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ABSTRACT

Physics based numerical climate models serve as critical tools for evaluating the
effects of climate change and projecting future climate scenarios. However, the re-
liance on numerical simulations of physical equations renders them computation-
ally intensive and inefficient. While deep learning methodologies have made sig-
nificant progress in weather forecasting, they are still unstable for longer roll-out
climate emulation task. Here, we propose PACER, a relatively lightweight 2.1M
parameter Physics Informed Uncertainty Aware Climate EmulatoR. PACER is
trained across is trained across varying spatial resolutions and physics based
climate models, enabling faithful and stable emulation of temperature fields at
multiple surface levels over a 10 year horizon. We propose an auto-regressive
ODE-SDE framework for climate emulation that integrates the fundamental phys-
ical law of advection, while being trained under a negative log-likelihood objec-
tive to enable principled uncertainty quantification of stochastic variability. We
show PACER’s emulation performance across 20 climate models outperforming
relevant baselines and advancing towards explicit physics infusion in ML emu-
lator. The code is available at https://anonymous.4open.science/r/
PACER-B7C3/.

1 INTRODUCTION

Data-driven weather forecasting models [Kochkov et al.| (2024)); Lam et al.| (2023); Nguyen et al.
(2023b)) have outperformed Numerical Weather Prediction (NWP) (ECMWEF, [2023)) in recent years
for short- to medium-range targets, but their long-lead auto-regressive roll-out becomes numerically
unstable over multi-year horizons, undermining reliability for climate modeling (Chattopadhyay &
Hassanzadeh, |2023)). This necessitates the use of dynamical climate models known as general circu-
lation models (GCMs), which evolve the state forward under specified forcings to yield physically
consistent decadal projections.

Physics based dynamical climate models are governed by temporal partial differential equations
(PDEs) to describe complex physical processes (Gupta & Brandstetter| (2022), enabling simulations
of climate behavior under various forcing scenarios, such as fluctuating greenhouse gas (GHG)
emissions. However, the computational expense associated with solving these PDEs involves the
execution of these climate model simulations typically for several months (Balaji et al.|[2017).

With the advancement of Artificial Intelligence (Al), data-driven emulators provide a computation-
ally viable substitute. In order to faithfully emulate the dynamical physics based climate model, a
Machine Learning (ML) based climate emulator must respect the fundamental physical laws that
govern the dynamics of the atmosphere (Watt-Meyer et al., 2023) which improves reliability. Fur-
thermore, accurately capturing the influence of GHG and aerosols is essential for simulating realistic
climate responses to different emission scenarios (Bloch-Johnson et al.| [2024).

Recently, climate emulators such as ACE (Ai2 Climate Emulator) (Watt-Meyer et al., |2023)) and
Spherical Dyffusion (Cachay et al., [2024) have shown remarkable and stable results for over 10
year emulation. ACE exhibits physically consistent emulations under prescribed, time-varying sea
surface temperatures (SST) and sea-ice boundary conditions, but its deterministic formulation limits
the representation of the predictive distribution of climate states or support ensemble generation
which aids in better uncertainty quantification. Spherical Dyffusion solves this problem by training
on dynamics informed diffusion model known as Dyffusion|Cachay et al.|(2023) but do not take into
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account the projected GHG emissions which are essential to the faithful emulation of the climate.
Furthermore, both architectures are parameter-heavy, with 200M parameters.

To address these gaps, we propose PACER, a lightweight, physics informed, Neural stochastic differ-
ential equation (sde) based, 2.1M parameters climate emulator. PACER integrates GHG emissions
data directly into the model’s training framework, to predict climate variables from a given time-
series of climate forcer emission maps (GHG and aerosols) allowing for more accurate simulation
of future climate states under varying concentration scenarios. Furthermore, we focus on a key phe-
nomenon driving our climate system i.e. advection. In climate modeling, the advection equation
is fundamental for simulating the transport of climate variables, such as temperature and moisture
(Chot et al.l 2023)).

Furthermore, PACER is trained with multiple stochastic realizations under direct Negative-log like-
lihood (NLL) objective which accounts for aleatoric uncertainty and reduces gradient variance. Ad-
ditionally, modeling the key physical law of advection reduces its dependence on large datasets
making it data-efficient and more generalizable across different climate models. Our contributions
are as follows:

1. Physics-guided backbone: We propose PACER with a physics guided backbone and inte-
grate a deterministic advection-forcing PDE by dynamically estimating flow velocities to
generate a physically consistent trajectory.

2. Stochastic residual corrector: We refine the ODE trajectory with a stochastic residual cor-
rector. A neural SDE, that learns unresolved/process noise and systematic bias, improving
long-horizon fidelity without sacrificing physical structure.

3. Likelihood-based uncertainty: We train the Neural SDE on NLL objective with multiple
Brownian realizations per sample (K > 1), yielding explicit, heteroscedastic aleatoric
uncertainty and reducing gradient variance o 1/K for more stable optimization.

4. Finally, we perform extensive experiments across 20 physics based climate models to show
PACER is physically consistent and stable for 10 year auto-regressive roll-outs. We also
perform zero-shot emulation to highlight generalization capabilities of PACER.

2 RELATED WORK

Machine Learning (ML) and Physics based Climate Emulators: Physics based dynamical cli-
mate models underpin assessments of future change. These models solve discretized PDEs on a
global grid and are computationally prohibitive for multi-decadal integrations, limiting their direct
use. Recently, hybrid ML-based and physics-informed climate emulators have been successful in
emulating several climate variables at lower wall-clock cost, with strong fidelity across intermediate
climates. In literature, climate emulation has been treated as either auto-regressive or diagnostic
task. Spherical Fourier Neural Operator (SFNO) based auto-regressive models have shown impres-
sive emulation skills. |Cachay et al.| (2024)) proposed Spherical Dyffusion, a generative emulator of
the coarse-grid dataset FV3GFS (see Section[3)), which couples dynamics-informed diffusion (DYf-
fusion) with a SFNO/Watt-Meyer et al.|(2023) proposed ACE (AI2 Climate Emulator) also based on
SFNO for effective physics informed emulation. Another version of ACE (ACE2-ERAS5) (Van Loon
et al.l 2025)) is trained on reanalysis data to observe radiative response to changing sea surface tem-
perature patterns. LUCIE and LUCIE3D (Guan et al.| [2024; |2025) are also trained on reanalysis
data to account for the computational complexity of ACE.

Choi et al.| (2023) proposed climate modeling using Graph Neural Networks (GNNs) and Neural
ODE:s, but do not account for GHG emissions or show any long term stability. Additionally, there
are several climate emulators accounting for emissions and either treat emulation as diagnostic emu-
lation task (Kaltenborn et al.,2023)) or single-model emulators that replicate a specific GCM (Scher;,
2018; Mansfield et al., 2020; [Beusch et al., [2020; |Cachay et al., 2021; |Watson-Parris et al., 2022}
Nguyen et al., 2023a; Kaltenborn et al.| 2023).
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3 BACKGROUND

Neural SDE: A stochastic differential equation (SDE) models continuous-time evolution with
random forcing:

day = f(ae, 1) dt + g(@e, t) AW, (1)

where f is the drift, g the diffusion, and W; a Wiener process better known as Brownian motion.
The Brownian term injects state/time-dependent stochastic forcing via g(z,t). In Ito form, the
state density p(z, t) obeys the forward Kolmogorov (Fokker—Planck) equation describing the time-
evolution of the PDE and the related Stratonovich form corresponding the classical chain rule and is
coordinate-invariant, which is often advantageous in physics.

Neural SDE introduced by |Kidger et al.| (2021) replaces f and g with neural networks fy and gy
(Shen & Cheng| 2025)). The result is a learned stochastic flow that is continuous in time and prob-
abilistic, which naturally handles irregular sampling, missing data, variable horizons and encodes
heteroscedastic aleatoric uncertainty. Training a neural SDE on negative log-likelihood objective
with re-parameterized Brownian paths gives calibrated and input-dependent uncertainty.

Wiener (Brownian) process is a continuous path with independent Gaussian increments, so over
a step At, the increment satisfies AW; ~ N (0, At), where A is normal (Gaussian) distribution
with mean O and variance At¢. In the SDE, dW; provides white-noise forcing representing fast,
unresolved processes. In discrete time the increment is sampled as AW, ~ v/At ¢ with e ~ N(0, I)
with standard multivariate normal and identity covariance I. In equation|[I} the drift network fy sets
the mean tendency, while the diffusion g4 (x, t) scales this stochastic input state-dependently.

Sampling different Brownian sequences {e, } yields different trajectories from the same initial con-
dition, forming an ensemble, aggregating many such realizations characterizes the predictive distri-
bution and when used in NLL training, reduces gradient variance by averaging over noise paths.

4 METHODOLOGY

4.1 PROBLEM STATEMENT

We model climate emulation as a probabilistic continuous-time, auto-regressive task
Py (a:tl;tH ‘xto, f[m,t;;])- The goal is to learn the climate variable trajectory (xt,.t, ) over a

time horizon H given an initial state z;, = xo9 € RE*X*Y where C is the 2D climate variable of
interest driven by time-varying GHG forcings F', with f; € REFXX*Y

The dynamics are learned over two stages.

Physics backbone ODE: We first integrate an advection-forcing partial differential equation (PDE)
to obtain a deterministic physics trajectory, considering that climate system evolves according to a
2D advection-forcing process.

Neural SDE refinement: We then refine the ODE physics trajectory with a neural SDE residual
driven by multiple Brownian paths to capture unresolved variability.

Formally, let z; € RE*X>Y be the climate state at time ¢ on X x Y latitude-longitude spatial grid
and Fy.; nr € REXX XY be prescribed GHG forcings over [t + At]. We learn the climate trajectory
as

Ti+At = M0($t7Ft:t+At) = CI)At(fCt,Ft:H-At) + Re(xtaFt:t-&-At) 2

ODE: advection + forcings neural residual refinement

where My is the learned one-step update operator that maps the current state and forcings to the
next state. ®a; is the ODE solver and Ry is the neural residual module parameterized by 6, which
refines the solution to the advection-forcing equation given the input emissions F'. Iterating this step
auto-regressively from xo under Fy.y yields the trajectory to the time horizon H. The model is
thus designed to learn the spatiotemporal patterns of our climate system dictated by the underlying
physical processes modeled by the PDE.
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4.2 ADVECTION PROCESS

We model climate emulation as a continuous spatio-temporal process that captures the fundamen-
tal physical process of advection under GHG forcings, which together dictate how substances are
transported throughout the climate system. The general form of the advection-forcing equation in a
climate system is defined in equation 3]

Ju ou ou
a, T a o = S ) F y Ly 7t 9 3

3t+08x+vy8y (u 9,1) )
where u is the physical variable under consideration and .S represents the ghg forces. To faithfully
emulate the climate’s chaotic nature, it is essential to determine the path and rate at which the
physical quantities are transported given by v - Vu where v is the velocity vector of the fluid (e.g.,
wind velocity) and Vu is the gradient of the quantity being transported (e.g., temperature).

We use an ODE solver to solve the 2D advection-forcing equation [3| by discretizing the spatial
domain using the centered Finite Difference Method (FDM) [Fiadeiro & Veronis|(1977) considering
the earth is divided into spatial grid points in x and y directions (longitude x latitude). FDM employ
spatial discretization to approximate derivatives using the values at grid points (Molenkamp, |1968;
LeVequel 2007). We explain the spatial discretization and show it’s effect visually in Appendix|B.3]
The spatial derivatives are therefore descritized as equation ]

n n n n
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The resulting semi-discrete system (continuous in t) is integrated with a Dormand-Prince ODE
solver (dopri5) (Dormand & Princel [1980).

4.3 VELOCITY INFERENCE

Quantifying the temporal change in velocity of climate variables over the sampling grid is essential
for accurate climate modeling. Because global and regional models evolve climate fields on a fixed
grid, their temporal trends must be translated into spatial displacements. The standard approach is
the climate-velocity index (Gaponenko et al.l [2022). For a state variable u (e.g., temperature), the
local migration speed is given by equation 3]

0
v@) = [Vul 3 )

Here, we infer a vector transport field v(z, y, t) by inverting an advection balance for the predicted
state variables. We empirically estimate the initial velocity from data using temporal derivative from
a natural cubic spline fit McKinley & Levine (1998), and spatial gradients via finite differences,
then improve the initialization with a small residual multi-layer perceptron during ODE integration
to obtain a directional flow field used prognostically in the advection—forcing ODE.

Velocity initialization from past states. Let up,y € REXTXCOxlatxlon be 3 short history (where
T = timesteps) of C state/target channels on a longitude-latitude grid. For each channel i €
{1,...,C} and grid point (x,y), fit a natural cubic spline s;(t; x,y) to {upas(-, ti, %, x, y)}f;ol and
extract

wile,y) = Oysiltizy)] -
We compute centered finite-difference spatial gradients at ¢,

8a:ui(xay)a 51,%(%1/)7
and a stabilizing Laplacian
Aui($> y) = a:mui(x7 y) + ayyui (LU, y)-

We set « = 10~ 7; this is a small stabilization constant to avoid division by near-zero 0, u, Oyu. as
shown in equation equation [6]

—’L'Li — U Aui —fLZ‘ — U4 A’U,l
Vyp += —F/—, Vy += ———mmm 6
m Ozu; + Y Oyt + o ©)
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Velocity refinement: Given the current state u(t) € RE>Cxatxlon apd previous velocity v(t) €
RExCxlaixlon "ye implement a simple 2-layer 1x 1 convolutional MLP which produces

Av(u) = WD o[ WDy | 7)
— ———
32—2 2—32

where * is a convolution operator, o represents a ReLU non-linearity, W,, terms are the layer n
weights, and applies a residual update

Uret(£) = v(t) + Av(u(t)).

The advection—forcing dynamics use vy,
Ottt = — Vref,z Ozt — Uret,y Oyt + S(u, F),
and the velocity relaxes toward the refined field,
OV = Upef — U,

The refined velocity is then used in the original pde solved by dopri5 solver in equation [3] The
refiner learns a state-dependent residual and learns transport corrections directly from loss signals
on u, improving downstream forecast error without breaking the physics structure.

4.4 NEURAL SDE FOR TRAJECTORY REFINEMENT

The physics-based trajectory produced by the ODE is then refined using a unet based Neural SDE.
Given an ODE-advanced state sequence Zpex () over a short window, we encode it to a latent initial
condition given in equation

20 = 5(£next)- ®)

where £ is a 3D encoder that maps the physical fields in the current window to a compact latent state
2o that summarizes the flow-relevant information for stochastic refinement. We then evolve z(t) by
an Itd SDE with diagonal noise given by equation[J]

dZt = fe(ztat) dt + g@(Zt,t) th7 Zto = 20, (9)

where W, is a d—-dimensional Wiener process, fy (drift) and gy (diffusion) are convolutional maps
defined on the latent grid. We parameterize the SDE coefficients as convolutional operators on a
latent grid. Let Z denote the latent field space (channels xheight x width). We learn

fo: Z2— Z, go: Z— Z, (10)

where fy (drift) is implemented as a multiscale unet style encoder-decoder with skip connections
followed by a 1x1 convolution to produce a residual tendency, and gy (diffusion) is a shallow 2D
convolutional encoder—decoder that maps the latent state z; to a per-pixel, per-channel diffusion am-
plitude for the Neural SDE. This construction preserves spatial locality and translation equivariance,
and yields heteroscedastic uncertainty via gp. We integrate with a stochastic runge-kutta (srk) as
shown in equation [TT]

z, = sdeint(fo, 9o, 20, {tk}ho); (i

using a Brownian interval Wy over [to, tx|. The refined physical-space trajectory over the window
is obtained by decoding the output of neural sde back to physical space as given in equation [12]

E(tit) = D(2ty:tx Tokip) - (12)

where D is a 3D decoder (transpose conv + concatenation with x4,,) which reconstructs refined
fields over the window; the skip tensor xg;, injects mid-level encoder features to preserve spa-
tial detail and stabilize reconstruction. The complete architecture and encoder-decoder structure is
shown in Figure
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Ensemble refinement and uncertainty. To quantify process uncertainty, we draw K independent
Brownian paths and solve the SDE for each:

2¥) = SDE_integrate( f, go, 20, {t;}; W(k)), 2R = D(z(k),xskip), k=1,...,K.
(13)
Each realization uses the same initial condition z( but a different Brownian path W), yielding a
sample from the predictive distribution over trajectories in the window.

‘We summarize the ensemble with the mean and variance:
K

Z AN YR T > (E"W - (14)

k=1

The mean p serves as the refined state passed to the next auto-regressive window, while X provides
a time—space—channel uncertainty estimate suitable for calibration and downstream risk assessment.

4.5 UNCERTAINTY QUANTIFICATION

The existing climate emulators including the probabilistic ones such as spherical Dyffusion by
Cachay et al.| (2024) are trained with a deterministic objective such as MSE/RMSE, which fits the
conditional mean but leaves the predictive spread under-determined. To learn both the mean and a
heteroscedastic variance, we train with a latitude-weighted Gaussian negative log—likelihood (NLL)
objective.

Consider a global dataset D = {(;,;)}~,, where each frame y; € R“*#*W lies on a regular
lat-lon grid. At time ¢; the model predicts cell-wise mean /La( ;) and variance o3 (¢;). The latitude-
weighted Gaussian negative log-likelihood with a variance prior is given by equation 3]

1 N [CHW
NLL = ~NCHW 2 };1 Wy 1og/\/(yi7p ’ K0 ps agﬁi’p) + log/\/"*'(ag’i }O, A?,I) (15)

where D = {(t;,y:)}}L,: dataset of N time points; each frame y; € RE*H*W  Index p =

1,...,CHW is aflattened index over channel c, latitude row ¢, longitude column m; ¥; p, f4.i,p, and
03’ i denote the observed value, predicted mean, and predicted variance at a single space—channel
location of frame i; w), is the latitude weight for location p, log NV is Gaussian log-likelihood at
location p; log N'T is half-Gaussian prior over the non-negative variance vector of frame i with
scale A\, which shrinks extreme variances and stabilizes training.

5 EXPERIMENTS AND RESULTS

Task: The goal of PACER is to auto-regressively emulate state variables from initial condition
and a parallel time series of ghg emissions. We train our model on 1-year and validate on 10-
year roll-outs. We also validate the generalisation of our methodology using zero-shot emulation.
We compare PACER against Unet and ConvLSTM baselines provided by ClimateSet. We also
compare against a simple SFNO [Boneyv et al.[(2023) given in LUCIE. The hyperparameter details
for adaptation of all baselines are given in Appendix [C}

ClimateSet: We train PACER on a total of 20 climate models, 19 provided by ClimateSet
Kaltenborn et al.| (2023 and FV3GFS (Zhou et al., 2019). ClimateSet compiles climate data from
the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al.| 2016) , incorporating
climate model outputs from ScenarioMIP (O’Neill et al., 2016) and future emission trajectories of
climate forcing agents from Input Datasets for Model Intercomparison Projects (Input4MIPs) (Du-
rack et al.,|2017). Each CMIP6 climate model has been standardized to a spatial resolution of 250km
i.e. 96 x 144 grid points (latitude x longitude) with a monthly temporal resolution. Both input and
output datasets consist of 86-year time-series data spanning four SSP scenarios (SSP1-2.6, SSP2-
4.5, SSP3-7.0, SSP5-8.5) from 2015 to 2100. We train on SSP1-2.6, validate on SSP3-7.0, and test
on SSP2-4.5 scenarios.
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Figure 1: Complete architectural pipeline of PACER.

FV3GFS: We also train PACER on FV3GFS, a climate model used at the US National Weather
Service and US National Centers for Environmental Prediction. It consists of 11-member initial-
condition ensemble, each a 10-year integration saved every 6 hours. Forcings consist of annually
repeating climatological sea-surface temperature (1982-2012 mean) and top-of-atmosphere insola-
tion. Model output is conservatively regridded from the FV3 cubed-sphere to a 1° Gaussian grid
180 x 360 grid point and passed through a spherical-harmonic analysis—synthesis to suppress high-
latitude artifacts. We train on 100 years drawn from 10 ensemble members and evaluate on a distinct
10-year member. We downsample it to a monthly cadence to align with ClimateSet baselines and
ensure consistent training. The detailed list of input (diagnostic and prognostic) and output variables
(diagnostic) is given in Appendix

Evaluation Metrics We evaluate all models using latitude-weighted Root Mean Square Error
(RMSE) for deterministic approach Nguyen et al.|(2023a) and Continuous Rank Probability Square
(CRPS) Winkler et al.|(1996) for probabilistic approach which are described in Appendix

5.1 RESULTS

We report RMSE and CRPS for PACER, UNet, ConvLSTM and SENO. The results for all Cli-
mateSet’s physics based numerical climate models are shown in Table[I} The results for emulating
temperature at different surface levels for physics based climate model FV3GFS are given in Table
[2] The best performing ML based climate emulators are emboldened. PACER outperforms all ML
based models for emulating surface air temperature for auto-regressive 10 year long simulations
across 20 climate models.

5.2 ZERO-SHOT EMULATION

We perform zero-shot emulation experiments to test the generalization capabilities of ML models
on three physics based climate models: AWI-CM-1-1-MR, EC-Earth3 and TaiESM1. We report
the RMSE and CRPS for TAS (surface air temperature) pre-trained on different climate models and
tested on these three climate models and results are shown in Table[§] The metric for best performing
model is emboldened. The pretrained climate model column shows which dataset the ML model was
initially trained on before being tested on the either of the three climate models. Overall, PACER
outperforms all ML models on 1-year auto-regressive roll-out for zero-shot emulation.
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Table 1: 10-year roll-out results on 19 climate models which are a subset of ClimateSet. We report
the RMSE and CRPS for TAS (surface air temperature).

. PACER UNet ConvLSTM SFNO
Climate Model
RMSE CRPS RMSE RMSE RMSE
AWI-CM-1-1-MR 0.369 0.251 0916 0.543 0.406
BCC-CSM2-MR 0.381 0.263 0.950 0.549 0.412
CAS-ESM2-0 0.420 0.306 1.431 0.542 0.451
CESM2-WACCM 0333 0233 1.154 0.556 0.463
CESM2 0.353 0.248 0.926 0.557 0.475
CMCC-ESM2 0.387 0.266 1.173 0.552 0.451
CMCC-CM2-SR5 0396 0.274 0.980 0.553 0.499
CNRM-CM6-1-HR  0.384 0.266 0.943 0.543 0.411
EC-Earth3 0.372 0.251 1.284 0.548 0.383
EC-Earth3-Veg 0.399 0.273 0.987 0.549 0418
EC-Earth3-Veg-LR 0405 0278 1.121 0.545 0.500
FGOALS-f3-L 0.374 0.266 1.017 0.533 0.399
GFDL-ESM4 0.358 0.252 0.923 0.539 0.424
INM-CM4-8 0.348 0.246 0.954 0.527 0.462
INM-CM5-0 0.369 0.261 1.128 0.529 0.394
MPI-ESM1-2-HR 0.352 0240 0.668 0.547 0.440
MRI-ESM2-0 0.374 0261 0.944 0.565 0.414
NorESM2-MM 0.363 0254 1.044 0.555 0.420
TaiESM1 0.353 0.244 0.989 0.535 0.398

Table 2: 10-year auto-regressive roll-outs on the physics based on physics based FV3GFS dataset.
We evaluate near-surface air temperature (upto seven vertical levels) using RMSE and CRPS aggre-
gated over space and time across the roll-out horizon. (Lower is better).

Climate PACER UNet ConvLSTM SFNO
Variable “prioE CRPS RMSE ~ RMSE  RMSE
T 0437 0347 0924 0.653 0.466
Ty 0.408 0274 0865 0.656 0.482
T, 0355 0222 0796 0.592 0.491
T. 0349 0221 0.899 0.536 0.379
T, 0.379 0240 0.738 0.582 0.459
T 0362 0237 0729 0.562 0.381

Figure 2: Time-mean maps for air temperature fields across vertical levels (2,3,4,5). Both the
quantitative results in table [2] and visual results indicate stronger fidelity at higher levels (L4-L5)
than at lower tropospheric levels (L2-L3), with reduced discretizations.
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Table 3: Zero-shot Emulation results for 1-year roll-out on AWI-CM-1-1-MR, EC-Earth3 and
TaiESM 1

. PACER UNet ConvLSTM SFNO
Climate Model
RMSE CRPS RMSE RMSE RMSE
AWI-CM-1-1-MR  0.190 0.134 0.534 0.589 0.322
EC-Earth3 0.214 0.149 0.759 0.590 0.342
GFDL-ESM4 0.198 0.136  0.603 0.599 0.325
FGOALS-f3-L 0.225 0.155 0.659 0.587 0.351
Climate Model PACER UNet ConvLSTM SFNO
RMSE CRPS RMSE RMSE RMSE
EC-Earth3 0.193 0.136 0.606 0.594 0.406
TaiESM1 0.216 0.149 0.569 0.599 0.464
CNRM-CM6-1-HR  0.197 0.138  0.591 0.610 0.476
INM-CM4-8 0.214 0.146  0.581 0.598 0.495
Climate Model PACER UNet ConvLSTM SFNO
RMSE CRPS RMSE RMSE RMSE
TaiESM 1 0.193 0.136 0.633 0.576 0.432
INM-CM5-0 0.194 0.138 0.661 0.617 0.479
MPI-ESM1-2-HR 0.205 0.144 0.646 0.580 0.461
NorESM2-MM 0.202 0.140 0.657 0.579 0.471
5.3 ABLATION STUDIES
Physics informed vs Physics Uninformed: We per- v _T::yEZTJZt:::d(PhYSiCS FEmE TS S

Physics Uninformed

form an ablation study in which we remove the advection-
forcing pde and directly train on the neural sde. We
observe a decline in the performance of emulation
and show it in figure [3] The study shows that al-
though climate evolves under coupled, multi-physics 0s
PDEs (Navier—Stokes, thermodynamics, etc.), injecting

even a minimal physics informed advection with pre- 02
scribed forcings, improves skill as compared to purely

data-driven baseline. 0 A IR CASESM2O | ECEartnd TiEsp1

0.8

0.6

RMSE

Figure 3: Physics vs. no-physics across

6 CONCLUSION AND FUTURE WORK four CMIP6 climate models

In this work, we present PACER, a physics and uncertainty aware climate emulator which accounts
for Earth’s atmospheric advection phenomenon. We incorporate a key physical law in PACER by
solving a time-dependent partial different equation (PDE) using an ODE solver. Additionally, we
refine the inconsistencies of the generated trajectory through a Neural SDE and account for uncer-
tainties by explicitly training on a negative log-liklihood objective.

However, there are a few potential limitations of PACER which will be addressed as a possible future
work. Our model only accounts for Advection physical law, however beyond advection, climate
models solve the rotating (hydrostatic/primitive) Navier—Stokes system with moist thermodynamics,
radiative transfer, turbulence/mixing and cloud microphysics, coupled to ocean circulation, land
surface, and sea-ice to simulate a full multi-physics Earth system. We consider this work as a step
towards building fully physics compatible climate emulators.

Additionally, PACER is trained on coarse resolution data which does not fully account for extreme
events at regional level. These limitations can be addressed by training on high resolution data and
encoding complex physical constraints to be able to fully emulate physics based climate models in
a reliable and compute efficient way.
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A  IMPACT STATEMENT

Our research presents a deep learning based climate emulator which emulates temperature for mul-
tiple climate models by solving atmospheric advection. ML climate emulators run much faster
and use far less energy than Global Climate Models (GCMs), making multi-year simulations with
thousands of runs, quick and practical to do routinely. While ML-based climate emulators have
advanced rapidly, they still lag state-of-the-art Earth System Models (ESMs) in process fidelity,
long-horizon stability, and the representation of extremes. This work moves one step closer to parity
by coupling a physics-aware backbone with a probabilistic correction mechanism, delivering sta-
ble 10 year roll-outs. Looking ahead, replacing full-physics solves with learned surrogates can cut
runtime and energy use by orders of magnitude while preserving target statistics (means, variabil-
ity, and extremes), making large ensembles, and uncertainty quantification fast and reliable, thereby
accelerating climate risk assessment and reducing the carbon footprint of climate computation.

B PACER TRAINING DETAILS

B.1 EVALUATION METRICS

The latitude-weighted Root Mean Square Error (RMSE) is given in equation [16{ and Continuous
Rank Probability Square (CRPS) for probabilistic approach is given in equation

1 N 1 H W
RMSE = Zt: 77 2 O L) Wi — predun,)? (16)

h w

H
where L(i) accounts for latitude weights. L(i) = cos(lat(i))/ Z-/fl cos(lat(i)).

CRPS (N (u,0°), y) = a[z(ZCIJ(z) —1) +2¢(2) — 1} , z= %, (17)
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B.2 HYPERPARAMETERS

Table 4: Left: PACER Training Details and Right: PACER ConvLayer Details

Hyperparameters Value ConvLayers Value
Epochs 30 Encoder 4
Conv2d kernel size  3x3 Latent SDE - Drift fy 11
Integrator srk Latent SDE - Diffusion gy 1
Noise type diagnol Decoder 4
ODE solver dopri5 Velocity Refiner 2
Pooling No.1 AvgPool2d (2,2)

Normalization GroupNorm

Activation Function ReLU

Optimizer Adam

Learning Rate le—4

Weight Decay le—6

Adam € le — 8

LR scheduler Exponential decay

Scheduler gamma 0.98

Batch size 4

B.3 NUMERICAL DISCRETIZATION: IMPACT OF FINITE DIFFERENCE METHODS (FDM) ON
EARTH’S SPATIAL GRIDDING IN CLIMATE MODELS

We utilize FDM for spatial discretization in PACER which divides the the physical space into a
grid of discrete points. Each grid point represents a specific location, and the value of the physical
quantity (e.g., temperature) is computed at each point. In FDM, continuous differential equations
are approximated using discrete differences between values at specific grid points. The process of
discretization converts the continuous space into a finite grid, and the differential operators (like
derivatives) are approximated using differences between the values at neighboring grid points.

I

Figure 4: Numerical discretization effect on emulation of Temperature.

B.4 HARDWARE AND SOFTWARE REQUIREMENTS

We use PyTorch [Paszke et al| (2019), Pytorch Lightning (2019), torchdiffeq
(2018) for implementation of PACER. We perform all emulator training experiments on a single

NVIDIA H100_NVL GPU.

C BASELINE HYPERPARAMETERS

We follow the same training setting for both Unet and ConvLSTM as described in ClimateSet
Kaltenborn et al.| (2023)) except changing it from diagnostic to auto-regressive settings. We maintain
the hyperparameters of the SFNO consistent with the configuration proposed in LUCIE

2024).
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Hyperparameters

Table 5: UNET Training Details

Value

Encoder Backbone

VGG11 pre-trained on ImageNet
segmentation-models-pytorch (SMP)

Zero-pad lon/lat to nearest multiple of 32

Adapted average pooling to original grid size

Standard U-Net decoder (upsampling + skip connections)

Time-Distributed layer around U-Net

Library

Encoder stride constraint 32 (downsampling factor)
Input grid handling

Output resizing

Decoder

Readout head Linear layer
Temporal wrapper

Optimizer Adam

Learning Rate 2e —4

Weight Decay le—6

Adam € le — 8

LR scheduler Exponential decay
Scheduler gamma 0.98

Table 6: Left: ConvLSTM Training Details and Right: SFNO Training Details

Hyperparameters  Value Hyperparameters Value
Conv2d filters 20 SFNO blocks 8
Conv2d kernel size ~ 3x3 Encoder and Decoder Layers 1
Activation Function ReLU Latent Dimension 72
Pooling No.1 AvgPool2d (2,2) Maximum Learning Rate 1x107*
Pooling No.2 AvgPool2d (lon/2, 1at/2) Minimum Learning Rate 1x10°¢
LSTM Layers 1 Units per Layer 32
LSTM hidden units 25 Optimizer Adam
Optimizer Adam Activation Function SiLU
Learning Rate 2e — 4 Regularizer weight oe — 2
Weight Decay le—6

Adam € le—8

LR scheduler Exponential decay

Scheduler gamma

0.98

D DATASET VARIABLES

Table 7: ClimateSet Variables

Symbol Description Usage
TAS Surface Air Temperature  Prognostic Variable (input & output)
PR Precipitation Prognostic Variable (input & output)

COq Carbon Dioxide
CH, Methane

SO, Sulfur Dioxide
BC Black Carbon

Forcing Variable (input only)
Forcing Variable (input only)
Forcing Variable (input only)
Forcing Variable (input only)
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Table 8: FV3GFS Variables. The k subscript refers to a vertical layer index and ranges from 0 to 7

Symbol Description Usage

Ty, Air Temperature Prognostic Variable (input & output)
DSWRFsfc Downward shortwave radiative flux at surface  Forcing Variable (input only)
DLWRFsfc  Downward longwave radiative flux at surface ~ Forcing Variable (input only)
ULWRFsfc  Upward longwave radiative flux at surface Forcing Variable (input only)
USWRFsfc  Upward shortwave radiative flux at surface Forcing Variable (input only)
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