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ABSTRACT

The chemical reaction recommendation is to select proper reaction condition parameters for
chemical reactions, which is pivotal to accelerating chemical science. With the rapid develop-
ment of large language models (LLMs), there is growing interest in leveraging their reasoning
and planning capabilities for reaction condition recommendation. Despite their success, existing
methods rarely explain the rationale behind the recommended reaction conditions, limiting their
utility in high-stakes scientific workflows. In this work, we propose ChemMAS, a multi-agent
system that reframes condition prediction as an evidence-based reasoning task. ChemMAS
decomposes the task into mechanistic grounding, multi-channel recall, constraint-aware agen-
tic debate, and rationale aggregation. Each decision is backed by interpretable justifications
grounded in chemical knowledge and retrieved precedents. Experiments show that ChemMAS
achieves 20–35% gains over domain-specific baselines and outperforms general-purpose LLMs
by 10–15% in Top-1 similarity, while offering falsifiable, human-trustable rationales, which
establishes a new paradigm for explainable AI in scientific discovery.

1 INTRODUCTION

The progress in chemistry has long relied on the ability to design chemically valid reactions that yield scientific
insights (Tu et al., 2023; Ismail et al., 2022). Central to this task is selecting proper reaction condition parameters,
such as solvent, temperature, catalysts, and reagent ratios, which are pivotal to reaction success, selectivity, and
scalability (Ball et al., 2025; Taylor et al., 2023). The traditional approach involves extensive human labor to
explore the chemical reaction space, which cannot satisfy the growing demand for efficient and safe chemical
synthesis (Lyall-Brookes et al., 2025; Ali et al., 2024; Lee et al., 2025). Recent advances in deep learning and data-
driven modeling have opened up new opportunities for reaction recommendation, enabling automated exploration
of reaction space and the discovery of novel, scalable synthetic routes with minimal manual intervention (Ali
et al., 2024; Liu et al., 2023). Early work typically trains relatively small-scale models, such as graph neural
networks (Wu et al., 2020) and Transformers (Vaswani et al., 2017), from scratch, achieving strong performance
when abundant labeled data are available (Wang et al., 2023).

With the rapid development of large language models (Naveed et al., 2025; Zhao et al., 2023) (LLMs), there has
been a growing interest in leveraging their powerful reasoning and planning abilities for reaction condition rec-
ommendation (Bran et al., 2025). Current LLM-based approaches can be broadly categorized into retrieval-based
(Zhang et al., 2024b; Chen et al., 2023) and reasoning-based approaches. Retrieval-based approaches search for
similar reactions from external databases and transfer their conditions to the query reaction, which is usually en-
hanced by learned molecular embeddings or unsupervised chemical priors to improve retrieval quality (Andronov
et al., 2023). In contrast, reasoning-based approaches directly prompt or fine-tune LLMs to infer suitable reaction
conditions from molecular structures or textual descriptions (Qian et al., 2023; Zhou et al., 2025), and achieve
improved zero-shot and few-shot generalization capabilities.

However, despite their success in predicting plausible reaction conditions, these approaches rarely address the
deeper scientific question of why such conditions are appropriate. In the context of scientific discovery, under-
standing why is arguably more critical than merely predicting what. A reliable system should not only propose
a solvent or temperature but also provide a mechanistic justification: Which functional group governs the reac-
tivity? What prior experimental evidence supports this choice? Which constraints exclude alternative reagents
or solvents? Without such explanatory reasoning, models risk being opaque black boxes, limiting their utility in
high-stakes scientific workflows.

To tackle this challenge, we introduce ChemMAS, a multi-agent system that treats condition selection as a reason-
ing task grounded in chemical knowledge, mechanistic constraints, and peer deliberation. ChemMAS decomposes
the problem into four collaborative stages. It first grounds chemical reactivity via mechanistic analysis, where a
general chemist agent parses SMILES to identify functional groups, balance stoichiometry, and infer plausible by-
products. The system then retrieves condition exemplars through multichannel queries over a structured reaction
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Figure 1: Overview of ChemMAS. A collaborative multi-agent system for evidence-based reaction-condition rea-
soning from SMILES inputs. ChemMAS demonstrates strong versatility and delivers state-of-the-art performance
on reaction condition reasoning.

database. These candidates are refined via a tournament-style elimination process, in which agent panels conduct
pairwise comparisons using memory-informed multi-step reasoning. Finally, ChemMAS aggregates rationales for
each decision by combining mechanistic plausibility, retrieved evidence, and constraint checks into interpretable
justifications.

By shifting from mere top-k ranking to interpretable, evidence-backed reasoning, ChemMAS offers a new
paradigm: one that is not only predictive but also justifiable, auditable, and suitable for closed-loop experimen-
tation. In our evaluation, ChemMAS outperforms specialized chemical models (e.g., RCR (Gao et al., 2018),
Reagent Transformer (Andronov et al., 2023)) by 20-30% Top-1 similarity and surpasses leading general-purpose
LLMs (e.g., GPT-5, Gemini 2.5) by 10-15% on average, validating its effectiveness and robustness.

Our contributions are threefold:

• We reformulate reaction condition recommendation as evidence-based chemical reaction condition rea-
soning, requiring models to output not only “what”-level conditions but also “why”-level evidence.

• We introduce ChemMAS, a multi-agent system that couples chemistry-aware tool calling with multi-
channel recall, multi-step mechanistic reasoning under constraint verification, and debate-based aggre-
gation, producing interpretable, falsifiable condition reasoning.

• We benchmark ChemMAS against specialized chemical models and cutting-edge general-purpose LLMs,
showing state-of-the-art performance with up to 30-point gains in Top-1 similarity and robust generaliza-
tion across diverse condition types.

2 CHEMMAS

2.1 PROBLEM DEFINITION

Unlike the existing reaction condition recommendation, we formalize evidence-based reaction condition reasoning
as follows. An input reaction is x = (R,P, I) with reactants R, products P , and optional context I. A condition
configuration is a structured object c ∈ C, where C may mix discrete and continuous factors. The system returns
K configurations Ĉ = {c1, . . . , cK} and a rationale for each ρ(c) = (M,S,E,Π) comprising domain reasoning
M , verifiable checks S, aligned evidence E, and a concise derivation Π. Validity is

Valid
(
ρ(c);x

)
= ⊮[Constr(S) ∧ Align(E;x, c) ≥ δ ∧ Coherent(Π,M,E)] . (1)

Here, Constr(S) is true when all hard checks in S pass. Align(E;x, c) ∈ [0, 1] scores how well the evidence E
supports (x, c) using signals such as reaction-type matches, functional-group overlap, MCS alignment, or learned
embeddings, with δ as a fixed threshold. Coherent(Π,M,E) verifies that the derivation Π is logically consistent
with the mechanistic summary M and the evidence E. The indicator ⊮ returns 1 only when all criteria hold. The
objective is

max
Ĉ,ρ

∑
c∈Ĉ

u(c;x) + λDiv(Ĉ) s.t. |Ĉ| = K, Valid = 1 ∀c. (2)

The first term accumulates a success proxy u over selected configurations, where u may be a calibrated yield pre-
dictor, a feasibility score, or a learned pairwise preference aggregator. The diversity term Div promotes coverage
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Figure 2: Architecture of ChemMAS. The left side shows how the General Chemist processes SMILES and
Multi-Channel Recall retrieves reaction conditions from the Reaction Base. On the right, candidate conditions are
paired and evaluated through Multi-Agent Debate, where four agents with Multi-Step Reasoning select the top-50
conditions via Tournament Selection.

across condition dimensions to avoid mode collapse, λ controls the trade-off between utility and diversity. The
constraints enforce a fixed budget K and require every selected configuration to be valid, upgrading recommenda-
tion to reasoning by demanding justified and verifiable outputs. Classical recommendation optimizes u only. Our
task requires each proposed c to carry a falsifiable, evidence-aligned certificate ρ(c).

2.2 OVERVIEW

As illustrated in Figure 2, ChemMAS realizes the proposed reasoning framework through a multi-stage agent-
based pipeline, with intermediate representations stored in a shared memory. The process begins with a General
Chemist that parses the input reaction (R,P) using domain-specific tools to extract mechanistic signals, align
stoichiometry, and predict reaction type. Outputs are structured into a Reaction Report written to memory. Con-
dition hypotheses are generated via the Multi-Channel Recall module, which independently queries a historical
condition database using reaction type, reactant, and product features, followed by combinatorial synthesis into
candidate sets of similar conditions. The Tournament Selection phase ranks these candidates through pairwise
comparisons conducted by specialized agents, each focusing on one condition dimension (e.g., catalyst, solvent,
reagent) under context-aware constraints. Finally, each agent engages in Multi-Step Reasoning over memory and
retrieved evidence, and the Multi-Agent Debate aggregates these judgments via majority voting to produce K
verified configurations {c1, . . . , cK}, each paired with a rationale ρ(c).

2.3 GENERAL CHEMIST

Given a chemical reaction specified by Reactant SMILES R = {ri} and Product SMILES P = {pj}, the General
Chemist (AGen) extracts mechanistically informative priors for downstream condition prediction. The General
Chemist agent orchestrates three tools, including Functional Group Tagger, Constraint Engine, and Chemical
Knowledge Base, to (i) identify main functional groups, (ii) infer balanced stoichiometry and by-products, and
(iii) retrieve reaction-type evidence. All outputs are written to Memory.
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Functional Group Tagger. A curated library L = {(namek,SMARTSk)} of common organic motifs (e.g.,
acyl chlorides, amines, alcohols, heteroaromatics) is used to match each ri via SMARTS substructure search,
yielding F(ri). The union FR =

⋃
i F(ri) is then ranked by role salience considering electrophile/nucleophile

tags, activation levels, and motif frequency across reactants. The top-ranked entries are designated as the Main
FG set and stored in Memory with atom indices for downstream reference.

Constraint Engine. Reactant and product molecular graphs are canonicalized (including implicit hydrogens),
aligned by maximum common substructure to derive an atom mapping. An integer linear program computes
stoichiometric coefficients ν = (νR, νP , νaux). Changes on mapped atoms, combined with heuristic leaving-
group rules, are used to enumerate neutral species B, from which the most parsimonious by-product hypothesis is
selected. Both the balanced equation and consistency diagnostics are written to Memory.

Chemical Knowledge Base. Query templates built from FR, product scaffolds, and molecular identifiers are
used to retrieve supporting evidence from public repositories (e.g., PubChem) and a locally indexed mirror. Re-
trieved exemplars and co-occurrence statistics yield signal features sckb = {stype, srole, sbyprod}, which support
reaction type classification and by-product confirmation. The resulting labels, along with citation metadata, are
stored in Memory for use in later reasoning stages.

2.4 MULTI-CHANNEL RECALL

We maintain a structured Reaction Base D = {(τn, rn,pn, cn)}Nn=1, where each entry contains the reaction type
τn, molecular representations of reactants rn and products pn, and a condition triple cn = (cat, sol, reag). Given
the current reaction context (τ̂ ,R,P) from Memory, we perform three parallel queries including type-, reactant-,
and product-centric, to obtain candidate index sets St,Sr,Sp (exact type match for St, top-k nearest neighbors by
functional-group, MCS, and embedding accuracy for Sr and Sp). Without any scoring or rank fusion, an entry is
admitted into Matched Conditions if it hits on any of the three tags. We define the unified retrieval result as the
deduplicated union:

Smatched = dedup(St ∪ Sr ∪ Sp) , (3)
and collect {cn : n ∈ Smatched} as experience-driven condition proposals. Optional feasibility filters, e.g.,
mass/charge balance, known by-product constraints, can be applied to screen out invalid entries. To promote
diversity, we construct Similar Conditions via applying controlled slot-level recombination Π(c) that replaces one
or two elements of c with high co-occurrence alternatives conditioned on (τ̂ ,FR), while removing infeasible or
near-duplicate combinations. The overall candidate pool is the truncated union:

C = truncate5000
(
Smatched ∪ Ssimilar

)
, (4)

which is forwarded to downstream selection and debate.

2.5 CANDIDATE PAIRING AND TOURNAMENT SELECTION

We refine the initial pool of 5,000 Candidate Conditions into a final Top-50 via a tournament-style knock-
out that emphasizes head-to-head preference (Liu et al., 2025) under comparable context rather than brittle
global scoring. Let C = {ci}5000i=1 . We apply a random permutation π and form disjoint pairs P(0) =
{(cπ(1), cπ(2)), . . . , (cπ(4999), cπ(5000))}. In round t, each pair (a,b) ∈ P(t) is adjudicated by an agent panel,
and the winner is determined by majority vote:

win(a,b) = arg max
o∈{a,b}

∑
j

⊮[dj = o], (5)

with a confidence-sum tie-break when necessary. Winners form W(t) = {win(a,b)}, which is reshuffled and
re-paired to yield P(t+1) = pair(shuffle(W(t))). Iteration stops when |W(T )| = 50. We prefer this pairing-and-
knockout protocol to global scoring since absolute scores are difficult to calibrate across heterogeneous condition
sets and amplify noise in near-ties; head-to-head comparison avoids global calibration, anchors judgments in
matched contexts, and affords linear-time selection with natural parallelism.

2.6 MULTI-AGENT DEBATE

Multi-Step Reasoning. For a candidate option o ∈ {a,b}, each agent AFull,ACat,ASol,ARea executes an
evidence-seeking chain. The agent parses the Memory Reaction Report (main functional groups, by-product,
reaction type) to extract keywords κj , queries the Chemical Knowledge Base to obtain support Θ(0)

j (o), and
composes an initial assessment

Initj(o) = LLM
(
κj , Θ

(0)
j (o), structured format

)
. (6)
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Across micro-rounds u = 0, . . . , U − 1, the agent refines its stance by reading peer summaries from the conversa-
tion buffer and re-querying when uncertainty is detected:

Dec
(u+1)
j (o) = Φ

(
Dec

(u)
j (o), Peers(u), Θ

(u+1)
j (o)

)
, (7)

where Φ(·) integrates new citations, Constraint-Engine checks (e.g., base required to capture HCl), and potential
failure modes. Upon convergence or budget exhaustion, the agent outputs a final decision dj ∈ {a,b} with
rationale saved to Memory.

Majority Voting. After each agent completes Multi-Step Reasoning for both a and b, the panel engages in a
structured debate: agents post final assessments and key citations to a shared Memory board, while a designated
facilitator enforces turn-taking and prompts resolution of conflicts (e.g., solvent polarity vs. nucleophile strength).
The pairwise outcome is determined by majority voting as in

win(a,b) = arg max
o∈{a,b}

∑
j

⊮[dj = o], (8)

with confidence-sum tie-breaks if needed. The winning option advances to the next tournament round, losers are
eliminated, and iterating over reshuffled winners progressively reduces the 5k candidates to the Top-50.

3 TWO-STAGE MULTI-TOOL COLLABORATIVE TRAINING FRAMEWORK

3.1 CHEMICAL TEACHING

We adopt a cold-start Supervised Fine-Tuning (SFT) recipe to endow the backbone LLM with initial Tool-
Integrated Reasoning (TIR) (Dong et al., 2025) for chemical condition judgment. Given training pairs (xi, yi), we
apply the standard Supervised Fine-tuning objective on the backbone model Pθ with parameters θ:

L(θ) = −
∑

(xi,yi)

logPθ(yi | xi), (9)

where xi denotes the input prompt containing a reaction and paired candidate conditions, and yi is a structured
target consisting of (i) yri : a step-wise chain that incorporates tool invocation logic and special tokens. (ii)
yai : a concise Judgement section that independently critiques each response and declares the preferred option.
The reasoning trajectory integrates two types of tools, namely Chemical Knowledge Base searching and Memory
searching, serialized in special formats (e.g., <search> ... </search> , <memory> ... </memory> ), enabling
the model to learn the fundamental rules of tool invocation during the SFT process. Ultimately, this process yields
a cold-start LLM π̂θ that learns when and how to invoke chemical tools, thereby establishing an initial capability
for TIR in chemistry.

3.2 TOOL INCENTIVIZATION

After obtaining the cold-start model π̂θ via SFT, we apply tool incentivization RL to align the policy with both
answer correctness and collaborative tool usage, obtaining πRL

θ .

Hierarchical Reward. Given a valid format, we augment task accuracy Acc with a multi-tool bonus rM when
both tools appear (Dong et al., 2025), otherwise we down-weight:

R =


max(Acc + rM , Acc), Format ok and Acc > 0,

0, Format ok and Acc = 0,

−1, Otherwise,

rM =

{
0.1, ∃ ( <search> & <memory> ),

0, otherwise.

(10)

This explicitly rewards combined tool use without sacrificing correctness.

Tool-Incentivization RL. For each query q and tool-augmented output o, we adopt Group Relative Policy Opti-
mization (GRPO) (Shao et al., 2024) as our RL algorithm, which estimates the baseline using a group of rollouts.
Concretely, we sample G rollouts {oi}Gi=1, compute group-normalized advantages with a group baseline, and
optimize

LGRPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
(
ρi,tÂi,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Âi,t

)
− βDKL

[
π̂θ ∥ π̂ref

] , (11)
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Figure 3: Two-stage Multi-tool Collaborative Training Framework of ChemMAS. Chemical Teaching uses SFT
for cold-start training, enabling the LLM to master TIR, and Tool Incentivization employs RL to align the model’s
policy with both answer correctness and collaborative tool usage.

where

ρi,t(θ) =
π̂θ(oi,t | q, oi,<t)

π̂old(oi,t | q, oi,<t)
, (12)

ϵ controls PPO clipping, β weights the KL regularization to the fixed reference π̂ref , and Âi,t denotes the advantage
normalized with respect to the group baseline.

4 EXPERIMENTAL SETTINGS

4.1 TRAINING AND EVLUATION SETTING

All agents in ChemMAS are initialized from the same backbone, Qwen3-8B-Instruct, and are trained under a
unified Two-stage Multi-tool Collaborative Training Framework that applies SFT and RL; while the optimization
protocol is shared, the learning objectives and accessible tools differ across agents. We independently trained two
distinct models: one for the AGen, and another for the multi-agent system comprising AFull, ACat, ASol, ARea.
More training details are in the Appendix.

We measure performance using Top-k Similarity, defined as the maximum Tanimoto similarity between the ground
truth and top-k predicted candidates, averaged over a composite of molecular fingerprints (Path-based, MACCS,
Morgan). This metric reflects the best structural match retrieved by the model. Details are in the Appendix.

4.2 DATASETS

We curate a private dataset of organic reactions, consisting of 544,591 entries represented as reaction equations in
SMILES format. For each entry, the reactants and products are defined as the input, while the reaction conditions,
including catalyst1, solvent1, solvent2, reagent1, and reagent2, are defined as the output. Based on this setting,
we construct question–answer pairs and split the dataset into training, validation, and test sets with a ratio of 8:1:1.

Furthermore, we incorporated the RCR subset of ChemCoTBench (Li et al., 2025) as a lightweight public bench-
mark for small-scale evaluation. This subset of 90 high-quality, well-structured reaction–condition QA instances
allows us to assess system generalization and stability under distribution shift. Further details on the private dataset
and the ChemCoTBench-RCR subset are provided in the Appendix.

5 RESULTS AND DISCUSSIONS

5.1 MAIN RESULTS

We assessed our proposed method, ChemMAS, against a selection of current models. We compared with special-
ized chemical models including RCR (Gao et al., 2018), Reagent Transformer (Andronov et al., 2023), and MM
RCR (Zhang et al., 2024b), which represent the latest advances in reaction-specific prediction. In addition, we
benchmarked against general-purpose large language models (LLMs), such as Qwen3-235B-A22B (Yang et al.,

6



348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405

Under review as a conference paper at ICLR 2026

Reaction Report

Model Output

Question 
Construction

Question

LLM as Judge
Reference

Based on the structural changes from reactants to product, 
why is Condition A insufficient for this transformation, 
making Condition B the necessary choice?

Choices:
A. Condition A creates an environment that is too basic, leading 
to the decomposition of the hydrazine moiety. 
B. The reaction requires the reduction of the nitro group (-NO2) 
to an amino group, and Condition A lacks a reducing agent or 
hydrogenation catalyst. 
C. The solvent DMF in Condition A will undergo a side reaction 
with diphenyl N-cyanocarbonimidate, inhibiting ring closure. 
D. DBU acts as a nucleophile that preferentially reacts with the 
N-cyanocarbonimidate, deactivating the electrophile.

✔(B)

The model gets a score!

LLM-score Pipeline

Figure 4: Model Interpretability Evaluation and Scoring Methodology. (Left) Accuracy of ChemMAS outputs
compared to human expert annotations. (Center) Human alignment performance comparison; blue bars indicate
LLM-Scores and green bars indicate BLEU-4 scores. (Right) Schematic representation of the LLM-Score pipeline
and the question-answering based evaluation workflow.

2025), GPT5 (OpenAI), Claude 3.7 Sonnet (Anthropic, 2024), DeepSeek-R1 (Guo et al., 2025), and Gemini2.5-
Pro (Comanici et al., 2025), which epitomize the cutting edge in general reasoning and knowledge transfer.

Table 1: Generalization evaluation on ChemCoTBench.
Top-k similarity (%) for k ∈ {1, 5, 10}. The best and
second-best results are bolded and underlined. Green
values in parentheses show relative improvements over
the second-best results.

Top-k Similarity (%)

Model Catalyst Solvent Reagent

1 5 10 1 5 10 1 5 10

Zero-shot LLMs
Qwen3-235B-A22B 40.1 53.1 58.6 36.4 41.1 52.9 36.4 50.2 58.7
GPT5 41.9 59.2 66.1 44.1 57.5 65.2 40.1 55.1 61.1
Claude3.7-Sonnet 38.5 56.2 59.1 40.4 52.1 61.2 34.3 48.0 54.3
DeepSeek-R1 39.7 55.6 62.0 38.4 48.3 56.3 35.2 47.6 55.4
Gemini2.5-Pro 45.6 62.1 69.5 42.1 58.6 71.2 38.9 52.1 59.8

ChemMAS 62.1 68.3 76.1 57.8 66.5 76.8 51.2 59.1 67.7
(+16.5) (+6.2) (+6.6) (+13.7) (+7.9) (+5.6) (+11.1) (+4.0) (+6.6)

As shown in Table 2, ChemMAS surpasses both spe-
cialized chemical models and state-of-the-art LLMs
across all reaction types and Top-k settings. It achieves
relative Top-1 similarity improvements ranging from
70% to over 90% when compared to domain-specific
baselines such as RCR, Reagent Transformer, and MM
RCR. Even against top-tier general-purpose LLMs like
GPT-5 and Gemini 2.5-Pro, ChemMAS yields consis-
tent relative gains of 15–25% in Top-1 similarity, un-
derscoring its strength in fine-grained mechanistic rea-
soning.

As shown in Table 2, ChemMAS surpasses both spe-
cialized chemical models and state-of-the-art LLMs
across all reaction types and Top-k settings. It achieves
relative Top-1 similarity improvements ranging from
70% to over 90% when compared to domain-specific
baselines such as RCR, Reagent Transformer, and MM RCR. Even against top-tier general-purpose LLMs like
GPT-5 and Gemini 2.5-Pro, ChemMAS yields consistent relative gains of 15–25% in Top-1 similarity, underscor-
ing its strength in fine-grained mechanistic reasoning.

5.2 GENERALIZATION EVALUATION ON OUT-OF-DISTRIBUTION DATA

To rigorously evaluate the generalization capability of our framework and assess chemical reasoning in out-of-
distribution (OOD) scenarios, we conducted additional experiments on ChemCoTBench, a standardized bench-
mark. The primary objective of this experiment is to verify that ChemMAS does not merely rely on retrieving
near-duplicate samples from the knowledge base, but truly possesses the ability to perform robust reasoning on
novel reaction types.

Specifically, in the challenging Top-1 setting, as shown in Table 1, ChemMAS achieves a significant accuracy
advantage. For catalyst prediction, ChemMAS attains an accuracy of 62.1%, surpassing the second-best model
(Gemini 2.5-Pro) by a margin of 16.5%. Similarly, for solvent and reagent prediction, ChemMAS outperforms
the strongest competitor (GPT5) by 13.7% and 11.1%, respectively. These substantial performance gains on
OOD data demonstrate that our ChemMAS framework effectively generalizes beyond the training distribution,
exhibiting fine-grained mechanistic reasoning rather than relying solely on memory-based retrieval.

5.3 EVALUATION OF MODEL INTERPRETABILITY

To ensure the interpretability of ChemMAS, we conducted a two-level evaluation focusing on mechanistic ground-
ing and reasoning quality. First, we validated the intermediate outputs of the General Chemist against human
ground truth (Figure 4, Left). The agent demonstrates high reliability, achieving accuracies of 95.8% (MainFG),
90.2% (By-product), and 92.5% (Reaction Type), consistently surpassing the 90% threshold. This high alignment
confirms that the system builds its downstream reasoning on a correct and verifiable mechanistic understanding.
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Table 2: Main results on the private dataset. We report the Top-k similarity (%) across five reaction condition
types: catalyst, solvent1, solvent2, reagent1, and reagent2. Results are evaluated at k ∈ {1, 5, 10}. The best and
second-best results are bolded and underlined. Green values in parentheses indicate relative improvements over
the second-best results.

Top-k Similarity (%)

Model Catalyst Solvent1 Solvent2 Reagent1 Reagent2

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

Pretrained Models
RCR 40.3 52.6 60.7 49.9 62.1 68.5 45.3 52.8 60.3 50.1 56.2 63.3 36.4 43.3 44.9
Reagent Transformer 35.3 49.3 56.6 38.2 46.3 52.3 37.7 46.4 54.3 46.3 61.3 64.2 37.9 40.1 47.2
MM RCR 43.4 60.1 75.9 53.7 70.7 73.7 49.3 56.3 65.6 55.7 65.2 71.6 40.2 56.3 59.6

Zero-shot LLMs
Qwen3-235B-A22B 55.4 75.2 77.9 64.0 70.6 73.7 48.4 58.6 64.2 68.3 76.2 82.7 44.2 57.7 60.2
GPT5 62.7 74.2 83.2 73.7 83.7 86.2 65.9 74.3 83.6 67.2 86.9 90.1 68.4 84.9 86.1
Claude3.7-Sonnet 43.6 52.9 60.1 46.0 55.7 58.7 39.2 45.7 53.9 52.3 63.9 67.1 46.2 52.3 54.7
DeepSeek-R1 52.8 69.4 73.2 67.2 73.5 78.1 45.2 54.9 62.2 60.4 71.4 75.7 53.6 67.6 72.3
Gemini2.5-Pro 63.4 79.4 80.5 68.0 83.6 86.4 63.1 74.0 78.6 64.3 82.6 90.1 63.7 76.8 82.2

ChemMAS 78.1 92.3 96.3 85.4 93.9 96.9 76.3 83.2 93.1 88.3 93.6 94.3 73.6 85.2 87.7
(+14.7) (+12.9) (+13.1) (+11.7) (+10.2) (+10.5) (+10.4) (+8.9) (+9.5) (+20.0) (+6.7) (+4.2) (+5.2) (+0.3) (+1.6)

Table 3: Ablation on different components in ChemMAS. The best and second-best results are bolded and
underlined.

Top-k Similarity (%)

Method Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

Memory
w/o Main FG 66.7 82.6 87.6 65.9 76.3 82.7 63.1 70.5 76.8 64.1 76.9 87.6 60.7 65.7 72.3
w/o By-Product 70.3 88.4 90.1 78.4 84.1 89.6 69.7 76.0 85.9 74.5 82.8 90.1 68.2 74.9 81.6
w/o Reaction Type 74.6 88.6 92.5 82.4 91.6 93.8 73.8 78.6 86.9 81.6 90.3 92.0 70.0 78.1 85.3

w/o Multi-Agent Debate 65.7 77.9 80.1 66.2 74.1 80.3 58.3 68.2 74.6 62.9 75.6 80.1 52.6 62.0 69.8
Framework w/o Multi-Step Reasoning 62.4 79.8 83.5 70.5 79.3 87.5 62.5 72.5 81.3 69.1 84.3 87.2 61.3 72.5 79.8

w/o Candidate Pairing 74.1 89.7 92.6 81.6 90.1 92.5 72.8 80.4 89.8 84.2 89.3 91.5 71.4 79.4 82.8

ChemMAS 78.1 92.3 96.3 85.4 93.9 96.9 76.3 83.2 93.1 88.3 93.6 94.3 73.6 85.2 87.7

Building on this foundation, we assessed the quality of the generated reasoning trajectories using a dual-metric
framework comprising BLEU-4 and a semantic LLM-Score (Figure 4, Right). The LLM-Score employs an
“LLM-as-a-Judge” mechanism to verify if the generated rationale logically supports expert-derived QA pairs. As
shown in Figure 4 (Center), ChemMAS significantly outperforms general-purpose LLMs, achieving a superior
LLM-Score of 92.8 compared to the 62.5–77.2 range of baselines like DeepSeek-R1 and GPT-5. This substantial
gap, alongside a BLEU-4 score of 0.26, demonstrates that ChemMAS generates scientifically sound explanations
rather than merely plausible text.

5.4 GENERALIZATION EVALUATION ON OUT-OF-DISTRIBUTION DATA

5.5 ADDITIONAL QUANTITATIVE ANALYSIS

Ablation Studies. We conducted an ablation study to analyze the contribution of different components in Chem-
MAS. The ablation settings are as follows: (1) w/o Main FG, w/o By-Product, and w/o Reaction Type denote
removing the corresponding elements from the Memory module; (2) w/o Multi-Agent Debate replaces multi-
agent collaboration with a single-agent reasoning process, thereby eliminating conversational exchanges; (3) w/o
Multi-Step Reasoning removes the iterative evidence-based reasoning chain within each agent, such that agents
can only rely on prior knowledge and inter-agent debate without tool invocation; (4) w/o Candidate Pairing dis-
cards the pairwise elimination mechanism for candidate conditions, instead applying a global scoring and ranking
procedure to directly select the top-50 candidates. As illustrated in Table 3, removing key components leads to
substantial performance drops, underscoring their critical role in ChemMAS. Specifically, removing Main FG
from the Memory module results in a significant decrease in performance, with an average drop of +8.4% across
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Table 4: Ablation study on the SFT, RL, and specific components of the hierarchical reward function, including
Acc and rM . The best and second-best results are bolded and underlined.

Top-k Similarity (%)

Training
Framework

Catalyst Solvent 1 Solvent 2 Reagent 1 Reagent 2

1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

w/o RL 70.6 88.3 90.4 82.6 89.4 90.5 71.2 80.4 88.5 84.1 87.5 90.2 70.2 82.3 84.5
w/o SFT 67.9 84.3 90.5 81.3 84.6 88.4 72.6 78.1 87.4 79.2 83.5 91.9 67.7 80.9 83.2
w/o Acc 72.6 90.8 93.7 84.1 91.8 92.1 76.0 81.6 91.3 86.7 90.1 92.0 72.5 84.1 86.0
w/o rM 71.9 89.5 91.2 83.8 91.5 91.0 73.5 81.5 88.7 84.6 88.6 90.8 71.6 82.9 84.9

SFT+RL 78.1 92.3 96.3 85.4 93.9 96.9 76.3 83.2 93.1 88.3 93.6 94.3 73.6 85.2 87.7
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Figure 5: Multi-agent ablation: Top-1 similarity improvements across Catalyst, Solvent1/2, and Reagent1/2 when
adding specialized agents on top of AGen+AFull.

all reaction conditions, highlighting the crucial role of functional group extraction and analysis in reaction con-
dition prediction. Similarly, removing Multi-Step Reasoning causes an average similarity decrease of 12.3%,
underscoring the importance of evidence-based multi-round reasoning.

To evaluate our framework, we ablated SFT, RL, and specific hierarchical reward components. As shown in
Table 4, removing SFT or RL significantly degrades Top-k Similarity across all conditions. Notably, excluding
SFT causes a larger drop than removing RL, underscoring the importance of SFT for initialization. We further
investigated the reward terms in Eq. (10) by removing task accuracy (Acc) and the multi-tool bonus (rM ). Results
show that ablating rM impairs performance, validating the explicit reward for combined tool usage. Similarly,
excluding Acc degrades results, confirming that prioritizing correctness is essential. These findings validate our
two-stage framework and hierarchical reward design, where all components play complementary roles.

Analysis of Multi-Agent Collaboration. To assess the utility and synergy of different agents, we evaluate com-
binations built on the base AGen+AFull, which are listed in Figure 5. Introducing specialized agents yields
improvements. Specifically, ACat enhances performance on Catalyst, with an average Top-1 increase of 8.5%.
ASol shows strong contributions on Solvent1/2, with an average Top-1 gain of 11.6%. ARea provides the largest
gains on Reagent1/2, with an average Top-1 increase of 18.4%. When all three specialized agents are incorpo-
rated, the full system achieves macro-average Top-1 increase of 16–19% across all condition types. These results
show that the specialized agents contribute substantial, domain-aligned improvements, and multi-agent debate is
conducive to enhancing overall performance. For the analysis of Top-5 and Top-10, see the Appendix.

6 CONCLUSION

We introduce ChemMAS, a multi-agent system reframing reaction condition recommendation as evidence-based
reasoning grounded in domain knowledge, mechanistic constraints, and interpretable evidence. Unlike prediction-
only baselines, ChemMAS explains why conditions are appropriate, enhancing trust and utility. Empirically, it
achieves up to 30% Top-1 similarity gains over specialized models and outperforms general LLMs. These results
validate the transition from black-box predictions to auditable decision-making. Future work will extend this
framework to broader domains such as materials design and bioinformatics.
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Supplemental Material of ChemMAS
This document provides supplementary material to complement the main paper. It includes detailed descriptions
of the ChemMAS system, prompt templates, training pipeline, additional experimental results, and reproducibility
assets. Specifically:

• Appendix A describes how large language models (e.g., GPT-5 and Google Nano Banana) were used in
writing assistance and figure generation.

• Appendix B provides the reproducibility statement and access link to the code and data repository.

• Appendix C summarizes related works in three areas:

– Appendix C.1: Reaction Condition Prediction
– Appendix C.2: LLM-Based Multi-Agent Systems
– Appendix C.3: LLM-Based Reasoning Models

• Appendix D details the ChemMAS methodology, including:

– Appendix D.1: Algorithm of ChemMAS Framework and Multi-Agent Debate
– Appendix D.1: Two-Stage Multi-Tool Collaborative Training

• Appendix E outlines the experimental settings, including:

– Appendix E.1: Training Pipeline for Agents
– Appendix E.2: Evaluation Setting Details (Candidate Ranking)

• Appendix F details the evaluation protocol and metrics:

– Appendix F.1: SMILES Canonicalization and Validity
– Appendix F.2: Tanimoto Similarity
– Appendix F.3: Molecular Fingerprint Types
– Appendix F.4: Aggregate Evaluation Metrics and Top-k Similarity

• Appendix G introduces the dataset details:

– Appendix G: Public Dataset (ChemCoTBench RCR subset)
– Appendix G: Private Dataset curation and statistics

• Appendix H presents the prompt templates for different agents.

• Appendix I presents additional experimental results and discussions:

– Appendix I.1: Additional Quantitative Results (Top-5 and Top-10 Analysis)
– Appendix I.2: Result Visualization and qualitative analysis

A THE USE OF LARGE LANGUAGE MODELS

In this work, the large language model GPT-5 was used as a general-purpose tool for polishing the writing, in-
cluding improving clarity and grammar. In Figure 2, the five images representing the agents and small tool icons
were generated with the assistance of GPT-51, while the overall framework was created by the authors. The three
images representing different models in Figure 3 were produced with the help of Google Nano Banana2. The
conceptual design of both figures were entirely implemented by the authors.

B REPRODUCIBILITY STATEMENT

We provide complete code, part of data with instructions, which are available at Code

C RELATED WORKS

C.1 REACTION CONDITION PREDICTION

Predicting reaction conditions from reactants and products is a long-standing challenge in computer-aided syn-
thesis. Early large-scale efforts such as (Gao et al., 2018) used feedforward neural networks trained on millions
of Reaxys records to jointly predict catalysts, solvents, reagents, and temperatures, achieving promising top-k

1https://chatgpt.com/
2https://www.nano-banana.ai/
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accuracies despite sparsity and label imbalance. Focusing on cross-coupling families, (Maser et al., 2021) for-
mulated the task as multi-label ranking, developing role-specific encoders and leveraging graph-based features
to yield accurate, context-aware predictions. To improve generalization and interpretability, (Wang et al., 2023)
released benchmark datasets and proposed Parrot, a Transformer model augmented with unsupervised reaction
center learning. Parrot achieved significant gains in condition similarity and temperature estimation while offer-
ing interpretable attention maps localized to reactive substructures. Separately, (Andronov et al., 2023) addressed
data quality limitations by training a Molecular Transformer to impute missing reagents in USPTO reactions.
Their system not only improved reagent recall but also enhanced downstream product prediction models.

Retrieval-augmented methods incorporate external knowledge to improve robustness. TextReact (Qian et al.,
2023) pairs structure-based encoders with retrieved literature snippets to inform condition prediction and ret-
rosynthesis. By integrating textual context into training, it significantly outperforms molecule-only baselines. In
peptide catalysis design, (Edwards et al., 2022) proposed a semi-automated ML framework for selecting universal
catalyst libraries and discovered novel, high-selectivity peptides via efficient search in a large tripeptide space. At
the interface of language and chemistry, (Edwards et al., 2022) introduced MolT5, a pre-trained encoder-decoder
model that translates between molecules and natural language. It supports molecule-to-caption generation and
chemically constrained text-to-molecule synthesis, offering a foundation for LLM-based explainability. More
recently, (Zhang et al., 2024b) proposed a text-augmented multimodal LLM framework for reaction condition
recommendation. Their method jointly encodes SMILES, molecular graphs, and relevant text to achieve state-of-
the-art similarity across open benchmarks and improve generalization under low-data or OOD settings. Despite
these advances, current methods primarily focus on recommending what the potential reaction conditions are, but
fail to provide explanatory why-level evidence for why such conditions are important or mechanistically justified.

C.2 LLM-BASED MULTI-AGENT SYSTEMS

LLMs are increasingly deployed as autonomous agents equipped with retrieval, reasoning, and tool-use capabili-
ties. (Boiko et al., 2023) showcased early efforts in autonomous laboratory control, with LLM agents performing
iterative web search, experimental planning, and execution. (M. Bran et al., 2024) extended this direction in chem-
istry by coupling GPT-4 with 18 specialized tools for retrosynthesis, property prediction, and literature search. The
resulting system could autonomously complete multi-step syntheses and identify new chromophores. In reaction
condition recommendation, (Chen et al., 2023) leveraged retrieval-augmented generation by combining molecular
similarity search, literature parsing, and in silico condition evaluation, mimicking the workflow of expert chemists.

To address hallucinations and unreliable reasoning, multi-agent collaboration has emerged as a promising direc-
tion. (Du et al., 2023) proposed a multi-agent debate framework where LLMs iteratively critique each other’s
answers, leading to improved factuality and robustness. (Zhu et al., 2025) benchmarked agent interactions across
collaborative and competitive settings, revealing that structured debate and agent role specialization improve task
success. Recent work further explores coordination protocols. (Kaesberg et al., 2025) found that consensus-based
decision-making outperforms majority voting on complex QA tasks, while (Zhang et al., 2024a) introduced a
compression pipeline that reduces inter-agent communication by up to 70% without degrading performance. (Wu
et al., 2025) introduced Agentic Reasoning, a general framework for LLMs to call sub-agents (e.g., web search,
code execution, memory management), enabling long-horizon, tool-rich scientific workflows. Together, these
systems demonstrate that combining LLMs with external tools, structured memory, and agent-level reasoning
can produce scalable, verifiable pipelines for high-stakes domains. However, how to enhance the factuality and
reliability of reaction condition prediction remains largely unexplored.

C.3 LLM-BASED REASONING MODELS

A complementary line of work focuses on improving the reasoning capabilities of LLMs, which is essential
for high-stakes decision-making and interpretability in scientific domains. In general contexts, program-aided
language models (PAL) (Gao et al., 2023) execute intermediate logic through code to improve arithmetic and
symbolic reasoning. CoT prompting, self-consistency, and debate-style prompting have shown broad benefits
in multi-step question answering. CoMAT (Leang et al., 2024) proposes a mathematically annotated chain-of-
thought mechanism to handle complex symbolic queries. MME-CoT (Jiang et al., 2025) benchmarks the reasoning
abilities of large multimodal models across science, math, and logic domains. In chemistry, (Tang et al., 2025)
introduces a self-updating subtask library to facilitate memory-augmented chemical reasoning. It decomposes
complex tasks into reusable subtasks and retrieves relevant solutions, enabling LLMs to generalize over time via
experience. However, the ability to infer mechanistic or contextual rationales behind chemical reaction conditions
is rarely addressed in existing works.
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D METHOD DETAILS

D.1 ALGORITHM OF CHEMMAS FRAMEWORK

Multi-Agent Debate. In this section, we outline the overall workflow of our Multi-Agent Debate procedure.
The process consists of two coordinated phases executed for each candidate pair, as illustrated in Algorithm 1
(see also the prompt specification in Figure 8):

(1) Evidence-Seeking & Refinement. Given a pair (a,b), each agent Aj initializes an evidence-seeking chain by
parsing the Reaction Report (main functional groups, by-products, reaction type) to extract keywords, querying
the Chemical Knowledge Base for citations, and composing an initial assessment. Across U micro-rounds, agents
iteratively refine their stance by (i) reading peer summaries from the shared buffer, (ii) re-querying the KB when
uncertainty is detected, and (iii) invoking the Constraint Engine (e.g., verifying that bases are present to capture
HCl). This yields a final per-agent decision dj ∈ {a,b} with confidence and citations.

(2) Panel Aggregation & Tournament. After convergence, all agents post their final assessments to the Memory
board. The pairwise winner is determined by majority voting; ties are broken by the sum of confidences. Winners
advance while losers are eliminated, and repeated rounds over reshuffled winners progressively reduce the pool to
the Top-50. This debate-driven pipeline promotes cross-agent verification, encourages tool-grounded reasoning,
and produces interpretable, citation-backed outcomes archived in Memory.

Two-Stage Multi-Tool Collaborative Training. In this section, we outline the overall workflow of our Two-
Stage Multi-Tool Collaborative Training pipeline. The procedure alternates two phases over multiple cycles, as
illustrated in Algorithm 2 (see also the prompt specifications in Figure 7 and Figure 8):

(1) Chemical Teaching (SFT). Starting from the Qwen3-8B-Instruct backbone, we perform supervised fine-
tuning on structured trajectories that serialize tool invocations (e.g., search, memory) before the final label. This
phase teaches the model when and how to call tools and enforces a standardized output format, yielding a cold-
start, tool-aware policy π̂θ.

(2) Tool Incentivization (RL). Initialized from π̂θ, we optimize the policy with GRPO using a hierarchical reward
that jointly encourages (i) format validity, (ii) answer correctness, and (iii) collaborative multi-tool usage. For
each query, the model samples G tool-augmented rollouts; advantages are normalized with a group baseline and
regularized by a KL term to a frozen reference. Policy parameters are then updated to maximize the GRPO
objective.

This alternating scheme combines supervised teaching of tool protocols with reinforcement alignment for similar-
ity and collaboration, resulting in a robust tool-aware reasoning model πRL

θ with interpretable, consistent behavior.

E EXPERIMENTAL SETTINGS

E.1 TRAINING PIPELINE

For both AGen and the multi-agent system, we employ a two-stage optimization strategy consistent with the main
framework. In the SFT stage, the AdamW optimizer is used with β = (0.9, 0.95), an initial learning rate of
2 × 10−5, and a weight decay of 0.1. Each model is trained for one epoch with a batch size of 128. In the
subsequent RL stage, we adopt the GRPO strategy with learning rate 1× 10−6, KL coefficient 0.04, and number
of iterations set to 1. To enhance diversity, we set the temperature parameter to 0.75 during generation. All training
and inference are conducted on 8 NVIDIA A100 GPUs.

General Chemist (AGen). The input is limited to Reactant and Product SMILES, and the output is the predicted
Reaction Type. During SFT, the supervision target is structured as a step-wise chain that explicitly serializes
three tool invocations—Functional Group Tagger, Constraint Engine, and Chemical Knowledge Base Searching—
before emitting the final reaction type. This design enables the model to learn when and how to call tools. In the
subsequent RL stage, we apply a hierarchical reward that integrates format correctness, answer similarity, and
collaborative multi-tool usage.

Multi-Agent System (AFull, ACat, ASol, ARea). These role-specialized agents share the same trained back-
bone and are SFT on QA pairs generated in the Candidate Pairing stage. The supervision targets embed the
invocation logic of two tools—Chemical Knowledge Base Searching and Memory Searching. The RL stage em-
ploys the same reward design to align both judgment quality and tool collaboration, ensuring that agents can
deliberate effectively while remaining tool-aware.
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Algorithm 1 Multi-Agent Debate with Multi-Step Reasoning and Majority Voting
Require: Agent set A = {A1, . . . , Am}; Candidates C;

Memory: Reaction Report (main fg, by product, reaction type);
Chemical Knowledge Base (KB); Constraint Engine; Micro-rounds U ; target K=50.

Output: Top-K surviving candidates
1: function MAD TOURNAMENT(C,A, U,K)
2: while |C| > K do ▷ pairwise tournament until Top-K
3: P ← PAIRSHUFFLE(C) ▷ form disjoint pairs
4: Cnext ← ∅
5: for all (a,b) ∈ P do
6: D ← DEBATEMATCH(a,b,A, U)
7: o⋆ ← MAJORITYVOTE(D) ▷ winner a or b
8: Cnext ← Cnext ∪ {o⋆}
9: end for

10: C ← Cnext
11: end while
12: return C
13: end function
14: function DEBATEMATCH(a,b,A, U )
15: D ← ∅ ▷ per-agent final outputs and confidences
16: for all Aj ∈ A do ▷ each agent reasons on both options
17: for all o ∈ {a,b} do
18: κj ← EXTRACTKEYWORDS(Reaction Report)
19: Θ

(0)
j (o)← QUERYKB(κj ,o)

20: Dec
(0)
j (o)← COMPOSEINIT(κj ,Θ

(0)
j (o))

21: for u = 0 to U−1 do ▷ micro-round refinement
22: Peers(u) ← READPEERSUMMARIES(A \ {Aj})
23: if DETECTUNCERTAINTY(Dec

(u)
j (o),Peers(u)) then

24: Θ
(u+1)
j (o)← QUERYKB(κj ,o)

25: else
26: Θ

(u+1)
j (o)← Θ

(u)
j (o)

27: end if
28: Γ

(u+1)
j (o)← CONSTRAINTCHECK(o, by product=HCl, base-needed, . . .)

29: Dec
(u+1)
j (o)← UPDATEDECISION(Dec

(u)
j (o), Peers(u), Θ

(u+1)
j (o), Γ

(u+1)
j (o))

30: end for
31: end for
32: (dj , cj , citj)← FINALIZE(Dec

(U)
j (a), Dec

(U)
j (b))

33: WRITETOMEMORYBOARD(Aj , dj , cj , citj) ▷ store rationale/citations
34: D ← D ∪ {(Aj , dj , cj)}
35: end for
36: return D
37: end function
38: function MAJORITYVOTE(D)
39: na ←

∑
(Aj ,dj ,cj)∈D ⊮[dj = a]; nb ←

∑
(Aj ,dj ,cj)∈D ⊮[dj = b]

40: if na ̸= nb then
41: return argmaxo∈{a,b}{no}
42: else ▷ tie-break by confidence sum
43: sa ←

∑
(Aj ,dj ,cj)∈D cj · ⊮[dj = a]

44: sb ←
∑

(Aj ,dj ,cj)∈D cj · ⊮[dj = b]

45: return argmaxo∈{a,b}{so}
46: end if
47: end function

E.2 EVALUATION SETTING DETAILS

We evaluate general-purpose LLMs in a controlled candidate-ranking regime aligned with the ChemMAS pipeline.
Directly prompting models with only Reactant and Product SMILES yields an excessively large decision space,
leading to chemically plausible yet inaccurate suggestions and a Top-1 similarity of approximately 5%. To obtain a
faithful assessment, for each reaction a high-recall pool is first constructed via Multi-Channel Recall—aggregating
reaction-base retrieval, functional-group cues, constraint heuristics, and memory lookup—to produce a Top-5000
candidate set spanning Catalyst, Solvent1, Solvent2, Reagent1, and Reagent2. Each model ranks within the
same 5k pool and outputs a Top-50 list per head. All models receive identical candidate sets, instructions, and
judgment interfaces, and are not permitted to modify the pool, ensuring that differences reflect discriminative
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Algorithm 2 Two-Stage Multi-Tool Collaborative Training
Require: Datasets D = {(xi, yi)}; External tools T ( <search> , <memory> , ...);

Instruction I; SFT epochs Esft; RL cycles C; steps per cycle S; rollouts G;
GRPO hyper-parameters (ϵ, βKL); temperature τ ; optimizer config.

Output: Trained policy πRL
θ

Stage I: Chemical Teaching (SFT) /* cold-start tool-aware policy */
1: Initialize backbone model πθ ← Qwen3-8B-Instruct ▷ AdamW (β=(0.9, 0.95)), lr 2×10−5, wd 0.1, batch 128
2: for e = 1, . . . , Esft do
3: Sample minibatch B ⊂ D
4: Compute SFT loss Lsft(θ)=−

∑
(x,y)∈B log πθ(y |x) ▷ y contains step-wise chain + tool tokens ( <search> ,

<memory> )
5: Update θ ← θ − η∇θLsft(θ)
6: end for
7: Freeze SFT checkpoint as reference π̂ref ← stopgrad(πθ); set π̂θ ← πθ

Stage II: Tool Incentivization (RL with GRPO) /* align similarity & tool use */
1: for c = 1, . . . , C do ▷ RL cycles
2: for s = 1, . . . , S do ▷ optimization steps per cycle
3: Sample a batch Db ⊂ D
4: for all q ∈ Db do
5: q ← I ⊕ q
6: Sample G rollouts with tools at temperature τ : {oj}Gj=1 ∼ πθ(· | q, T )
7: For each oj , compute reward R(oj) with hierarchical scheme:

Format: if invalid⇒ R(oj)← −1
Similarity: Acc(oj) ∈ {0, 1}
Multi-tool bonus: rM=0.1 if ( <search> & <memory> ) appear, else 0
Final: if format ok, R(oj)=max(Acc(oj)+rM , Acc(oj))

8: Compute group-normalized advantages {Âj,t} w.r.t. group baseline
9: Optimize GRPO objective:

LGRPO(θ) =
1

G

G∑
j=1

1

|oj |

|oj |∑
t=1

min
(
ρj,tÂj,t, clip(ρj,t, 1−ϵ, 1+ϵ)Âj,t

)
− βKL DKL

[
πθ ∥ π̂ref

]
10: Update θ ← θ + η∇θLGRPO(θ)
11: end for
12: end for
13: end for
14: return πRL

θ

ranking and evidence integration rather than retrieval coverage. This protocol mitigates search-space inflation,
reduces hallucination, and provides an evaluation setting consistent with the workflow of the framework.

F EVALUATION PROTOCOL DETAILS

In this section, we provide the formal definition of the structure-aware evaluation metrics used in our experiments.
The Reaction Condition Recommendation (RCR) task requires models to predict appropriate reaction conditions
given reactants and products. We evaluate the quality of predicted condition SMILES strings against ground truth
annotations using molecular fingerprint similarity metrics.

F.1 SMILES CANONICALIZATION AND VALIDITY

Prior to fingerprint calculation, all SMILES strings undergo canonicalization to ensure consistent molecular rep-
resentations. Let ŝ be the predicted SMILES and s∗ be the ground truth SMILES. The canonicalization procedure
converts input SMILES to a standardized canonical form:

scanonical = Canonicalize(sinput) (13)

This process removes representational ambiguity. Consistent with our evaluation constraints, stereochemical infor-
mation is excluded during canonicalization (isomericSmiles=False) to focus evaluation on constitutional
structure.

The validity metric quantifies the proportion of predictions that correspond to chemically valid molecular struc-
tures:

Validity =
1

N

N∑
i=1

⊮ [IsValid(ŝi)] (14)
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where ⊮[·] is the indicator function and IsValid(·) returns true if the SMILES string can be successfully parsed
into a valid molecular graph by RDKit (version 2023.03 or later). Invalid predictions are assigned a similarity
score of 0 for all fingerprint metrics.

F.2 TANIMOTO SIMILARITY

All fingerprint-based similarity calculations employ the Tanimoto coefficient (Jaccard index). For two molecular
fingerprints represented as bit vectors A and B (corresponding to the predicted molecule Mp and ground truth
molecule Mg), the Tanimoto similarity is defined as:

T (A,B) =
|A ∩B|
|A ∪B|

=
c

a+ b− c
(15)

where a denotes the number of bits set to 1 in A, b denotes the number of bits set to 1 in B, and c denotes the
number of bits set to 1 in both fingerprints simultaneously.

F.3 MOLECULAR FINGERPRINT TYPES

We employ three complementary molecular fingerprint representations to capture different aspects of molecular
structure:

RDK Topological Fingerprint (fRDK). This is a path-based topological fingerprint. The algorithm enumerates
all linear paths of length l ∈ [1, 7] atoms within the molecular graph. Each path is encoded as a hash incorporating
atomic numbers, bond types, and connectivity. The resulting hash values are mapped to a bit vector of length
2048. The similarity is computed as:

SRDK(Mp,Mg) = T (fRDK(Mp), fRDK(Mg)) (16)

MACCS Keys Fingerprint (fMACCS). The MACCS keys fingerprint consists of 166 predefined structural keys,
each corresponding to specific substructures (e.g., hydroxyl, carbonyl, aromatic rings). For each key ki (i ∈
[1, 166]), the bit is set to 1 if the substructure is present. This metric is particularly valuable for comparing
molecules based on functional group composition:

SMACCS(Mp,Mg) = T (fMACCS(Mp), fMACCS(Mg)) (17)

Morgan Circular Fingerprint (fMorgan). We employ Morgan fingerprints with a radius parameter of r = 2,
equivalent to ECFP4. This algorithm captures the local chemical environment by iteratively identifying atom
identifiers and their neighbors. It excels at detecting localized structural differences and functional group modifi-
cations:

SMorgan(Mp,Mg) = T (fMorgan(Mp, r=2), fMorgan(Mg, r=2)) (18)

F.4 AGGREGATE EVALUATION METRICS

To assess the model performance, we utilize the Fingerprint Tanimoto Score (FTS), defined as the validity-
weighted average of the three fingerprint similarities:

FTS =

(
S̄RDK + S̄MACCS + S̄Morgan

3

)
× Validity (19)

where S̄type represents the mean similarity score across all test samples for that specific fingerprint type.

F.5 TOP-k SIMILARITY

Since our model generates a ranked list of candidate predictions, we also report a Top-k metric. Let S(ŝ, s∗) be
the pairwise similarity for a single instance, defined as the average of the three fingerprint Tanimoto coefficients
(assigned as 0 if ŝ is invalid).

For a dataset of N reaction instances, where s∗i is the ground-truth SMILES and Ŝi,k = {ŝi,1, . . . , ŝi,k} is the set
of the top-k predicted SMILES strings:

Score@k =
1

N

N∑
i=1

max
j∈{1,...,k}

S(ŝi,j , s∗i ). (20)

18



1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

Under review as a conference paper at ICLR 2026

Figure 6: Heavy-atom and molecular-weight distributions for the Train, Validation, and Test sets (top to bottom).
Left column: heavy atom count; right column: molecular weight (g/mol).

G DATASET DETAILS

Public Dataset. We use the RCR subset of ChemCoTBench, which contains 90 well-structured samples cover-
ing 10 reaction types. For each reaction type, there are 9 examples: 3 focused on catalyst prediction, 3 on reagent
prediction, and 3 on solvent prediction. All chemical entities (reactants/products/conditions) are represented in
SMILES format to ensure consistency.

Private Dataset. We curate a large-scale private dataset of organic reactions to supplement existing public
benchmarks and better represent real-world experimental scenarios. Sourced from the internal database of an
anonymous chemical research institution, this dataset is rigorously digitized and structured, comprising 544,591

19



1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

Under review as a conference paper at ICLR 2026

high-quality entries. Similar in nature to the USPTO-condition dataset, it encompasses a broad spectrum of known
chemical reactions, reflecting a chemical space.

For data standardization, all chemical entities are represented in SMILES format. Each SMILES string is pro-
cessed with RDKit to construct a molecular graph; unparseable strings are discarded. For every valid molecule,
we compute the total atom count, the heavy-atom count (all non-hydrogen atoms), the molecular weight as the
sum of average atomic masses (g/mol), and the exact mass as the sum of isotopic masses (g/mol). We then an-
alyze and visualize the heavy-atom and molecular-weight distributions for the training, validation, and test sets,
where the left column shows the heavy-atom counts and the right column shows the molecular weights in g/mol,
as shown in Figure 6. We frame the task as a reaction condition prediction problem: for each entry, the reactants
and products serve as the input, while the reaction conditions are defined as the output. To enable fine-grained
prediction, the output is structured into five distinct roles: catalyst (Catalyst1), solvents (Solvent1, Solvent2), and
reagents (Reagent1, Reagent2).

Based on this setting, we construct Question-Answer (QA) pairs to facilitate model training. The dataset is ran-
domly split into training, validation, and test sets with a ratio of 8:1:1. The inclusion of this private dataset
provides robust supervision signals and allows for the evaluation of model generalization in complex, realistic
chemical contexts.

H PROMPT TEMPLATES

As shown in Figure 7 and Figure 8, there are prompts for the different agents. Beyond the system-level instruc-
tion, the prompt is organized into four parts. First, the Tool Definition specifies the invocation schema of tools
together with their expected outputs. Second, the Interaction Protocol describes how the agent should interleave
tool calls with reasoning traces using XML-style tokens, and how the final answer must be returned in a struc-
tured format. Third, the Task Prompt clarifies the objectives. Finally, the Output Format enforces a JSON schema
that standardizes the prediction into fields such as reaction type, main functional groups, by-products, and evi-
dence. This structured prompt design enables the model to understand tool usage, maintain a consistent reasoning
procedure, and produce verifiable outputs.

I RESULTS AND DISCUSSIONS

I.1 ADDITIONAL QUANTITATIVE RESULTS

Top-5 Analysis. As shown in Figure 9, introducing specialized agents consistently improves Top-5 Similarity
over the AGen + AFull baseline. ACat delivers targeted gains on Catalyst (+10.1%), aligning with its role
specialization. ASol contributes the most on solvents, improving Solvent1 and Solvent2 by +16.4% and +13.4%,
respectively. ARea yields the largest boosts on reagents (e.g., Reagent1/2 with gains around +18.7% and +13.9%).
When specialized agents are combined (e.g., +Cat+Sol, +Sol+Rea, +Cat+Rea), the improvements remain additive
and stable across condition types, and the Full System shows the most consistent Top-5 lift across all five heads,
indicating effective collaboration among role-specialized experts.

Top-10 Analysis. As shown in Figure 10, the same trend holds for Top-10 Similarity. ACat most strongly
benefits Catalyst (+13.1%). ASol provides clear gains on Solvent1/2 (e.g., +10.8% and +13.6%). ARea again
dominates on Reagent1/2 with sizeable increments (e.g., +17.2% and +9.8%). Pairwise combinations further
enhance coverage across heads, and the Full System achieves the highest Top-10 metrics in a macro sense, evi-
dencing that multi-agent collaboration scales beyond single-head expertise and produces robust gains under larger
candidate sets.

I.2 RESULT VISUALIZATION

To better illustrate the performance of our framework, we visualize several representative reactions with both
predicted and ground-truth conditions. As shown in Table 5, the predicted conditions generally align well with
the ground-truth, especially for solvents and reagents that are strongly correlated with the transformation patterns
in the reaction. For example, in reactions involving polar functional groups, the model consistently identifies
appropriate polar solvents such as alcohols or cyclic ethers. Similarly, in palladium-catalyzed cross-coupling
reactions, the model reliably predicts the use of palladium-based catalysts, demonstrating its ability to capture
mechanistic priors from training data.

In cases where the predictions slightly deviate from the ground-truth, the model often proposes chemically rea-
sonable alternatives. For instance, different bases such as potassium carbonate and cesium carbonate are inter-
changeable under similar conditions, and solvents like ethanol and methanol can play analogous roles. These
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General Chemist

# System Prompt
You are a chemical assistant for reaction understanding and condition reasoning.
You receive Reactant and Product SMILES as inputs. You can call THREE tools:

# Tools Definition
1) Functional Group Tagger  
   - Invocation: <tragger>{ "reactants":[...], "products":[...] }</tragger>  
   - Purpose: extract key functional groups (FGs) from given SMILES.  
   - Expected result (inside <result> ... </result>):  
     {
       "reactants_fg": [...],
       "products_fg": [...],
       "main_fg": ["acyl chloride","amine", ...]
     }

2) Constraint Engine  
   - Invocation: <engine>{ "reactants":[...], "products":[...] }</engine>  
   - Purpose: perform atom/electron balance and infer by-products.  
   - Expected result:  
     {
       "balanced": true,
       "by_products": ["HCl","H2O"],
     }

3) Chemical Knowledge Base Search  
   - Invocation: <search>{ "query":"..." }</search>  
   - Purpose: retrieve evidence related to reaction conditions via keyword search.  
   - Expected result:  
     {
       "knowledge":[
         {"keyword":"amide formation","evidence":["KB:USPTO:..."]}
       ]
     }

# Interaction Protocol
- You may call tools at any time using the XML tokens above.
- Tool responses are always returned inside <result> ... </result>.
- Show reasoning process inside <think> ... </think>. For example, <think> This is the reasoning process. </think> 
- Provide only the structured final answer.

# Task
Given Reactant and Product SMILES:
- Use tools to (i) extract Main Functional Groups, (ii) infer By-products, and (iii) retrieve likely Reaction Type 
candidates.
- Reconcile results to choose the most plausible reaction_type.
- Output in JSON schema, wrapped inside <answer> ... </answer>.

# Output Format
<answer>
{
  "reaction_type": "string",
  "main_fg": ["string", ...],
  "by_products": ["string", ...],
  "confidence": 0.0,
  "rationale_short": "1-3 sentences summarizing the key cues.",
  "evidence": ["KB:source_or_ID", ...]
}
</answer>

Figure 7: Prompt for General Chemist

substitutions highlight the model’s flexibility in generating valid yet diverse solutions, reflecting its capacity to
generalize beyond exact memorization of training examples.

Overall, the visualization confirms that the framework not only achieves high top-k similarity but also produces
predictions that are chemically interpretable and robust. The ability to provide both exact matches and plausible al-
ternatives underscores the potential of our approach for assisting chemists in condition selection and experimental
design.
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# System Prompt
You are a chemical assistant specialized in reaction condition evaluation.  
Your input consists of:  
- Reactant and Product SMILES,  
- Two candidate sets of reaction conditions (Response 1 and Response 2).  

# Tools Definition
1) Chemical Knowledge Base Search  
   - Invocation: <search>{ "query":"..." }</search>  
   - Purpose: retrieve knowledge of the reaction type, mechanism, and precedent reaction conditions related to the 
given SMILES or candidate reagents/solvents.  
   - Expected result: 
     {
       "reaction_info":[
         {"keyword":"SNAr methoxylation","evidence":["KB:USPTO:..."],"notes":["NaOMe/MeOH widely used"]},
         {"keyword":"Nucleophilic aromatic substitution","evidence":["Reaxys:..."],"notes":["activated by nitro group"]}
       ]
     }

2) Memory Searching  
   - Invocation: <memory>{ "memory_type":"main_fg","by-product" }</memory>  
   - Purpose: retrieve prior memorized knowledge snippets of similar reactions and condition evaluations.  
   - Expected result:  
     {
       "content":[
         "main_fg": "Reactant1: methoxy, acyl chloride;Reactant2: -Cl,thiophene ring",
         "by-product": "HCL"
       ]
     }

# Interaction Protocol
- You may call tools at any time using the XML tokens above.
- Tool responses are always returned inside <result> ... </result>.
- Show reasoning process inside <think> ... </think>. For example, <think> This is the reasoning process. </think> 
- Evaluations should be concise, evidence-based, and in academic/chemical style.  
- If both responses are poor, still select the relatively better one and justify.  

# Task
- Analyze the chemical transformation (Reactant → Product).  
- For each candidate Response, cross-check the catalyst, solvent, reagents against tool outputs (<search> and 
<memory>).  
- Provide a short evaluation of both Response 1 and Response 2.  
- Finally, decide which Response is better and explain why concisely.
- Return ONLY the final decision enclosed inside <answer> ... </answer>:  

# Output Format
<answer>
{
  "better_response": "Response 1",
  "response1_eval": "Provides NaOMe in MeOH, directly generating methoxide. Simple, efficient, and canonical for 
SNAr methoxylation on nitro-activated aryl fluorides.",
  "response2_eval": "Uses K2CO3 in DMSO with MeOH as methoxide source. Feasible but slower, less direct than 
NaOMe/MeOH.",
  "rationale_short": "SNAr on nitro-aryl fluorides is best driven by a strong methoxide source in MeOH. 
Literature and memory confirm NaOMe/MeOH is the standard choice."
}
</answer>

Multi-Agent Debate

Figure 8: Prompt for Multi-Agent System
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Figure 9: Multi-agent ablation: Top-5 similarity improvements across Catalyst, Solvent1/2, and Reagent1/2 when
adding specialized agents on top of AGen+AFull.
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Figure 10: Multi-agent ablation: Top-10 similarity improvements across Catalyst, Solvent1/2, and Reagent1/2
when adding specialized agents on top of AGen+AFull.
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Table 5: Visualization of several reactions with predicted (blue) vs. ground-truth (red) labels.

Reactions Catalyst 1
(Pred / GT)

Solvent 1
(Pred / GT)

Solvent 2
(Pred / GT)

Reagent 1
(Pred / GT)

Reagent 2
(Pred / GT)

AcOH
AcOH

Bromine
Bromine

Toluene
Toluene

TEA
TEA

EtOH
EtOH

Chloride
Chloride

NaOH
NaOH

Palladium
Palladium

MeOH
MeOH

THF
THF

THF
THF

AIBN
AIBN

MeCN
MeCN

K2CO3

K2CO3

Platinum
Platinum

THF
THF

TEA
TEA

Pyridine
Pyridine

Toluene
Toluene

K2CO3

Cs2CO3

EtOH
MeOH

H2O
H2O

NaOEt
NaOMe
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Example #1 from Chemical Reasoning Dataset

Question:
Reactant SMILES: CN1CCN(Nc2ccc(/C=C3/c4ccc(F)cc4OCc4c(F)cccc43)cc2[N+](=O)[O-])
CC1.N#CN=C(Oc1ccccc1)Oc1ccccc1
Product SMILES: CN1CCN(n2/c(=N/C#N)[nH]c3cc(/C=C4/c5ccc(F)cc5OCc5c(F)cccc54)ccc
32)CC1

Select the correct reaction conditions from the following options:

Option A:
{ "catalyst1": "N\\2=C1\\N(CCCCC1)CCC/2", "solvent1": "CN(C)C=O", "solvent2": "CC#

N", "reagent1": "[K+].[K+].[O-]C([O-])=O", "reagent2": "" }

Option B:
{ "catalyst1": "[Pt]", "solvent1": "C1CCOC1", "solvent2": "", "reagent1": "CCN(CC)

CC", "reagent2": "c1ccncc1" }

Labeled Answer: Option B

Output of one Agent from ChemMAS

<think> To determine the optimal reaction conditions, I must analyze the structural changes between the reac-
tants and the product. The reactants are a (2-nitrophenyl)hydrazine derivative and diphenyl cyanocarbonimidate.
The product is a 2-cyanoiminobenzimidazole fused to the aromatic system. Notably, the reactant contains a nitro
group (−NO2) at the ortho position, while the product features a benzimidazole ring where the nitrogen from the
nitro group has been incorporated into the ring system. This implies a transformation where the nitro group is
reduced to an amine to act as a nucleophile for ring closure. I need to verify if the formation of benzimidazoles
from o-nitrophenylhydrazines and cyanocarbonimidates requires a reductive step or if a simple base-mediated
substitution is sufficient. </think>

<search>

• The synthesis of 2-amino or 2-cyanoiminobenzimidazoles from (2-nitrophenyl)hydrazine precursors typically
involves a reductive cyclization sequence.

• Standard literature (e.g., methods for Noberastine synthesis) indicates that the ortho-nitro group must be
reduced to an amine (−NH2) to function as the second nitrogen in the imidazole ring.

• Common conditions for this transformation utilize metal catalysts such as Platinum ([Pt]) or Palladium (Pd/C)
under hydrogenation conditions to effect the reduction and subsequent cyclization.

• Solvents like THF (Tetrahydrofuran) are commonly used, often with auxiliary bases like Triethylamine or
Pyridine to neutralize phenol byproducts.

</search>

<think> Based on the search results, the reaction mechanism proceeds via the initial attack of the hydrazine
on the cyanocarbonimidate, followed by the reduction of the nitro group to an amine. This amine then attacks the
intermediate to close the ring. Comparing the options: Option A uses K2CO3 and DBU (bases) in DMF/MeCN.
This is a standard SNAr condition set but lacks a reducing agent. It cannot convert the NO2 group to the NH
required for the benzimidazole ring. Option B uses Platinum ([Pt]) as a catalyst in THF with amine bases. Platinum
is a classic hydrogenation catalyst capable of reducing the nitro group to the amine, facilitating the reductive
cyclization confirmed by the literature. Therefore, Option B is the correct set of conditions. </think>

<answer> Option B </answer>
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