
CausalVLBench: Benchmarking Visual Causal
Reasoning in Large Vision-Language Models

Anonymous ACL submission

Abstract001

Large language models (LLMs) have shown002
remarkable ability in various language tasks,003
especially with their emergent in-context learn-004
ing capability. Extending LLMs to incorpo-005
rate visual inputs, large vision-language mod-006
els (LVLMs) have shown impressive perfor-007
mance in tasks such as recognition and visual008
question answering (VQA). Despite increas-009
ing interest in the utility of LLMs in causal010
reasoning tasks such as causal discovery and011
counterfactual reasoning, there has been rela-012
tively little work showcasing the abilities of013
LVLMs on visual causal reasoning tasks. We014
take this opportunity to formally introduce a015
comprehensive causal reasoning benchmark for016
multi-modal in-context learning from LVLMs.017
Our CausalVLBench encompasses three repre-018
sentative tasks: causal structure inference, in-019
tervention target prediction, and counterfactual020
prediction. We evaluate the ability of state-021
of-the-art open-source LVLMs on our causal022
reasoning tasks across three causal represen-023
tation learning datasets and demonstrate their024
fundamental strengths and weaknesses. We025
hope that our benchmark elucidates the draw-026
backs of existing vision-language models and027
motivates new directions and paradigms in im-028
proving the visual causal reasoning abilities of029
LVLMs. We make our code and data available030
at https://tinyurl.com/5646a35n.031

1 Introduction032

With a growing emphasis on developing pre-trained033

models that emulate human reasoning and thinking034

patterns, a wide range of literature has also focused035

on assessing these models on complex reasoning036

tasks (Nie et al., 2023; Mitchell et al., 2023). As037

human intelligence is often hallmarked by causal038

reasoning, i.e., the ability to distinguish cause039

and effect, researchers have also prioritized eval-040

uation of pre-trained models on causal inference041

tasks (Zhang et al., 2023a; Kıcıman et al., 2023;042

Jin et al., 2023). The evaluation tasks vary among 043

causal effect inference (Jin et al., 2023), causal 044

discovery (Jiralerspong et al., 2024; Vashishtha 045

et al., 2023), and counterfactual reasoning. How- 046

ever, these works mostly focus on analyzing the 047

performance of LLMs, and there has been compara- 048

tively little work in evaluating the causal reasoning 049

capability of large visio-linguistic systems. 050

Leveraging breakthroughs in contrastive 051

language-image pretraining approaches such as 052

CLIP (Radford et al., 2021), LVLMs have sparked 053

new research questions about the capabilities of 054

language models augmented with visual informa- 055

tion. Often constructed by integrating a CLIP-like 056

vision encoder in the LLM architecture and 057

aligning the two modalities via projection, LVLMs 058

have shown tremendous potential in tasks such as 059

recognition, grounding, and VQA (Li et al., 2025). 060

Recently, Zong et al. (2025) benchmarked LVLMs 061

on diverse tasks with multi-modal in-context learn- 062

ing (ICL), and ongoing efforts are being made to 063

incorporate and improve reasoning in models such 064

as DeepSeek R1 (Guo et al., 2025) and OpenAI 065

o3. Similar to causal evaluations on LLMs, it is 066

important to examine the causal reasoning ability 067

of LVLMs, as building language and vision agents 068

capable of reasoning and planning is paramount 069

to the reliable usage of LLMs and LVLMs in 070

real-world scenarios (Gkountouras et al., 2025). 071

However, it is significantly more challenging for 072

AI systems to learn causal relationships from 073

high-dimensional data such as images that consist 074

of complex causal dependencies in physical 075

and dynamical systems (Scholkopf et al., 2021; 076

Komanduri et al., 2024). 077

In this work, we investigate the causal reason- 078

ing capabilities of LVLMs. Previously, Chen et al. 079

(2024) evaluated the performance of LVLMs on 080

causally-motivated VQA tasks where the causal 081

relationships were defined in terms of observable 082

interactions extracted from the scene graph repre- 083
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sentation of images. However, their evaluation fo-084

cused on scene-specific relations originating from085

human-object interactions. In contrast, we focus086

on the ability of LVLMs to perform formal visual087

causal reasoning with systems described by deter-088

ministic causal mechanisms (e.g., light position089

causes a change in shadow length in Fig. 2a). We090

formulate the visual causal reasoning task as the091

ability of LVLMs to disentangle causal variables092

and reason about their relationships, a fundamental093

goal of causal representation learning (Scholkopf094

et al., 2021). We further evaluate visual causal rea-095

soning capabilities in LVLMs under zero-shot and096

few-shot learning settings. Assessing the causal097

reasoning capability of LVLMs in this setting can098

have significant implications for building robust AI099

systems in diverse domains.100

Our contributions are: (1) We formulate causal101

reasoning in LVLMs as inferring causal mecha-102

nisms from visual cues. (2) We construct a bench-103

mark, CausalVLBench, encompassing three rep-104

resentative tasks: causal structure inference, in-105

tervention target prediction, and counterfactual106

prediction to evaluate the visual causal reasoning107

capabilities of LVLMs under zero and few shot108

settings. (3) We study the effect of prompting with-109

out the causal graph, demonstration selection, and110

zero-shot chain-of-thought on the performance of111

LVLMs. (4) We conduct rigorous empirical evalua-112

tions on several LVLMs to assess their performance113

in understanding the underlying causal mechanisms114

in physical systems. We primarily experiment with115

open-source models to maintain transparency and116

reproducibility. Our experiments indicate that for-117

mal causal reasoning while incorporating text and118

image modalities is challenging for current state-of-119

the-art LVLMs. We hope our evaluation elucidates120

the shortcomings of existing models and motivates121

the development of new training paradigms to pro-122

mote causal reasoning in large multi-modal mod-123

els (Vashishtha et al., 2024; Rajendran et al., 2024).124

2 Preliminaries125

Causal Inference. Our work primarily relies on126

the causality framework by Pearl (2009) that math-127

ematically formalizes the reasoning of cause and128

effect. The framework consists of a three-level129

hierarchy of causal inference referred to as the Lad-130

der of Causation (Pearl and Mackenzie, 2018) or131

Pearl’s Causal Hierarchy (PCH) (Bareinboim et al.,132

2022).133

• Rung 1, or L1, refers to statistical associa- 134

tions among random variables and involves 135

reasoning about joint and conditional distribu- 136

tions. This rung describes questions such as 137

“How often should I take medication when I am 138

sick?” 139

• Rung 2, or L2, enables interventions on vari- 140

ables to reason about their effects. We can 141

perform an intervention on a random variable 142

X via the do operator (i.e., do(X = x)). This 143

rung describes questions such as “If I take the 144

medication, will my sickness be cured?” 145

• Rung 3, or L3, deals with counterfactual rea- 146

soning (i.e., “what if?” questions) to imagine 147

alternative scenarios in which the world could 148

have been different. This rung describes ques- 149

tions such as “Would my sickness have been 150

cured if I had taken the medication?” 151

Reasoning about all of these quantities together 152

requires the Structural Causal Model (SCM) for- 153

malism from (Pearl, 2009) as defined below. 154

Definition 1 A structural causal model (SCM) is 155

formally defined by a tuple ⟨Z,U, F ⟩, where Z 156

is the set of n endogenous variables, U is the set 157

of n exogenous noise variables, and F is a set of 158

structural equations of the form Zi = fi(Zpai , Ui), 159

where Zpai are Zi’s causal parents. The condition- 160

als P (Zi|Zpai) define the conditional distribution 161

of Zi given its parents. The joint observational 162

distribution can then be factorized as follows: 163

P (Z1, . . . , Zn) =

n∏
i=1

P (Zi|Zpai) (1) 164

The observational (L1), interventional (L2), and 165

counterfactual (L3) distributions entailed by the 166

SCM form a hierarchy in the sense that L1 ⊂ L2 ⊂ 167

L3, where each level encodes richer information 168

that the previous level cannot express. 169

In-Context Learning. Given a pretrained large 170

vision-language model Mθ, a text instruction I , and 171

some support set S = (Xi, Yi) of query examples 172

X along with the corresponding answer Y (i.e., 173

demonstrations), and a test query X∗, the goal of 174

in-context learning is to estimate the following 175

pθ(Y
∗|I,X∗, S) (2) 176

In the context of vision-language models, X takes 177

the form of images with a text prompt, and the 178

output Y is generated text. 179
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Task 2: Intervention Target Prediction

From the first to the second image, which variable 
changes first?

pendulum 
angle

Task 1B: Interleaved Causal Structure Inference

Does pendulum angle directly cause light position to change?
Does pendulum angle directly cause shadow length to change?

⋮
Does shadow position directly cause pendulum angle to change?

No
Yes
⋮

No

Task 1A: Standard Causal Structure Inference

Does pendulum angle directly cause light position to change?
Does pendulum angle directly cause shadow length to change?

⋮
Does shadow position directly cause pendulum angle to change?

No
Yes
⋮

No

Had pendulum angle been on the right, what 
would be the final values of all variables?

Task 3: Counterfactual Prediction

pendulum angle: right
light position: center
shadow length: medium
shadow position: right

Figure 1: Different causal reasoning tasks including causal structure inference (standard and interleaved), interven-
tion target prediction, and counterfactual prediction.

3 CausalVLBench180

In this paper, we study the causal reasoning prob-181

lem in the extended setting of large vision-language182

models. We propose three main causal reasoning183

tasks: causal structure inference, intervention tar-184

get prediction, and counterfactual prediction.185

Let X = (V,Q) be decomposed into a vision186

and text query. Let Z = {Z1, . . . , Zn} be the set187

of causal variables that govern the system shown in188

the image and also described in the system prompt189

I . For all task formulations, we use prompt(·) to190

represent a function that converts an input contain-191

ing a set of causal variables and/or a causal graph192

to a suitable text prompt.193

Task 1: Causal Structure Inference. Causal194

discovery refers to learning causal structure from195

observational or interventional data (Vowels et al.,196

2021). In this task, we prompt the LVLM to in-197

fer the causal graph from input image(s) and text.198

Corresponding to causal discovery with observa-199

tional and interventional data, we formulate two200

unique settings to evaluate the ability of vision-201

language models in deriving causal relationships202

from respective contexts.203

• Task 1A: Standard Causal Structure Infer-204

ence. Given a single image and an instruc-205

tional prompt providing a high-level descrip-206

tion of the variables of interest in the image,207

we prompt the LVLM to infer the causal struc- 208

ture among the given variables through a se- 209

ries of Yes/No questions. 210

• Task 1B: Interleaved Causal Structure In- 211

ference. Given an image pair and an in- 212

structional prompt describing the variables, 213

we prompt the LVLM to infer changes be- 214

tween the images and provide the causal struc- 215

ture among the variables through a series of 216

Yes/No questions. We prompt the LVLM with 217

image pairs to simulate the interventional data 218

scenario where the second image shows the re- 219

sult of an intervention performed on the initial 220

system depicted in the first image. 221

Formally, given input image V (for single image) 222

or a pair of images V = {Vbefore, Vafter} (for inter- 223

leaved), a set of causal variables Z, and LVLM Mθ, 224

the goal is to infer the causal graph G = (Z,E) 225

where E is the set of directed edges such that 226

(Zi → Zj) ∈ E indicates that Zi is a direct cause 227

of Zj . Now, for each pair (Zi, Zj), where i ̸= j, 228

we construct a query Qij = prompt(Zi, Zj) corre- 229

sponding to the question “Does Zi directly cause 230

Zj to change?” Then, we have the following binary 231

output from the LVLM: 232

Ŷij = Mθ(I, V,Qij) (3) 233

where Ŷij ∈ {Yes, No} and I is the system prompt 234

for the causal structure inference task containing 235
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Angle Light 
Position

Shadow 
Length

Shadow 
Position

(a) Pendulum

Ball 
Size

Hole
Position

Water 
Level

Water 
Flow

(b) Water Flow

Robot 
Arm

Blue 
Light

Green 
Light

Red 
Light

(c) Causal Circuit

Figure 2: Causal system of all datasets used in evaluations

the description of causal variables Z. Then, we236

can construct an adjacency matrix A with entries237

Âij = I[Ŷij ] ∈ {0, 1}. The edge set of the inferred238

graph Ĝ = (Z, Ê) can be obtained as239

Ê = {(Zi, Zj) ∈ Z × Z | Âij = 1} (4)240

Similar to traditional causal discovery algorithms241

that rely on observational or interventional data,242

our paradigm relies on simple observation or in-243

terventional pairs as an inductive bias to identify244

the causal structure. Figure 1(a) and (b) show an245

example of Task 1A and Task 1B, respectively.246

Task 2: Intervention Target Prediction. Recent247

work has shown that a learning paradigm with ac-248

cess to interventional data can be a sufficient signal249

to recover causal relationships from data (Ahuja250

et al., 2023; Brehmer et al., 2022; Zhang et al.,251

2023b). Inspired by this paradigm, we formulate252

the task of inferring the original variable that was253

intervened upon given interventional input data.254

Formally, given an image pair, depicting before255

and after an intervention has affected a system, we256

propose the task of predicting the source interven-257

tion that caused all changes, often referred to as the258

intervention target (Lippe et al., 2022). Suppose259

we are given a fixed causal graph G = (Z,E), a260

pair of images (Vbefore, Vafter) where a variable from261

{Z1, . . . , Zn} was intervened upon, and a query Q262

= “From the first to the second image, which vari-263

able changes first?”. Then, we have the following264

output from the LVLM:265

Ŷ = Mθ(I, {Vbefore, Vafter}, Q) (5)266

where Ŷ is the predicted intervened target and I267

is a system prompt for the intervention target pre-268

diction task containing the description of causal 269

variables Z and their relationships G. This task 270

requires careful reasoning to ensure that the inten- 271

tional change was not a downstream causal effect. 272

Task 3: Counterfactual Prediction. To evaluate 273

the capability of LVLMs to infer causal mecha- 274

nisms, an important task is counterfactual reason- 275

ing. Given an image and a description of the cur- 276

rent state of all high-level variables of interest that 277

appear in the image, we prompt an LVLM to in- 278

fer what the state of all variables would be had a 279

specific intervention taken place. 280

Given an image V , a fixed causal graph 281

G = (Z,E), and initial variable assignments 282

{z1, . . . , zn}, the goal is to predict the values of all 283

variables Z1, . . . , Zn had an intervention do(Zi = 284

z∗i ) been performed. The query can be represented 285

as Q = prompt({z1, . . . , zn},do(Zi = z∗i )). We 286

have the following output from the LVLM: 287

ẑ = Mθ(I, V,Q) (6) 288

where I is the system prompt for the counterfac- 289

tual prediction task containing the description of 290

causal variables Z and their relationships G and 291

ẑ = {ẑ1, . . . , ẑn} are the LVLM predicted final 292

counterfactual states. 293

4 Experiments 294

In this section, we empirically evaluate state-of-the- 295

art LVLMs on our proposed tasks. Detailed data 296

generation mechanisms for each dataset, prompt 297

templates for each task, and LVLM model descrip- 298

tions and parameters are all deferred to the Ap- 299

pendix. 300
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Table 1: Results for Task 1A: Standard Causal Structure Inference and Task 1B: Interleaved Causal Structure
Inference task under Zero-Shot setting.

Model

Pendulum Water Flow Causal Circuit

Standard Interleaved Standard Interleaved Standard Interleaved

SHD Acc SHD Acc SHD Acc SHD Acc SHD Acc SHD Acc

LLaVA-OneVision-7B 1.20.01 89.90.06 1.70.02 85.20.14 2.80.01 76.30.09 3.00.00 75.00.00 4.40.03 62.40.24 3.20.01 73.40.10
Qwen-VL-Chat-9B 1.00.00 83.10.02 0.90.01 87.90.16 2.00.01 74.70.12 2.90.01 68.10.03 3.00.01 74.50.12 2.90.02 75.70.20
IDEFICS2-8B 0.80.01 93.00.07 0.20.00 98.10.04 1.00.00 91.50.02 3.00.00 75.00.00 5.00.00 57.70.08 5.00.00 58.70.02
Deepseek-VL2-Small 4.00.00 66.60.00 3.70.01 69.10.12 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 4.90.00 58.80.00
OpenFlamingo-9B 4.00.00 66.60.00 4.00.00 67.60.00 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 5.00.00 58.30.00
Otter-9B 5.00.00 50.00.00 4.90.01 49.60.12 4.00.00 50.20.00 5.00.00 50.00.03 5.20.02 51.40.18 3.70.00 62.40.20
Deepseek-VL2-27B 4.00.0 66.70.0 4.00.00 66.70.00 3.00.00 75.00.00 3.00.00 75.00.00 5.00.00 58.30.00 5.00.00 58.30.00
Qwen2.5-VL-Instruct-32B 0.00.00 100.00.00 0.00.0 100.00.0 2.90.01 75.10.04 2.30.0 80.10.1 2.90.03 75.50.28 4.60.0 62.10.1

Gemini-2.0-Flash 0.00.0 100.00.0 0.70.0 94.40.0 1.00.0 91.60.0 2.30.0 80.70.0 3.20.0 73.20.0 2.80.0 76.90.0

4.1 Datasets301

To evaluate formal causal reasoning capabilities302

from visual cues, we opt to adapt and evaluate303

LVLMs on existing causal representation learn-304

ing datasets. Our benchmark consists of three305

datasets, each representing a physical system,306

adapted to generate data satisfying each task’s re-307

quirements. Since the original datasets consist308

of continuous-valued ground-truth factors, we dis-309

cretize and convert them into textual categories.310

The Pendulum dataset (Yang et al., 2021) is a311

two-dimensional physical system dataset depict-312

ing a pendulum, a light source, and a shadow. The313

Water Flow dataset (Yang et al., 2021) is a two-314

dimensional physical system dataset depicting a315

red ball dropped in a glass filled with water and a316

hole on the right side that leaks water. The Causal317

Circuit dataset (Brehmer et al., 2022) is a three-318

dimensional physical system dataset consisting of a319

robot arm interacting with three colored lights. The320

causal variables and their relationships for each321

dataset are shown in Fig. 2.322

4.2 Setup323

Models. We evaluate a wide range of open-324

source LVLMs on the causal structure inference, in-325

tervention target prediction, and counterfactual pre-326

diction tasks, including LLaVa-Onevision (7B) (Li327

et al., 2024), Qwen-VL-Chat (9B) (Bai et al.,328

2023), Qwen2.5-VL-Instruct (32B) (Bai et al.,329

2025), IDEFICS2 (8B) (Laurençon et al., 2024),330

DeepSeek-VL2 (16B, 27B) (Wu et al., 2024),331

OpenFlamingo (9B) (Awadalla et al., 2023), Otter-332

Llama (9B) (Li et al., 2023), and Gemini 2.0333

Flash (Deepmind, 2024). We conduct our experi-334

ments on NVIDIA A100 GPUs with 40GB RAM.335

Metrics. For all tasks, we use the accuracy met- 336

ric against the ground truth via exact match as the 337

evaluation metric. For both the causal structure 338

inference tasks, we ask a series of Yes/No ques- 339

tions for each image/pair. We construct a binary 340

adjacency matrix according to the predicted model 341

answers and compute the Structural Hamming Dis- 342

tance (SHD) with respect to the ground-truth causal 343

graph. We also report the average exact match ac- 344

curacy of model predictions. In the intervention 345

target prediction task, we evaluate the number of 346

times the model predicted the correct intervention 347

target variable. For the counterfactual prediction 348

task, we evaluate the number of times the model 349

predicted the correct counterfactual states for each 350

variable intervened upon. We compute the aver- 351

age performance over all samples in the query set 352

across 3 random seeds for each shot. We evaluate 353

Gemini only once due to rate limits. 354

4.3 Results 355

We include the results for Task 1A and 1B in Ta- 356

ble 1, Task 2 in Table 2, and Task 3 in Table 3 for all 357

three datasets using all models, where the best per- 358

formance is bold, and the second-best is underlined 359

in each column. We observe that in-context learn- 360

ing for causal reasoning tasks is only marginally 361

effective and, in some cases, can degrade model 362

performance for the majority of open-source mod- 363

els. Most models degrade in performance with in- 364

creasing shots. Qwen2.5-VL, which is much larger, 365

is an exception to this trend and notably improves 366

with in-context demonstration examples, but for 367

only the counterfactual prediction task. Gemini- 368

2.0-Flash also has the same upward trend for the 369

few-shot setting. However, all LVLMs struggle 370

in tasks requiring multi-image inputs, such as the 371
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Table 2: Results for Task 2: Intervention Target Prediction task under Zero Shot (ZS) and Few Shot (FS) settings.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 26.21.5 27.51.9 26.31.0 27.10.9 43.10.8 34.12.3 34.11.2 32.71.2 39.40.5 35.00.4 36.10.5 35.90.4
Qwen-VL-Chat-9B 24.90.5 24.81.0 24.31.4 24.71.6 37.80.6 33.11.2 32.90.8 32.10.8 10.40.9 31.00.4 31.81.6 33.02.3
IDEFICS2-8B 29.00.4 24.21.9 24.80.9 24.31.1 34.82.1 35.41.8 33.30.3 33.50.8 10.20.4 30.31.2 31.40.9 29.70.5
Deepseek-VL2-Small-2.8B 25.51.1 24.40.4 24.00.3 0.00.0 35.80.6 34.40.2 34.30.7 0.00.0 72.91.1 28.11.5 0.20.1 0.00.0
OpenFlamingo-9B 24.80.5 24.70.7 23.71.1 25.20.6 34.21.7 34.51.4 33.01.1 33.10.8 9.80.6 31.61.5 31.92.3 32.31.1
Otter-9B 26.61.9 25.30.3 26.90.4 23.01.2 32.81.1 34.11.0 30.00.9 31.90.9 9.10.7 25.21.4 23.41.4 24.31.4
Deepseek-VL2-27B 31.90.0 30.40.0 24.10.0 - 44.40.0 36.60.0 31.40.0 - 66.10.0 43.70.0 30.30.0 -
Qwen2.5-VL-Instruct-32B 44.30.5 29.50.3 27.42.0 26.21.2 48.40.7 37.21.3 37.30.7 36.60.6 32.11.5 32.50.9 32.01.2 34.60.8

Gemini-2.0-Flash 39.40.0 45.20.0 45.30.0 47.40.0 37.60.0 46.50.0 52.40.0 55.70.0 10.50.0 43.10.0 55.10.0 66.10.0

Table 3: Results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS) settings.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 84.10.8 83.00.7 83.60.5 83.50.5 83.40.4 84.00.3 84.50.7 85.00.6 94.90.2 96.00.2 96.70.2 96.90.2
Qwen-VL-Chat-9B 80.10.9 81.50.6 80.11.1 73.41.1 83.40.3 82.30.2 82.60.4 81.20.3 74.40.3 94.70.1 94.40.0 94.90.1
IDEFICS2-8B 38.80.5 79.30.6 80.20.4 80.30.5 71.00.3 82.70.7 83.70.3 84.10.3 58.10.3 92.20.5 95.40.3 96.80.1
Deepseek-VL2-Small 77.90.6 20.40.4 0.00.0 0.00.0 51.40.3 71.30.6 2.60.4 0.00.0 41.61.0 64.90.4 21.80.4 0.00.0
OpenFlamingo-9B 22.41.1 82.60.8 81.80.8 81.70.8 33.01.1 80.60.6 81.10.7 83.90.5 3.90.3 87.90.1 93.20.3 88.90.3
Otter-9B 22.60.5 13.40.3 1.70.2 0.40.1 34.00.3 32.00.6 25.40.3 6.20.2 43.80.3 53.30.4 37.70.1 6.30.2
Deepseek-VL2-27B 61.10.0 83.50.0 83.70.0 - 83.00.0 83.00.0 83.20.0 - 94.20.0 94.00.0 94.80.0 -
Qwen2.5-VL-Instruct-32B 81.80.5 85.10.5 85.50.8 87.40.8 79.90.4 82.60.1 84.40.4 86.70.7 99.10.1 98.80.1 98.60.1 98.40.0

Gemini-2.0-Flash 83.40.0 84.90.0 85.00.0 86.50.0 80.30.0 84.30.0 86.50.0 88.30.0 97.00.0 97.40.0 97.20.0 97.40.0

intervention target prediction task. Although some372

models, such as LLaVA-OneVision, were specifi-373

cally trained with interleaved multi-image inputs,374

they demonstrate subpar performance in complex375

reasoning scenarios. In the following, we analyze376

our experimental results for each task in more de-377

tail.378

Causal Structure Inference Results. For the379

causal structure inference tasks, both standard and380

interleaved shown in Table 1, the best performing381

models are Qwen2.5-VL, Gemini-2.0-Flash across382

all datasets. However, IDEFICS2 and Qwen-VL-383

Chat show comparable performance for Pendulum384

and Flow. LLaVA-OneVision-7B is generally the385

most consistent small open-source model across386

all datasets, with its performance bounded between387

other smaller and larger models. We also observe388

that performance degrades for most models when389

provided with paired images for causal structure390

inference. Among all models, Qwen2.5-VL and391

Gemini predict the true causal graph for the Pendu-392

lum dataset with perfect accuracy. We conjecture393

this is due to the simple nature of the causal mech-394

anism in the Pendulum dataset. However, it is not395

clear how this ability scales as the causal graph 396

increases in size. Our results also indicate that 397

LVLMs predict the causal graphs for the pendulum 398

and water flow datasets more accurately compared 399

to the causal circuit dataset. This is most likely be- 400

cause, unlike the pendulum and water flow systems, 401

the causal graph in the causal circuit system is in- 402

duced and not a naturally occurring phenomenon. 403

In such cases, providing a pair of images through 404

the interleaved variant often improves the inference 405

performance. 406

Intervention Target Prediction Results. The in- 407

tervention target prediction task is progressively 408

more difficult. Conditioned on the given causal 409

structure, the model is required to reason about the 410

intervened variable that caused the change between 411

the first and second image. In Table 2, the best- 412

performing models are DeepseekVL2, Qwen2.5- 413

VL, and Gemini-2.0-Flash. Among these models, 414

Gemini demonstrates the best trend in improving in- 415

tervention target prediction with an increasing num- 416

ber of shots. For the causal circuit dataset, originat- 417

ing from an induced causal graph, DeepseekVL2- 418

Small and DeepSeekVL2 have notable zero-shot 419
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Table 4: Selected results for Task 2: Intervention Target Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings without causal graph.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 26.21.5 26.71.8 26.20.5 26.40.7 39.61.1 34.02.2 34.00.7 32.61.5 39.31.2 35.20.1 36.20.3 35.80.5
Qwen2.5-VL-Instruct-32B 44.42.4 34.82.4 29.81.5 26.81.3 54.62.0 39.22.9 35.40.4 31.21.4 18.81.1 28.00.7 30.80.3 38.20.9
Gemini-Flash-2.0 35.60.0 46.40.0 49.50.0 48.20.0 37.40.0 46.70.0 50.60.0 53.60.0 18.80.0 75.80.0 81.80.0 81.40.0

Table 5: Selected results for the Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings without causal graph.

Model

Pendulum Water Flow Causal Circuit

ZS FS ZS FS ZS FS

0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 83.50.8 83.00.9 83.30.7 83.20.7 82.40.3 83.50.2 83.70.5 84.80.2 94.00.1 95.90.1 96.40.2 96.70.2
Qwen2.5-VL-Instruct-32B 79.00.4 83.70.8 85.20.7 87.50.8 82.20.6 84.40.2 85.30.5 86.90.8 94.90.1 95.40.1 96.50.1 97.30.0
Gemini-Flash-2.0 74.80.0 81.50.0 83.20.0 86.90.0 76.60.0 83.60.0 85.30.0 88.00.0 82.90.0 93.00.0 93.60.0 94.60.0

performance. We attribute this to the reasoning-420

focused training paradigm of DeepSeekVL2, which421

is better suited for reasoning with a concrete set of422

rules. However, for open-source models, provid-423

ing few-shot examples generally degrades model424

performance. Similar to the causal structure infer-425

ence task, the most consistently performing model426

is LLaVA-OneVision-7B. Looking more closely at427

model predictions, we observe that several mod-428

els tend to predict one variable more than others429

during zero-shot inference. For instance, in the pen-430

dulum dataset, some models predict light position431

for most test queries. We conjecture this is due to432

the light being the most noticeable object in the433

image. Note that the frequently predicted variable434

may vary across models.435

Counterfactual Prediction Results. The coun-436

terfactual prediction task involves predicting exact437

discretized values of each causal variable had a438

given intervention occurred. Ideally, interventions439

on variables should propagate to accurate values440

for descendants and should not change the values441

for ancestors. We evaluate this task across differ-442

ent levels of granularity. First, we compute model443

correctness as the average accuracy over all vari-444

ables. However, this metric can easily be inflated445

as the model can achieve some level of correctness446

by simply predicting the initial input states. As447

a result, we observe seemingly favorable perfor-448

mance in Table 3. Therefore, to understand how449

interventions on each variable affect utility, we450

show the per-variable breakdown for each dataset451

in Appendix D. We observe that most models attain 452

better results when the intervention is performed on 453

variables with no descendants, but struggle with ac- 454

curately propagating causal changes to descendants. 455

Generally, LLaVA-OneVision-7B, Deepseek-VL2, 456

Qwen2.5-VL, and Gemini-2.0-Flash have the best 457

performance. We also look at interventions on vari- 458

ables with at least one descendant and compute the 459

average accuracy of the correct prediction of down- 460

stream variables. We find that most models achieve 461

notably lower performance as they are not able 462

to correctly predict propagated descendant values. 463

Nonetheless, most models improve in their ability 464

to correctly predict descendant variable values as 465

we increase the number of shots. 466

4.4 Additional Analysis 467

Inference without Causal Graph. We investi- 468

gate the ability of LVLMs to reason about causal 469

concepts when ground-truth causal relationships 470

are not provided in the input. We evaluate the per- 471

formance of the top-performing models for Tasks 472

2 and 3. The results in Table 4 and Table 5 demon- 473

strate that model performance generally degrades, 474

albeit marginally in some cases, when the causal 475

relationships are not provided. We note that the 476

Pendulum and Flow datasets follow natural phys- 477

ical laws, whereas the Causal Circuit dataset has 478

an induced causal graph. If the causal system is de- 479

rived from physical laws, the model is more likely 480

to be familiar with the governing causal mechanism. 481

In datasets with induced causal graphs, it may be 482
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Table 6: Selected results for Task 2: Intervention Target Prediction under Balanced Selection with causal
graph.

Model Pendulum Water Flow Causal Circuit

4-shot 8-shot 3-shot 6-shot 4-shot 8-shot

LLaVA-OneVision-7B 26.50.0 26.50.0 31.60.0 31.20.0 36.40.0 36.40.0
Qwen2.5-VL-Instruct-32B 32.50.0 25.30.0 45.30.0 36.50.0 40.40.0 14.80.0
Gemini-Flash-2.0 46.20.0 44.30.0 43.20.0 55.30.0 48.10.0 41.60.0

Table 7: Selected results for all tasks under Zero-Shot Chain of Thought (CoT) setting.

Model
Pendulum Water Flow Causal Circuit

1A 1B 2 3 1A 1B 2 3 1A 1B 2 3

Qwen2.5-VL-Instruct-32B 98.70.3 87.40.2 36.50.0 81.60.6 84.00.1 74.90.6 33.00.0 80.60.2 66.30.4 59.20.0 54.80.0 98.50.2
Gemini-Flash-2.0 98.10.0 87.50.0 39.70.0 83.70.0 92.30.0 83.80.0 40.40.0 80.40.0 70.70.0 72.40.0 9.10.0 96.10.0

beneficial to provide the causal relationships as ad-483

ditional context. However, contrary to intuition, we484

find that excluding the causal structure information485

significantly improves the intervention target pre-486

diction performance of Gemini-2.0-Flash on the487

causal circuit dataset.488

Balanced Demonstration Selection. In this ex-489

periment, we evaluate the influence of the demon-490

stration selection strategy on model predictions by491

implementing a balanced selection technique com-492

pared to the random selection used in prior experi-493

ments. We assess the method on the intervention494

target prediction task as it is flexible enough to in-495

corporate the strategy. Specifically, we construct496

a demonstration set such that each causal variable497

appears as an intervention target. The balanced498

demonstrations ensure that the model can contextu-499

alize the influence of all possible interventions on500

the given system. The results from this experiment501

are shown in Table 6. Compared to the random502

selection strategy, we observe that providing in-503

tervention examples representative of each causal504

variable does not improve prediction performance.505

Also, some open-source models, such as Qwen2.5,506

rely heavily on the first demonstration example.507

Our findings demonstrate that open-source mod-508

els still struggle to make reliable inferences from509

few-shot examples in reasoning tasks.510

Chain-of-Thought Prompting (CoT). A com-511

mon technique to improve the reasoning ability of512

LLMs/LVLMs is chain-of-thought (CoT) prompt-513

ing (Wei et al., 2022; Kojima et al., 2022). Here514

we study how chain-of-thought prompting affects515

predictive accuracy in zero-shot inference. We con-516

struct a CoT prompt for each task as follows: We517

prompt the model to obtain a reasoning chain about 518

the objects in the images(s). Then, we augment the 519

input with the generated response and prompt the 520

model again for the final prediction. The results of 521

this study are shown in Table 7. Evidently, zero- 522

shot CoT prompting improves model performance 523

in some cases. For instance, the intervention target 524

prediction accuracy of the Qwen2.5-VL increases 525

significantly on the Causal Circuit dataset. Simi- 526

larly, CoT improves the performance of Gemini on 527

the Pendulum and Flow datasets. However, Gemini 528

underperforms on the Causal Circuit dataset with 529

CoT. Possibly, adding a lengthy reasoning chain to 530

the input takes up the model context length, nega- 531

tively affecting predictive performance. Based on 532

these observations, it is inconclusive whether zero- 533

shot chain-of-thought prompting can truly improve 534

causal reasoning in open-source models. 535

5 Conclusion 536

In this paper, we introduced CausalVLBench, a 537

benchmark for visual causal reasoning with large 538

vision-language models. We formulate three dif- 539

ferent tasks: causal structure inference, interven- 540

tion target prediction, and counterfactual predic- 541

tion, and evaluate the performance of open-source 542

LVLMs under zero-shot and few-shot settings. Fur- 543

thermore, we run experiments on settings such as 544

removing causal relationships from the prompt, 545

chain-of-thought prompting, and balanced demon- 546

stration selection. Our results indicate that larger 547

models with more parameters are necessary for 548

effective visual causal reasoning from in-context 549

learning, and smaller open-source models exhibit 550

poor performance and still need further optimiza- 551

tion for few-shot learning. 552
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Limitations553

In this work, we construct a comprehensive bench-554

mark to evaluate visual causal reasoning capabil-555

ities of large vision-language models. To ensure556

reproducibility and transparency, we run our eval-557

uations primarily on open-weight LVLMs and in-558

clude one closed-source model. Due to resource559

constraints, we do not evaluate on closed models560

such as GPT and Claude and encourage future eval-561

uations with these proprietary models.562

Our benchmark is largely designed to gauge the563

causal reasoning abilities of existing LVLMs on564

common datasets from causal representation learn-565

ing. We focus on systems with four-variable causal566

graphs for the purposes of our work. We observe567

that LVLMs struggle on even simple causal graphs568

and leave evaluations on more complex causal sys-569

tems, including temporal systems, for future work.570

Broader Impacts571

Due to the increasing use of large foundation mod-572

els in real-world applications, it is paramount to573

study their reasoning capabilities to develop more574

robust and reliable AI systems. In this work, we575

focus on benchmarking large vision-language mod-576

els on formal causal reasoning. The datasets used577

in this paper are publicly available. Our use of pub-578

licly available LVLMs and the proprietary Gemini-579

2.0-Flash adhere to the associated licenses. We580

hope that our benchmark inspires the development581

of new training paradigms with an emphasis on582

causal reasoning.583
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Matej Zečević, Moritz Willig, Devendra Singh Dhami,777
and Kristian Kersting. 2023. Causal parrots: Large778
language models may talk causality but are not causal.779
Transactions on Machine Learning Research.780

Cheng Zhang, Stefan Bauer, Paul Bennett, Jiangfeng781
Gao, Wenbo Gong, Agrin Hilmkil, Joel Jennings,782
Chao Ma, Tom Minka, Nick Pawlowski, and James783
Vaughan. 2023a. Understanding causality with784
large language models: Feasibility and opportuni-785
ties. Preprint, arXiv:2304.05524.786

Jiaqi Zhang, Chandler Squires, Kristjan Greenewald,787
Akash Srivastava, Karthikeyan Shanmugam, and788
Caroline Uhler. 2023b. Identifiability guarantees789
for causal disentanglement from soft interventions.790
Preprint, arXiv:2307.06250.791

Yongshuo Zong, Ondrej Bohdal, and Timothy792
Hospedales. 2025. VL-ICL bench: The devil in793
the details of multimodal in-context learning. In794
The Thirteenth International Conference on Learn-795
ing Representations.796

Appendices797

A Related Work798

Causality and LLMs. Recent studies suggest799

that LLMs can answer L1 (observational) ques-800

tions to a great degree, but struggle to answer801

L2 (interventional) and L3 (counterfactual) ques-802

tions (Zhang et al., 2023a). Zečević et al. (2023)803

studied the causal reasoning capabilities of large804

language models and conjectured that they are805

“causal parrots” that may only be learning causal806

facts from the training data and are not causally807

reasoning. The authors proposed the notion of cor-808

relation of causal facts as exploiting a loophole in809

Pearl’s Causal Hierarchy Theorem (CHT) to seem-810

ingly talk causality. That is, LLMs may simply be811

learning correlations about causal facts embedded812

in the training distribution.813

LLMs have been evaluated on a range of dif-814

ferent causal inference tasks. Jin et al. (2023)815

developed the CLADDER dataset to test the ability816

of LLMs for the causal effect estimation task and817

concluded that LLMs perform quite poorly on such818

tasks. Several works explore the usability of LLMs 819

in causal structure learning tasks by utilizing them 820

as domain experts (Vashishtha et al., 2023; Feder 821

et al., 2023; Romanou et al., 2023; Cohrs et al., 822

2023; Jiralerspong et al., 2024). Another direction 823

probed the interpretability aspect of LLMs from 824

the latent space (Rohekar et al., 2023; Park et al., 825

2023; Rajendran et al., 2024). 826

Benchmark Evaluation. Despite the wide body 827

of work on assessing causal reasoning in large lan- 828

guage models, the causal evaluation in the vision- 829

language domain has been underexplored. Chen 830

et al. (2024) evaluate vision-language models on 831

causal inference tasks. However, their approach 832

focuses on drawing causality from scene graphs 833

representing human-object interactions. In con- 834

trast, we focus on causal relationships that have a 835

physical and deterministic interpretation (i.e., phys- 836

ical mechanisms). Liu et al. (2025) proposed a 837

benchmark 3D dataset for causal reasoning tasks 838

and evaluate a few tasks using closed-source large 839

vision-language models. Our proposed benchmark 840

focuses more on rigorously evaluating LVLMs on 841

novel tasks with existing datasets from causal rep- 842

resentation learning to point out fundamental flaws 843

in the visual causal reasoning of existing models. 844

B Implementation Details 845

B.1 Model Configurations 846

We briefly discuss each model benchmarked in this 847

evaluation below and provide configuration details 848

for all models in Table 8, including the number of 849

image tokens, context length, and architecture. 850

OpenFlamingo-9B. OpenFlamingo- 851

9B (Awadalla et al., 2023) is an auto-regressive 852

open-source vision-language model that allows 853

the mapping of interleaved images and text to 854

textual outputs. The 9B version of the model uses 855

a CLIP ViT/14 as the vision encoder, a Perceiver 856

resampler to extract patch features, and MPT-7B as 857

the language model with a cross-attention module 858

every 4th layer. The pre-training data includes 859

the LAION-2B and MMC4 datasets, along with 860

synthetic image-text sequences generated by 861

ChatGPT. 862

Otter-LLaMA-9B. Otter-LLaMA-9B (Li et al., 863

2023) is an in-context instruction-tuned vision- 864

language model based on OpenFlamingo’s imple- 865

mentation. This framework uses an OpenFlamingo 866
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base model with CLIP ViT/14 as the vision encoder867

and LLaMA-7B as the language model. Otter VLM868

is obtained by fine-tuning the Perceiver resampler869

module, cross-attention layers, and input/output870

embeddings of a pre-trained OpenFlamingo model871

on the MIMIC-IT dataset. The model and its pre-872

trained weights are publicly available.873

Qwen-VL-Chat-9B. Qwen-VL-Chat-9B (Bai874

et al., 2023) is an open-source instruction fine-875

tuned vision-language model that adds multi-modal876

and multilingual capabilities to Qwen-7B language877

model. The model uses CLIP ViT-bigG/14 as the vi-878

sion encoder, and implements a single-layer cross-879

attention in the vision-language adapter. Training880

includes three stages of learning from image-text881

sequences, interleaved and multi-task data, and in-882

struction tuning data, respectively. Pre-training and883

fine-tuning data comprise LAION, COCO, GQA,884

VGQA, GRIT, and Visual Genome, among others.885

IDEFICS2-8B. IDEFICS2-8B (Laurençon et al.,886

2024) is a fully auto-regressive vision-language887

model that incorporates SigLIP-SO400M as the vi-888

sion component, Mistral-7B-v0.1 as the language889

module and a projection+pooling module to obtain890

visual tokens. The model is trained over three kinds891

of data, including image-text pairs from LAION892

COCO, interleaved image-text documents from893

OBELICS, and PDF documents from m OCR-IDL,894

PDFA, and RenderedText. The model and its pre-895

trained weights are publicly available.896

LLaVA-OneVision-7B. LLaVA-OneVision-897

7B (Li et al., 2024) is an open, large multi-modal898

model trained for single-image, multi-image, and899

video tasks. The model architecture consists of900

Qwen-2 and SigLIP with a 2-layer MLP as the901

projector to transform image features into the text902

embedding space. LLaVA-OneVision is trained903

through three phases, namely language-image904

alignment, high-quality knowledge learning,905

and visual instruction tuning on single-image,906

multi-image, and video datasets.907

DeepseekVL2. DeepseekVL2 (Wu et al., 2024)908

is a collection of open-source vision-language mod-909

els which employs a mixture-of-experts model for910

pre-training. Both the 16B and 27B models em-911

ploy SigLIP-SO400M-384 as the vision encoder,912

DeepSeekMoE as the mixture-of-experts language913

model, and a two-layer MLP as the vision-language914

adaptor for projecting visual tokens into the lan-915

guage model’s embedding space. The 27B model916

additionally incorporates an expert bias correction 917

step with a global bias term. The models are pre- 918

trained on interleaved image-text, image caption- 919

ing, optical character recognition, VQA, visual 920

grounding, and grounded conversation datasets. 921

The models are additionally fine-tuned on Super- 922

vised Fine-tuning (SFT) QA pairs encompassing 923

alignment, understanding, reasoning, logic, conver- 924

sation, and code generation. 925

Qwen2.5-VL-Instruct-32B. Qwen2.5-VL- 926

Instruct-32B (Bai et al., 2025) integrates Qwen 927

2.5 LLM as the language model and a redesigned 928

ViT as the vision encoder to allow multi-modal 929

input processing, including images and videos, 930

and multi-step reasoning. The architecture also 931

includes an MLP-based vision-language merger 932

to obtain spatially adjacent patch features. The 933

pre-training data is composed of multi-modal 934

data such as image captions, optical character 935

recognition, visual knowledge, academic questions, 936

image/video localization, document parsing, agent- 937

based interaction, and interleaved image-text pairs, 938

and the post-training alignment is performed with 939

single-turn and multi-turn instruction fine-tuning 940

data. Model weights are publicly available. 941

Gemini-2.0-Flash. Gemini-2.0-Flash (Deep- 942

mind, 2024) is a closed-source vision-language 943

model incorporating cross-modal attention layers 944

to facilitate input processing from multiple 945

modalities. The model is pre-trained on text 946

corpora including books, research articles, and text 947

crawled from the web, image-text pairs, temporal 948

datasets, and multilingual audio datasets. The 949

model is further fine-tuned on domain-specific 950

datasets. Details about model architectures and 951

datasets used are not publicly available. 952

C Data Generation 953

C.1 Dataset Descriptions 954

Pendulum. The Pendulum dataset (Yang et al., 955

2021) is a synthetic dataset that consists of 7K 956

images with resolution 96× 96× 4 generated by 957

4 ground-truth causal variables: u1 = pendulum 958

angle, u2 = light position, u3 = shadow length, 959

and u4 = shadow position, which are continuous 960

values. Each causal variable is determined from 961

the following process with nonlinear functions. 962

u1 ∼ U(−45, 45); θ = u1 ∗
π

200
963
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u2 ∼ U(60, 145); ϕ = u2 ∗
π

200
964

u3 = max(3,
∣∣∣9.5 cos θ

tanϕ
+ 9.5 sin θ

∣∣∣)965

u4 =
−11 + 4.75 cos θ

tanϕ
+ (10 + 4.75 sin θ)966

Water Flow. The Flow dataset (Yang et al., 2021)967

is a synthetic dataset that consists of 8K images968

with resolution 96× 96× 4 generated by 4 ground-969

truth causal variables: u1 = ball radius, u2 = hole970

position, u3 = water level, and u4 = water flow,971

which are continuous values. Each causal variable972

is determined by the following nonlinear physical973

mechanisms.974

u1 =
r

30
, r ∈ {5, 6, . . . , 34}975

u2 =
hole
3

, hole ∈ {6, 7, . . . , 14}976

u3 = u31 +
hraw

10
, hraw ∈ {10, 11, . . . , 39}977

u4 =
√

2 · 0.98 · hw · (u3 − 0.5)978

Causal Circuit. The Causal Circuit dataset is a979

new dataset created by (Brehmer et al., 2022) to980

explore research in causal representation learning.981

The dataset consists of 512 × 512 × 3 resolution982

images generated by 4 ground-truth latent causal983

variables: robot arm position, red light intensity,984

green light intensity, and blue light intensity. The985

images show a robot arm interacting with a system986

of buttons and lights. The data is rendered using an987

open-source physics engine. The original dataset988

consists of pairs of images before and after an in-989

tervention has taken place. The data is generated990

according to the following process:991

vR = 0.2 + 0.6 ∗ clip(u2 + u3 + bR, 0, 1)992

vG = 0.2 + 0.6 ∗ bG993

vB = 0.2 + 0.6 ∗ bB994

u4 ∼ Beta(5vR, 5 ∗ (1− vR))995

u3 ∼ Beta(5vG, 5 ∗ (1− vG))996

u2 ∼ Beta(5vB, 5 ∗ (1− vB))997

u1 ∼ U(0, 1)998

where bR, bG, and bB are the pressed state of but- 999

tons that depends on how far the button is touched 1000

from the center, u1 is the robot arm position, and 1001

u2, u3, and u4 are the intensities of the blue, green, 1002

and red lights, respectively. From this generative 1003

process, we selectively choose only images for 1004

which the causal graph is satisfied (the robot arm’s 1005

position and the downstream effects). For exam- 1006

ple, the robot arm appearing over the green button, 1007

green button lit up, and red button lit up is consis- 1008

tent with the assumption that the robot arm position 1009

causes changes in which buttons light up according 1010

to the causal graph. The filtered dataset consists of 1011

roughly 5K samples. 1012

C.2 Dataset Construction 1013

Utilizing these original datasets as a base, we con- 1014

struct new datasets for our LVLM tasks. Specifi- 1015

cally, for the interleaved tasks, we generate image 1016

pairs of pendulum and flow systems before and 1017

after an intervention. For the intervention target 1018

prediction task, our dataset consists of image pairs 1019

and a question about which variable was the in- 1020

tervention target. For the counterfactual task, we 1021

discretize the continuous numerical values of each 1022

variable into a text description and embed them into 1023

a natural language prompt. We split each dataset 1024

into 40% support set and 60% query set. Of the 1025

query set, we randomly sample 1000 examples for 1026

each run during inference. 1027

D Additional Results 1028

Per-variable results for Counterfactual Predic- 1029

tion. Furthermore, in Table 9, Table 10, and 1030

Table 11, we report the accuracy for samples with 1031

the same intervention target to understand how ac- 1032

curately the model predicts all counterfactual states 1033

for each variable intervened on separately. We also 1034

show results for variables that have at least one de- 1035

scendant and the trend for all models in Fig. 3. We 1036

observe that most models seem to perform poorly 1037

in predicting the accurate counterfactual state, of- 1038

ten obtaining around 50%-60% in accuracy. 1039

E Prompt Templates 1040

We provide the prompt templates for standard 1041

causal structure inference (Fig. 4), interleaved 1042

causal structure inference (Fig. 5), intervention tar- 1043

get prediction (Fig. 6), counterfactual prediction 1044

(Fig. 7), and chain-of-thought reasoning (Fig. 8 and 1045

Fig. 9). 1046
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Table 8: Configurations of models used in CausalVLBench.

Model Connection Module Image Tokens Context Length (Train) Context Length (Test)

OpenFlamingo-9B Perceiver 64 2048 2048
Otter-LLaMA-9B Perceiver 64 2048 2048
Qwen-VL-Chat-9B Cross-Attention 256 2048 8192
IDEFICS2-8B MLP 64 - 32K
LLaVA-OneVision-7B MLP AnyRes - 128K
DeepSeekVL2-16B/27B MLP AnyRes 4096 128K
Qwen2.5-VL-Instruct-32B Cross-Attention 256 2048 8192
Gemini-2.0-Flash Cross-Attention N/A N/A 1M

Table 9: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Pendulum dataset with causal graph.

Model
Pendulum Angle Light Position Shadow Length Shadow Position

ZS FS ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 71.27 70.25 70.77 70.87 65.33 66.73 67.99 69.05 100.00 99.49 99.52 99.87 100.00 95.49 97.03 94.92
Qwen-VL-Chat-9B 65.96 68.12 68.08 62.29 68.17 68.51 66.16 55.77 88.18 96.90 96.90 86.84 98.98 93.75 90.57 90.03
IDEFICS2-8B 44.96 68.06 69.37 68.88 33.96 64.18 66.62 66.36 35.49 97.93 96.93 98.13 41.02 88.16 88.51 87.84
Deepseek-VL2-Small 67.84 13.08 0.00 0.00 59.27 21.38 0.00 0.00 99.49 27.25 0.00 0.00 84.89 19.45 0.00 0.00
OpenFlamingo-9B 0.00 70.98 70.25 68.96 7.36 64.24 65.76 67.09 70.58 99.87 97.83 99.31 9.64 96.00 93.43 91.36
Otter-9B 36.49 7.92 0.07 0.07 25.79 15.38 1.41 0.03 7.23 6.14 0.00 0.07 20.25 24.14 5.27 1.30
Deepseek-VL2-27B 71.54 71.84 72.04 0.99 64.72 64.91 65.00 1.70 86.00 100.00 100.00 2.18 21.37 99.90 100.00 3.42
Qwen2.5-VL-Instruct-32B 64.74 70.31 69.88 73.82 65.24 71.64 73.14 76.94 100.00 100.00 99.97 100.00 98.63 99.73 100.00 100.00

Gemini-2.0-Flash 69.66 68.87 69.76 71.44 72.92 72.55 72.17 76.13 100.00 100.00 100.00 100.00 92.53 100.00 99.90 100.00

Table 10: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Water Flow dataset with causal graph.

Model
Ball Size Hole Position Water Level

ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 79.52 81.03 80.17 80.44 85.92 85.32 85.60 87.54 85.01 85.77 86.89 87.30
Qwen-VL-Chat-9B 80.19 80.34 79.89 78.74 82.55 81.77 82.50 81.06 87.44 84.93 85.51 84.04
IDEFICS2-8B 65.38 79.40 79.25 79.46 72.68 84.26 84.92 85.65 75.00 85.08 87.33 87.51
Deepseek-VL2-Small-2.8B 44.88 71.03 7.78 0.00 34.71 60.58 0.20 0.03 74.90 82.20 0.23 0.00
OpenFlamingo-9B 20.44 77.60 76.75 80.66 46.84 82.09 82.82 85.34 31.74 82.48 83.66 86.51
Otter-9B 39.05 41.50 38.33 4.88 17.64 17.23 12.58 2.15 45.36 37.07 24.88 11.30
Deepseek-VL2-27B 81.63 79.85 79.85 0.00 84.16 85.56 86.49 0.00 83.49 84.05 83.57 0.00
Qwen2.5-VL-Instruct-32B 61.53 69.09 72.83 77.83 87.22 88.49 88.83 90.01 91.63 90.73 91.99 92.57

Gemini-2.0-Flash 67.62 75.00 78.21 81.90 85.71 88.74 90.30 90.92 89.58 90.54 92.15 93.19

Table 11: Per-variable results for Task 3: Counterfactual Prediction task under Zero Shot (ZS) and Few Shot (FS)
settings for Causal Circuit dataset with causal graph.

Model
Robot Arm Green Light Blue Light Red Light

ZS FS ZS FS ZS FS ZS FS

Shots 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8

LLaVA-OneVision-7B 87.22 97.25 99.73 99.46 93.60 93.81 94.51 95.10 92.84 93.48 94.36 95.00 99.55 99.14 99.43 99.34
Qwen-VL-Chat-9B 88.60 98.25 98.17 91.46 68.83 93.00 92.61 95.03 68.54 91.76 90.72 91.16 80.05 97.76 97.91 98.75
IDEFICS2-8B 59.33 94.24 98.64 98.45 51.87 87.76 92.46 94.66 45.75 89.24 92.75 95.10 73.42 96.80 98.74 99.34
Deepseek-VL2-Small 28.18 66.41 28.15 0.00 58.91 70.68 24.69 0.00 58.14 70.58 24.09 0.06 17.60 54.82 16.17 0.05
OpenFlamingo-9B 0.00 89.85 84.51 89.60 0.00 90.72 95.13 87.84 14.26 84.38 91.96 89.58 0.00 88.03 94.90 89.62
Otter-9B 40.06 55.36 55.66 30.49 57.09 60.33 26.91 0.65 53.80 51.01 19.40 0.00 26.55 48.84 56.71 9.12
Deepseek-VL2-27B 94.54 81.32 81.90 1.44 88.96 92.84 93.11 3.80 92.61 93.73 94.24 1.98 99.78 98.38 99.93 0.74
Qwen2.5-VL-Instruct-32B 93.53 91.43 89.89 90.23 99.48 99.42 99.36 99.30 99.31 99.22 98.96 98.17 100.00 100.00 100.00 100.00

Gemini-2.0-Flash 91.09 91.38 92.24 92.53 98.41 97.79 97.00 97.08 93.99 96.22 96.05 96.56 99.78 99.71 99.48 99.56

14



0 2 4 8
Number of shots

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

Pendulum Angle Intervention

0 2 4 8
Number of shots

0
10
20
30
40
50

Ac
cu

ra
cy

 (%
)

Light Position Intervention
Counterfactual Prediction on Pendulum Dataset

(a) Average Counterfactual Prediction accuracy for pendulum interventions with at least one descendant.
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(b) Average Counterfactual Prediction accuracy for water flow interventions with at least one descendant.
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(c) Average Counterfactual Prediction accuracy for causal circuit interventions with at least one descendant.

Figure 3: Accuracy vs. Shot Count in Counterfactual Inference Tasks across Pendulum, Water Flow, and Causal
Circuit datasets for intervened variables with at least one descendant.
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Standard Causal Structure Inference - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene contains
four variables that are causally related: pendulum angle, light position, shadow length, and shadow position. Given an im-
age and a question about two variables, A and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Standard Causal Structure Inference - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with water in a glass and a hole on the right side of the glass from where the water is
flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from the hole. The
scene contains four variables that are causally related: ball size, water level, hole position, and water flow. Given an im-
age and a question about two variables, A and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Standard Causal Structure Inference - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup showing a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables that are causally related: robot arm, green
light, blue light, and red light. Given an image and a question about two variables, A and B, your task is to determine whether
A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Figure 4: Prompt templates for Task 1A: Standard Causal Structure Inference task

Interleaved Causal Structure Inference - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene
contains four variables that are causally related: pendulum angle, light position, shadow length, and shadow position. The
second image shows the same setup after one of these variables is initially changed and other variables may have changed as
a downstream effect. Given a pair of images and a question about two variables, A and B, your task is to determine whether
A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Interleaved Causal Structure Inference - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with water in a glass, a hole on the right side of the glass from where the
water is flowing, and a red ball inside the glass. The scene contains four variables that are causally related: ball size, hole
position, water level, and water flow. The second image shows the same setup after one of these variables is initially changed
and other variables may have changed as a downstream effect. Given a pair of images and a question about two variables, A
and B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Interleaved Causal Structure Inference - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You are given two
images of a robotic scene. The first image shows a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables that are causally related: robot arm, green
light, blue light, and red light. The second image shows the same setup after one of these variables is initially changed and
other variables may have changed as a downstream effect. Given a pair of images and a question about two variables, A and
B, your task is to determine whether A causes B. Answer simply with Yes or No.

Query: <image> Does [variable A] directly cause [variable B] to change?

Figure 5: Prompt templates for Task 1B: Interleaved Causal Structure Inference task
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Intervention Target Prediction - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images: the first image shows a physical setup with a light source, a pendulum, and the pendulum’s shadow. The second
image shows the same setup after a change has occurred. The scene contains four variables: pendulum angle, light position,
shadow length, and shadow position. These variables are causally related as follows:

(1) If the pendulum angle changes, it causes both the shadow length and shadow position to change. It does
NOT cause the light position to change.
(2) If the light position changes, it causes both the shadow length and shadow position to change. It does NOT cause the
pendulum angle to change.
(3) A change in shadow length does NOT cause any other variable to change.
(4) A change in shadow position does NOT cause any other variable to change.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: pendulum angle, light position, shadow length, or shadow position.

Query: <image><image> From the first to the second image, which variable changes first?

Intervention Target Prediction - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
two images. The first image shows a physical setup with water in a glass and a hole on the right side of the glass from where
the water is flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from
the hole. The second image shows the same setup after a change has occurred. The scene contains four variables: ball size,
water level, hole position, and water flow. These variables are causally related as follows:

(1) If the ball size changes, it causes the water level to change and affects water flow. It does NOT cause hole
position to change.
(2) If the water level changes, it causes the water flow to change. It does NOT cause ball size and hole position to change.
(3) If the hole position changes, it causes water flow to change. It does NOT cause ball size or water level to change.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: ball size, water level, hole position.

Query: <image><image> From the first to the second image, which variable changes first?

Intervention Target Prediction - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You are given two
images of a robotic scene: a before image and an after image. Each image shows a robotic arm positioned over a circular arc
with three buttons (red, green, blue) and the resulting lighting in the scene. The scene contains four variables: robot arm,
green light, blue light, and red light. These variables are causally related as follows:

(1) Changing the arm position causes one button to be pressed, which directly affects the corresponding light
(red, green, or blue).
(2) Turning on the green or blue light can indirectly activate the Red light.
(3) Changing any light does not affect the arm position.

Your task is to compare the two images, identify the first variable that changed, and use the causal rules above to
determine which variable is the likely root cause of any other changes. Respond with only one of the following variable
names, exactly as written: robot arm, green light, blue light, red light.

Query: <image><image> From the first to the second image, which variable changes first?

Figure 6: Prompt templates for Task 2: Intervention Target Prediction task
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Counterfactual Prediction - Pendulum
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with a light source, a pendulum, and the pendulum’s shadow. The scene contains four
variables: pendulum angle, light position, shadow length, and shadow position. The pendulum angle can be one of the
following values: left, center, right. The light position can be one of the following values: right, center, left. The shadow
length can be one of the following values: short, medium, long. The shadow position can be one of the following values: left,
center, right. These variables are causally related as follows:

(1) If the pendulum angle changes, it causes both the shadow length and shadow position to change. It does
NOT cause the light position to change.
(2) If the light position changes, it causes both the shadow length and shadow position to change. It does NOT cause the
pendulum angle to change.
(3) A change in shadow length does NOT cause any other variable to change.
(4) A change in shadow position does NOT cause any other variable to change.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.

Query: <image> <image> In the given image, the values of the variables are given as pendulum angle: {}, light
position: {}, shadow length: {}, shadow position: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Counterfactual Prediction - Water Flow
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup with water in a glass and a hole on the right side of the glass from where the water is
flowing. There is also a red ball inside the glass that affects the water level in the glass and the water flow from the hole. The
scene contains four variables: ball size, water level, hole position, and water flow. The ball size can be one of the following
values: small, medium, large. The hole position can be one of the following values: bottom, middle, top. The water level can
be one of the following values: low, medium, high. The water flow can be one of the following values: left, middle, right. For
water level, left refers to close to the glass and right refers to far from the glass. These variables are causally related as follows:

(1) If the ball size changes, it causes the water level to change and affects water flow. It does NOT cause hole
position to change.
(2) If the water level changes, it causes the water flow to change. It does NOT cause ball size and hole position to change.
(3) If the hole position changes, it causes water flow to change. It does NOT cause ball size or water level to change.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.

Query: <image> In the given image, the values of the variables are given as ball size: {}, hole position: {}, wa-
ter level: {}, water flow: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Counterfactual Prediction - Causal Circuit
Task Instruction: You are a highly capable AI system specialized in causal reasoning from visual data. You will be shown
an image containing a physical setup showing a robotic arm positioned over a circular arc with three buttons (red, green,
blue) and the resulting lighting in the scene. The scene contains four variables: robot arm, green light, blue light, and red
light. The robot arm can be one of the following values: touching red light, touching blue light, touching green light, or not
touching any light. The red light can be one of the following values: on or off. The green light can be one of the following
values: on or off. The blue light can be one of the following values: on or off. These variables are causally related as follows:

(1) Changing the arm position causes one button to be pressed, which directly affects the corresponding light
(red, green, or blue).
(2) Turning on the green or blue light can indirectly activate the Red light.
(3) Changing any light does not affect the arm position.

Given an image and a variable that will change, your task is to determine what the final values of all four vari-
ables would be had the variable been changed to the specified value.

Query: <image> In the given image, the values of the variables are given as red light: {}, green light: {}, blue
light: {}, robot arm: {}

If the [intervened variable] had been changed from x to y, what would be the final values of all variables? An-
swer concisely with the specific values that each variable will take.

Figure 7: Prompt templates for Task 3: Counterfactual Prediction task
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Standard Causal Structure Inference CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the image. Then, determine the
relationships between the variables. Give reasoning rationales.

Interleaved Causal Structure Inference CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the first image. Second,
analyze the location of all objects in the second image. Then, determine which variables have
been changed according to the rules provided. Finally, determine the relationships between the
variables. Give reasoning rationales.

Intervention Prediction CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the first image. Second,
analyze the location of all objects in the second image. Then, determine which variables have been
changed according to the rules provided. Give reasoning rationales.

Counterfactual Prediction CoT Prompt
Let’s think step by step. First, analyze the location of all objects in the image. Then, determine
how each variable would change based on the desired manipulation according to the rules provided.
Give reasoning rationales.

Figure 8: Chain-of-Thought Prompt templates

User: [Task Description][CoT Prompt]
LVLM: [Reasoning Chain]
User: [Task Description][CoT Prompt][Reasoning Chain][Query]
LVLM: [Prediction]

Figure 9: Chain-of-Thought prompting strategy
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