
are i.i.d. random Gaussians from N (0, εA), for εA ∈ (0, 1]. We train the weights W of this
neural network through stochastic gradient descent over a dataset with N i.i.d. samples from
D, i.e., we update Wt+1 = Wt − ηgt, where E[gt] = ∇ED[L(F (x, W0 + Wt), y)].
Theorem G.1 (Theorem 1 of Allen-Zhu et al. [2019a]). Let ε ∈ (0, O(1/pk)), choose
εA = ε/Θ̃(1) for the initialization and learning rate η = Θ̃

(1
εkm

)
. SGD finds a set of

parameters such that

1
J

J−1∑
n=0

E(x,y)∼D

[
L
(

F (x; W (0) + Wt), y
)]
≤ OPT + ε

with probability 1− e−c log2 m over the random initialization, for a sufficiently large constant
c, with

size m = poly(k, p)
poly(ε) and sample complexity min{N, J} = poly(k, p, log m)

ε2 .

Theorem G.1 shows that it is possible to achieve the population error OPT by training a
two-layer ReLU network with SGD, and quantifies the number of samples needed to do so.
We make the following assumption to address the population error in our setting.
Assumption G.2. Let g : R → R be a smooth activation function such that g(z) =
ez, sin(z), sigmoid(z), tanh(z) or is a low degree polynomial. For all time-steps t, we
assume that there exists a target network F ⋆,t : Rd → Rk, with

F ⋆,t = (f⋆,t
1 , . . . , f⋆,t

k) and f⋆,t
r (x) =

p∑
i=1

a⋆,t
r,i g(⟨w⋆,t

1,i , x⟩)⟨w⋆,t
2,i , x⟩

where w⋆,t
1,i ∈ Rd, w⋆,t

2,i ∈ Rd, and a⋆,t
r,i ∈ R, such that

E
[∥∥F ⋆,t −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤ OPT.

We assume for simplicity ∥w⋆,t
1,i∥2 = ∥w⋆,t

2,i∥2 = 1 and |a⋆,t
r,i | ≤ 1.

Assumptions similar to Assumption G.2 have already been made in the literature, such as the
bias assumption in the compatible function approximation framework studied by Agarwal
et al. [2021]. The term OPT represents the minimum error incurred by a target network
parametrized as F ⋆,t when solving the regression problem in Line 1 of Algorithm 1.
We are now ready to prove Corollary 4.4, which uses Algorithm 4 to obtain an unbiased
estimate of the current Q-function. We assume to be in the same setting as Theorem G.1

Proof of Corollary 4.4. We aim to find a policy πT such that

V ⋆(µ)− E
[
V T (µ)

]
≤ ε. (52)

Suppose the total number of iterations, that is policy optimization steps, in AMPO is T .
We need the bound in Assumption (A1) to hold for all T with probability 1 − e−c log2 m,
which means that at each iteration the bound should hold with probability 1− T −1e−c log2 m.
Through Algorithm 4, the expected number of samples needed to obtain an unbiased estimate

37

Algorithm 4: Sampler for an unbiased estimate Q̂t(s, a) of Qt(s, a)
Input: Initial state-action couple (s0, a0), policy πt, discount factor γ ∈ [0, 1)

1 Initialize Q̂t(s0, a0) = r(s0, a0), the time step n = 0.
2 while True do
3 With probability γ:
4 Sample sn+1 ∼ P (· | sn, an)
5 Sample an+1 ∼ πt(·|sn+1)
6 Q̂t(s0, a0)← Q̂t(s0, a0) + r(sn+1, an+1)
7 n← n + 1
8 Otherwise with probability (1− γ):
9 break ▷ Accept Q̂sh,ah

(θ)

Output: Q̂t(s0, a0)

of the current Q-function is (1− γ)−1. Therefore, using Theorem G.1, at each iteration of
AMPO we need at most

poly(k, p, log m, log T)
ε2

approx(1− γ)
samples for SGD to find parameters that satisfy Assumption (A1) with probability 1 −
T −1e−c log2 m. To obtain (52), we need

1
1− γ

(
1− 1

νµ

)T(
1 + D⋆

0
η0(νµ − 1)

)
≤ ε

2 and
2(1 + νµ)

√
Cvεapprox

1− γ
≤ ε

2 . (53)

Solving for T and εapprox and multiplying them together, we obtain the sample complexity
of AMPO, that is

Õ

(
poly(k, p, log m)C2

v ν5
µ

ε4(1− γ)6

)
.

Due to the statement of Theorem G.1, we cannot guarantee the approximation error incurred
by the learner network to be smaller than OPT . Consequently, we have that

ε ≥ 4(1 + νµ)
√

CvOPT

1− γ
.

A similar bound can be applied to any proof that contains the bias assumption introduced
by [1].

We can obtain an improvement over Corollary 4.4 by using the relaxed assumptions in
Appendix E, in particular using the condition in (51).
Corollary G.3. In the setting of Theorem 4.3, replace Assumption (A1) with the condition

E
[
E
∥∥f t+1 −Qt − η−1

t ∇h(πt)
∥∥2

L2(vt)

]
≤

ν2
µ

T 2

(
1− 1

νµ

)−2(T −t)
εapprox, (54)

for all t < T . Let the parameterization class FΘ consist of sufficiently wide shallow ReLU
neural networks. Using an exponentially increasing step-size and solving the minimization
problem in Line 1 with SGD as in (17), the number of samples required by AMPO to find an
ε-optimal policy with high probability is Θ̃(C2

v ν4
µ/ε4(1− γ)6).

Proof. The proof follow that of Corollary 4.4. Using Theorem G.1, at each iteration t of
AMPO, we need at most

T 2

ν2
µ

(
1− 1

νµ

)2(T −t) poly(k, p, log m, log T)
ε2

approx(1− γ)

38

samples for SGD to find parameters that satisfy condition (54) with probability 1 −
T −1e−c log2 m. Summing over T total iterations of AMPO we obtain that the total number
of samples needed is∑

t≤T

T 2

ν2
µ

(
1− 1

νµ

)2(T −t) poly(k, p, log m, log T)
ε2

approx(1− γ)

= T 2

ν2
µ

(
1− 1

νµ

)2T poly(k, p, log m, log T)
ε2

approx(1− γ)
∑
t≤T

(
1− 1

νµ

)−2t

= T 2

ν2
µ

(
1− 1

νµ

)2T poly(k, p, log m, log T)
ε2

approx(1− γ)

((
1− 1

νµ

)−2(T +1)
− 1
)

((
1

1−νµ

)−2
− 1
)

≤ O
(

T 2

ν2
µ

poly(k, p, log m, log T)
ε2

approx(1− γ)

)
Replacing T and εapprox with the solutions of (53) gives the result.

At this stage, it is important to note that choosing a method different from the one proposed
by Allen-Zhu et al. [2019b] to solve Line 1 in Algorithm 1 of our paper with neural networks
can lead to alternative, and possibly better, sample complexity results for AMPO. For
example, we can obtain a sample complexity result for AMPO that does not involve a target
network using results from Ji et al. [2019] and Cayci et al. [2022], although this requires
introducing more notation and background results compared to Corollary 4.4 (since in Cayci
et al. [2022] they employ a temporal-difference-based algorithm, that is Algorithm 3 in their
work, to obtain a neural network estimate Q̂t of Qt, while in Ji et al. [2019] they provide a
method based on Fourier transforms to approximate a target function through shallow ReLU
networks). We outline below the steps in order to do so (and additional details including the
precise statements of the results we use and how we use them are provided thereafter for the
sake of completeness).
Step 1) We first split the approximation error in Assumption (A1) into a critic error
E[
√
∥Q̂t −Qt∥2

L2(vt)] ≤ εcritic and an actor error E[
√
∥f t+1 − Q̂t − η−1

t ∇h(πt)∥2
L2(vt)] ≤

εactor. In this case, the linear convergence rate in our Theorem 4.3 becomes

V ⋆(µ)− E
[
V T (µ)

]
≤ 1

1− γ

(
1− 1

νµ

)T(
1 + D⋆

0
η0(νµ − 1)

)
+ 2(1 + νµ)

√
Cv(εcritic + εactor)
1− γ

.

[We can obtain this alternative statement by modifying the passages in Appendix D.2. In
particular, writing f t+1 − Qt − η−1

t ∇h(πt) = (f t+1 − Q̂t − η−1
t ∇h(πt)) + (Qt − Q̂t) and

bounding the two terms with the same procedure in Appendix D.2 leads to this alternative
expression for the error.]
We will next deal with the critic error and actor error separately.
Step 2) Critic error. Under a realizability assumption that we provide below along with the
statement of the theorem (Assumption 2 in Cayci et al. [2022]), Theorem 1 from Cayci et al.
[2022] gives that the sample complexity required to obtain E[

√
∥Q̂t −Qt∥2

L2(dt
µ·πt)] ≤ ε is

Õ(ε−4(1− γ)−2), while the required network width is Õ(ε−2).
Step 3) Actor error. Using Theorem E.1 from Ji et al. [2019], we obtain that
E[
√
∥f t+1 − Q̂t − η−1

t ∇h(πt)∥2
L2(vt)] can be made arbitrarily small by tuning the width

of f t+1, without using further samples.
Step 4) Replacing Equation (53) with the sample complexity of the critic, we obtain that
the sample complexity of AMPO is Õ(C2

v ν5
µ/ε4(1− γ)7), which does not depend on the error

made by a target network.

39

To the best of our knowledge, this result improves upon the previous best result on the
sample complexity of a PG method with neural network parameterization [Cayci et al., 2022],
i.e., Õ(C2

v /ε6(1− γ)9).
We now provide the statements of the aforementioned results we used.
Recalling Theorem 1 in Cayci et al. [2022] and its assumptions. Consider the
following space of mappings:

Hν̄ = {v : Rd → Rd : sup
w∈Rd

∥v(w)∥2 ≤ ν̄},

and the function class:

Fν̄ =
{

g(·) = Ew0∼N (0,Id)[⟨v(w0), ·⟩I{⟨w0, ·⟩ > 0}] : v ∈ Hν̄

}
.

Consider the following realizability assumption for the Q-function.
Assumption G.4 (Assumption 2 in Cayci et al. [2022]). For any t ≥ 0, we assume that
Qt ∈ Fν̄ for some ν̄ > 0.
Theorem G.5 (Theorem 1 in Cayci et al. [2022]). Under Assumption 2 in Cayci et al.
[2022], for any error probability δ ∈ (0, 1), let

ℓ(m′, δ) = 4
√

log(2m′ + 1) + 4
√

log(T/δ),
and R > ν̄. Then, for any target error ε > 0, number of iterations T ′ ∈ N, network width

m′ >
16
(

ν̄ +
(
R + ℓ(m′, δ)

)(
ν̄ + R

))2

(1− γ)2ε2 ,

and step-size

αC = ε2(1− γ)
(1 + 2R)2 ,

Algorithm 3 in Cayci et al. [2022] yields the following bound:

E
[√
∥Q̂t −Qt∥2

L2(dt
µ·πt)IA2

]
≤ (1 + 2R)ν̄

ε(1− γ)
√

T ′
+ 3ε,

where A2 holds with probability at least 1 − δ over the random initializations of the critic
network Q̂t.

As indicated in Cayci et al. [2022], a consequence of this result is that in order to achieve
a target error less than ε > 0, a network width of m′ = Õ

(
ν̄4

ε2

)
and iteration complexity

O
(

(1+2ν̄)2ν̄2

(1−γ)2ε4

)
suffice.

The statement of Theorem 1 in Cayci et al. [2022] can be readily applied to obtain the
sample complexity of the critic.
Recalling Theorem E.1 in [3] and its assumptions Let g : Rn → R be given and define
the modulus of continuity ωg as

ωg(δ) := sup
x,x′∈Rn

{g(x)− g(x′) : max(∥x∥2, ∥x′∥2) ≤ 1 + δ, ∥x− x′∥2 ≤ δ}.

If g is continuous, then ωg is not only finite for all inputs, but moreover limδ→0 ωg(δ)→ 0.
Denote ∥p∥L1 =

∫
|p(w)|dw. Define a sample from a signed density p : Rn+1 → R with

∥p∥L1 <∞ as (w, b, s), where (w, b) ∈ R is sampled from the probability density |p|/∥p∥L1
and s = sign(p(w, b))
Theorem G.6 (Theorem E.1 in Ji et al. [2019]). Let g : Rn → R, δ > 0 and ωg(δ) be as
above and define for x ∈ Rn

M := sup
∥x∥≤1+δ

|g(x)|, g|δ(x) = f(x)I[∥x∥ ≤ 1 + δ], α := δ√
δ +

√
2 log(2M/ωg(δ))

.

40

Let Gα be a gaussian distribution on Rn with mean 0 and variance α2I. Define the Gaussian
convolution l = g|δ ∗ Gα with Fourier transform l̂ satisfying radial decomposition l̂(w) =
|l̂(w)| exp(2πiθh(w)). Let P be a probability distribution supported on ∥x∥ ≤ 1. Additionally
define

c := g(0)g(0)
∫
|l̂(w)|

[
cos(2π(θl(w)− ∥w∥2))− 2π∥w∥2 sin(2π(θl(w)− ∥w∥2))

]
dw

a =
∫

w|l̂(w)|dw

r =
√

n + 2

√
log

24π2(
√

d + 7)2∥g|δ∥L1

ωg(δ)
p := 4π2|l̂(w)| cos(2π(∥w∥2 − b))I[|b| ≤ ∥w∥ ≤ r],

and for convenience create fake (weight, bias, sign) triples

(w, b, s)m+1 := (0, c, m sign(c)), (w, b, s)m+2 := (a, 0, m), (w, b, s)m+3 := (−a, 0,−m).

Then

|c| ≤M + 2
√

n∥g|δ∥L1(2πα2)−d/2,

∥p∥L1 ≤ 2∥g|δ∥L1

√
(2π)3n

(2πα2)n+1 ,

and with probability at least 1− 3λ over a draw of ((sj , wj , bj))m
j=1 from p√√√√∥∥∥g − 1

m

m+3∑
j=1

sjσ(⟨wj , x⟩+ bj)
∥∥∥

L(P)
≤ 3ωg(δ) + r∥p∥L1√

m

[
1 +

√
2 log(1/λ)

]
.

We can then characterize the error of the actor by choosing x = (s, a), g = Q̂t + η−1
t ∇h(πt),

and f t+1 = 1
m

∑m+3
j=1 sjσ(⟨wj , x⟩+ bj). We can then make the actor error arbitrarily small

by tuning the network width m and δ (note that, since both Q̂t and f t are continuous neural
networks, g is a continuous function).

41

	Introduction
	Preliminaries
	Mirror descent

	Approximate Mirror Policy Optimization
	w-potential mirror maps

	Theoretical analysis
	Convergence for general policy parameterization
	Sample complexity for neural network parameterization

	Conclusion
	Related work
	Comparisons with other policy optimization frameworks
	Discussion on related work
	Comparison with previous compatible function approximation frameworks
	Benefits of the structure of AMPO compared to (11)
	Future work

	Equivalence of (9)-(10) and (11) in the tabular case
	AMPO for specific mirror maps
	Derivation of Example 3.2
	More on w-potential mirror maps

	Deferred proofs from Section 4.1
	Proof of Lemma 4.1
	Bounding errors
	Quasi-monotonic updates – Proof of Proposition 4.2
	Main passage – An important recursion about the AMPO method
	Proof of the sublinear convergence analysis
	Proof of the linear convergence analysis

	Discussion on Assumption (A1)
	Discussion on the concentrability coefficients and the distribution mismatch coefficients
	Sample complexity for neural network parameterization

