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Abstract

We consider the problem of how a trusted, but
computationally bounded agent (a ‘verifier’) can
learn to interact with one or more powerful but un-
trusted agents (‘provers’) in order to solve a given
task without being misled. More specifically, we
study the case in which agents are represented
using neural networks and refer to solutions of
this problem as neural interactive proofs. First we
introduce a unifying framework based on prover-
verifier games (Anil et al., 2021), which gener-
alises previously proposed interaction ‘protocols’.
We then describe several new protocols for gen-
erating neural interactive proofs, and provide a
(theoretical) comparison of both new and exist-
ing approaches. In so doing, we aim to create a
foundation for future work on neural interactive
proofs and their application in building safer AI
systems.

1. Introduction
Recent years have witnessed the proliferation of large ma-
chine learning (ML) systems (Villalobos et al., 2022), useful
for solving an increasingly wide range of problems. Often,
however, it can be difficult to trust the output of these sys-
tems, raising concerns about their safety and limiting their
applicability to high-stakes situations (Amodei et al., 2016;
Bengio et al., 2023; Hendrycks et al., 2023). At the same
time, traditional approaches in verification do not scale to
today’s most powerful systems (Seshia et al., 2022). There
is thus a pressing need to identify new angles via which to
gain such assurances.

In response to this need, we take inspiration from interactive
proofs (IPs) (Goldwasser et al., 1985), one of the most
important developments in computational complexity theory
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Figure 1. On receiving input x from distribution P the prover and
verifier exchange messages and the verifier eventually decides on
an output y′, which is compared to f(x).

and cryptography. In an IP, a computationally bounded but
trustworthy verifier agent interacts with a more powerful
but untrustworthy prover agent in order to solve a given
problem (Figure 1). Given reasonable assumptions, it can
be shown that such interactions allow the verifier to solve
many more kinds of problem than it could alone, all while
limiting the chance of being misled by the prover.

In this work, we investigate neural interactive proofs, in
which the prover and verifier agents are represented using
neural networks. While a small handful of similar propos-
als have been made in recent years (Irving et al., 2018;
Anil et al., 2021; Wäldchen et al., 2022), these existing
approaches are limited in the strength of their guarantees.

One plausible assumption about the future of advanced AI
is that we will have access to trusted weaker models and
untrusted stronger models (Shlegeris, 2023). This insight
is core to many proposals for scalable oversight, which at
present is one of the main agendas in ensuring the safety of
advanced AI (Bowman et al., 2022; Burns et al., 2023). The
present paper follows in this vein.

1.1. Contributions

In this (ongoing) work, we seek to provide the first compre-
hensive treatment of neural interactive proofs. In particular,
we provide the following contributions: (i) a unifying frame-
work that generalises existing neural IP models; (ii) several
new neural IP models, including those that allow for zero–
knowledge proofs; (iii) a (theoretical) comparison of both
new and existing models. In so doing, we hope to create a
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foundation for future work on neural interactive proofs and
their application in building safer ML systems.

1.2. Related Work

The most closely related work to ours is that of Anil et al.
(2021), who introduce prover-verifier games played between
neural networks, which we generalise and build on. While
an important first step, this work is limited in the strength
of the protocols that result from their model (as we show
further below), which is only applied to very small problem
instances. In this paper, we overcome the first limitation
(our forthcoming work overcomes the second). Very closely
related are the works of Irving et al. (2018); Brown-Cohen
et al. (2023) and Wäldchen et al. (2022), whose protocols
make use of two provers in competition with one another.
We compare such multi-prover protocols (Ben-Or et al.,
1988) against one another (in the context of learning agents),
and against single-prover protocols.

Another departure from these works is that we explicitly
study the difficulty of the learning problem faced by the ver-
ifier. We can thus be seen as building on earlier models of
computationally bounded agents in game-theoretic settings
(Papadimitriou & Yannakakis, 1994; Chang, 2006; Halpern
& Pass, 2008; Orton, 2021), though these do not consider
learning. Relatedly, Goldwasser et al. (2020) recently in-
troduced interactive proofs for PAC verification, which is
similar in spirit to our work, but the verifier protocols they
consider are hand-crafted and only applied to simple ML
models. In contrast, we take inspiration from Gowal et al.
(2019) and hypothesise that such ideas can best be scaled to
real-world ML systems if the verifier can learn the protocol.

Other work on the verification of neural networks faces sim-
ilar scalability problems, with today’s techniques typically
only applying to networks with hundreds of thousands of
parameters and relatively simple properties (Albarghouthi,
2021), as opposed to the hundreds of billions present in
state-of-the-art models (Villalobos et al., 2022). Most of
these techniques aim to provide proofs of properties such
as the robustness of models to small perturbations of their
inputs. Alternative directions such as proof of learning (Jia
et al., 2021) and proof of inference (Ghodsi et al., 2017) aim
to verify that a given model is the result of a given train-
ing process, or that a given output is the result of running
a given model on a given input, respectively. In contrast,
we aim to verify, not assume, that the prover implements
a function that solves the given problem (i.e. the verifier
might be misled if it blindly copies the prover).

2. Preliminaries
We begin with some brief technical background on interac-
tive proofs and games.

2.1. Proof Protocols

Definition 2.1 (Goldwasser et al., 1985; Goldreich, 2001).
Given S ⊆ X , an interactive proof protocol for S is a pair
⟨p, v⟩ where p is a prover, defined as a probability distri-
bution on messages mt+1 ∼ p(Mp | x,m1:t) and v is a
verifier, defined as mt+1 ∼ v(Mv | x,m1:t), from mes-
sage spaces Mv and Mp respectively, and where mi:j :=
(mi, . . . ,mj). The sequence length T is determined by the
verifier, whose eventual output is mT ∈ {0, 1} ⊆ Mv,
denoting ‘reject’ or ‘accept’. We denote the (stochastic)
sequence of messages m produced by ⟨p, v⟩ on input x as
⟨p, v⟩(x). We say that ⟨p, v⟩ is valid if it satisfies, for every
x ∈ S, where ϵc + ϵs < 1:

• Completeness: If x ∈ S, then ⟨p, v⟩(x)T = 1 with
probability at least 1− ϵc,

• Soundness: If x /∈ S, then ⟨p′, v⟩(x)T = 0 with
probability at least 1− ϵs for any prover p′.

The classes of decision problems S for which there exists
a valid interactive proof protocol depends on the power of
the prover and verifier. For example, in the the original
formulation due to Goldwasser et al. (1985), the prover is
unbounded and the verifier is a probabilistic polynomial
time Turing machine, which gives rise to the class IP. If
we instead only require the protocol to be sound in the
face of efficiently implementable provers (i.e. computational
soundness), this gives rise to arguments (as opposed to
proofs) (Brassard et al., 1988).

Definition 2.2 (Goldwasser et al., 1985; Goldreich, 2001).
We say that ⟨p, v⟩ is (ϵk-statistically) zero-knowledge if
for every verifier v′ there is some verifier z such that
maxx∈S

1
2

∑
m

∣∣∣P (
⟨p, v′⟩(x) = m

)
− P

(
z(x) = m

)∣∣∣ ⩽
ϵk. We call z a simulator.

While validity can be viewed as a property of the verifier,
being zero-knowledge can be viewed as a property of the
prover. Intuitively, ⟨p, v⟩ is zero-knowledge if the verifier
learns only whether x ∈ S and nothing else, i.e. v′ does not
gain any additional power through their interaction with p.

2.2. Games

In this work, we study n-player games G = (Σ,L) where
Σ := Σ1 × · · · × Σn is a product strategy space and L
consists of loss functions Li : Σ → R. Each player i selects
a strategy σi ∈ Σi in an attempt to minimise their loss
Li(σ). We use G(σi) to denote the (n − 1)-player game
induced when player i plays strategy σi in G, but where the
remaining n− 1 players have not yet chosen their strategies.
In practice, we assume that each player’s strategy space Σi

is defined by some finite number of parameters Θi, and will
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often refer to θi ∈ Θi instead of σi. Within these games,
we make use of two standard equilibrium concepts.

Definition 2.3. A local Nash equilibrium (LNE) on Θ̂ ⊆ Θ
is a strategy profile θ⋆ ∈ Θ̂ such that:

θi
⋆ ∈ argmin

θi∈Θ̂i

Li(θi,θ−i
⋆ ),

for all i ∈ [n]. If Θ̂ = Θ then θ⋆ is a (global) Nash
equilibrium (NE). We denote the local and global NEs of G
by LNE(G) and NE(G) respectively.

Definition 2.4. A local Stackelberg equilibrium led by
player i (LSEi) on Θ̂ ⊆ Θ is a strategy profile θ⋆ ∈ Θ̂
such that:

θi
⋆ ∈ argmin

θi∈Θ̂i

max
θ−i
⋆ ∈LNE(G(θi))

Li
(
θi,θ−i

⋆

)
.

If Θ̂ = Θ then θ⋆ is a (global) Nash equilibrium (NE). We
denote the local and global i-led SEs of G by LSEi(G) and
SEi(G) respectively.

More specifically, we consider approximate versions of
these concepts, where the argmin for each agent i has some
tolerance ei ∈ R⩾0. Given a vector e = (ei, . . . , en), we
denote the approximate equilibria as e-NE and e-SE, re-
spectively.

3. Prover-Verifier Games
We consider the problem of how a trusted but computation-
ally bounded verifier can learn to interact with one or more
powerful but untrusted provers in order to solve a given
task. We represent this task as a function f : X → Y and a
distribution P(X), whereupon receiving and input x ∈ X ,
the verifier interacts with the prover in order generate a
‘proof’ that y′ = f(x), for some y′ ∈ Y . Importantly, we
assume that: (a) the verifier is not capable of solving the task
alone; (b) the prover is capable of solving the task alone; but
(c) the prover may not be perfectly cooperative or aligned
with the verifier, and so cannot be trusted to provide the
correct answer without some form of proof.

In the remainder of this section, we make the above setting
more concrete by introducing a generalisation of the prover-
verifier game model originally introduced by Anil et al.
(2021). This generalised definition is sufficiently broad
so as to capture several other models (Irving et al., 2018;
Wäldchen et al., 2022), as well as the new models that we
introduce in this paper.

Definition 3.1. A (generalised) prover-verifier game (PVG)
for a decision problem (f,P) is a game G = (Σ,L) compris-
ing strategy sets and loss functions for np provers and nv

verifiers, where np + nv = n. Given x ∼ P, play proceeds
according to a (possibly stochastic) messaging specifica-
tion µ that determines the set of players whose turn it is

at each time t. When i ∈ µt, player i samples a message
mi

t ∼ σi(M i | M∗, X) ∈ Σi given x and the previous
messages m1:t−1 ∈ M∗, where M =

⋃
i∈[n] M

i. Play ter-
minates at timestep T if and only if mi

T ∈ Y where i ∈ µT

is a verifier.

Different PVGs represent different messaging specifications
between the prover(s) and verifier(s), with the basic idea be-
ing that we wish to construct a game such that its equilibria
correspond to valid proof protocols. For example, Anil et al.
(2021) introduce the following model, which they refer to
as an ‘Abstract Decision Problem’ (adp). In this model, the
prover sends a single message to the verifier, and the verifier
must make its decision in response. Note that when there
is just one prover or verifier, we denote their index i ∈ [n]
as p or v, respectively. For games with multiple provers or
verifiers, we let {p1, . . . , pnp

, v1, . . . , vnv
} = [n].

Definition 3.2 (Anil et al., 2021). The adp model is a PVG
where Y = {0, 1} and np = nv = 1. Σp is given by a set
of deterministic distributions σp(mp | x) – i.e. functions
δp : X → Mp – and Σv contains the convex combinations
of functions δv : X × Mp → Y . The specification µ is
such that µ0 = {p} and µ1 = {v} and the loss functions
are given by:

Lp(σ) = −E
[
log σv(1 | x,mp)

]
,

Lv(σ) = −E
[
log σv(y | x,mp)

]
,

where the expectation is taken with respect to x ∼ P and
mp ∼ σp(· | x).

Other forms of protocol can be characterised, for example,
as a competition between two provers, which is judged
by the verifier. Formal definitions of the debate model
(Irving et al., 2018; Brown-Cohen et al., 2023) and the
‘Merlin-Arthur Classifier’ (mac) model (Wäldchen et al.,
2022) can be found in Appendix A. Limitations of the adp
model are also discussed in Appendix A.

4. Neural Interactive Proofs
Unlike in the case of standard interactive proofs, we assume
that the verifier has some access to a small dataset of labelled
examples and aims to learn a strategy for interacting with
the prover that generalises to any input. More formally,
we assume that the verifier has access to a dataset D =
{(xj , yj)}1⩽j⩽m sampled xj ∼ P and yj = f(xj). Letting
ℓ(σ, x) := E[σ(x)T ̸= y], where σ(x)T is the output of
the strategy profile σ in a PVG G, the verifier’s aim is to
minimise ℓ across inputs x ∈ X .

In this work, we consider two ways of operationalising
this aim: the expected loss (or risk), and the worst-case
loss. We denote the empirical risk with respect to D as
LER
D (σ) = 1

|D|
∑

(x,y)∈D ℓ(σ, x), and the empirical worst-
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case loss by LWC
D (σ) = max(x,y)∈D ℓ(σ, x). Minimisers

of these losses are denoted σER
D and σWC

D respectively. We
drop D from our notation when considering the full space
inputs X .

While the expected loss is by far the most common objective
in contemporary ML, from the perspective of safety-critical
systems, we would ideally like to minimise the worst-case
loss. In other words, we wish to find some σ such that
LWC(σ) − LWC(σWC) is small. Moreover, this is despite
the fact that minσv LWC(σv) is large, denoting the case in
which the verifier acts alone as best it can.

Taking inspiration from the adp model above, let us con-
sider a PVG with Y = {0, 1}, np = nv = 1, µt = {t
mod 2}, and loss functions given by:

Lp(σ) = LWC(σ | f(x) = 1)− LWC(σ | f(x) = 0),

Lv(σ) = LWC(σ | f(x) = 1) + LWC(σ | f(x) = 0).

We refer to this model as nip, and it is straightforward
to show that this corresponds closely to the notion of an
interactive proof.

Theorem 4.1. Let (f,P) be a probabilistic decision problem
which has a valid proof protocol and G a nip game. Then σ
is a valid IP protocol if and only if it is a (strict) approximate
verifier-leading Stackelberg equilibrium of G.

While this proposition essentially reduces the problem of
finding a valid proof protocol to the task of finding an equi-
librium in a given game, this task is far from straightforward.
In particular, there are two key difficulties. Firstly, there is
the challenge of learning to minimise the worst-case (as op-
posed to the expected) loss. Secondly, there is the challenge
of finding a Stackelberg equilibrium. In what follows, we
address each of these difficulties in turn.

4.1. Worst-Case Loss

There are several techniques for minimising the worst-case
loss using finitely many data D generated from P. The best
approach will depend on the nature of the decision problem,
and the affordances of those training the relevant models.

4.1.1. EMPIRICAL RISK MINIMISATION

The simplest approach is to simply return some σER
D . The

question then becomes: when is minimising the empirical
risk with respect to D sufficient for minimising the worst-
case risk with respect to X? The following result shows that
we can break this down into two properties: (a) the empir-
ical worst-case loss being similar to the actual worst-case
loss; and (b) for a given D, the empirical worst-case loss
of σER

D being similar to that of σWC
D . Worst-case uniform

convergence and robustness do not always hold, but can do
when the decision problem is sufficiently ‘regular’.

Definition 4.2. Σ has the worst-case uniform convergence
property if there is mWCUC : (0, 1)2 → N such that for
every ϵ, δ ∈ (0, 1), if |D| ⩾ mWCUC(ϵ, δ) then LWC(σ) −
LWC
D (σ) ⩽ ϵ for all σ, with probability 1− δ.

Definition 4.3. Σ has the worst-case robustness prop-
erty if there is mWCR : (0, 1)2 → N such that for ev-
ery ϵ, δ ∈ (0, 1), if |D| ⩾ m ⩾ mWCR(ϵ, δ) then
LWC
D (σER

D )− LWC
D (σWC

D ) ⩽ ϵ with probability 1− δ.

Theorem 4.4. If Σ has the worst-case uniform convergence
property and the worst-case robustness property then there
is some mWCUC : (0, 1)2 → N such that for every ϵ, δ ∈
(0, 1), if |D| ⩾ mWC(ϵ, δ) then LWC(σER

D )−LWC(σWC) ⩽ ϵ
with probability 1− δ.

4.1.2. ADVERSARIAL TRAINING

One of the most natural ways to optimise the worst-case
loss is to introduce an adversary. This can be done us-
ing a third agent, a, whose strategy space is X0 × X1

(where Xj = {x | f(x) = j}) and whose loss function is
La(σ, (x0, x1)) = −ℓ(σ, x0)− ℓ(σ, x1). We then replace
the terms LWC(σ | f(x) = i) in the original loss functions
for the prover and verifier with with ℓ(σ, x1)−ℓ(σ, x0) and
ℓ(σ, x1)+ℓ(σ, x0) respectively. The verifier-leading Stack-
elberg equilibria of the original nip game are then identical
to the verifier-prover-leading Stackelberg equilibria in this
new three-player game, denoted Ga.
Theorem 4.5. Let (f,P) be a probabilistic decision prob-
lem and G a nip game. Then (σp, σv) is an approximate
verifier-leading SE (e-SEv) of G if and only if there is some
σa such that (σp, σv, σa) is an approximate verifier-prover
SE (e-SEv,p) of Ga (the adversarial version of G).

Unlike the classical learning-theoretic approach above in
which we assumed we were given a fixed dataset D of (x, y)
pairs, we are here assuming access to an adversary capable
of outputting any x ∈ X . This stronger assumption may
not always hold, but when it does, learning can be more
efficient (Goldman & Kearns, 1995).

4.2. Solving Stackelberg Games

In this subsection we consider two ways solving for Stack-
elberg equilibria using gradient-based methods.

4.2.1. BI-LEVEL OPTIMISATION

Computing Stackelberg equilibria can be naturally modelled
as a bi-level optimisation problem. A standard solution to
such problems using gradient-based methods is to employ a
timescale separation, meaning that some of the variables are
updated faster than the others (Borkar, 2008). In particular,
we take the sequential nature of the problem setting into
account by explicitly modelling the dependence of θp on
θv and updating θp more quickly as part of an ‘inner loop’.
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Fiez et al. (2020) show that if αv = o(αp) then with high
probability the following dynamics will converge locally to
the neighbourhood of a LSEv:

θp
t+1 = θp

t − αp(t) · ∇pLp,

θv
t+1 = θv

t − αv(t) · ∇vLv −∇pLv
(
∇2

pLp
)−1

∇pvLp,

where we drop the dependence on θ from our notation and
write ∇v and ∇p for ∇θv and ∇θp , respectively.

4.2.2. OPPONENT SHAPING

The updates above require computing an inverse Hessian
vector product, which is intractable when θp is large. Re-

placing the term
(
∇2

pLp
)−1

with αp(t + 1) leads to the
LOLA (Learning with Opponent Learning Awareness) up-
date (Foerster et al., 2018), which aims to actively influence
the future policy updates of its opponents. While LOLA
may fail to converge, interpolating between the LOLA up-
date and LookAhead (Zhang & Lesser, 2010) – an algorithm
known as Stable Opponent Shaping (SOS) – leads to local
convergence to stable fixed points in differentiable games
under self-play (Letcher et al., 2019).

5. Extensions
Finally, we generalise the nip model along two natural
dimensions in order to strengthen the properties of the re-
sulting protocols.

5.1. Multiple Provers

Multi-prover interactive proofs (MIPs) are a natural gen-
eralisation of classical IPs (Ben-Or et al., 1988), whose
additional power results from the fact that while the two
provers may correlate their strategies, they are prevented
from communicating with one another during their interac-
tions with the verifier (Babai et al., 1991). This allows the
verifier to ‘cross-examine’ the provers.

We define the nmipmodel identically to the nipmodel, but
now with two provers, p1 and p2, each of which has the same
loss. Valid MIP protocols are defined as in Definition 2.1,
with the soundness condition altered such that v must be
robust to any choice of p′1, p

′
2. Using a similar proof to that

of Theorem 4.1, it can be shown that the equilibria of the
nmip PVG correspond to valid MIP protocols. The only
subtlety is that due to the provers’ ability to coordinate on a
joint strategy and shared random signal beforehand, we must
consider correlated equilibria (defined in Appendix B).
Theorem 5.1. Let (f,P) be a probabilistic decision prob-
lem which has a valid proof protocol and G a nmip game.
Then σ is a valid MIP protocol if and only if it is a (strict)
approximate verifier-leading correlated Stackelberg equilib-
rium of G.

5.2. Zero Knowledge

We now consider whether the prover can prevent the veri-
fier from learning any more than to solve the task at hand.
We formalise this question as whether the resulting proof
protocol is zero-knowledge (ZK). Far from a theoretical
curiosity, this may have important practical implications,
such as for the prevention of model cloning/stealing via
black-box access (Orekondy et al., 2019).

Recall from Definition 2.2 that ⟨p, v⟩ is ZK if for any v′ and
any x such that f(x) = 1, there is another weak agent z ∈ V
capable of generating approximately the same distribution
over message sequences as ⟨v′, p⟩(x), without interacting
with p. While it is possible to introduce a precise analogue
of this condition, we wish to investigate whether the verifier
can gain knowledge regardless of the value of f(x).

We therefore provide a slightly stronger condition that re-
quires statistical closeness between ⟨v′, p⟩(x, y) and z(x, y)
for any x. In other words, short of the answer y, there is
nothing else that v′ can learn by interacting with p. We
can implement this model using a PVG by introducing an
additional verifier agent v2 = v′ and a simulator v3 = z,
whose objectives Lv2 and Lv3 := −Lv2 are defined via:

Lv2(σ) := −max
x

1

2

∑
m

∣∣∣P (
⟨σp, σv2⟩(x, y) = m

)
− P

(
σv3(x, y) = m

)∣∣∣,
and by adding the term Lv3 to the prover’s loss Lp. We
refer to the resulting model as zk-nip, and show that the
equilibria of this game correspond to ZK proof protocols.

Theorem 5.2. Let (f,P) be a probabilistic decision prob-
lem which has a valid ϵk-statistically zero-knowledge pro-
tocol and G a zk-nip game. Then σ is a valid ϵk-zero-
knowledge IP protocol if it is a (strict) approximate verifier-
prover-leading Stackelberg equilibrium (e-SEv1,p) of G.

We note that in this model the equilibria contain a Stack-
elberg hierarchy with more than two levels. Namely, the
prover p commits to their strategy before agents v2 and v3.
Technically, v2 should also be viewed as committing before
v3, but G(σv1 , σp) is a zero-sum game and so reaching an
NE is sufficient.

6. Discussion
In this work, we provide the first unifying framework for
neural interactive proof protocols and conduct a theoreti-
cal analysis, including introducing several new models. A
natural next step is to conduct a complementary empirical
investigation and a comparison of the real-world efficacy of
these models. This challenge is the subject of our forthcom-
ing work.
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Impact Statement
The aim of this work is to advance efforts towards building
safer and more trustworthy systems. We therefore expect
(and hope) that it will contribute towards positive societal
benefits, as elaborated in the main body.
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A. Additional Proof Protocols
While a comprehensive comparison is beyond the scope of the present work, we include a brief description and high-level
comparison of additional models for neural interactive proofs from the literature, with a summary given in Table 1.

Model Provers Verifiers Steps Complexity Zero Knowledge Reference

adp 1 1 2 NP ✗ (Anil et al., 2021)
debate 2 1 T PSPACE ✗ (Irving et al., 2018)
mac 2 1 2 ? ✗ (Wäldchen et al., 2022)

nip 1 1 T PSPACE ✗ Ours
nmip 2 1 T NEXP ✗ Ours
zk-nip 1 3 T PSPACE ✓ Ours
zk-nmip 2 3 T NEXP ✓ Ours

Table 1. A comparison between various PVG models.

Under the debate protocol, two provers declare their answers as m0 ∈ Y ⊆ M1 and m1 ∈ Y ⊆ M2 respectively, and the
verifier chooses to accept the answer given by prover y′ after witnessing the ensuing debate m2:T−1.

Definition A.1 (Irving et al., 2018). The debate model is a PVG where np = 2 and nv = 1, with {1, 2} ⊆ Y . The
protocol is µt = {t mod 3 + 1} and we let Mv = {0, 1, 2}. The loss functions are given by:

L1(σ) = −P(y′ = 1),

L2(σ) = −P(y′ = 2),

L3(σ) = −P(my′−1 = y),

for the two provers and the verifier, respectively.

The Merlin-Arthur Classifier (mac) protocol is closely related to debate. In this setting, the verifier must output the
correct class y for the input (or output ‘not sure’) based on a feature m0 = ϕ ∈ Φ provided by either a helpful (player 1) or
unhelpful (player 2) prover, not knowing which provided the feature.

Definition A.2 (Wäldchen et al., 2022). The mac model is a PVG where np = 2 and nv = 1, with Mv = Y = [k] ∪ {0}
representing k classes and a ‘not sure’ answer (0), and M1 = M2 = Φ are a set of features. Unlike debate and adp, the
protocol is stochastic, with µ0 = i for i ∼ unif(1, 2) and µ1 = {3}. The loss functions are given by:

L1(σ) = −E
[
log σv(y | x,m0)

]
,

L2(σ) = E
[
log

(
σv(y | x,m0) + σv(0 | x,m0)

)]
,

L3(σ) = −(1− γ) · E
[
log σv(y | x,m0) | µ0 = {1}

]
− γ · E

[
log

(
σv(y | x,m0) + σv(0 | x,m0)

)
| µ0 = {2}

]
,

where γ ∈ [0, 1] is a hyperparameter.

For a given PVG model model and solution concept E, we denote the class of decision problems solved by ⟨p, v⟩ ∈ E(G),
with provers and verifiers in classes of Turing machines Cp and Cv, respectively, as modelE(Cp,Cv). Typically, we
consider the case when Cp = ALL and Cv = PPT, where where ALL is the set of all Turing machines and PPT is the class
of all probabilistic polynomial time machines. In this setting, we can draw analogies between the PVG models we discuss
and the complexity classes they correspond to.

For example, by employing well-known results about the complexity class IP (Shamir, 1992), it follows immediately from
Theorem 4.1 that nip corresponds to PSPACE. Irving et al. (2018) similarly prove that debate corresponds to PSPACE.
On the other hand, while Anil et al. (2021) show that the SEvs of adp correspond exactly to valid interactive proof protocols
(when the verifier is deterministic), the theoretical strength of this result is severely limited due to its stipulation of zero
soundness error.
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Proposition A.3 (Anil et al., 2021). Let (f,P) be a (probabilistic) decision problem and G a adp game. Suppose that
there exists some deterministic δv⋆ such that ∃δp∀x

(
⟨δp, δv⋆⟩(x)T = y

)
and ∀δp∀x

(
⟨δp, δv⋆⟩(x)T = 1 =⇒ y = 1

)
. Then

⟨δp, σv⟩ is a valid interactive proof protocol (with ϵc = ϵs = 0) for {x : f(x) = 1}:

• If and only if ⟨δp, σv⟩ ∈ SEv(G),

• Only if ⟨δp, σv⟩ ∈ NE(G).

Allowing for a soundness error is widely held to be critical to the power of interactive proofs. Indeed, if a set S has a
valid interactive proof protocol with ϵs = 0, then S ∈ NP.1 Similarly, the restriction to deterministic verifiers is also
theoretically significant: if a set S has a valid interactive proof protocol where v is deterministic, then we must also have
ϵs = 0. Unfortunately, if we relax these assumptions then the correspondence between the SEvs of an adp PVG and valid
proof protocols no longer holds.

Proposition A.4. There is a probabilistic decision problem (f,P) and an adp game G such that – even though there exists
some valid interactive proof protocol ⟨δp, σv

⋆⟩ with ϵc = 0 – the fact that ⟨δp, σv⟩ ∈ SEv(G) is neither necessary nor
sufficient for ⟨δp, σv⟩ to be valid.

Proof. Let use consider the specific PVG with X = {0, 1, 2, 3} and f(x) = x mod 2, with the following deterministic
strategies for the prover (who has message space Mp = X):

δp1(x) = x mod 2 δp2(x) = 2− |x− 2| δp3(x) = x,

and with the verifier choosing a strategy σv that forms a convex combination over:

δv1(x,m
p) = [0 < mp < 3] δv2(x,m

p) = [mp < 2] δv3(x,m
p) = 1,

where [·] are Iverson brackets (i.e. an indicator function), and thus the codomain of each δv is y = {0, 1}. We write σv

explicitly as (pδv1 , qδ
v
2 , rδ

v
3), where p+ q + r = 1. Writing these strategies out explicitly we have:

x 0 1 2 3

δp1(x) 1 0 1 0
δp2(x) 0 1 2 1
δp3(x) 0 1 2 3

mp 0 1 2 3

δv1(x,m
p) 0 1 1 0

δv2(x,m
p) 1 1 0 0

δv3(x,m
p) 1 1 1 1

Let σv
⋆ = ( 58δ

v
1 ,

3
8δ

v
2 , 0δ

v
3). Then if y = 1 (i.e., either x = 1 or x = 3) we have ⟨δp1 , σv

⋆⟩(x)T = y w.p. 1, and hence ϵc = 0.
Similarly, note that that for any δp, we have that ⟨δp, σv

⋆⟩(x)T = 1 w.p. ⩽ 5
8 =: ϵs for any x such that f(x) = 0 (i.e., either

x = 0 or x = 2). As ϵc + ϵc =
5
8 < 1, then ⟨δp1 , σv

⋆⟩ is a valid proof protocol.

Suppose, for the remainder of the proof, that P(0) = P(1) = P(2) = a < 1
3 and P(3) = 1 − 3a. First, we show

lack of necessity. By the reasoning above, we have that (δp1 , σ
v
⋆) is a sound and complete interactive proof protocol for

{x : f(x) = 1}. But under the loss functions for adp Lp(δp1 , σ
v
⋆) = a log 64

9 while Lp(δp2 , σ
v
⋆) = a log 64

15 , and so the
prover can beneficially deviate by switching to δp2 . Thus, (δp1 , σ

v
⋆) is not an SEv .

Second, we show lack of sufficiency. As we explain further below, the unique SEv of the resulting PVG is given by
(δp3 , σ

v
† ), where σv

† = (bδv1 , bδ
v
2 , (1 − 2b)δv3) and b = 3a

2 . Under this equilibrium, however, we have that ⟨δp3 , σv
† ⟩(1)T =

f(1) = 1 w.p. 2b (hence ϵc = 1 − 2b) and ⟨δp3 , σv
† ⟩(0)T = 1 ̸= f(0) w.p. 1 − b (hence ϵs = 1 − b). Therefore, we have

ϵc + ϵc = 2 − 3b, and so ⟨δp3 , σv
† ⟩ is valid if and only if b > 1

3 . But because b = 3a
2 , this is false for any a ⩽ 2

9 . In such
cases, being an SEv is insufficient for validity, completing the proof.

The intuition behind the equilibrium (δp3 , σ
v
† ) is that the larger the probability mass on the setting when x = 3 (i.e. the

smaller a is) the more the verifier (and also the prover, as f(3) = 1) has an overriding incentive to make sure that it outputs
the correct answer in this particular case. Because ⟨δp, δv⟩(3)T = 0 if δp = δp1 or δp = δp2 (for any δv), the verifier is thus
incentivised to encourage the prover to play δp3 . The only way the prover can lower its loss by playing δp3 is if the verifier
plays δv3 with high probability.

1On the other hand, having non-zero completeness error still results in IP (Fürer et al., 1989).
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Given that δv3 is being played with some probability, then the loss from extra probability mass placed on δv1 or δv2 is
symmetric, hence we only need to find the probability of the verifier playing δv3 . The negative loss for the verifier is given by:

a log b+ a log(2b) + a log b+ (1− 3a) log(1− 2b).

Given that we must have 0 < b < 1
2 to avoid infinite loss, the verifier-optimal choice of b can be found analytically by

solving for the stationary points of the expression above with respect to b, resulting in the solution b = 3a
2 .

B. Proofs
In this section, we provide proofs for the results presented in the main text.

B.1. Protocol Correspondences

We first prove the correspondence result for nip games, which we restate here for convenience.

Theorem 4.1. Let (f,P) be a probabilistic decision problem which has a valid proof protocol and G a nip game. Then σ
is a valid IP protocol if and only if it is a (strict) approximate verifier-leading Stackelberg equilibrium of G.

Proof. Before beginning the proof notice that for any σ′, the least upper bound of the resulting completeness and soundness
errors are given by ϵc(σ

′) := supx:f(x)=1 ℓ(σ
′, x) and ϵs(σ

′) := supx:f(x)=0 ℓ(σ
′, x) respectively.

In an approximate equilibrium, the prover and verifier each select their strategies in a way that brings them within some ep

or ev of the loss from their optimal strategy, respectively. We will show that σ is a valid IP protocol if and only if it is a
strict verifier-leading e-SE of G. Concretely, we set: Concretely, we set:

ep := 1− min
σ⋆∈Σ⋆

Lv(σ⋆),

ev := 1− min
σv∈Σv

max
σp∈ep−LNE(G(σv))

Lv(σ),

where (because G is a two-player game) ep-LNE(G(σv)) contains the prover’s approximate (local) best-responses to σv,
denoted ep-BR(σv). Σ⋆ is the set of valid proof protocols for (f,P), defined as:

Σ⋆ :=
{
σ⋆ ∈ Σ : ∀xE[σ⋆(x) ̸= y | y = 1] ⩽ ϵ⋆c

∧ ∀σp∀xE[⟨σp, σv
⋆⟩(x) ̸= y | y = 0] ⩽ ϵ⋆s

∧ ϵ⋆c + ϵ⋆s < 1
}
,

where we assume that Σ⋆ ̸= ∅.

First, let us assume that σ is a valid IP protocol, with bounds ϵc(σ) and ϵs(σ). Let us show that σ is a Stackelberg
equilibrium. The optimal strategy σp

† for the prover in response to σv has loss Lp(σp
† , σ

v) = ϵc(σ
p
† , σ

v) − ϵs(σ
p
† , σ

v).
Suppose for a contradiction that the prover can deviate from σp to reduce their loss by at least ep:

ϵc(σ
p
† , σ

v)− ϵs(σ
p
† , σ

v) + ep = Lp(σp
† , σ

v) + ep

⩽ Lp(σ)

= ϵc(σ)− ϵs(σ).

Because σ is a valid IP protocol, then ϵs(σ
p
† , σ

v) ⩽ ϵs(σ). Combining these inequalities yields a contradiction:

ϵc(σ) + ϵs(σ) = ϵc(σ)− ϵs(σ) + 2ϵs(σ)

⩾ ϵc(σ
p
† , σ

v)− ϵs(σ
p
† , σ

v) + ep + 2ϵs(σ
p
† , σ

v)

= ϵc(σ
p
† , σ

v) + ϵs(σ
p
† , σ

v) + ep

⩾ min
σ⋆∈Σ⋆

(
ϵc(σ

⋆) + ϵs(σ
⋆)
)
+ ep

= 1.
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Thus σ is a strict e-SEv of G.

Conversely, let us assume that σ is a strict e-SEv of G with the aim of showing that σ a valid IP protocol. Define Σ̂p as the
set of approximate best responses to σv that maximise the soundness error, i.e. maximise the loss ℓ when f(x) = 0. Next,
let us take some σp

† ∈ argminσ̂p∈Σ̂p ϵc(σ̂
p, σv). We claim that σ is a valid IP protocol with soundness and completeness

errors ϵs(σ
p
† , σ

v) and ϵc(σ
p
† , σ

v) respectively. Clearly, by construction, we have that ϵs(σ̃
p, σv) ⩽ ϵs(σ

p
† , σ

v) for any prover
strategy σ̃p. Finally, for a contradiction, let us assume that:

ϵs(σ
p
† , σ

v) + ϵc(σ
p
† , σ

v) ⩾ 1 = ev + min
σv∈Σv

(
max

σp∈ep-BR(σv)
Lv(σ)

)
.

It follows immediately that σ is not a strict e-SEv of G after all, as the verifier can deviate to lower their loss by at least ev ,
and thus we must have ϵs(σ

p
† , σ

v) + ϵc(σ
p
† , σ

v) < 1, meaning that σ is valid.

Here we establish a correspondence between the Stackelberg equilibria of a nip game G and its adversarial counterpart Ga.

Theorem 4.5. Let (f,P) be a probabilistic decision problem and G a nip game. Then (σp, σv) is an approximate verifier-
leading SE (e-SEv) of G if and only if there is some σa such that (σp, σv, σa) is an approximate verifier-prover SE (e-SEv,p)
of Ga (the adversarial version of G).

Proof. First consider some σ⋆ = (σp
⋆ , σ

v
⋆ , σ

a
⋆) ∈ (ep, ev, 0)-SEv,p(Ga). By definition, the adversary best responds to

(σp
⋆ ,σ

v
⋆). Considering their loss:

La(σ) = −ℓ((σp, σv), x0)− ℓ((σp, σv), x1),

this is achieved by picking x0 that maximises ℓ((σp, σv), x0) and x1 that maximises ℓ((σp, σv), x1). Furthermore, the
prover ep-best responds to σv

⋆ given that (x0, x1) will be chosen in this way. This means that:

Lp(σ⋆) := ℓ

(
(σp

⋆ ,σ
v
⋆), argmax

x1∈X1

ℓ((σp
⋆ ,σ

v
⋆), x1)

)
− ℓ

(
(σp

⋆ ,σ
v
⋆), argmax

x0∈X0

ℓ((σp
⋆ ,σ

v
⋆), x0)

)
is within ep of the minimum. Now note that:

ℓ

(
(σp,σv), argmax

xi∈Xi

ℓ((σp,σv), xi)

)
= LWC((σp,σv) | f(x) = i

)
,

for i ∈ {0, 1}. Therefore, we have that:

Lp(σp
⋆ ,σ

v
⋆) = LWC((σp

⋆ ,σ
v
⋆) | f(x) = 1

)
− LWC((σp

⋆ ,σ
v
⋆) | f(x) = 0

)
is within ep of the minimum. In other words, the prover ep-best responds to σv

⋆ under the loss functions of G. Using similar
reasoning for the verifier, we see that (σp

⋆ , σ
v
⋆) ∈ e-SEv(G).

Conversely, let (σp
⋆ , σ

v
⋆) be a verifier-leading (ep, ev)-Stackelberg equilibrium. Let σa

⋆ be the strategy for the adversary
which selects (x0, x1) such that ℓ((σp, σv), x0) and ℓ((σp, σv), x1) are maximised. Then by repeating the above argument
in reverse we see that (σp

⋆ ,σ
v
⋆ ,σ

a
⋆) is a verifier-prover-leading (ep, ev, 0)-Stackelberg equilibrium, i.e. σ⋆ = (σp

⋆ , σ
v
⋆ , σ

a
⋆) ∈

(ep, ev, 0)-SEv,p(Ga).

We now prove the correspondence result for nmip games. The proof is very similar to that of the correspondence for nip
games, so we limit ourselves to noting the differences.

Theorem 5.1. Let (f,P) be a probabilistic decision problem which has a valid proof protocol and G a nmip game. Then σ
is a valid MIP protocol if and only if it is a (strict) approximate verifier-leading correlated Stackelberg equilibrium of G.

Proof. We follow the proof of Theorem 4.1. This time we define the approximation bound e as follows.

ep1 = ep2 := 1− min
σ⋆∈Σ⋆

Lv(σ⋆),

ev := 1− min
σv∈Σv

max
σp1∈ep1 -BR(σv), σp2∈ep2 -BR(σv)

Lv(σ).
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In the nmip model, the provers are assumed to be able to agree on a joint strategy σp = (σp1 , σp2) beforehand – including
a commonly observed source of randomness – though their interactions with the verifier during the game are independent.
The source of randomness then essentially forms a correlation device for the provers, allowing them to sample their actions
using the agreed upon joint strategy σp. If neither prover has an incentive to deviate from this agreement given their action
(provided by this ‘correlation device’), then we say that they are playing as in a correlated equilibrium.2 Since p1 and p2
have the same loss, for a correlated Stackelberg equilibrium we can consider their combined strategy σp effectively as the
strategy of a single player aiming to minimise the shared loss.

Now assume that σ is a valid MIP protocol, with bounds ϵc(σ) and ϵs(σ). The optimal strategy pair (σp1

† , σp2

† ) for the
provers in response to σv has (shared) loss:

ϵc

(
σp1

† , σp2

† , σv
)
− ϵs

(
σp1

† , σp2

† , σv
)
.

Supposing for a contradiction that the provers can deviate from (σp1 , σp2) to reduce their loss by at least ep1 (= ep1), as
before we obtain that:

ϵc

(
σp1

† , σp2

† , σv
)
− ϵs

(
σp1

† , σp2

† , σv
)
+ ep1 ⩽ ϵc(σ)− ϵs(σ).

and ϵs

(
σp1

† , σp2

† , σv
)
⩽ ϵs(σ). Combining these inequalities again yields the contradiction:

ϵc(σ) + ϵs(σ) ⩾ 1.

The converse direction proceeds as before, again noting that in correlated Stackelberg equilibrium the combined strategy
(σp1 , σp2) can reasoned about as the strategy of a single player. In particular, the fact that σp1 and σp2 can vary together
when considering a best response to the verifier’s strategy means that the verifier’s strategy must be robust to both provers
independently, which is what is required in the soundness condition.

Finally, we prove the correspondence result for zk-nip games. As above, the proof is very similar to the previous cases, so
we do not include the full proof.
Theorem 5.2. Let (f,P) be a probabilistic decision problem which has a valid ϵk-statistically zero-knowledge protocol and
G a zk-nip game. Then σ is a valid ϵk-zero-knowledge IP protocol if it is a (strict) approximate verifier-prover-leading
Stackelberg equilibrium (e-SEv1,p) of G.

Proof. Recall that in zk-nip we introduce two new verifiers, v2 and v3, where v2 is a ‘dishonest’ verifier that attempts to
extract knowledge from the prover p, in the sense of being able to generate a distribution over transcripts m that cannot be
generated (by the simulator v3) simply by learning y. If this is possible, then p must be providing more knowledge than y to
v2. In this new game, Lv3 := −Lv2 are defined via:

Lv2(σ) := −max
x

1

2

∑
m

∣∣∣P (
⟨σp, σv2⟩(x, y) = m

)
− P

(
σv3(x, y) = m

)∣∣∣.
In addition, we add the term Lv3 to the prover’s standard loss. There is a slight subtlety here, however, in that we would
like the prover to minimise ϵk conditional on the protocol being valid, as opposed to reducing ϵk while potentially violating
the validity of the protocol. (This would be true, for example, if the prover adopted a strategy that always outputs a single
message mp at every turn.) This leads to a lexicographic objective in which p first minimises LWC(σ | f(x) = 1)−LWC(σ |
f(x) = 0) and, from the set of such minimisers, minimises Lv3(σ). While this may seem somewhat convoluted, such
objectives can be easily optimised in practice via a simple modification of any standard (MA)RL algorithm (Skalse et al.,
2022).

In the remainder of the proof, we assume that the ϵk bound is tight – i.e. it is the minimal ZK bound achievable for any valid
IP protocol for (f,P). We also note that if:

max
x

1

2

∑
m

∣∣∣P (
⟨σp, σv2⟩(x, y) = m

)
− P

(
σv3(x, y) = m

)∣∣∣ ⩽ ϵk,

2We note that there is a slight discrepancy in our usage of this term from the classic definition, as we consider equilibria in which
only the provers (not the verifier) correlate their strategies. In our formulation, the provers correlate their behavioural strategies and can
randomise each time they send a message. However, because each prover is assumed to have perfect recall, then there is an equivalent
joint mixed strategy in which the provers use their correlation device to each sample a deterministic strategy, which they then follow.
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then:
max

x:f(x)=1

1

2

∑
m

∣∣∣P (
⟨p, v′⟩(x) = m

)
− P

(
z(x) = m

)∣∣∣ ⩽ ϵk,

where:

p(mp | m1:t, x) := σp(mp | m1:t, x, 1),

v′(mv | m1:t, x) := σv2(mv | m1:t, x, 1),

z(mv | m1:t, x) := σv3(mv | m1:t, x, 1).

Conditioning on the value of y = f(x) does not introduce any new information for either p, v′, or z, because the prover
is assumed to be able to compute f(x), and the ZK error for the ‘dishonest’ verifier v′ and simulator z is based only on
the case where f(x) = 1, meaning that their behaviour when f(x) = 0 is irrelevant for the purposes of the ZK bound in
Definition 2.2. As such, the bound introduced by our ZK variant is at least as strong as this definition, and so it suffices to
consider the former.

Let us first suppose that σ⋆ is an e-SEv1,p of G, where e is defined as in the proof of Theorem 4.1 and the approximation
errors for v2 and v3 are 0. First note that for any σv1 and σp then G(σv1 , σp) is zero-sum game between v2 and v3. Hence,
under σ⋆ – which is an NE in G(σv1

⋆ , σp
⋆) – we have a unique value ϵk(σ

v1
⋆ , σp

⋆) := Lv3(σ⋆) = −Lv2(σ⋆).

In particular, because the prover p seeks to minimise Lv3 given that it is best-responding to σv1
⋆ , we must have that

ϵk := min(σv1 ,σp)∈e-SEv(G′) ϵk(σ
v1 , σp), where G′ is the nip game underlying the zk-nip game in question. In other

words, we end up with a valid proof protocol for G′ (as per the reasoning in the proof of Theorem 4.1) that minimises the
ZK error.3 Thus, we have that σ⋆ is a valid ϵk-statistically zero-knowledge protocol for (f,P).

B.2. Worst-Case Loss

The next result establishes that, under certain conditions, minimising the empirical risk is sufficient to minimise the
worst-case loss.
Theorem 4.4. If Σ has the worst-case uniform convergence property and the worst-case robustness property then there
is some mWCUC : (0, 1)2 → N such that for every ϵ, δ ∈ (0, 1), if |D| ⩾ mWC(ϵ, δ) then LWC(σER

D )− LWC(σWC) ⩽ ϵ with
probability 1− δ.

Proof. Let us begin by defining mWC(ϵ, δ) := max
[
mWCUC( ϵ3 ,

√
δ),mWCR( ϵ3 ,

√
δ)
]
. Next, we expand LWC(σER

D ) −
LWC(σWC) into four expressions, which we denote by E1 to E4, respectively:

LWC(σER
D )− LWC(σWC) = LWC(σER

D )− LWC
D (σER

D )

+ LWC
D (σER

D )− LWC
D (σWC

D )

+ LWC
D (σWC

D )− LWC(σWC
D )

+ LWC(σWC
D )− LWC(σWC).

Fix some ϵ, δ ∈ (0, 1) and let m = mWC(ϵ, δ). Consider some D drawn iid from P such that |D| ⩾ m. Then by worst-case
uniform convergence we have that, with probability 1−

√
δ, LWC(σ)− LWC

D (σ) ⩽ ϵ
3 for σ ∈ {σER

D ,σWC
D ,σWC}. Thus,

we have directly that E1 ⩽ ϵ
3 , and furthermore that:

E4 = LWC(σWC
D )− LWC

D (σWC
D )

+ LWC
D (σWC

D )− LWC
D (σWC)

+ LWC
D (σWC)− LWC(σWC)

⩽
ϵ

3
+ 0 + 0.

The second two terms are non-positive as σWC
D minimises LWC

D , and LWC
D (σ) − LWC(σ) ⩽ 0 for any σ. This second

observation also implies that E3 ⩽ 0. Finally, by worst-case robustness, we have that, with probability 1−
√
δ, E2 ⩽ ϵ

3 .
Hence, LWC(σER

D )− LWC(σWC) ⩽ ϵ with probability 1− δ, as required.

3Here we assume a strong Stackelberg equilibrium in which v1 is assumed to break any ties in favour of p, hence our minimisation
over (σv1 , σp) ∈ e-SEv(G′).
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