
TOSN-Trans：Transparent Object Segmentation 

Network with Transformer 
Tao Tao1; Jianfeng Yang1*; Jinsheng Xiao1; Wenfei Wu1 

School of Electronic information, Wuhan University, Wuhan, China 
Corresponding author: Jianfeng Yang. Email: yjf@whu.edu.cn 

abstract 

Due to the optical properties of glass materials, most glass appears transparent 
in RGB images. However, in depth images, different acquisition methods make 
glass visible. Therefore, Therefore, using RGB-D dual-channel feature input makes 
it easier to recognize and segment glass objects. Building on this concept, we 
propose a multi-layer symmetrical dual-channel network architecture, which can 
effectively realize trans-modal feature fusion of RGB-D images based on attention 
mechanism, and integrate Convolutional and Transformer architectures to extract 
local features and non-local dependencies, respectively. To further enhance 
segmentation accuracy and efficiency, this paper also designs a boundary 
optimization module. This module constructs a distance map based on edge 
prediction guidance, enabling high-precision glass edge recognition. To support this 
work, we collect a new dataset comprising 5551 sets of calibrated RGB-D images. 
The effectiveness and accuracy of the proposed glass segmentation method are 
rigorously evaluated quantitatively and qualitatively. The code for this paper has 
been published at: https://github.com/Jaccury/RGB-D-Transparent-object-
segmentation. 

Keywords: RGB-D, glass segmentation, feature fusion, dual-network, efficient 
transformer, boundary optimization 

1. introduce 

Transparent objects like glass allow most of the light incident on their surface to pass through and 
reflect only a minimal amount of light, resulting in a lack of prominent texture features in their 
image representation. In fact, these objects may exhibit very limited texture or even appear texture 
less, and in extreme cases, the image texture of glass may not be detectable at all (Yu R & Ren 
W,2024). Such transparent materials, represented by glass, defy the Lambertian assumption in 
optical behavior, which is the basis of 3D optical sensor operation, posing significant challenges to 
visual perception tasks. However, these perceptual scenarios are quite common, such as in 
automated production lines where vision-guided robotic arms locate and grasp transparent products 
like glass, household cleaning robots clearing transparent plastic bags, avoiding collision with 
broken glass containers, and in autonomous driving tasks that require avoiding glass walls 
commonly found in buildings. There is also a need for advanced visual assistance systems tailored 
for visually impaired individuals (Zhang B & Wang Z, 2023). 

Due to the intricate optical characteristics of surface materials, the detection of glass using 
conventional visual sensors presents a notably challenging task compared to detecting opaque 
objects. Consequently, researchers have embarked on an exploration of multi-sensor information 
fusion, introducing depth sensors or thermal sensors as complementary tools for glass detection. 
However, thermal sensors are susceptible to environmental interference, while employing depth 
sensors to capture glass depth information is plagued by substantial detection errors due to the 
refractive and reflective nature of glass. These errors include missing depth measurements and 
inaccuracies in depth estimation (Cao J & Leng H, 2021). Collectively, these challenges contribute 
to the inherent unreliability of depth information in glass detection, thereby compromising the 
effectiveness of glass detection outcomes. 

This study aims to analyze the challenges and difficulties faced by transparent object detection 
algorithms in real-world applications. We propose a method based on deep learning to construct an 
object detection network specifically tailored to address the challenges of false positives and false 



negatives commonly encountered when detecting transparent objects against complex backgrounds. 
Finally, we evaluate the performance of the proposed network on a dataset of transparent object 
detection collected in complex environments. 

To summarize, our main contributions are as follows: 

(1) We conduct an in-depth analysis of the optical characteristics of glass and its pixel features in 
RGB images. Based on this analysis, we propose an image segmentation approach that leverages 
transparent body edge information supplemented by depth information, resulting in improved 
segmentation accuracy. 

(2) We introduce a novel multi-layer symmetric dual-branch decoder-encoder architecture that 
effectively integrates image features and depth features, considering their differences and 
complementarity. In addition, we develop a new Efficient Transformer module to facilitate the cross-
modal fusion of RGB-D image features. Furthermore, we present a boundary optimization module 
guided by edge information, enabling high-precision segmentation of glass edges. 

(3) Our research effort also includes the collection of a new dataset comprising 5551 sets of 
calibrated RGB-D images captured by the RGB-D camera in real-world scenarios. The dataset 
includes manually annotated real segmentation masks, covering diverse daily life scenes. 

2. related work 

2.1. Transparent Object Recognition 

In everyday scenarios, the visual appearance of glass undergoes considerable changes based on 
background settings and lighting conditions. Traditional algorithms for glass recognition often rely 
on intrinsic features or variations induced by glass itself, such as specular reflections, color 
similarities, or distortions in edge textures. Moreover, previous studies have integrated image 
features like HOG and SURF to investigate recognition and 3D reconstruction processes related to 
glass objects. The rapid evolution of neural networks has shifted conventional object recognition 
tasks towards deep learning paradigms. Consequently, deep neural networks have been increasingly 
applied to address the challenges associated with transparent object recognition, including glass. Lai 
et al. (LAI P-J & FUH C, 2015) mployed R-CNN methodologies to detect transparent objects within 
color images. They optimized the efficiency of selective search algorithms by incorporating features 
related to specular highlights and color similarities of transparent objects, thereby refining region 
proposals to exclude non-transparent areas. On a similar note, Khaing et al. (KHAING M P & 
MASAYUKI M, 2018) utilized SSD deep learning models to predict bounding boxes specifically 
tailored for transparent objects. Certain research (MEI H & YANG X, 2020) endeavors have delved 
into the reflective properties of glass mirrors. By contrasting features between the outer and inner 
aspects of mirrors, these studies aimed to detect glass objects by analyzing discontinuities in low-
level color or texture features, particularly focusing on identifying mirror boundaries. However, it's 
worth noting that contrast features may not always be advantageous for transparent object 
segmentation, as semantic information within glass and low-level texture discontinuities may not be 
distinctly visible in transparent objects. 

Conventional visual assistance systems integrate multi-sensor fusion methodologies, such as the 
fusion of RGB-D cameras with ultrasonic sensors, to overcome the complexities of handling 
transparent obstacles like glass objects, French windows, and glass doors. Chen et al. (CHEN H & 
WANG K, 2018) devised a multimodal stereo matching algorithm leveraging dual-depth sensors to 
refine depth measurement accuracy for transparent objects. Similarly, Yang et al. (YANG S-W & 
WANG C-C, 2018) developed a transparent object tracking framework utilizing data gathered from 
ultrasonic sensors and laser scanners, aiding mobile robots in effectively detecting and tracking 
transparent obstacles within indoor environments. However, it's worth noting that these approaches 
may lack the inclusion of visual sensor information, which is crucial for meeting the demands of 
transparent object recognition within visual assistance systems. 

Furthermore, RGB-Depth (RGB-D) fusion techniques have been integrated into both traditional 
optimization methodologies and recent learning-based approaches. With the advent and refinement 
of Transformer architectures, algorithms for RGB-D feature fusion can be broadly classified into 



three categories: purely convolution-based approaches (e.g., ESANet (Zhou J & Qian S, 2021), 
entirely Transformer architectures (e.g., VST (Liu ,2021) and Segmenter (R. Strudel, 2021), and 
hybrid networks combining convolutional networks with Transformers (e.g., CMX (Zhang J, 2023), 
EBS (J. Zhang,2021), DPANet (Chen Z,202), Segformer (E. Xie, 2021), among others). 

2.2. Salient Object Detection 

Salient Object Detection (SOD) aims to highlight prominent regions within an image, thereby 
reducing scene complexity and accurately capturing the essence of the image. This technique has 
found widespread application across various computer vision tasks and related domains. Traditional 
RGB-D-based SOD methods typically rely on graph-based approaches. Although these methods 
integrate depth features to enhance salient object detection tasks, they are limited by the design of 
manually crafted features that are based on a finite set of prior knowledge. This limitation constrains 
the method's ability to effectively represent low-level features, leading to significant biases in 
reasoning high-level features within complex scenes. 

In recent years, there has been a surge of interest in deep learning-based SOD methods. Li et al. 
introduced LFSD (Li N, 2016), which employs machine learning techniques to validate the efficacy 
of incorporating light field data into SOD tasks. Additionally, Wang et al. (Wang T, 2020) proposed 
DLFS, followed by the emergence of several related methodologies such as Mo-SFM (Zhang M, 
2019), LFNET (Zhang M,2020), Meanest (Jiang Y,2022), among others. 

3. proposed method 

3.1 RGB-D glass segmentation Network 

Our segmentation network architecture is based on A standard decoder-encoder framework with 
skip-connections network architecture for dense segmentation tasks. In terms of the network as a 
whole, it is composed of two symmetric encoder branches, a decoder branch, and a trans-modal 
feature fusion module, as shown in Fig. 1. 

As shown in Figure 1, the network proposed in this paper is a symmetric dual-branch encoder-
decoder architecture. To be consistent, this paper denotes the output feature of Image branch at 
encoder component is expressed as {rai, i=1,2,3... n}, and denote the output features in the depth 
branch at the encoder component as {rbi, i=1,2,3... n}. Then, the encoders of the two branches 
gradually integrate multi-scale features. Finally, we aggregate the outputs of the dual-branch 
encoders and use the feature fusion module to generate the saliency map. 

Specifically, in the encoder part, this paper is mainly based on two ResNet-50 backbone networks 
to accomplish the transformation of image features and depth features into feature tensor. This 
feature tensor is data in H*W*C format, where H denotes height, W denotes width, and C denotes 
channel size. In order to fully and effectively extract the high-dimensional feature information of 
the two modalities, a symmetric four-layer dual-branch encoder structure is specially designed in 
this paper from the differences and complementarities of RGB images and depth images. In the part 
of trans-modal feature fusion, we input the result of this feature tensor supplemented with positional 
coding into the TFM module to generate feature fusion information in H*W*C format. The fused 
features are input into the decoder, which has a four-layer structure, and gradually up-sampled to 
obtain the resolution of the input image. In particular, in order to further improve the reliability of 
this fusion feature, a boundary optimization module is designed in this paper to retrieve the glassy 
edges in the potential from the glassy optical properties to further improve the segmentation 
accuracy. Finally, the final segmentation mask is obtained based on the sigmoid function 
convolution layer. 



 

Fig.1. Architecture of transparent object segmentation network based on trans-modal feature fusion 
for RGB-D graphics. In this paper's network, the encoder is composed of two independent and 
symmetric ResNet-50 networks, which are mainly used to extract the high-dimensional features of 
the RGB image and depth image; and then after this paper proposes a kind of efficient transformer 
module to realize the feature fusion; and finally combines with the boundary optimization module 
to pass into the decoder, which produces the final segmentation result. The final segmentation result 
is generated. 

3.2.1 Trans-modal fusion module (TFM) 

The trans-modal feature fusion module in this paper is implemented based on Transformer, fully 
drawing on Transformer's attention mechanism. As mentioned earlier, image features𝐹𝑖

𝑅and depth 
features  𝐹𝑖

𝐷 both are H*W*C structure type data. First, these two features are converted into 
2*H*W*C structure feature diagram based on two corresponding transformer layers 𝐹𝑖

𝑅𝐷： 
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Then pass the 𝐹𝑖
𝑅𝐷 passed into the Transformer Layer immediately following a sigmoid function to 

obtain a weight vector wi (data structure is 2*H*W*1): 
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In the feature fusion part, in particular, this paper proposes a lightweight feature fusion module to 
fuse features at different levels. The feature fusion module (FFM) in this paper is composed of two 
branches, both of which first process two cross-modal feature extraction modules (BEMs) for image 
features and depth features, respectively. Each branch starts with a 1×1 convolution for 
dimensionality reduction, which is used to reduce the number of parameters, followed by two 
residual blocks for nonlinear transformation of the two features for facilitating the subsequent 
feature fusion. Next, the model uses a 3×3 convolution to train and learn parameters that control the 
importance of each modal feature. Finally, context information is added to the fused features through 
a residual pooling. The 1×1 convolution and the 3×3 convolution other than the residual block play 
an important role in controlling the summation of the feature dimensions, as well as in adaptively 
fusing the features. Since depth features mainly play a supplementary role in semantic segmentation 
and the semantic segmentation network is more capable of recognizing Image features, the fusion 



module is mainly used to reduce the effects of color blurring, illumination, etc. by complementing 
the Image features with depth features. 

Of course, before feature fusion operation, it is also necessary to stack image features and depth 
features respectively: 
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As shown in Figure 1. (b), the TFM of this paper mainly contains four iterative blocks. This paper 
has made special treatment on the last Transformer Layer, mainly to solve the problems of 
insufficient ability of traditional CNN network to express global features and too much computation 
of Transformer.  

 

(a) (b) 
Fig.2. Efficient Transformer module structure diagram 

In the TFM module, this paper only uses an Efficient Transformer put into the middle of the network 
as a capsule network, and optimizes the multi head attention in the classical Transformer. After the 
normalization layer, the Efficient Transformer inserts a reduction layer, which achieves the halving 
of the number of original feature channels, thus greatly reducing the computation of the network. 
Next, the linear layer projects the feature map into three matrices, Queries, Keys, and Values, 
according to the rules of the attention mechanism, and divides them into n segments, and then 
performs these three-matrix scaling dot product operations accordingly. Finally, learning the 
thinking of group convolution, it computes the merging of the large image blocks after splitting 
them into smaller ones and inserts the extension layer to restore to the original number of image 
channels. The output of the final ET Oi is as follows: 
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Overall, in TFM, the two Transformer modules corresponding to the RGB image and the depth 
image extract non-local intra-modality dependencies from these two different modality 
features(𝐹𝑖

𝑅 an 𝐹𝑖
𝐷 ). Then extract the non-local modal dependencies between 𝐹𝑖

𝑅  and𝐹𝑖
𝐷  in the 

stack based on the additional Transformer module of the intermediate branch. Considering the 
differences and complementarities of the two modes, a feature fusion network with excellent 
performance should ensure that the features between the two modes can complement each other. 
Therefore, instead of directly going along a certain dimension to split the cross-modal features 



before inputting them into each modality as in traditional methods, this paper generates a weight 
vector wi as a spatial attention mask to guide the discovery of positive features in the RGB image. 
Similarly, we cannot just hope that the spatial attention mask can completely uncover all the positive 
features in the RGB image, and we cannot guarantee the validity of each weight vector, so we need 
to combine the edge prediction of the RGB image and the edge guidance of the Depth image in a 
more organic way. This more complementary feature fusion is difficult to implement in the TFM 
module, so another boundary optimization module is designed in this paper. 

3.2.2 boundary optimization 

When image segmentation of transparent objects is performed, the pixel difference between the 
object and the background is small, and there is often some sense of boundary at the edge of 
transparent objects. In order to improve the quality of transparent object segmentation, this paper 
adds a branch in the image segmentation module to optimize the quality of our final segmentation. 

Fig.3. Network structure diagram of boundary optimization 

The boundary optimization mainly consists of two steps. The first step is to predict and locate the 
boundary pixels, and the second step is to mark the corresponding depth information for each 
boundary pixel to confirm the internal pixels. The detailed architecture of the boundary optimization 
is shown in Figure 3. In order to fully consider the image features at the edge of the glass body, 
depth features are introduced as the guidance for edge detection, and such a dual branch network 
module is designed: Edge prediction branch based on Image features and edge guidance branch 
based on depth features. After the boundary guidance prediction is completed, the optimization 
results are applied to the semantic segmentation results using the offset coordinate offset branch. 

Before the boundary guides prediction, a distance map needs to be generated. This distance map 
records the minimum Euclidean distance between pixels belonging to other categories, that is, the 
distance from the pixel to the edge. This is a mandatory step for edge detection for the boundary 
optimization module in this paper, which uses the binary cross entropy loss most edge distance map 
loss function to learn the edge detection rules. 
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In the boundary guided prediction process, the Sobel filter-based orientation points each pixel 
position to the pixel in its neighborhood that is farthest from the target boundary in the range [0°, 
360°). Each pixel is then assigned to the corresponding category. During training, the discrete 
directions generated by this branch are supervised using a real distance map, and a multi-class cross-
entropy loss is used as the direction prediction loss. 
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The result of the final edge optimization, according to the optimization formula, the final boundary 
detection result with direction is obtained as follows. 



 pi pi piS S= +   （8） 

Among them. 𝑆𝑝𝑖 Is the redirection map, pi is the pixel coordinate, ∆𝑝𝑖 is the offset to the internal 

pixel. 

3.2.3 Decoder 

Corresponding to the encoder structure, the decoder in this paper also has a four-layer structure. 
Each layer receives features from image encoder and depth encoder respectively（𝐹𝑖

𝑅and𝐹𝑖
𝐷)), and 

the fusion features of the decoder at the layer before the re𝐹𝑖
𝑅𝐷. Taking RGB image features𝐹𝑖

𝑅as an 
example, tin this paper, we first combine 𝐹𝑖

𝑅and𝐹𝑖
𝑅𝐷, connecting three layers of convolution layers 

and a sigmoid function to calculate the weight volume of a single channel W. Finally, the output 
model of the decoder is: 

 R D RD

w R DOutput w F w F F=  +  +  （9） 

In the same way as to the weight vector wi of TFM in Section 3.2.1, both wR and wD are spatial 
attention masks for feature fusion. However, in contrast, due to the memory pressure of high-
resolution self-attention mechanism in solving intensive prediction tasks, this paper chooses the 
spatial attention scheme based on convolutional network in the decoder part. Meanwhile, in order 
to recover the spatial dimension, a convolutional layer and bilinear upsampling are also designed in 
each layer of decoder, as shown in Figure 1. (c). 

4.Experiment 

This algorithm has been implemented based on Python 3.8+Python 2.1.2+Ubantu 20.04 
environment. The training network is ResNet-50 backbone network. The batch size is 8. Our model 
is trained with the AdamW optimizer for 300 epochs. The initialized learning rate is 10-4, and after 
200 epochs it changes to 10-5. 

4.1 RGB-D transparent object segmentation dataset 

We captured the RGB-D images using a Femto Bolt TOF camera, which consists of a nearly 
juxtaposed RGB sensor and depth sensor. We used LabelMe to manually annotate the segmentation 
mask on the RGB images. Our new dataset covers a variety of scenes, such as libraries, shopping 
centers, galleries, train stations, museums, streets, factory floors, and houses, and generates 5551 
RGB-D images from more than 40 scenes. Among them, we captured 370 pairs of scenes without 
glass in 7 scenes. To generate training and test segmentations, we randomly selected 23 scenes with 
glass and 5 scenes without glass for training and the others for testing.  

4.2 Comparative experiments 

4.2.1 Assessment of indicators 

We use standard segmentation indicators: mean absolute error (MAE), intersection union set (IOU), 
weighted F-measure (Fβ), and balanced error rate (BER). The mean absolute error (MAE) is mainly 
used in foreground background segmentation tasks. It mainly calculates the average pixel error 
between predicted mask P and truth mask G. The definition is as follows:  
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Where P(i,j) denotes the prediction probability at the pixel position (i,j). Fβ is the reconciled mean 
of average precision and average recall, defined as follows: 
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among β2 =0.3. In this paper, we use the balanced error rate (BER) as an evaluation metric to 
consider the unbalanced region in the glass segmentation task, and provide a theoretical measure for 
evaluating the performance of the glass segmentation algorithm, defined as follows: 
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Where, TP, TN, Np, and Nn represent the numbers of true positives, true negatives, glass pixels, and 
non-glass pixels respectively. These four metrics are commonly used in previous papers on glass 
segmentation, while only MAE is valid for evaluating images without glass. To evaluate the 
performance of those images without glass in the new dataset, we use the inverse intersection of 
concatenation (IOU* and FPR) along with MAE. IOU* takes the inverse mask and defines it. FPR is 
calculated as the ratio of the number of false positives (i.e., incorrectly detected glass) to the total 
number of images without glass. 

4.2.2 quantitative analysis 

RGB-D image saliency detection is a new clue for glass segmentation. To demonstrate the versatility 
of our method on other RGB-D tasks, we retrain our model on 2500 training images in the dataset 
for RGB-D saliency target detection, and then evaluate it on 2500 test images in the dataset as well 
as 1000 images from the dataset. Comparing multiple state-of-the-art RGB-D SOD methods, we use 
MAE, IOU, Fβ, BER, and IOU* and FPR to evaluate the SOD results. We compare the algorithms 
in this paper with 30 state-of-the-art algorithms from other related fields in recent years, and the 
results of the comparison experiments are shown in Table 1. All these comparing methods use RGB-
D images as inputs, trained and tested using the dataset of this paper. 

4.2.3 Qualitative analysis 

The results of the qualitative analysis are given in Figure 4. The method in this paper can accurately 
accomplish out the task of glass segmentation in various scenes in the dataset of this paper. 
Compared with the algorithm in this paper, the previous methods make a large number of errors in 
three aspects: (1) over-segmentation splitting the glass door and window openings into glass in some 
scenes; (2) fuzzy segmentation of the glass boundary; and (3) incomplete segmentation of the glass 
as a whole. In the figure, the scene without glass is also given, and the algorithm in this paper still 
performs well without misrecognizing the over-segmentation. 

Tab. 1 Quantitative analysis result table of all methods  

Methods 
Glass-Images  Non-Glass-Images  All-Images 

MAE↓ Iou↑ Fβ↑ BER↓  MAE↓ IOU*↑ FPR↓  MAE↓ 

DPANet  
PSPNet  

0.161 
0.284 

90.99 
74.06 

0.917 
0.806 

14.597 
18.790 

 0.003 
0.377 

92.11 
82.64 

0.28 
0.91 

 0.082 
0.166 

CMX  0.057 92.40 0.956 6.421  0.047 99.70 0.26  0.034 
GDNet  0.163 77.63 0.837 15.620  0.418 79.21 0.77  0.122 

TransLab 0.188 74.05 0.737 15.131  0.220 81.01 0.85  0.150 
GlassNet  0.193 73.64 0.855 16.128  0.314 82.00 0.79  0.179 
GlassSem 0.244 75.60 0.820 15.604  0.298 75.81 0.88  0.182 
Segformer  0.061 89.82 0.934 7.702  0.163 92.79 0.43  0.135 
Segmenter  0.217 78.53 0.812 15.418  0.303 82.60 0.61  0.127 

SPNet  0.244 84.66 0.906 13.710  0.315 87.63 0.49  0.144 
EBLNet  0.313 85.64 0.808 13.520  0.229 86.78 0.77  0.188 
EBS [34] 0.309 88.44 0.851 9.885  0.301 94.07 0.27  0.220 

ESANet [29] 0.315 89.97 0.939 6.865  0.311 87.55 0.321  0.042 
VST [30] 0.148 89.16 0.944 8.977  0.326 84.11 0.45  0.149 

DSCNet [65] 0.189 66.33 0.865 18.912  0.221 87.14 0.33  0.177 

Ours 0.032 92.78 0.961 4.491  0.011 98.81 0.12  0.031 
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Fig.4 Qualitative comparison experiment structure diagram. Qualitative comparison of our method with five most advanced methods  

 



4.3 Ablation experiments 

In order to verify the necessity of glass segmentation research based on RGB-D images, this paper 
designs two variant networks based on the previous network architecture, one based on RGB single 
channel features and the other based on depth single channel features. Similarly, similar to the 
experimental process in Section 6.1, the variant network training and testing are performed, and the 
results are shown in Table 2. This paper compares the method in this paper with four mainstream 
feature fusion modes, replacing MFM with simple feature summation (SFS), simple feature 
concatenation (SFC), per pixel attention fusion (PAF) and affine transformation (AT). The multi-
mode fusion module used for RGB-D fusion in AFS-Net has also been used to replace our TFM. As 
shown in Table 3, the TFM module used in this paper has the best effect. 

Tab.2 Feature Input Ablation Experiment Results Table 

Methods 
Glass-Images  Non-Glass-Images  All-Images 

MAE↓ Iou↑ Fβ↑ BER↓  MAE↓ IOU*↑ FPR↓  MAE↓ 

RGB 0.120 83.94 0.919 8.294  0.193 94.49 0.65  0.180 
Depth 0.394 61.91 0.638 19.011  0.497 86.41 0.13  0.372 

RGB-D 0.032 92.78 0.961 4.491  0.011 98.81 0.12  0.031 

Tab.3 Ablation Experiment Results Table 

Methods 
Glass-Images  Non-Glass-Images  All-Images 

MAE↓ Iou↑ Fβ↑ BER↓  MAE↓ IOU*↑ FPR↓  MAE↓ 

SFS 0.162 89.34 0.926 7.600  0.304 91.43 0.51  0.104 
SFC 0.141 90.14 0.945 7.190  0.258 93.10 0.44  0.077 
PAF 0.122 91.99 0.948 7.113  0.197 94.66 0.31  0.070 
AT 0.119 92.44 0.954 6.900  0.151 94.68 0.30  0.052 

AFS 0.041 93.09 0.957 4.903  0.046 98.06 0.19  0.034 
TFM 0.032 92.78 0.961 4.491  0.011 98.81 0.12  0.031 

5. Conclusion 

Transparent object detection is a major difficulty in the current object detection field. Based on the 
analysis of the optical properties of transparent objects, this paper proposes a high-precision glass 
RGB-D image segmentation algorithm based on the edge guidance module. This paper designs a 
multi-layer symmetrical dual-channel network architecture as a cross-modal fusion module to 
achieve feature fusion of RGB and depth. This module draws on the Transformer architecture, fully 
understands the differences and complementarities of cross-modal features, and generates a weight 
vector wi as a spatial attention mask to guide the discovery of positive features in RGB images, 
thereby achieving more efficient feature fusion. Furthermore, starting from the unilateral diffraction 
phenomenon at the edge of glass objects, this paper designs a boundary optimization module to 
focus on the boundary texture at the edge of transparent objects. This module first predicts and 
locates boundary pixels, then marks the corresponding depth information for each boundary pixel 
to confirm the internal pixels, and introduces depth information guidance to further improve the 
segmentation efficiency of transparent objects. In addition, we also collect a dataset of RGB-D glass 
scenes containing common life and work scenes. Our extensive evaluation shows that the 
performance of using RGB-D pairs is significantly better than that of using a single RGB image, 
and proves the superiority of our cross-modal fusion method over existing fusion methods using the 
same RGB-D input 
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