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Abstract

Tensor decomposition is a fundamental tool for analyzing multi-dimensional data
by learning low-rank factors to represent high-order interactions. While recent
works on temporal tensor decomposition have made significant progress by incor-
porating continuous timestamps in latent factors, they still struggle with general
tensor data with continuous indexes not only in the temporal mode but also in
other modes, such as spatial coordinates in climate data. Moreover, the challenge
of self-adapting model complexity is largely unexplored in functional temporal
tensor models, with existing methods being inapplicable in this setting. To address
these limitations, we propose functional Complexity-Adaptive Temporal Tensor
dEcomposition (CATTE). Our approach encodes continuous spatial indexes as
learnable Fourier features and employs neural ODEs in latent space to learn the
temporal trajectories of factors. To enable automatic adaptation of model complex-
ity, we introduce a sparsity-inducing prior over the factor trajectories. We develop
an efficient variational inference scheme with an analytical evidence lower bound,
enabling sampling-free optimization. Through extensive experiments on both syn-
thetic and real-world datasets, we demonstrate that CATTE not only reveals the
underlying ranks of functional temporal tensors but also significantly outperforms
existing methods in prediction performance and robustness against noise. The
code is available at https://github.com/OceanSTARLab/CATTE.

1 Introduction

Tensor is a ubiquitous data structure for organizing multi-dimensional data. For example, a four-
mode tensor (longitude, latitude, depth, time) can serve as a unified representation of spatiotemporal
signals in the ocean, such as temperature or flow speed. Tensor decomposition is a prevailing frame-
work for multiway data analysis that estimates latent factors to reconstruct the unobserved entries.
Methods like CANDECOMP/PARAFAC (CP)[1] and Tucker decomposition[2] are widely applied
across fields, including climate science, oceanography, and social science.

An emerging trend in tensor community is to leverage the continuous timestamp of observed entries
and build temporal tensor models, as the real-world tensor data is often irregularly collected in time,
e.g., physical signals, accompanied with rich and complex time-varying patterns. The temporal
tensor methods expand the classical tensor framework by using polynomial splines [3], Gaussian
processes [4, 5], ODE [6] and energy-based models [7] to estimate the continuous temporal dynam-
ics in latent space, instead of discretizing the time mode and setting a fixed number of factors.
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Despite the successes of current temporal tensor methods, they inherit a fundamental limitation from
traditional tensor models: they assume tensor data at each timestep must conform to a Cartesian grid
structure with discrete indexes and finite-dimensional modes. This assumption poorly aligns with
many real-world scenarios where modes are naturally continuous, such as spatial coordinates like
(longitude, latitude, depth). To fit current models, we still need to discretize continuous indexes,
which inevitably leads to a loss of fine-grained information encoded in these indexes. From a high-
level perspective, while current temporal tensor methods have taken a crucial step forward by mod-
eling continuous characteristics in the temporal mode compared to classical approaches, they still
fail to fully utilize the rich complex patterns inherent in other continuous-indexed modes.

Another crucial challenge lies in automatically adapting the complexity of functional temporal ten-
sor decomposition model to the data, which is determined by the tensor rank. As a key hyperpa-
rameter in tensor modeling, the rank directly influences interpretability, sparsity, and model expres-
siveness. While classical tensor literature offers extensive theoretical analysis and learning-based
solutions [8, 9, 10], this topic has been largely overlooked in emerging functional temporal tensor
methods. The introduction of dynamical patterns significantly complicates the latent landscape, and
the lack of investigation into rank selection makes temporal tensor models more susceptible to hy-
perparameter choice. Exisiting approaches [8, 9, 10] focus on modeling discrete factors, which can
not be straightforwardly extended to the functional regimes.

To fill these gaps, we propose CATTE, a complexity-adaptive method for modeling temporal tensor
data with continuous indexes across all modes. Our method models general temporal tensor data
with continuous indexes not only in the time mode but also in other modes. Specifically, CATTE
organizes the continuous indexes from non-temporal modes into a Fourier-feature format, encodes
them as the initial state of latent dynamics, and utilizes the neural ODE [11] to model the factor tra-
jectories. To enable self-adaptive complexity in functional temporal tensor decomposition, CATTE
extends the classical Bayesian rank selection framework [8] by placing sparsity-inducing priors over
factor trajectories. For efficient inference, we propose a novel variational inference algorithm with
an analytical evidence lower bound, enabling sampling-free inference of the model parameters and
latent dynamics. For evaluation, we conducted experiments on both simulated and real-world tasks,
demonstrating that CATTE not only reveals the underlying ranks of functional temporal tensors but
also significantly outperforms existing methods in prediction performance and robustness against
noise.

2 Preliminary

2.1 Tensor Decomposition

Tensor decomposition represents multi-dimensional arrays by decomposing them into lower-
dimensional components, thus revealing underlying patterns in high-dimensional data. We denote a
K-mode tensor as Y ∈ RI1×···×Ik×···×IK , where the k-th mode consists of Ik dimensions. Each
entry of Y , termed yi, is indexed by a K-tuple i = (i1, · · · , ik, · · · , iK), where ik denotes the
index of the node along the mode k (1 ≤ k ≤ K). For tensor decomposition, a set of factor ma-
trices {Uk}Kk=1 are introduced to represent the nodes in each mode. Specifically, the k-th factor
matrix Uk is composed of Ik latent factors, i.e., Uk = [uk

1 , · · · ,uk
ik
, · · · ,uk

Ik
]T ∈ RIk×Rk and

uk
ik

= [ukik,1, · · · , u
k
ik,rk

, · · · , ukik,Rk
]T ∈ RRk , where Rk denotes the rank of mode-k. The clas-

sic CANDECOMP/PARAFAC (CP) decomposition [1] aims to decompose a tensor into a sum of
rank-one tensors. It sets R1 = · · · = Rk = · · · = RK = R and represents each entry using

yi ≈ 1T[⊛
k
uk
ik
] =

R∑
r=1

K∏
k=1

ukik,r, (1)

where 1 ∈ RR is the all-one vector and ⊛
k

is Hadamard product of a set of vectors defined as

⊛
k
uk
ik

= (u1
i1
⊛ · · ·⊛ uk

ik
⊛ · · ·⊛ uK

iK
). Here, ⊛ is Hadamard product.

2.2 Automatic Tensor Rank Determination

The tensor rank R determines the complexity of the tensor model. An improper choice of the rank
can lead to overfitting or underfitting to the signal sources, potentially compromising the model
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interpretability. However, the optimal determination of the tensor rank is known to be NP-hard
[9, 12, 13]. Bayesian methods have been introduced to facilitate Tucker/CP decomposition with
automatic tensor rank learning [14, 8, 9, 10]. These methods impose sparsity-promoting priors (e.g.,
the Gaussian-Gamma prior and Laplacian prior) on the latent factors.

For example, Bayesian CP decomposition with Gaussian-Gamma priors models the mean
and precision of all latent factors with zero elements and a set of latent variables λ =
[λ1, · · · , λr, · · · , λR]T ∈ RR, respectively:

p(uk
ik
|λ) = N (uk

ik
|0,Λ−1), ∀k, p(λ) =

R∏
r=1

Gamma(λr|a0r, b0r), (2)

where Λ = diag(λ) is the inverse covariance matrix shared by all latent factors overK modes. Note
thatR components of uk

ik
are assumed to be statistically independent and the distribution of the r-th

component is controlled by λr. For example, if λr is large, then the density function peaks at mean
zero, so the r-th component is concentrated at zero. Otherwise, if λr is small (which leads to heavy
tails), it allows the component to spread out to wider range of values. The conjugated Gamma priors
are assigned to λ. Here Gamma(x|a, b) = baxa−1e−bx

Γ(a) for x ≥ 0, which represents the Gamma
distribution for λ. In this context, a and b denote the shape and rate parameters respectively, and
Γ(·) denotes the Gamma function. {a0r, b0r}Rr=1 are pre-determined hyperparameters. The tensor
rank will be automatically determined by the inferred posteriors of λ.

2.3 Generalized Tensor with Continuous Modes

Real-world tensor data often contains continuous modes, prompting increased studies on general-
ized tensor data with continuous indexes. Existing approaches can be broadly classified into two
categories:

1.Temporal tensor model with continuous timestamps: Recent studies encode the representations
of continuous timestamps into the latent factor of CP model [5, 15] or the tensor core of Tucker
model [4]. Taking CP as an example, the temporal tensor model with continuous timestamps can be
written as:

yi(t) ≈ 1T[⊛
k
uk
ik
(t)], (3)

where i is the tensor index, t is the continuous timestamp, uk
ik
(t) is the factor trajectory of the ik-th

node in the k-th mode. Although this modeling approach effectively captures complex temporal
dynamics, it is inadequate for generalizing to data with continuous indexes over the entire domain,
such as spatiotemporal data which has continuous coordinates on both spatial and temporal modes
[16].

2.Functional tensor model: Another popular model to handle continuous-indexed modes is the func-
tional tensor [17, 18, 19], which assumes that the continuous-indexed tensor can be factorized as a
set of mode-wise functions and the continuous timestamp is simply modeled as an extra mode. Still
taking CP as an example, the functional tensor model can be written as:

yi(t) ≈ 1T[⊛
k
uk(ik)⊛uTemporal(t)], (4)

where uk(ik) : R+ → RR is the latent vector-valued function of the k-th mode, which takes
the continuous index ik as input and outputs the latent factor. uTemporal(t) : R+ → RR is the
latent function of the temporal mode. The fully-factorized form of (4) models each mode equally
and independently. It often overlooks the complex dynamics of the temporal mode, which requires
special treatment [16].

3 Methodology

Despite recent advances in modeling temporal tensors, most of these methods are still unsuitable for
generalized tensor data with continuous indexes across all domains. While functional tensor meth-
ods offer greater flexibility, they simply treat temporal dynamics as an independent mode, which
tends to underfit the inherent complexity of the temporal dynamics. Furthermore, rank determina-
tion remains a less explored issue in temporal tensor models. To address these issues, we propose
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Figure 1: Graphical illustration of the proposed CATTE (the case of K = 3).

CATTE, a novel temporal tensor model that integrates the continuous-indexed features into a latent
ODE model with rank-revealing prior.

Without loss of generality, we consider a K-mode generalized temporal tensor with continuous
indexes over all domains, and it actually corresponds to a function F(i1, · · · , iK , t) : RK+1

+ → R1 to
map the continuous indexes and timestamp to the tensor entry, denoted as yi(t) = F(i1, · · · , iK , t).
We assume the function F(i1, · · · , iK , t) can be factorized into K factor trajectories following the
CP format with rank R, i.e.,

yi(t) = F(i1, · · · , iK , t) ≈ 1T[⊛
k
uk(ik, t)], (5)

where uk(ik, t) : R2
+ → RR is the trajectory of latent factor, which is a R-size vector-valued func-

tion mapping the continuous index ik of mode-k and timestamp t to a R-dimensional latent factor.
We claim that the proposed model (5) is a generalization of existing temporal tensor methods (3) via
modeling continuous-indexed patterns not only in the temporal mode but in all modes. If we restrict
ik to finite and discrete, (5) will degrade to (3). Compared to the fully-factorized functional ten-
sor (4), the proposed method (5) explicitly models the time-varying factor trajectories of all modes,
known as dynamic factor learning [5, 15]. Given the fact that temporal mode always dominates and
interacts with other modes, the proposed method is expected to improve the model’s capability by
learning time-varying representations in dynamical data.

3.1 Continuous-indexed Latent-ODE

To allow flexible modeling of the factor trajectory and continuous-indexed information, we propose
a temporal function gk(ik, t) : R2

+ → RR based on encoder-decoder structure and neural ODE [11]
to approximate the factor trajectory uk(ik, t) of mode-k. Specifically, we have:

zk(ik, 0) =Encoder
(
[cos(2πbkik); sin(2πbkik)]

)
, (6)

zk(ik, t) =zk(ik, 0) +

∫ t

0

hθk
(zk(ik, s), s)ds, (7)

gk(ik, t) =Decoder
(
zk(ik, t)). (8)

Eq. (6) shows that how we obtain z(i, 0) ∈ RJ , the initial state of the latent dynamics by encod-
ing the continuous index ik. In particular, the input coordinate ik is firstly expanded into a set of
Fourier features [cos(2πbkik); sin(2πbkik)] ∈ R2M , where bk ∈ RM is a learnable vector that
scales ik by M different frequencies. This effectively expands the input space with high-frequency
components [20], helping to capture fine-grained index information. The Fourier features are then
fed into an encoder Encoder(·) : R2M → RJ to get zk(ik, 0). Give the initial state, we then ap-
ply a neural network hθk

(zk(ik, s), s) : RJ → RJ to model the state transition of the dynamics
at each timestamp, which is parameterized by θk, and the state value can be calculated through
integrations as shown in (7). Finally, we will pass the output of the latent dynamics through a de-
coder Decoder(·) : RJ → RR to obtain gk(ik, t) as the approximation of the factor trajectory, as
described in (8). We simply use the multilayer perceptrons (MLPs) to parameterize the encoder and
the decoder.

Note that (7) actually represents the neural ODE model [21, 11], and we handle the integration to
obtain zk(ik, t) in (7) at arbitrary t by using numerical ODE solvers:

zk(ik, t) = ODESolve(zk(ik, 0), hθk
). (9)
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Algorithm 1: Training process of CATTE

Input: Training data D = {yn, in, tn}Nn=1
Collect all possible Ik indexes for K modes and T possible timestamps. Initialize
{ωk}Kk=1, {αr, βr}Rr=1, σ, ρ, ι.

while not convergence do
Construct a set of initial ODE state tables Z0 using Fourier features and Encoder,

encompassing all possible indexes.
for i = 1, 2, · · · , T do

Z(ti) = ODESolve(Z(ti−1), {hθk
}Kk=1,(ti−1, ti))

Compute necessary gk(ik, ti) from Z(t) using (8).
end
Take gradient step on (19).

end

For computing efficiency, we concatenate the initial states of multiple indexes together, and construct
a matrix-valued trajectory, where each row corresponds to the initial state of an unique index. Then,
we only need to call the ODE solver once to obtain the factor trajectory of observed indexes. For
simplicity, we denote the all learnable parameters in (6)-(8) as ωk for mode-k, which includes the
frequency-scale vectors bk as well as the parameters of neural ODE θk and the encoder-decoder.

3.2 Functional Rank-revealing Prior over Factor Trajectories

To automatically determine the underlying rank in the functional dynamical scenario, we apply the
Bayesian sparsity-promoting priors. Different from the classical framework [8], stated in (2), we
assign a dimension-wise Gaussian-Gamma prior to the factor trajectory,

p(uk(ik, t)|λ) = N (uk(ik, t)|0,Λ−1), ∀k, (10)

where Λ = diag(λ) and λ = [λ1, · · · , λr, · · · , λR]T ∈ RR. We assign Gamma priors to λ:
p(λ) =

∏R
r=1 Gamma(λr|a0r, b0r), identical to (2). Then, the rank-revealing prior over all factor

trajectories is:

p(U ,λ) = p(λ)

K∏
k=1

p(uk(ik, t)|λ), (11)

where U denotes the set of factor trajectories {uk(·, ·)}Kk=1. We are to emphasize that the sparsity-
inducing prior is assigned over a family of latent functions, rather than over a set of static fac-
tors [8, 9]. Consequently, classical inference techniques developed are not applicable in the func-
tional tensor context. In the next section, we introduce a novel gradientdescentbased inference
method that efficiently prunes redundant components from these latent functions.

With finite observed entries D = {yn, in, tn}Nn=1, where yn denotes the n-th entry observed at
continuous index tuple in = (in1 , · · · , inK) and timestamp tn. Our goal is to learn a factorized
function as described in (5) to construct a direct mapping from (in, tn) to yn. Therefore, for each
observed entry {yn, in, tn}, we model the Gaussian likelihood as:

p(yn|U , τ) = N (yn|1T[⊛
k
uk(ink , tn)], τ

−1), (12)

where τ is the inverse of the observation noise. We further assign a Gamma prior, p(τ) =
Gamma(τ |c0, d0), and the joint probability can be written as:

p(U , τ,D) = p(U ,λ)p(τ)
N∏

n=1

p(yn|U , τ). (13)

We illustrate CATTE with the case of K = 3 in Figure 1.
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4 Model Inference

4.1 Factorized Functional Posterior and Analytical Evidence Lower Bound

It is intractable to compute the full posterior of latent variables in (13) due to the high-dimensional
integral and complex form of likelihood. We take a workaround to construct a variational distribu-
tion q(U ,λ, τ) to approximate the exact posterior p(U ,λ, τ |D). Similar to the widely-used mean-
field assumption, we design the approximate posterior in a fully factorized form: q(U ,λ, τ) =
q(U)q(λ)q(τ).
Specifically, the conditional conjugate property of Gaussian-Gamma distribution motivates us to
formulate the corresponding variational posteriors as follows:

q(U) =
N∏

n=1

K∏
k=1

N (uk(ink , tn)|gk(ink , tn), σ
2I), (14)

where gk(·, ·) is the mode-wise latent temporal representations parameterized by ωk, as we men-
tioned in Section 3.1, and σ is the variational variance shared by all uk. Similarly, we formulate
q(λ), q(τ) as:

q(λ) =
R∏

r=1

Gamma(λr|αr, βr), q(τ) = Gamma(τ |ρ, ι), (15)

where {αr, βr}Rr=1, ρ, ι are the variational parameters to characterize the approximated pos-
teriors. Our goal is to estimate the latent ODE parameters ωk and variational parameters
{{αr, βr}Rr=1, σ, ρ, ι} in (14) (15) to make the approximated posterior q(U ,λ, τ) as close as possible
to the true posterior p(U ,λ, τ |D). To do so, we follow the variational inference framework [22] and
construct the following objective function by minimizing the Kullback-Leibler (KL) divergence be-
tween the approximated posterior and the true posterior KL(q(U ,λ, τ)∥p(U ,λ, τ |D)), which leads
to the maximization of the evidence lower bound (ELBO):

ELBO = Eq(U,λ,τ)[ln p(D|U ,λ, τ)] + Eq(U,λ)[ln
p(U|λ)
q(U)

]− KL(q(λ)∥p(λ))− KL(q(τ)∥p(τ)).

(16)
The ELBO is consist of four terms. The first term is posterior expectation of log-likelihood while the
last three are KL terms. Usually, the first term is intractable if the likelihood model is complicated
and requires the costly sampling-based approximation to handle the integrals in the expectation
[23, 15]. Fortunately, by leveraging the well-designed conjugate priors and factorized structure of
the posterior, we make an endeavor to derive its analytical expression:

Eq(U,λ,τ)[ln p(D|U ,λ, τ)] = −N
2
ln(2π) +

N

2
(ψ(ρ)− ln ι)

− 1

2

N∑
n=1

ρ

ι

{
y2n − 2yn{1T[⊛

k
gk(ink , tn)]}+ 1T[⊛

k
vec(gk(ink , tn)g

k(ink , tn)
T + σ2I)]

}
, (17)

where gk
r (i

n
k , tn) is the r-th element of the k-th mode’s latent temporal representation gk(ink , tn).

We provide the detailed derivation in Appendix A.2. The second term of (16) computes the KL
divergence between prior and posterior of factor trajectories, which is also with a closed from:

Eq(U,λ)[ln
p(U|λ)
q(U)

] = −KL(q(U)∥p(U|λ = Eq(λ))) =

−
N∑

n=1

K∑
k=1

R∑
r=1

1

2

{
ln(

βr
αrσ2

) +
αr

βr
{σ2 + [gk

r (i
n
k , tn)]

2} − 1
}
, (18)

where Eq(λ) = [Eq(λ1), . . . ,Eq(λR)]
T = [α1/β1, . . . , αR/βR]

T. This term encourages rank re-
duction, as it drives the posterior mean of λr to be large, thereby forcing the corresponding r-th
component of K factor trajectories {gk

r (·, ·)}Kk=1 to be zero. The combination of the above two
terms enables an automatic rank determination mechanism by striking a balance between capacity
of representation and model complexity. As the prior and posterior of λ and τ are both Gamma
distribution, the last two KL terms in the ELBO are analytically computable, as shown in (26)(27)
in Appendix A.2.
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We highlight that each term in (16) admits a closedform expression, eliminating the need for sam-
plingbased approximations. Consequently, during training we can compute the ELBOs gradient
with respect to the variational parameters exactly, allowing us to employ standard gradientbased
optimization methods. We present the differences from previous methods in Appendix C. Our pro-
posed method scales efficiently to jointly optimize both the variational and latent ODE parameters:

argmax{ωk}K
k=1,{αr,βr}R

r=1,σ,ρ,ι
ELBO. (19)

We summarize the inference algorithm in Algorithm 1. When N is large, we can use the mini-
batch gradient descent method to accelerate the optimization process. After obtaining the variational
posteriors of the latent variables, we can further derive the predictive distribution for new data at
arbitrary indices. More details can be found in Appendix A.6. To distinguish our method from
previous approaches, we refer to it as a functional automatic rank determination mechanism (FARD).

5 Related Work

Many existing approaches augment the tensor with a time mode to integrate temporal informa-
tion [24, 25, 26, 27]. To leverage continuous timestamps, [4] modeled the tensor core while [5]
modeled the latent factors as time functions with Gaussian processes within the Tucker decomposi-
tion. Similarly, [15] captured the temporal evolution of latent factors in the frequency domain by
employing a Gaussian process prior, with the factor trajectories subsequently generated via inverse
Fourier transform. In contrast, [6] directly applied a neural ODE model to represent tensor entry
values as a function of the corresponding latent factors and time. However, it learns time-invariant
latent factors to control the derivatives of the entry dynamics, limiting its expressiveness. The most
recent work [28] constructed a multipartite graph to encode interactions across different modes into
the evolution of latent factors. However, the above methods are unable to model the temporal tensor
data with all modes being continuous-indexed.

Within burgeoning literature on functional tensors, existing methods often rely on deterministic ten-
sor models, such as the Tucker model [17] or tensor train models [29, 30, 18, 31, 32], to approximate
multivariate functions with low-rank structures. However, these methods are sensitive to data noise
and lack the capability to provide uncertainty quantification. Alternatively, tensor-based Bayesian
models with Gaussian process priors have been proposed to represent continuous-indexed latent fac-
tors [33, 19]. Despite their advantages, these approaches do not explicitly model temporal dynamics,
limiting their effectiveness in capturing complex patterns.

6 Experiment

6.1 Synthetic Data

We first evaluated CATTE on a synthetic task. We generated a two-mode temporal tensor, and each
entry is defined as:

Y(i1, i2, t) = 1T[u1(i1, t)⊛ u2(i2, t)],

where u1(i1, t) = − cos3(2πt+ 2.5πi1); u2(i2, t) = sin(3πt+ 3.5πi2).
(20)

(a) Y(0.152, 0.823, t) (b) Y(0.992, 0.982, t)

Figure 2: Prediction results on different coor-
dinates.

We randomly sampled 25×25×50 off-grid indexes
entries from interval [0, 1]× [0, 1]× [0, 1]. We added
Gaussian noise ϵ ∼ N (0, 0.05) to the generated data.
We randomly selected 20% of the data (6250 points
in total) as the training data. Detailed model set-
tings can be found in Appendix B.1. In Figure 2, we
showed the predictive trajectories of entry value in-
dexed in different coordinates. The dotted line repre-
sents the ground truth and the full line represents the
the predictive mean learned by our model. The cross
symbols represent the training points. The shaded
region represents the predictive uncertainty region.

One can see that although the training points are sparse and noisy, CATTE accurately recovered the
ground truth, demonstrating that it has effectively captured the temporal dynamics. Figure 3 depicts
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R components of the learned factor trajectories at timestamp t = 0.235. One can see that CATTE
identifies the underlying rank (i.e., 1) through uniquely recovering the real mode functions and other
four components are learned to be zero. More detailed interpretations on the rank revealing process
were provided in Appendix B.3.

6.2 Real-world Data

Datasets: We examined CATTE on three real-world benchmark datasets. (1) CA traf-
fic, lane-blocked records in California. We extracted a three-mode temporal tensor be-
tween 5 severity levels, 20 latitudes and 16 longitudes. We collected 10K entry values
and their timestamps.(https://smoosavi.org/datasets/lstw; (2) Server Room, tem-
perature logs of Poznan Supercomputing and Networking Center. We extracted a three-
mode temporal tensor between 3 air conditioning modes (24◦, 27◦ and 30◦), 3 power
usage levels (50%, 75%, 100%) and 34 locations. We collected 10K entry values and
their timestamps.(https://zenodo.org/record/3610078#%23.Y8SYt3bMJGi); (3) SSF,
sound speed field measurements in the pacific ocean covering the region between lati-
tudes 17◦N ∼ 20◦N, longitude 114.7◦E ∼ 117.7◦E and depth 0m ∼ 200m. We ex-
tracted a three-mode continuous-indexed temporal tensor data contains 10K observations
across 10 latitudes, 20 longitudes, 10 depths and 34 timestamps over 4 days. (https:
//ncss.hycom.org/thredds/ncss/grid/GLBy0.08/expt_93.0/ts3z/dataset.html).

Figure 3: Visualizations of learned factor tra-
jectories at timestamp t = 0.235. Only the
3rd component is revealed to be informative
and others are pruned to be zero.

Baselines and Settings: We compared CATTE with
state-of-the-art temporal and functional tensor meth-
ods: (1) THIS-ODE [6], a continuous-time decom-
position using a neural ODE to estimate tensor en-
tries from static factors and time; (2) NONFAT [15],
a bi-level latent GP model that estimates dynamic
factors with Fourier bases; (3) DEMOTE [28], a
neural diffusion-reaction process model for learning
dynamic factors in tensor decomposition; (4) Fun-
BaT [19], a Bayesian method using GPs as func-
tional priors for continuous-indexed tensor data; (5)
LRTFR [17], a low-rank functional Tucker model
that uses factorized neural representations for de-
composition. We followed [28, 19] to randomly
draw 80% of observed entries for training and the rest for testing. The performance metrics in-
clude the root-mean-square error (RMSE) and the mean absolute error (MAE). Each experiment
was conducted five times (5fold crossvalidation) and we reported the average test errors with their
standard deviations. For CATTE , we set the ODE state dimension J = 10 and the initial number
of components of the factor trajectories R = 10. We provided more detailed baseline settings in
Appendix B.2.

Prediction Performance: Table 1 shows that CATTE consistently outperforms all baselines by a
substantial margin, without requiring manual rank tuning. Moreover, the integration of FARD leads
to significant performance gains, highlighting its effectiveness. The learned ranks of the CA traffic,
Server Room and SSF datasets are 5, 7, 7 respectively. We illustrated their rank-learning curves
of three datasets in Figure 6 in Appendix B.3. We observed that methods which do not consider
the continuously indexed mode (e.g., NONFAT, DEMOTE, THIS-ODE) perform poorly on the SSF
dataset. In contrast, approaches that leverage this continuity achieve significantly better results. This
is because the SSF dataset exhibits strong continuity across three modes, and methods that fail to
incorporate this information struggle to deliver satisfactory reconstructions. Additional visualization
results of the predictions from various methods and datasets are presented in Fig. 7, Fig. 8 and Fig. 9,
and in Appendix B.7.

Revealed Rank Analysis and Interpretability: We analyzed the revealed rank and the learned fac-
tor trajectories of the SSF dataset. Figure 4(a) shows the posterior mean of the variance of the learned
factor trajectories (i.e., Eq(

1
λ )), which governs the fluctuations of their corresponding R = 10 com-

ponents of factor trajectories. One can see that Eq(
1
λ3
),Eq(

1
λ4
) and Eq(

1
λ8
) are small, indicating that

these components concentrate around zero and can be pruned without affecting the final predictions.
Thus, our method revealed the rank of the SSF dataset to be 7. Additionally, Eq(

1
λ1
) and Eq(

1
λ10

)
dominate, indicating that the corresponding 1st and 10th components of the factor trajectories form
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RMSE MAE
Datasets CA Traffic Server Room SSF CA Traffic Server Room SSF

R = 3

THIS-ODE 0.672 ± 0.002 0.132 ± 0.002 2.097 ± 0.003 0.587 ± 0.002 0.083 ± 0.002 2.084 ± 0.003
NONFAT 0.504 ± 0.010 0.129 ± 0.002 9.796 ± 0.010 0.167 ± 0.009 0.078 ± 0.001 8.771 ± 0.043
DEMOTE 0.447 ± 0.001 0.131 ± 0.001 9.789 ± 0.001 0.118 ± 0.002 0.090 ± 0.0015 8.757 ± 0.001

FunBaT-CP 0.563 ± 0.025 0.425 ± 0.003 0.696 ± 0.047 0.244 ± 0.025 0.308 ± 0.001 0.549 ± 0.038
FunBaT-Tucker 0.584 ± 0.009 0.498 ± 0.058 0.730 ± 0.201 0.189 ± 0.014 0.381 ± 0.053 0.614 ± 0.128

LRTFR 0.379 ± 0.042 0.151 ± 0.004 0.595 ± 0.018 0.187 ± 0.022 0.110 ± 0.002 0.464 ± 0.0165
R = 5

THIS-ODE 0.632 ± 0.002 0.132 ± 0.003 1.039 ± 0.015 0.552 ± 0.001 0.083 ± 0.002 1.032 ± 0.002
NONFAT 0.501 ± 0.002 0.117 ± 0.006 9.801 ± 0.014 0.152 ± 0.001 0.071 ± 0.004 8.744 ± 0.035
DEMOTE 0.421 ± 0.002 0.105 ± 0.003 9.788 ± 0.001 0.103 ± 0.001 0.068 ± 0.003 8.757 ± 0.001

FunBaT-CP 0.547 ± 0.025 0.422 ± 0.001 0.675 ± 0.061 0.204 ± 0.052 0.307 ± 0.002 0.531 ± 0.051
FunBaT-Tucker 0.578 ± 0.005 0.521± 0.114 0.702 ± 0.054 0.181 ± 0.005 0.391 ± 0.097 0.557 ± 0.041

LRTFR 0.376 ± 0.016 0.167 ± 0.006 0.532 ± 0.036 0.182 ± 0.012 0.121 ± 0.005 0.418 ± 0.003
R = 7

THIS-ODE 0.628 ± 0.007 0.154 ± 0.016 1.685 ± 0.009 0.548 ± 0.006 0.089 ± 0.002 1.674 ± 0.008
NONFAT 0.421 ± 0.016 0.128 ± 0.002 9.773 ± 0.015 0.137 ± 0.006 0.077 ± 0.002 8.718 ± 0.035
DEMOTE 0.389 ± 0.005 0.094 ± 0.006 9.790 ± 0.002 0.091 ± 0.001 0.062 ± 0.006 8.753 ± 0.006

FunBaT-CP 0.545 ± 0.009 0.426 ± 0.001 0.685 ± 0.049 0.204 ± 0.037 0.307 ± 0.001 0.541 ± 0.039
FunBaT-Tucker 0.587 ± 0.011 0.450 ± 0.041 0.642 ± 0.037 0.195 ± 0.022 0.330 ± 0.026 0.507 ± 0.029

LRTFR 0.365 ± 0.042 0.156 ± 0.012 0.502 ± 0.033 0.161 ± 0.014 0.118 ± 0.009 0.392 ± 0.028
Functional Automatic Rank Determination

CATTE (Ours) 0.284 ± 0.016 0.078 ± 0.001 0.373 ± 0.003 0.085 ± 0.004 0.047 ± 0.003 0.288 ± 0.003
CATTE w.o. FARD 0.301 ± 0.020 0.091 ± 0.008 0.402 ± 0.013 0.094 ± 0.010 0.0657 ± 0.005 0.310 ± 0.010

Table 1: Predictive errors and standard deviation. The results were averaged over five runs.

(a) Posterior mean of 1
λ

(b) Factor trajectories (c) Entry predictions (d) Scalability

Figure 4: Illustrations on (a) the posterior mean of the variance from the SSF dataset (R = 10), (b)
the dominant components of learned depth-mode factor trajectories from the SSF dataset, (c) the
entry value predictions indexed in (17◦N, 114.7◦E, 30m) of the SSF dataset, (d) the scalability over
the length of time series on synthetic dataset.

the primary structure of the data. To illustrate this, we plotted these two components of the depth-
mode factor trajectories at depth 30m in Figure 4(b). As we can see, the trajectories show periodic
patterns, which are influenced by the the day-night cycle of ocean temperature. We also compared
the predicted curves of CATTE and LRTFR for an entry located at 17◦N, 114.7◦E and a depth of
30m. CATTE outperforms LRTFR, providing more accurate predictions with uncertainty quantifi-
cation, even outside the training region (right to the dashed vertical line). This suggests that our
model holds promise for extrapolation tasks. The results collectively highlighted the advantage of
CATTE in capturing continuous-indexed multidimensional dynamics, which is crucial for analyzing
real-world temporal data and performing predictive tasks.

CATTE CATTE w.o. FARD LRTFR (R=5) DEMOTE (R=5)
Noise Variance RMSE

0.5 0.305 ± 0.005 0.356 ± 0.010 0.434 ± 0.047 0.430 ± 0.010
1 0.406 ± 0.007 0.461 ± 0.015 0.516 ± 0.034 0.552 ± 0.009

Table 2: Experiments on the robustness of functional automatic rank determination mechanism
against the noise on the CA traffic dataset. The results were averaged over five runs.

Robustness against Noise: The incorporated FARD mechanism can reveal the underlying rank
of the functional temporal data and prune the unnecessary components of the factor trajectories,
enhancing noise robustness. To evaluate its performance, we added Gaussian noise with varying
variance levels to the training set of CA traffic dataset and compared the results of different methods,
as summarized in Table 2. We disabled FARD by using a simple RMSE criterion as the objective
function to constitute an ablation study. More detailed results of the baselines with varying ranks
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in Table 4 and Table 5 in Appendix B.4. CATTE achieves lower prediction errors than CATTE
w.o. FARD, , confirming FARDs benefit. We also demonstrate the robustness of CATTE aganist
Laplacian and Poisson noise in Table 6 (Appendix B.4).

Tensor size 20 × 20 × 20 × 25 (4th-oder) 20 × 20 × 20 × 20 × 25 (5th-oder) 20 × 20 × 20 × 20 × 20 × 25 (6th-oder)
Time(s) 0.433 1.101 3.062

Table 3: Per-epoch/iteration running time on different orders of tensors(in seconds).

Sensitivity and Scalability: We examined the sensitivity of CATTE with respect to the variational
hyperparamter a0r, b

0
r and the dimensionality of ODE state J on the CA traffic dataset. The results

were given in Table 9 and Table 8 respectively. Empirically, CATTE performs consistently well
across different a0r, b

0
r and J . We further evaluated the scalability of CATTE with respect to the length

of the time series T and J . For T , we randomly sampled 25×25×T off-grid index entries from the
interval [0, 1] × [0, 1] × [0, 1] using Eq. (20) for training. We varied T across {50, 200, 500, 1000}
and J across {5, 25, 30}. To better quantify the scalability, we employed the simple Euler scheme
with fixed step size [34] for network training. The results shown in Figure 4(d) indicate that the
running time of CATTE grows linearly with T and is insensitive to J , demonstrating its suitability
for large-scale applications.

In addition, we conducted experiments to assess scalability with respect to tensor order. We gen-
erated synthetic datasets with varying orders while fixing the temporal dimension to 25 and the
non-temporal dimensions to 20. From each dataset, we randomly extracted 1% of the total data
points for training. The average training time per epoch is reported in Table 3. The results show that
CATTE scales well with tensor order. By decoupling each mode, CATTE translates the addition of
modes into an increase in the number of ODE states under our proposed efficiency-driven approach
(as discussed in Section 3.1). For example, for a 4th-order tensor of size 20× 20× 20× 25, we only
need to solve 20 + 20 + 20 = 60 ODE states, which can be updated simultaneously with a single
ODE solver. Additional results on the scalability of CATTE are provided in Appendix B.8.

Computational Efficiency: We compared per-iteration runtimes of CATTE and baselines on a
system with an NVIDIA RTX 4070 GPU, Intel i9-13900H CPU, 32 GB RAM, and 1 TB SSD
(Table 7, Appendix B.5). CATTE is slightly faster than NONFAT and DEMOTE, and much faster
than THIS-ODE.

7 Conclusion

We have presented CATTE, a complexity-adaptive model for functional temporal tensor decomposi-
tion. CATTE automatically infers the underlying rank of temporal tensors with continuously indexed
modes, while achieving state-of-the-art predictive performance and capturing interpretable temporal
patterns efficiently. A current limitation of our work is the lack of explicit incorporation of physical
laws into the modeling process. In future work, we plan to integrate CATTE with domain-specific
physical knowledge, enabling more accurate long-range and wide-area physical field reconstruc-
tions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state our contribution in the abstract and introduction part of the
main paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the conclusion part of the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We include the theoretical results with full assumptions and complete proofs
in Section 4 of the main paper and Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We include all implementation details for reproducibility in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the data and code in supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include implementation details of data and sampling in the experiment
section of main paper and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard deviation of the results in experiment part of main
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We talk about the compute resources in experiment part of the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the broader impacts of our paper in Appendix D.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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APPEXNDIX

A Details of derivations

A.1 Log-marginal likelihood

ln p(D) =

∫
q(U ,λ, τ) ln p(D)dUdλdτ =

∫
q(U ,λ, τ) ln p(U ,λ, τ,D)

p(U ,λ, τ |D)
dUdλdτ

=

∫
q(U ,λ, τ) ln p(U ,λ, τ,D)q(U ,λ, τ)

p(U ,λ, τ |D)q(U ,λ, τ)
dUdλdτ

=

∫
q(U ,λ, τ) ln p(U ,λ, τ,D)

q(U ,λ, τ)
dUdλdτ −

∫
q(U ,λ, τ) ln p(U ,λ, τ |D)

q(U ,λ, τ)
dUdλdτ

= Eq(U,λ,τ)[ln
p(U ,λ, τ,D)

q(U ,λ, τ)
]− Eq(U,λ,τ)[ln

p(U ,λ, τ)|D
q(U ,λ, τ)

]

= L(q) + KL(q(U ,λ, τ)∥p(U ,λ, τ |D)).

(21)

A.2 Lower bound of log-marginal likelihood

L(q) = Eq(U,λ,τ)[ln
p(U ,λ, τ,D)

q(U ,λ, τ)
] = Eq(U,λ,τ)[ln p(U ,λ, τ,D)]− Eq(U,λ,τ)[ln q(U ,λ, τ)]

= Eq(U,λ,τ)[ln p(D|U ,λ, τ)] + Eq(U,λ,τ)[ln p(U ,λ, τ)]− Eq(U,λ,τ)[ln q(U ,λ, τ)]

= Eq(U,λ,τ)[ln p(D|U ,λ, τ)] + Eq(U,λ,τ)[ln
p(U|λ)
q(U)

+ ln
p(λ)

q(λ)
+ ln

p(τ)

q(τ)
]

= Eq(U,λ,τ)[ln p(D|U ,λ, τ)] + Eq(U,λ)[ln
p(U|λ)
q(U)

]− KL(q(λ)∥p(λ))− KL(q(τ)∥p(τ)).

(22)

The first term of evidence lower bound (posterior expectation of log-likelihood) can be written as:

Eq(U,λ,τ)[ln p(D|U ,λ, τ)] = −N
2
ln(2π) +

N

2
Eq[ln τ ]−

1

2

N∑
n=1

Eq[τ ]Eq[(yn − 1T ⊛
k
uk(ink , tn))

2]

= −N
2
ln(2π) +

N

2
(ψ(ρ)− ln ι)− 1

2

N∑
n=1

ρ

ι
Eq[(yn − 1T ⊛

k
uk(ink , tn))

2],
(23)

where ψ(·) is the digamma function. The posterior expectation of model error is:

Eq[(yn − 1T ⊛
k
uk(ink , tn))

2] = y2n − 2yn1
T ⊛

k
gk(ink , tn) + 1T ⊛

k
vec(gk(ink , tn)g

k(ink , tn)
T + σ2I).

(24)

If σ = 0, then posterior expectation of model error becomes (yn − 1T ⊛
k
uk(ink , tn))

2.

The second term of evidence lower bound can be written as2:

Eq(U,λ)[ln
p(U|λ)
q(U)

] =

∫ ∫
q(U ,λ) ln p(U|λ)

q(U)
dUdλ =

∫ ∫
q(U ,λ) ln p(U|λ)dUdλ−

∫
q(U) ln q(U)dU

=

∫
q(U) ln p(U|λ = Eq(λ))dU −

∫
q(U) ln q(U)dU

= −KL(q(U)∥p(U|λ = Eq(λ))) = −
N∑

n=1

K∑
k=1

R∑
r=1

1

2
[ln(

βr
αrσ2

) +
αr

βr
(σ2 + (gk

r (i
n
k , tn))

2)− 1],

(25)

where gk
r (i

n
k , tn) is the r-th element of gk(ink , tn).

2The KL divergence between two Gaussian distributions p(x) ∼ N (x|µ1, σ
2
1) and q(x) ∼ N (x|µ2, σ

2
2)

can be computed using KL(p∥q) = 1
2
[ln(

σ2
2

σ2
1
) +

σ2
1+(µ1−µ2)

2

σ2
2

− 1]. Detailed derivation can be found in
Appendix A.3.
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The third term of evidence lower bound can be written as3:

KL(q(λ)∥p(λ)) =
R∑

r=1

a0 ln
βr
b0

− ln
Γ(a0)

Γ(αr)
+ (αr − a0)ψ(αr)− (b0 − b1)

αr

βr
. (26)

The fourth term of evidence lower bound can be written as:

KL(q(τ)∥p(τ)) = c0 ln
ι

d0
− ln

Γ(c0)

Γ(ρ)
+ (ρ− c0)ψ(ρ)− (d0 − ι)

ρ

ι
. (27)

A.3 KL divergence of two Gaussian distribution

The Kullback-Leibler (KL) Divergence between two probability distributions p and q is defined as:

KL(p∥q) =
∫ ∞

−∞
p(x) ln

(
p(x)

q(x)

)
dx.

Let p ∼ N (µ1, σ
2
1) and q ∼ N (µ2, σ

2
2), where the probability density functions (PDFs) are given

by:

p(x) =
1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)
,

q(x) =
1√
2πσ2

2

exp

(
− (x− µ2)

2

2σ2
2

)
.

Substitute the Gaussian PDFs into the definition of KL divergence:

KL(p∥q) =
∫ ∞

−∞

1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)
ln

 1√
2πσ2

1

exp
(
− (x−µ1)

2

2σ2
1

)
1√
2πσ2

2

exp
(
− (x−µ2)2

2σ2
2

)
 dx.

Simplify the logarithmic term:

ln

(
p(x)

q(x)

)
= ln

 1√
2πσ2

1

1√
2πσ2

2

+

(
− (x− µ1)

2

2σ2
1

+
(x− µ2)

2

2σ2
2

)

= ln

(
σ2
σ1

)
+

(
− (x− µ1)

2

2σ2
1

+
(x− µ2)

2

2σ2
2

)
.

Thus, the integral for KL divergence becomes:

KL(p∥q) =
∫ ∞

−∞

1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)(
ln

(
σ2
σ1

)
+

(
− (x− µ1)

2

2σ2
1

+
(x− µ2)

2

2σ2
2

))
dx.

Simplifying the Integral: We can now break the integral into two parts: 1. The constant term:∫ ∞

−∞

1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)
ln

(
σ2
σ1

)
dx.

Since 1√
2πσ2

1

exp
(
− (x−µ1)

2

2σ2
1

)
is the PDF of a Gaussian distribution, its integral is 1, so this term

evaluates to:

ln

(
σ2
σ1

)
.

2. The difference of squared terms:∫ ∞

−∞

1√
2πσ2

1

exp

(
− (x− µ1)

2

2σ2
1

)(
− (x− µ1)

2

2σ2
1

+
(x− µ2)

2

2σ2
2

)
dx.

3The KL divergence between two Gamma distributions p(x) ∼ Gamma(x|a1, b1) and q(x) ∼
Gamma(x|a2, b2) can be computed using KL(p ∥ q) = a2 ln

b1
b2

− ln Γ(a2)
Γ(a1)

+ (a1 − a2)ψ(a1)− (b2 − b1)
a1
b1

.
Detailed derivation can be found in A.4.
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This term can be split into two parts: - The first part involves µ1, and after calculation, it simplifies
to:

σ2
1

2σ2
2

− 1

2
.

The second part involves the difference between µ1 and µ2, and after calculation, it simplifies to:

(µ1 − µ2)
2

2σ2
2

.

Combining all parts, the KL divergence between two Gaussian distributions is:

KL(p∥q) = ln

(
σ2
σ1

)
+

σ2
1

2σ2
2

− 1

2
+

(µ1 − µ2)
2

2σ2
2

.

A.4 KL divergence of two Gamma distribution

The Kullback-Leibler (KL) Divergence between two probability distributions p and q is defined as:

KL(p ∥ q) =
∫ ∞

0

p(x) ln

(
p(x)

q(x)

)
dx.

Let p ∼ Gamma(a1, b1) and q ∼ Gamma(a2, b2), where the probability density functions (PDFs)
with rate parameters are given by:

p(x) =
ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

, x ≥ 0,

q(x) =
ba2
2 x

a2−1 exp (−b2x)
Γ(a2)

, x ≥ 0.

Substitute the PDFs of the Gamma distributions into the definition of KL divergence:

KL(p ∥ q) =
∫ ∞

0

ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

ln

 b
a1
1 xa1−1 exp(−b1x)

Γ(a1)

b
a2
2 xa2−1 exp(−b2x)

Γ(a2)

 dx.

Simplify the logarithmic term:

ln

(
p(x)

q(x)

)
= ln

(
ba1
1 x

a1−1 exp (−b1x)
ba2
2 x

a2−1 exp (−b2x)
· Γ(a2)
Γ(a1)

)
= (a1 − a2) ln(x) + (−b1x+ b2x) + ln

(
Γ(a2)

Γ(a1)

)
+ (a1 ln(b1)− a2 ln(b2)).

Thus, the integral becomes:

KL(p ∥ q) =
∫ ∞

0

ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

[
(a1 − a2) ln(x) + (b2 − b1)x+ ln

(
Γ(a2)

Γ(a1)

)
+ (a1 ln(b1)− a2 ln(b2))

]
dx.

We now break this into four separate integrals.

I1 =

∫ ∞

0

ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

(a1 − a2) ln(x)dx.

This integral can be solved using the properties of the Gamma distribution and the digamma function
ψ(a):

I1 = (a2 − a1) (ln(b1)− ψ(a1)) ,

where ψ(a) is the digamma function, the derivative of the logarithm of the Gamma function.

I2 =

∫ ∞

0

ba1
1 x

a1 exp (−b1x)
Γ(a1)

(b2 − b1)dx.

After performing the integration, we obtain:

I2 = (b2 − b1)
Γ(a1 + 1)

Γ(a1)
· 1

b1
= (b2 − b1)a1

1

b1
,
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I3 =

∫ ∞

0

ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

ln

(
Γ(a2)

Γ(a1)

)
dx.

Since this is a constant term, we can immediately evaluate it:

I3 = ln

(
Γ(a2)

Γ(a1)

)
,

I4 =

∫ ∞

0

ba1
1 x

a1−1 exp (−b1x)
Γ(a1)

(a1 ln(b1)− a2 ln(b2))dx.

This integral simplifies to:
I4 = a1 ln(b1)− a2 ln(b2).

Combining all the parts, the KL divergence between two Gamma distributions with rate parameters
is:

KL(p ∥ q) = (a2 − a1) (ln(b1)− ψ(a1)) + (b2 − b1)a1
1

b1
+ ln

(
Γ(a2)

Γ(a1)

)
+ a1 ln(b1)− a2 ln(b2).

A.5 Predictive distribution

Through minimizing the negative log-marginal likelihood with observed training data, we can infer
the distributions of the latent variables q, with which a predictive distribution can be derived. Given
index set {ip1, · · · , i

p
k, tp}, we are to predict the corresponding value, we have:

p(yp|D) ≃
∫
p(yp|{uk

ipk,tp
}Kk=1, τ)q({uk

ipk,tp
}Kk=1)q(τ)d({uk

ipk,tp
}Kk=1)dτ

=

∫ ∫
N (yp|1T(u1

ip1 ,tp
⊛ · · ·⊛ uk

ipk,tp
), τ−1)

K∏
k=1

q(uk
ipk,tp

)d(uK
ipK ,tp

)q(τ)dτ

=

∫ ∫
N (yp|1T(u1

ip1 ,tp
⊛ · · ·⊛ uK

ipK ,tp
), τ−1)

K∏
k=1

N (uk
ipk,tp

|gk(ipk, tp), σ
2I)d(uk

ipk,tp
)Gamma(τ |ρ, ι)dτ

=

∫ ∫
N (yp|1T(u1

ip1 ,tp
⊛ · · ·⊛ uK

ipK ,tp
), τ−1)N (u1

ip1 ,tp
|g1(ip1, tp), σ

2I)d(u1
ip1 ,tp

)∏
k ̸=1

N (uk
ipk,tp

|gk(ipk, tp), σ
2I)d(uk

ipk,tp
)Gamma(τ |ρ, ι)dτ

=

∫ ∫
N (yp|( ⊛

k ̸=1
uk
ipk,tp

)Tu1
ip1 ,tp

, τ−1)N (u1
ip1 ,tp

|g1(ip1, tp), σ
2I)d(u1

ip1 ,tp
)∏

k ̸=1

N (uk
ipk,tp

|gk(ipk, tp), σ
2I)d(uk

ipk,tp
)Gamma(τ |ρ, ι)dτ

=

∫ ∫
N (yp|( ⊛

k ̸=1
uk
ipk,tp

)Tg1(ip1, tp), τ
−1 + σ2( ⊛

k ̸=1
uk
ipk,tp

)T( ⊛
k ̸=1

uk
ipk,tp

))∏
k ̸=1

N (uk
ipk,tp

|gk(ipk, tp), σ
2I)d(uk

ipk,tp
)Gamma(τ |ρ, ι)dτ

...

=

∫
N
(
yp|1T ⊛

k
gk(ipk, tp), τ

−1 + σ2
K∑
j=1

( ⊛
k ̸=j

gk(ipk, tp))
T( ⊛

k ̸=j
gk(ipk, tp)

)
Gamma(τ |ρ, ι)dτ

= T
(
yp|1T ⊛

k
gk(ipk, tp), {

ι

ρ
+ σ2

K∑
j=1

( ⊛
k ̸=j

gk(ipk, tp))
T( ⊛

k ̸=j
gk(ipk, tp))}

−1, 2ρ
)
.

(28)

We found the prediction distribution follows the student’s-t distribution.
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A.6 Closed Form of Predictive Distribution

After obtaining the variational posteriors of the latent variables, we can further derive the predic-
tive distribution of the new data with arbitrary indexes. Given the index set {ip1, · · · , i

p
k, tp} for

prediction, we can obtain the variational predictive posterior distribution, which follows a Student’s
t-distribution (See Appendix A.5 for more details):

p(yp|D) ∼ T (yp|µp, sp, νp),

µp = 1T[⊛
k
gk(ipk, tp)], νp = 2ρ,

sp =
{ ι
ρ
+ σ2

K∑
j=1

[ ⊛
k ̸=j

gk(ipk, tp)]
T[ ⊛

k ̸=j
gk(ipk, tp)]

}−1
,

(29)

where µp, sp, µp is the mean, scale parameter and degree of freedom of the Student’s t-distribution,
respectively. The closed-form predictive distribution is a great advantage for the prediction process,
as it allows us to do the probabilistic reconstruction and prediction with uncertainty quantification
over the arbitrary continuous indexes.

25



B Additional experiment results

B.1 Experiment settings: synthetic data

The CATTE was implemented with PyTorch [35] and torchdiffeq library (https://github.
com/rtqichen/torchdiffeq). We employed a single hidden-layer neural network (NN) to pa-
rameterize the encoder. Additionally, we used two NNs, each with two hidden layers, for derivative
learning and for parameterizing the decoder, respectively. Each layer in all networks contains 100
neurons. We set the dimension of Fourier feature M = 32, the ODE state J = 5 and the initial
number of components of the latent factor trajectories R = 5. The CATTE was trained using Adam
[36] optimizer with the learning rate set as 5e−3. The hyperparamters {a0r, b0r}Rr=1, c

0, d0 and initial
values of learnable parameters {αr, βr}Rr=1, ρ, σ

2, ι are set to 1e−6 (so that all the initial posterior
means of {λr}Rr=1 equal 1). We ran 2000 epochs, which is sufficient for convergence.

B.2 Experiment settings: real-world data

For THIS-ODE, we used a two-layer network with the layer width chosen from {50, 100}. For
DEMOTE, we used two hidden layers for both the reaction process and entry value prediction, with
the layer width chosen from {50, 100}. For LRTFR, we used two hidden layers with 100 neurons
to parameterize the latent function of each mode. We varied R from {3, 5, 7} for all baselines. For
deep-learning based methods, we all used tanh activations. For FunBaT, we varied Matérn Kernel
{1/2, 3/2} along the kernel parameters for optimal performance for different datasets. We use
ADAM optimizer with the learning rate tuned from {5e−4, 1e−3, 5e−3, 1e−2}.

B.3 Rank learning curves of different datasets

(a) Power of learned factor trajectories. (b) Posterior means of λ.

Figure 5: Rank learning curves of the synthetic data.

Fig. 5 plots the rank-learning curves during the gradient descent iterations of the synthetic data. That
is, the evolutions of (a) the power of R components of the estimated posterior mean of the factor
trajectories 4 and (b) the values of estimated posterior mean of {λr}Rr=1. Note that the power of r-th
component of factor trajectories is conditioned by λr (as shown (18) and Remark 1), and we plot
the pair with the same color. One can see that as the epoch increases, the power of 4 components of
the factor trajectories are forced to 0, which aligns with the increments of 4 corresponding λrs. And
we can manually exclude the four components, which will not affect the final prediction results5.
Only the third component (r = 3) is activated after convergence and λ3 settles at a small value
correspondingly. This indicates that our method successfully identifies the true underlying rank (i.e.,
1) of the synthetic data while effectively pruning the other four components. Fig. (6) plots the rank-
learning curves of the CA traffic, Server and SSF datasets respectively. In the same sense, we can
infer that the revealed ranks of these three datasets are 5,7,7 respectively.

4We define the power of r-th component of factor trajectories as:
∑K

k=1

∫
ik

∫
t
(gk

r (ik, t))
2dikdt, which

represents the contribution of the r-th component to the final output. The power can be approximated using∑N
n=1

∑K
k=1(g

k
r (i

n
k , tn))

2.
5Our criterion for excluding the r-th rank is when E(λr) is large and power

∑N
n=1

∑K
k=1(g

k
r (i

n
k , tn))

2 is
relatively small.
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(a) Power of learned factor trajectories
(CA traffic). (b) Posterior means of λ (CA traffic).

(c) Power of learned factor trajectories
(Server). (d) Posterior means of λ (Server).

(e) Power of learned factor trajectories
(SSF). (f) Posterior means of λ (SSF).

Figure 6: Rank learning curves of three datasets.

B.4 Noise robustness

Here, we show the robustness of our proposed FARD against the noise on the CA traffic dataset by
comparing with the baselines with varying ranks on Tab. 4 and Tab. 5. Then, we show the robustness
of CATTE against varing levels and types of noises on Tab. 6. The results shows that CATTE do not
show significant performance degrade with varing levels of noises and even non-Gaussian noises,
demonstating its robustness.

CATTE CATTE w.o. FARD LRTFR (R=5) DEMOTE (R=5)
Noise Variance MAE

0.5 0.134 ± 0.001 0.169 ± 0.022 0.213 ± 0.007 0.148 ± 0.003
1 0.182 ± 0.006 0.219 ± 0.006 0.305 ± 0.009 0.219 ± 0.034

Table 4: Extra experimental results on the robustness of functional automatic rank determination
mechanism against the noise on the CA traffic dataset. The results were averaged over five runs.
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LRTFR (R=7) DEMOTE (R=7) LRTFR (R=10) DEMOTE (R=10) LRTFR (R=15) DEMOTE (R=15)
Noise Variance RMSE

0.5 0.484 ± 0.023 0,423 ± 0.019 0.469 ± 0.053 0.4375 ± 0.005 0.475 ± 0.018 0.455 ± 0.005
1 0.5475 ± 0.011 0.517 ± 0.020 0.621 ± 0.038 0.547 ± 0.024 0.708 ± 0.013 0.552 ± 0.003

Noise Variance MAE
0.5 0.224 ± 0.019 0.157 ± 0.006 0.232 ± 0.012 0.148 ± 0.001 0.245 ± 0.011 0.140 ± 0.002
1 03335 ± 0.018 0.209 ± 0.020 0.402 ± 0.032 0.312 ± 0.013 0.469 ± 0.0135 0.319 ± 0.0025

Table 5: Extra experimental results on the robustness of functional automatic rank determination
mechanism against the noise on the CA traffic dataset. The results were averaged over five runs.

Gaussion noise RMSE MAE
σ2=0.05 0.056 ± 0.004 0.045 ± 0.003
σ2=0.10 0.090 ± 0.005 0.068 ± 0.005
σ2=0.15 0.112 ± 0.006 0.086 ± 0.005

Laplacsian noise RMSE MAE
σ2=0.05 0.065 ± 0.006 0.052 ± 0.006
σ2=0.10 0.094 ± 0.008 0.069 ± 0.006
σ2=0.15 0.117 ± 0.07 0.089 ± 0.007

Poisson noise RMSE MAE
σ2=0.05 0.064 ± 0.004 0.049 ± 0.005
σ2=0.10 0.096 ± 0.010 0.073 ± 0.009
σ2=0.15 0.115 ± 0.012 0.081 ± 0.01

Table 6: Extra experimental results on the robustness of functional automatic rank determination
mechanism against various noise on the synthetic dataset. The results were averaged over five runs.

B.5 Running time

Here we provide the comparisions of running time of different methods in Tab.7.

CA traffic Server Room SSF
THIS-ODE 283.9 144.8 158.9
NONFAT 0.331 0.81 0.67
DEMOTE 0.84 7.25 1.08

FunBaT-CP 0.059 0.027 0.075
FunBaT-Tucker 2.13 3.20 2.72

LRTFR 0.098 0.178 0.120
CATTE 0.227 0.83 0.247

Table 7: Per-epoch/iteration running time of different methods (in seconds).

B.6 Hyperparameter Analysis

We first test the influnence of the dimension of ODE latent state J in Tab. 8. We observe that the
final results are robust to the selection of J .

J 6 8 10 16
RMSE 0.279 0.294 0.284 0.290
MAE 0.090 0.088 0.085 0.088

Table 8: Performance of CATTE under different J on the CA traffic dataset. The results were
averaged over five runs.
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Then, we test influnence of the hyper-parameters a0r and b0r in Tab. 8. We observe that the final
results are robust to the selection of a0r and b0r .

a0r = b0r = 1e−6 a0r = b0r = 1e−4 a0r = 1e−6, b0r = 2e−4

RMSE 0.056 ± 0.004 0.056 ± 0.003 0.054 ± 0.005
MAE 0.045 ± 0.003 0.044 ± 0.003 0.044 ± 0.004

Table 9: Performance of CATTE under different a0r and b0r on the synthetic data experiment. The
results were averaged over five runs.

B.7 Additional visualization results with other baselines

Here, we show more visualization results of predictions on different methods and datasets on Fig. 7,
Fig. 8 and Fig. 9. Our method yields qualitatively better visual results compared to the baselines.

(a) (1,4,13) (b) (5,3,12)

(c) (1,3,1) (d) (0,16,6)

Figure 7: Additional visualization results on the CA Traffic dataset at different coordinates.

B.8 Additional results on scalability

To further demonstrate the scalability of CATTE , we conducted synthetic experiments across varying
configurations of timestamps×spatial points. All experiments employed the same network architec-
ture, with 5% of the total data points randomly selected for training. Therefore, the size of the
training dataset ranges from 105 to 107. We hereby report the average training time (in seconds) per
epoch in Table 10.

One can see that our method also scales well on the spatial mode since our method decouple each
mode and convert the expanding spatial resulotion to the increase of the ODE states. For example,
for the spatial resolution 50 × 50, we only need to solve 50 + 50 = 100 ODE states. Likelywise,
for the spatial resolution 200 × 200, we only need to solve 200 + 200 = 400 ODE states. We will
supplement the results in the latest version.
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(a) (6,2,5) (b) (1,1,1)

(c) (5,6,2) (d) (2,6,3)

Figure 8: Additional visualization results on the Server Room dataset at different coordinates.

(a) (1,1,1) (b) (5,1,10)

(c) (3,2,7) (d) (7,10,15)

Figure 9: Additional visualization results on the SSF dataset at different coordinates.

C More Comments on the functional automatic rank determination
mechanism

Our proposed functional automatic rank determination mechanism is different from previous
method[14, 9, 8], which can not be directly applied for functional tensors. The differences are:
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timestamps spatial resolution 50× 50 100× 50 200× 50 100× 100 200× 200
T = 100 0.398 0.673 1.011 1.016 2.392
T = 200 0.814 1.088 1.670 1.714 5.081
T = 500 1.688 2.162 3.755 3.721 10.79

Table 10: Per-epoch/iteration running time on different size of tensors(in seconds).

a) Derivation of ELBO: Previous methods predefine separate latent factors and other latent vari-
ables (e.g., λ) as variational parameters and then derive the ELBO. However, maintaining these
parameters quickly consume memory as the dataset grows. Instead, we characterize the variational
posterior mean of the latent factors using newly proposed continuous-indexed latent ODEs. This not
only distinguishes our ELBO derivation from earlier methods but also overcomes scalability issues
when handling large datasets.

b) Optimization of ELBO: In previous methods, seperate variational parameters are updated it-
erativelyadjusting one variable at a time while keeping the others fixed which limits the ability to
leverage distributed computing resources. In contrast, we use functional parameterization of the pos-
terior distribution and derive a closed-form ELBO that can be efficiently optimized using gradient
descent. This allows all variational parameters to be updated simultaneously, making our method
highly parallelizable and well-suited for GPUs.

Furthermore, previous methods struggle to infer out-of-bound data points while our model can han-
dle them effectively.

Overall, CATTE integrates the strengths of deep learningscalability, powerful representations, and
flexible architectureswith the benefits of Bayesian learning, including robustness to noise, uncer-
tainty quantification, and adaptive model complexity, to offers an elegant solution for generalized
temporal tensor decomposition.

D Impact Statement

This paper focuses on advancing temporal tensor decomposition techniques to push the boundaries
of tensor decomposition. We are mindful of the broader ethical implications associated with techno-
logical progress in this field. Although immediate societal impacts may not be evident, we recognize
the importance of maintaining ongoing vigilance regarding the ethical use of these advancements. It
is crucial to continuously evaluate and address potential implications to ensure responsible develop-
ment and application in diverse scenarios.
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