Under review as a conference paper at ICLR 2025

VIDEO2POLICY: SCALING UP MANIPULATION TASKS
IN SIMULATION THROUGH INTERNET VIDEOS

Anonymous authors
Paper under double-blind review

ABSTRACT

Simulation offers a promising approach for cheaply scaling training data for gen-
eralist policies. To scalably generate data from diverse and realistic tasks, exist-
ing algorithms either rely on large language models (LLMs) that may hallucinate
tasks not interesting for robotics; or digital twins, which require careful real-to-
sim alignment and are hard to scale. To address these challenges, we introduce
Video2Policy, a novel framework that leverages large amounts of internet RGB
videos to reconstruct tasks based on everyday human behavior. Our approach
comprises two phases: (1) task generation through object mesh reconstruction and
6D position tracking; and (2) reinforcement learning utilizing LL M-generated re-
ward functions and iterative in-context reward reflection for the task. We demon-
strate the efficacy of Video2Policy by reconstructing over 100 videos from the
Something-Something-v2 (SSv2) dataset, which depicts diverse and complex hu-
man behaviors on 9 different tasks. Our method can successfully train RL policies
on such tasks, including complex and challenging tasks such as throwing. Fur-
thermore, we show that a generalist policy trained on the collected sim data gen-
eralizes effectively to new tasks and outperforms prior approaches. Finally, we
show the performance of our policies improves by simply including more internet
videos. We believe that the proposed Video2Policy framework is a step towards
generalist policies that can execute practical robotic tasks based on everyday hu-
man behavior.

1 INTRODUCTION

Training generalist policies requires collecting large quantities of diverse robotic expert data. How-
ever, the approach of collecting data through teleoperation is constrained by high operation costs,
while collecting data from autonomous policies can be unsafe, or result in low-quality data. Simu-
lation offers an appealing alternative to real-world data that does not suffer from these challenges,
and can be used to train general and robust policies (Hwangbo et al., |2019; |Andrychowicz et al.,
2020). Recent work has explored automatically generating diverse and relevant tasks in simulation
as a way to create a scalable pipeline for generating robotics data (Deitke et al., [2022; Wang et al.,
2023bic; Makatura et al., [2023)).

However, existing methods primarily rely on text-only task specification using Large Language
Models (LLMs), which do not have grounded robotics knowledge. They often produce tasks that
are not diverse, have uninteresting behavior, or use uninteresting object assets and are thus less
useful for training generalist policies. To better capture the real-world distributions of task behaviors
and objects, we propose leveraging RGB videos from the internet to create corresponding tasks.
Unlike Real2Sim approaches that construct digital twins (Hsu et al.l 2023} [Torne et al., 2024) for
a single scene, we want to train a generalist policy for multiple scenes and therefore we do not
require perfect reconstructions. Instead, we leverage large amounts of internet videos to capture
task-relevant information such as object assets and scene layouts. We then generate simulated tasks
using a Vision-Language Model (VLM) that can take the video, video captions, object meshes, sizes,
and 6D poses, and produce corresponding task codes, which can be executed to generate scenes.

Beyond task proposals, we require an efficient and automatic way to solve tasks. Naively applying

reinforcement or imitation learning is challenging as it requires manual human effort for each task
to create demonstrations or reward functions. Inspired by the recent advancements of LLMs in

Under review as a conference paper at ICLR 2025

]

| -~ Fine-tune reward funcions "4 ‘ i ;
Obiject / Object SDbJs;‘s ’ . Scaing |

! H
Grounding Reconstruction o o \ 4 Expert |
g Y i Reinforcement Trajectory !

I /' EE Learning
)
l -
‘ vim™ :
~~__ Feedback from logs -] —]
H N lterations "~ -------"""" U., |
‘ Observations, |
/ Actions, :
L
ry &
b
4 v

»
k [4 ‘ Slide ...

k 1 z \ : P oinsert .. Throw ... Side ... ao
Diverse behaviors k & Scene Generation ™ Policy Learning g ; Imsage—st?q
: i eneralist |

Policy!

Video2Polic
ey Yy

Figure 1: The Video2Policy framework can leverage internet videos to generate simulation tasks and
learn policies for them automatically, which can be considered a data engine for generalist policies.

code generation for various tasks (Achiam et al.}, 2023} [Roziere et al,[2023)), some researchers have
proposed automating policy learning or deployment through using an LLM to produce policy code
directly 2023b; [Liang et al.,[2023; [Wang et al.l 2023b), or to produce reward function
code (Ma et al., 2023} Wang et al [2023c). Gensim (Wang et al., 2023b) leverages this idea for

unsupervised task generation. However, predicting goals restricts it to simple tasks as it does not
account for dynamic tasks or tasks that involve complex object interactions.

In contrast, reinforcement learning (RL) is effective at solving complex tasks (Schulman et al.}[2017
Ye et al, 2021} [Hafner et al., 2023} Wang et al.| 2024} [Springenberg et al.| 2024). RoboGen (Wang
et al., leverages LLM-generated reward functions for RL. However, it is hard to scale as it
requires manual success functions. However, since we leverage both text prompts and explicit visual
prior knowledge from human videos, we can leverage that information for better success functions.

We propose Video2Policy, a framework to leverage internet RGB videos in an automated pipeline
to create simulated data to train generalist police, as shown in Fig. [I] It produces code for task
generation in simulation using VLMs and learns policies for those tasks via reinforcement learning
with reward reflection. This autonomous approach allow us to easily scale up data generation by
using internet videos to produce a large amount of visually grounded tasks. Our framework leverages
both behavioral and object diversity from the videos, enabling generalization both at the object level
as well as task level. To further improve generalization instead of simply cloning the trajectory from
the video, we apply position randomization to the initial states. Specifically, our framework consists
of two phases: (1) We reconstruct the object meshes involved in the tasks from videos as task assets,
and extract the 6D pose of each object (2) We leverage the VLM to write the task code based on
visual information as well as text prompts, and iteratively generate the reward function using reward
reflection based on training logs and evaluation results. Ultimately, we obtain the corresponding
refined task code along with the learned policy model that demonstrates behavior similar to the
input video, enabling it to generate high-quality data relevant to daily human tasks.

For experimental evaluation, we focus on table-top manipulation tasks with a single robot arm in
IsaacGym simulator(Makoviychuk et all [2021). To validate the effectiveness of our approach, we
conduct experiments on the Something-Something V2 (SSv2) dataset (Goyal et al.},2017), a human
video dataset with diverse scenes and language instructions of human daily behaviors. We recon-
struct over 100 videos on 9 distinct tasks from the dataset in total, including involving multiple
objects. To further evaluate more complex behaviors and object relationships, we also utilize three
self-recorded videos. Significantly, the results indicate the policies learned by our method signifi-
cantly outperform those learned from previous LLM-driven methods. We achieve 82% success rates
for the 9 tasks on average. To demonstrate generalization capabilities, we train a general policy by
imitation learning from the simulation data collected from the learned policies from 50 videos of
the same behavior. We find that it can achieve 75% success rates on the tasks from the 10 unseen
videos with the same behavior. More importantly, as the number of training tasks increases, the
performance of the general policy improves, which shows the scalability of our framework.

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Real2Sim Scene Generation for Robotics Generating realistic and diverse scenes for robotics has
recently emerged as a significant challenge aimed at addressing data issues through simulation.
Some researchers have developed Real2Sim pipelines for image-to-scene or video-to-scene gener-
ation. Certain studies (Hsu et al., [2023; [Torne et al.| [2024) focus on constructing digital twins that
facilitate the transition from the real world to simulation; however, these approaches often depend on
specific real-world scans or extensive human assistance. [Dai et al| introduces the concept of digital
cousins, while [Chen et al.| (2024) employs inverse graphics to enhance data diversity. Neverthe-
less, their approach to diversity primarily involves replacing various assets. The lack of task-level
diversity hinders the ability to capture the distribution of real-world tasks, and the constraints of
specific data formats complicate the scalability of robotics data. Although Real2Code (Mandi et al.},
2024]) aims to build simulation scenes from RGB images, it focuses on articulation parts and requires
in-domain code data for fine-tuning.

Scaling up Simulation Tasks Previously, researchers aimed to build simulation benchmarks to fa-
cilitate scalable skill learning and standardized workflows (Li et al., 2023;|Gu et al.,|2023}; [Srivastava
et al.l 2022; Nasiriany et al., [2024). Most of these benchmarks were constructed manually, making
them difficult to scale. Recently, some researchers have focused on text-to-scene generation, em-
phasizing the creation of diverse scenes. Works such as|Deitke et al.| (2022)); Makatura et al.| (2023));
Liang et al.; |Chen et al.|(2023)) utilize procedural asset generation or domain randomization, while
Jun & Nichol| (2023); Yu et al.| (2023a); [Poole et al.| (2022) engage in text-to-3D asset generation.
Although these approaches can achieve asset-level or scene-level diversity in robotic tasks, they fall
short in delivering task-level diversity. Gensim (Wang et al., |2023b) attempts to generate rich sim-
ulation environments and expert demonstrations using large language models (LLMs) to achieve
task-level diversity. However, text-based task generation tends to be arbitrary regarding object se-
lection and their relationships, limiting its ability to represent the true distribution of tasks in the real
world. In contrast, our work leverages real-world RGB videos to create corresponding simulation
tasks that better reflect the real-world distributions of tasks and objects, facilitating easier scalability
due to the abundance and accessibility of internet video data.

Policy Learning via LLLMs To enable automatic policy learning with high quality, researchers are
increasingly turning to large language models (LLMs) for assistance. Some studies (Liang et al.,
2023 [Huang et al.,|2023a} |Lin et al., 2023} Wang et al., [2023a) propose generating structured code
outputs for decision-making problems, most of which rely on predefined primitives. Other works
(Yu et al.| 2023b; Ma et al., 2023} Wang et al., [2023c)) generate reward functions using LLMs for
reinforcement learning. Nevertheless, Eureka (Ma et al.,[2023) requires predefined success functions
for iterative updates of reward functions, while RoboGen (Wang et al., 2023c) selects the highest
reward as the initial state for the next sub-task, which introduces noise due to the variability in
the generated reward functions. In contrast, our work generates success functions by leveraging
visual prior knowledge from the provided videos and updates the reward functions iteratively using
a Chain-of-Thought (CoT) approach (Wei et al.| 2022).

3 BACKGROUND

To present our work systematically, we formulate it as a two-level hierarchical solution of Markov
Decision Processes (MDPs), corresponding to the two-phase pipeline. In contrast to some hierarchi-
cal methods targeting action levels (McGovern et al.| |1998; Hauskrecht et al., |2013)), we focus on
the level of reward functions.

Low-level MDP of Controlling Problem Specifically, the scene reconstruction phase is to construct
the MDP G = (S, A, T, R0\1> from videos, where S € R represents the states of the environment,
A is the action space of the agent, and T is the transition probability function. Rg; is the 0-1
reward function that distinguish whether the trajectory is successful. Rg|; can be a scalar evaluation
function. To solve this MDP, we will train a policy 7 through reinforcement learning in the Isaac
Gym simulation. To achieve high performance, we leverage the LLM to sample various reward
functions to learn policies in a high-level manner, based on the evaluation results from Rqj; and
some CoT (Wei et al., [2022)) instructions.

Under review as a conference paper at ICLR 2025

High-level MDP of Reward Designs The aim of reward design is to create a shaped reward function
that simplifies the optimization of a challenging given reward function, such as the sparse 0-1 reward
function Rqj;. Following the definition of Reward Design Problem (RDP) from previous works

(Singh et al., 2009; Ma et al.| 2023), we consider a high-level MDP G = (S, A, T, F). Here, A is
the space of reward functions. Each time we choose an action R € Ain the MDP g we will train a
policy 7 by RL for the low-level MDP G = (S, A, T, R+ Ro|1)- The horizon of the MDP G is the

iteration number in the second phase. S includes the training and evaluation information during RL

and the policy model . T is the state transition function, and F is the reward function that produces
a scalar evaluation of any policy 7. Specifically, F" is equal to Rg|;. Thus, the high-level MDP’s

goal is to find a reward function R € A to maximize the success rates of the low-level policies.

4 GENERATING SIMULATED TASKS AND POLICIES FROM HUMAN VIDEOS

The proposed framework, Video2Policy, steps further for task proposal and policy learning through
internet videos, to provide diverse and realistic tasks as well as the corresponding learned policies.
It consists of two phases: task scene generation and policy learning. In Sec. we introduce the
pipeline for reconstructing scenes from RGB videos. Subsequently, in Sec. [4.2] we demonstrate
how to generate the code for the task and learn policies to solve it. Finally, we provide an example
of training a generalist policy within our framework in Sec. .3

4.1 SCENE RECONSTRUCTION FROM VIDEOS

Since the goal of this work is to learn policies from videos rather than automatically retarget tra-
jectories, our scene reconstruction phase focuses on reconstructing the manipulated objects along
with their relative relationships. To master the skill demonstrated in the video, we allow for random
positions and orientations of each object in the initial states. Consequently, the pipeline for the scene
reconstruction is illustrated in Fig. 2} (1) detect and segment the manipulated objects in the video
using text captions; (2) reconstruct the object meshes from the video and estimate the actual sizes
of the meshes; (3) perform 6D position tracking for each object in the video. Afterward, we obtain
a JSON file that includes the video and object information, from which the task code is generated.

Object Grounding We first use Grounding DINO (Liu et al., 2023)) to detect the manipulated ob-
jects in the first frame of the video based on their names. Since the SSv2 dataset (Goyal et al.|
2017) provides both video captions and object labels, we use these as text prompts for detection.
For self-collected videos of more challenging behaviors, we provide the video captions and object
names manually. Afterward, we perform video segmentation using the SAM-2 model (Ravi et al.,
2024). Specifically, we segment the objects in the first frame using bounding boxes obtained dur-
ing detection and select five positive pixel points in each object mask for video segmentation. This
process yields segmented videos that contain the masks of the manipulated objects.

Object Reconstruction With the segmentation masks of each object for each frame, we per-
form mesh reconstruction based on these images. Since most internet videos are recorded from
a single viewpoint, we leverage the InstantMesh model (Xu et al., [2024) to reconstruct the 3D
meshes, which supports mesh generation from a single image. Typically, we choose the first
frame to reconstruct the meshes; however, for those with objects that are significantly occluded
in the first frame, we utilize the last frame instead. Due to the training mechanism in the cur-
rent mesh generation methods, the meshes are commonly normalized during reconstruction, lead-
ing to mismatched sizes compared to the corresponding objects in the video. To establish a
more realistic size relationship between objects, we propose a simple and efficient size estima-
tion method. We predict the camera intrinsic matrix K and the depth d; ; of the image I; ; using
UniDepth (Piccinelli et al., 2024), where ¢, j are the pixel coordinates. Given the masked region
M of the object, we can calculate the maximum distance for the masked region in reality Dipage:
Dimage = max(ihjl)»(imﬁ)EJ\l ||p(lla.71) - p(i23j2> s (Z,j) = Kil : [1'7 Y, 1]T : di,j' Here p
is the 3D position of each masked pixel in the camera coordinate system. We can then calculate the
maximum distance of vertices in the mesh object, denoted as Dy,sn. The scale ratio p for the mesh
object is defined as p = Dimage/Dmesh- The absolute sizes may exhibit some noise due to errors
in depth estimation, intrinsic estimation, and object occlusion. However, the relative size of each
object is mostly accurate, as Dimage and Djpage are calculated within the same camera coordinate

Under review as a conference paper at ICLR 2025

1 '
1 , 1
1 X = 2 1
H = = S . .
1 . | i = .
2F \ y \ ;
!) -) - > !
iy @ y L el | !
1 1 @
! Detection (Grounding DINO) Video segmentation (SAM-2) Object masks !
1 1
1 '
' 1
1 1
1 1
1 '
' — 1
Ve . N
1 4 %/ 1
1 '
1 > | \ >4 |
i y L z 1
1 1
i 1 |
' H =
! Images Masked images Meshes of each object (InsiantMesh) | ! Vs |
1 \ Object Reconstruction J i
' 1
1 1
, l ' Task code
generation
1 e ———— 1
1 , = T B |
y =
1 J 1
| . 3 X - H
| o0+ 1 i
1 (4 o L= 2 1
! ~;] P ‘/, I/wask JSON File
' L 5 ! task description,
. Camera Intrinsic Prediction . video infos
H & Depth Prediction (UniDepth) Object Meshes Object 6D Positions (FoundationPose) | | object infos.
1 '
! Object 6D Pos Tracking i
1 1
1 1
1 '
! '

Scene Generation

Figure 2: The scene generation phase of the proposed Video2Policy framework. We generate the
tasks from internet videos into the simulation, which we attempt to solve by reinforcement learning.

system. In practice, we can apply domain randomization to change the absolute sizes of each object
while maintaining the same relative size among them.

6D Position Tracking of Objects After reconstructing the objects, we predict the 6D position of
each object throughout the video, which will be fed into GPT-4o for code generation. We utilize
FoundationPose (Wen et al.,[2024) in model-based setups to estimate the position and orientation of
the objects. This model takes the object mesh, predicted camera intrinsics, and the depth information
from each frame as inputs. Finally, we automatically generate a URDF file for each object based on
the mesh file and the calculated scaled size. Ablations for the tracking information are in App. [A.3]

Compared to directly feeding the videos into the task generation process, we explicitly leverage
visual prior knowledge from the videos and provide comprehensive information about the task,
including the 3D meshes, object sizes, and 6D positions of the objects. We consolidate all the
information into a JSON file that describes the task scene. Consequently, the generated tasks can
better align with the distributions of real-world scenes and behaviors.

4.2 TASK CODE GENERATION AND POLICY LEARNING

After extracting the visual information from the video into a task JSON file, we can build the task
scene in simulation and learn policies based on GPT-40. This process occurs in two stages. First,
we generate the complete task code, which can be executed directly in the Isaac Gym (Makoviy-
chuk et al.l |2021) environment. Second, inspired by recent work on LLM-driven reward function
generation, we iteratively fine-tune the generated reward function using in-context reward reflection
(Shinn et al., 2023} Ma et al., [2023} 'Wang et al., [2023a)). In contrast to the previous work Eureka
(Ma et al., |2023)), which is the most similar to ours, we generate the task codes, including the reward
functions, from scratch, rather than relying on pre-existing task codes and starting reward reflec-
tion from manually defined success functions. We formulate this learning process as a two-level
hierarchical solution of MDP, defined in Sec. 3

Task Code Generation Inspired by previous work (Ma et al., [2023; Wang et al., [2023bjic|), we sys-
tematically introduce the pipeline for general task code generation, which helps to infer codes by
prompting in a well-organized way. Notably, the task code consists of six parts: scene informa-
tion, reset function, success function, observation function, observation space function, and reward
function. (1) The scene information refers to the task scene JSON file created from the videos. It
contains the task title, video file path, video description, and object information, including sizes,
URDF paths, and tracked 6D position lists. (2) The reset function is responsible for positioning the
objects according to specific spatial relationships in the beginning. For instance, in the task “uncov-
ering A from B,” both objects A and B are randomly placed on the table by the parent reset function,
but object A will be positioned above object B as specified by the generated child reset function.
(3) The success function determines the success state. Notably, both the reset and success functions

Under review as a conference paper at ICLR 2025

are generated by GPT-40 based on the task description, the provided 6D position list, and Chain-
of-Thoughts examples (Wei et al., |2022). (4) Furthermore, since we use reinforcement learning to
master the skill in simulation, we have access to the states of the objects, and the policy is based on
state observations. Thus, in addition to the object states, we also query GPT-40 to determine whether
additional observations are necessary. Interestingly, we find that it can include observations such as
the distance between the object and the gripper or the normalized velocity toward the target object.
(5) Simultaneously, it calculates the correct observation shape for building the neural networks. (6)
Regarding the reward function, we follow the instructions from|Ma et al.[(2023)) with CoT examples.
We write a template for task code generation, allowing us to query the VLM just once to generate the
executable code encompassing all six parts. Most significantly, we generate eight example codes and
select one by re-checking the correctness, reasonability and efficiency from GPT-40, which is the
base code candidate for the subsequent in-context reward reflection stage. The generated examples
are demonstrated in App. [A.T]and the robustness evaluation results are in App.[A.2]

Reinforcement Learning and Reward Function Iteration As mentioned in[3] we propose to op-
timize the policy through a two-level hierarchical solution of MDP. Given the generated task code,
we train policies through reinforcement learning under the reward function R and success function
Ro|1- Notably, we assign a high trade-off to the success rewards, formulating the training reward

function as R —+ ARoj1, A = 100. Moreover, following the approach in Eureka (Ma et al., |2023),
we apply the in-context reward reflection to design the reward functions iteratively using GPT-4o0.
Each time, we sample N = 8 different reward functions for training policies and collect the train-
ing and evaluation logs. We then select the best function from the previous iteration and generate
new reward functions based on these logs, along with specific instructions and CoT examples. For
example, in addition to providing good examples from previous tasks, we prioritize training outputs
where the accumulated rewards for successful trajectories exceed those for failed ones.

4.3 TRAINING GENERAL POLICIES IN SIMULATION

As witnessed by the recent success of policy learning from large-scale datasets with certain formats
(Padalkar et al., 2023 |[Reed et al., 2022} [Team et al., |2024; [Brohan et al., [2023)), we want to inves-
tigate how to learn a general policy from the internet videos, which directly outputs the executable
actions of the robot rather than the un-executable future videos (Du et al., [2024; |Qin et al., [2023)
or language tokens (Liang et al.l 2023} |Brohan et al.,[2023). We consider our Video2Policy a data
engine to generate successful policies from internet videos. Then we can acquire expert trajectories
in simulation, which match the video behavior. Notably, those expert trajectories can be any format
we want, such as states, 2D images, or 3D images. In this work, we choose RGB image observation
as the universal perception format of our general policy. Therefore, we train policies from the videos
and collect the successful trajectories from the learned policy. Afterward, we use imitation learning
to learn the general policy from the collected dataset by behavior cloning.

5 EXPERIMENTS

In this section, we present detailed evaluations of the proposed Video2Policy framework on internet
video datasets about manipulations. Specifically, the experiments are designed to answer the fol-
lowing questions: (a) How does the generated scene from the video look like, including the objects
as well as the visual information, in Sec. b) How does the policy trained under our framework
perform compared to the videos and the baselines, in Sec. (c) What is the performance of the
general policy learned from diverse internet videos, and can it generalize to novel scenes, in Sec.
[5.2] (d) What affects the proposed Video2Policy framework most for policy learning, in Sec. [5.3}

Experimental Setup We use the Issac Gym (Makoviychuk et al.l [2021) as the simulation engine
for all the experiments, which is commonly used in robotics tasks due to the advantages of efficient
computing and highly realistic physics. We focus on the table manipulation tasks, and all the objects
will randomly reset on the table in the beginning. The horizon of all the tasks is set to 300 and
the parallel environments are 8192, equally. For each task, we average the success rates over 10
evaluation episodes across 3 runs with different seeds.

Video Data Source To reconstruct scenes from internet RGB videos, we choose the Something
Something V2 (SSv2) dataset (Goyal et al. [2017), a common and diverse video dataset for the

Under review as a conference paper at ICLR 2025

Push right Pick up Move to Drop in front of Tip over Push left

Videos [

Meshes o=

) p
Sim Scene

Pen Toy car Plate, Lemon Notebook, Bolt White bottle Face wash

Figure 3: Some visualization of the tasks generated from SSv2 Video Dataset.

robotics community. It includes diverse behaviors concerning manipulating something with some-
thing by human hands. To further investigate the ability of our framework on more complex objects
or behaviors, we record three in-the-wild videos of different behaviors by ourselves. Notably, all the
videos we use in the experiment are 3 channels with RGB only, with the highest accessibility. For
the video quality, the small motion of the camera is tolerated, and we scale the resolution to 1024.

Scene Generation As mentioned in Sec. .1} we do 6D position tracking for all the objects. Con-
sidering that we randomize the initial states of all the objects, we only feed the 6D pos from the
first frame and the final frame into the prompts. It is reasonable in most tasks because those two
frames are significant to infer the relationship among objects. Even if this simplification will miss
the motion information for some behavior, e.g. throwing, we also provide the task description to
design the reward function so that the LLM will generate the velocity reward components. More-
over, we explicitly calculate the difference between the 6D pos and feed the information into the
LLM to think about the success function. For most of the SSv2 videos of a single object, there are
severe occlusions, making it difficult to reconstruct the mesh asset. We manually choose the first
frame or the last frame to reconstruct the mesh and predict the 6D position in the same pipeline. We
generate the task code in a curriculum manner (Ma et al.| 2023} [Wang et al., 2023b)) after obtaining
the visual information. From the beginning, we provide the example code of reach a block
and grasp a block. Then we will add the successfully generated task examples into the task
pool for the next one. Finally, it can even learn to use the direction velocity reward for dynamic
tasks and resolve them. Some demos for the generated tasks are in Fig. 3]

Reinforcement Learning For the policy learning, we choose the PPO (Schulman et al., 2017) algo-
rithm in a well-tuned implementation codebase (Makoviichuk & Makoviychuk, 2021; Ma et al.
[2023). We share the same parameters recommended in the codebase across all tasks and all
baseliens. As for the evaluation metric, we write the ground-truth success function for each gen-
erated task. Unlike Eureka 2023), we do not allow access to the evaluation metric during
training, and we manually evaluate the results for the final models. For SSv2 dataset, we make 5
iterations and sample 8 reward functions at each iteration during reinforcement learning. In our
collected videos, we make 8 iterations and sample 8 reward functions.

5.1 PoLICY LEARNING FROM VIDEOS

Policy Learning Baselines Since there is few works transforming the internet RGB videos into
policies for the task, we focus on the policy learning part in the experiments. We benchmark our
method against the following baselines. (1) Code-as-Policy (CoP) 2023), which queries
the LLM with all the states in the environment to write the executable code for the robot. To ensure
better performance of CoP, we use the close-loop control and regenerate code policies every 50
steps. (2) RoboGen, which does not require a success function and learns without reward reflection
iteration. (3) Eureka, which generates code for both the reward and the success function using an
LLM and does not use video information. To make fair comparisons, we use the same object meshes
and task codes generated from the videos for all the baselines.

Performance Analysis of Learned Policies We compare the performance of our method with the
above baselines on 9 videos sampled from 9 tasks generated from SSv2 dataset, as shown in Tab.
[[l We find that the proposed Video2Policy method outperforms the baseline in most tasks, with

smaller variance across seeds. RoboGen (Wang et al.| [2023c) and Eureka [2023) achieve

comparable results to ours in the videos of a single object. However, for multiple objects, the

Under review as a conference paper at ICLR 2025

Table 1: Results of Learned Policies for Videos in SSv2 dataset (3 seeds). The mean =+ std of the
success rates are shown in the table. Our method outperforms the other baselines to a degree and
achieves smaller variance in general.

Task (Succ.) \ Code-as-Policy = RoboGen Eureka Video2Policy
single object

Push sth. left 0.17 £ 0.13 093+0.05 1.00+0.00 1.00+ 0.00
Push sth. right 0.75 £ 0.12 1.00 £ 0.00 1.00 +0.00 1.00 £+ 0.00
Lift up sth. 0.33 +0.21 028 +£0.09 0.83+£0.13 0.93 +0.05
Tip sth. over 1.00 + 0.00 097+0.05 0.67+047 1.00+ 0.00
multiple objects

Cover sth. with sth. 0.00 + 0.00 0.00 £ 0.00 0.00£0.00 0.07 + 0.05
Uncover sth. from sth. 0.10 + 0.08 0.67+0.26 0.63+038 0.97 +0.05
Push sth. with sth. 0.03 + 0.05 0.03+0.05 0.47+038 043+040
Push sth. next to sth. 0.80 + 0.16 0.23+0.05 0.83£0.12 1.00 %+ 0.00
Drop sth. in front of sth. 0.53 +0.31 0.37+0.09 0.87+0.17 0.93 +0.05
Average \ 0.41 0.50 0.70 0.82

Table 2: Results of Learned Policies for Videos of self-collected videos (3 seeds). The mean +
std of the success rates are shown in the table. For the videos concerning more complex objects or
behaviors, such as throwing, we achieved significantly better performance compared to the baselines.

Task (Succ.) \ Code-as-Policy RoboGen Eureka Video2Policy

Insert Fork into Container 0.07 £ 0.05 027+0.38 057040 0.93 +0.05
Sliding Remoter to Mouse 0.00 + 0.00 053+£0.12 0.87£0.05 0.97 £0.05
Throw Garlic into Bowl. 0.00 £ 0.00 0.03+0.05 037£029 0.70 +£0.36

Average \ 0.02 0.28 0.60 0.87

performance of RoboGen drops a lot, while the Eureka has much larger variances during training.
It indicates that the success function is significant for more complex tasks. Moreover, the visual
information of the object relationship is important for proposing the success function.

To further demonstrate the ability of Video2Policy in policy learning, we propose three harder tasks
from self-collected videos, including the non-convex object manipulation and dynamic tasks. The
results are illustrated on Tab. which shows that our method can still resolve the harder tasks
with a success rate of 87% on average. Instead, the three baselines perform much worse, especially
for the CoP and RoboGen. CoP fails in all cases because the script policy receives feedback from
the environment less frequently and cannot control the speed of the object. For example, the task
throw garlic into bowl will reset the bowl into some place where the agent cannot reach.
However, CoP can only pick and place into a precise position, which fails in the throwing motion.
For RoboGen, the reward function has a higher probability of making mistakes without iterative
reflection. We also conduct the ablations for the accuracy of the success functions in Sec. [5.3]

5.2 POLICY GENERALIZATION ANALYSIS FROM DIVERSE VIDEOS

To further demonstrate the scalability of our framework, we target training a general policy from
diverse videos. As mentioned in Sec. ff.3] we regard the Video2Policy as a data engine to generate
expert trajectories in simulation. To validate the generalization ability across unseen videos, we fo-
cus on one single behavior, lifting up. Specifically, we sample 100 videos concerning the 1ifting
behavior from SSv2 dataset, generate the scenes, and train policies for the corresponding task. Af-
terward, we collect 100 successful trajectories from each policy model, including the 256 x 256 size
of RGB image observation and the 7-dim actions. Then we train an image-based policy model by
imitation learning from the collected trajectories. Finally, we sample another 10 different 1ifting
videos and evaluate the performance on those tasks with novel objects.

Training Details We choose imitation learning algorithms to learn the general policy and use the Be-
havior Cloning (BC) implemented by ourselves. For the model architecture, we apply the pre-trained
Resnet18 (He et al.| 2016) as the backbone to extract features and stack 2 frames as observations.

Under review as a conference paper at ICLR 2025

Pen (Novel shape)

Pencil (Novel shape)

Hair Comb (Novel shape)

Phone (Novel shape)

Plastic Spoon (Novel shape)

0.8

0.7

0.6
2

205

0.8
0.7
0.6

Sos

g 04

Success Rate
°
w

°

303 @03

0.2

0.1

0.0

CoP BC-CoP BC-V2P CoP BC-CoP BC-V2P CoP BC-CoP BC-V2P CoP BC-CoP BC-V2P CoP BC-CoP BC-V2P

Trimmer (Unseen Category) Truck Toy (Unseen Category) Jenga Block (Unseen Category) Face Wash (Unseen Category) Ladle (Unseen Category)

0.8
0.7
206

i
05

Success Rate

goa

3

®03
02

3
@ 0.10

0.1

0.0 0.00 0.0 0.0

CoP

BC-CoP BC-V2P

CoP

BC-CoP BC-V2P CoP

BC-CoP BC-V2P CoP BC-CoP BC-V2P CoP

BC-CoP BC-V2P

Figure 4: Performance of the trained general policy on 10 unseen task instances. BC-V2P
outperforms BC-CoP on 9 of 10 significantly and demonstrates stronger generalization ability.

Table 3: Ablation Results toward the visual information, success function picking, reward function
iteration, and reward function sampling. Removing any component results in a performance drop.

Task (Succ.) | Lifting up Uncover Throw | Avg.
Video2Policy (V2P) 093+0.05 097=£0.05 0.70+0.36 | 0.87
V2P w.o. visual information 090 £0.08 0.77£0.13 0.57=+0.17 | 0.75
V2P w.o. success picking 097 £ 005 043+£040 030£042 | 0.57
V2P w.o. iterative reward designs | 0.53 +£0.29 0.73£0.24 0.17+0.17 | 0.48
V2P w.o. multiple reward samples | 0.73 +0.12 0.53+0.24 0.27 £0.38 | 0.51

Then a policy head is built in a 3-layer MLP with hidden states of 512 dim. Additionally, the policies
are trained on the collected trajectories for 30 epochs with a batch size of 1024. The learning rate of
the policy head is 3e-4, while set to 3e-5 for the Resnet backbone. For evaluation, we evaluate the
final checkpoint on the 10 1ifting tasks for 3 seeds, and we average the results on 10 trajectories
for each seed. The evaluation tasks include 5 objects with novel shapes as well as novel textures,

and 5 objects with unseen categories.

Baseline of General Policy For gen-
eral policies, we consider the pro-

Success Rates Across 10 Novel Tasks

posed Video2Policy as a novel data 09 074 075
engine for expert trajectory collec- 08 ops 069 T T
tion. Therefore, other data engines 0.7 055 060 0'34 pa o 1
are the baseline, which can generate 06 T R S

successful trajectories in our recon- €05 039 Tt

structed scenes. We compare the fol- § 0.4 T-1

lowing models: (1) Code-as-Policy a4 i

(CoP), which can be applied to the 02{ 013

novel tasks directly with state input o b

instead of image observations; (2) '

BC-CoP, which trains the BC gen- "0 2 d 40 50 60 70 8 90 100

eral policy from the data collected Number of Training Tasie

by CoP; (3) BC-V2P, same as BC-
CoP but using the data collected by
V2P. The CoP baseline demonstrates
how well the state-based general pol-
icy can be, while the latter BC-CoP
and BC-V2P results illustrate the performance of the general policy under different data engines.

Figure 5: Scalability of the general policy model (BC-
V2P) towards the number of training tasks on 1ifting
behavior (3 seeds). Learning from more videos can en-
hance the generalization ability of the BC-V2P model.

Generalization to Unseen Videos The performances of the models are shown in Fig.] After train-
ing on 100 task instances, our BC-V2P model works on all the novel tasks and achieves remarkable
generalization performance, marked in red. Specifically, the average success rate reaches 75%,
while CoP is 32% and the BC-CoP is 26%. It indicates that our proposed Video2Policy framework
can obtain more informative policy priors from the videos. Notably, the CoP results are based on

Under review as a conference paper at ICLR 2025

states and the variances from CoP policies are larger than those from V2P policies. And the model
performs worse on the objects with unseen categories compared to the objects with novel shapes.

Scalability Analysis Furthermore, it is significant to investigate the scalability of our framework
towards the number of generated tasks from videos. We analyze it by training the general policy on
N € {10, 20, 30, ..., 100} tasks and evaluate the same 10 evaluation tasks, shown in Fig. [5} Overall,
increasing the number of videos continues to improve the performance of the BC-V2P model. Note
that current real2sim methods only use a few scenes such as 6 scenes (Torne et al.|[2024). In contrast,
our method can leverage large amounts of scenes and learn policies, which proves the scalability.

5.3 ABLATION STUDY

Compared to the previous works on LLM-driven RL (Ma et al.,[2023;|Wang et al.,2023c)), we apply
the visual information to propose success functions by LLM and pick the best one by LLM.

Success Function Evaluation Moreover, we attempt to Comelaton anslysis o success functions
calculate the correlation between the generated success — .{s . =
functions and the manually designed ones, as shown in g
Fig. [6] We choose the success rates calculated under dif-
ferent success functions as the data points. Compared
to Eureka, the success function generated by more vi-
sual information can be more reasonable and closer to the
ground-truth ones, with a higher correlation coefficient
qual to 0.83. In addition, the generated success functions @ T uccens Rates (Generaton)

with visual information can be over-confident, as the data Figure 6: Correlation analysis of gen-
points lie below the y=X curve. Instead, it can be noise erated success functions and the manual
with caption only when generating the success functions. ground-truth functions.

Success Rates (Ground Truth)
°
°

Ablation of Code Generation Components Here, we ablate the results of removing each part in
the code generation as follows: (1) V2P w.o. visual information, where only the video caption
is provided to generate the codes; (2) V2P w.o. success picking, where we do not pick the best
success function by sampling 8 different success functions; (3) V2P w.o. iterative reward designs,
where we do not apply the iterative reward reflection to fine-tuning the reward functions; (4) V2P
w.o. multiple reward samples, where we only train 1 example of the reward function instead of 8
samples. The results are on the Tab. [3] It will encounter a performance drop without any part. The
most significant one can be the iterative reward reflection component, which finetunes the reward
function based on the previous training results. Additionally, w.o. the multiple reward samples and
w.0. success picking have larger variances than the others. With those techniques, we achieve better
performance than the previous LLM-driven methods (Ma et al.| 2023} [Wang et al., [2023c).

6 DISCUSSION

We have proposed Video2Policy, a pipeline for generating simulated tasks from human videos. We
show that our design enables us to effectively learn from human videos and generate high quality
data. And We show that our data can be used to train a general visuomotor policy that generalizes
to unseen tasks. This generalist policy scales favorably with the number of videos used for task
generation. We believe this is a step towards generalist robotic policies that can perform a wide
range of tasks similar to the wide range of everyday human behavior.

Limitations and Future work Our approach is based on existing pre-trained foundation models.
As such, it is bottlenecked by the quality of these models, particularly mesh reconstruction and
reward code generation. However, as these foundation models continue to improve we expect the
performance of our method to improve as well. Another limitation is that it does not fully leverage
the dynamic information contained in the video. As for the future work, while this paper validates
the idea of a pipeline for generating data for generalist robotic policies in simulation, we would
like such a pipeline to be useful for real-world policies. Two avenues of future work towards this
direction are (i) increasing domain randomization (Andrychowicz et al., |2020) such as by LLM-
generated domain randomization schedules (Ma et al.| [2024) which will lead to improved sim-to-
real transfer, or (ii) improved scene reconstruction as more powerful 3D pretrained models become
available (Leroy et al., 2024) which will lead to better visual quality of the produced data.

10

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

The main implementations of our proposed method are in Sec. {4} The settings of the experiments,
the details of training policies, and the hyper-parameters are in [5]

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287-318. PMLR, 2023.

Zoey Chen, Sho Kiami, Abhishek Gupta, and Vikash Kumar. Genaug: Retargeting behaviors to
unseen situations via generative augmentation. arXiv preprint arXiv:2302.06671, 2023.

Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo, Alex Fang, Karthikeya Vemuri, Alan
Wu, Dieter Fox, and Abhishek Gupta. Urdformer: A pipeline for constructing articulated simula-
tion environments from real-world images. arXiv preprint arXiv:2405.11656, 2024.

Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem Gokmen, Ruohan Zhang, Jiajun Wu,
and Li Fei-Fei. Acdc: Automated creation of digital cousins for robust policy learning. In 8th
Annual Conference on Robot Learning.

Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Kiana Ehsani, Jordi Salvador, Winson
Han, Eric Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. Procthor: Large-scale embodied
ai using procedural generation. Advances in Neural Information Processing Systems, 35:5982—
5994, 2022.

Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
Pieter Abbeel. Learning universal policies via text-guided video generation. Advances in Neural
Information Processing Systems, 36, 2024.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
The” something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE international conference on computer vision, pp. 5842-5850, 2017.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable manip-
ulation skills. arXiv preprint arXiv:2302.04659, 2023.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack Kaelbling, Thomas L. Dean, and Craig Boutilier.
Hierarchical solution of markov decision processes using macro-actions. arXiv preprint
arXiv:1301.7381, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Cheng-Chun Hsu, Zhenyu Jiang, and Yuke Zhu. Ditto in the house: Building articulation models of
indoor scenes through interactive perception. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 3933-3939. IEEE, 2023.

11

Under review as a conference paper at ICLR 2025

Siyuan Huang, Zhengkai Jiang, Hao Dong, Yu Qiao, Peng Gao, and Hongsheng Li. Instruct2act:
Mapping multi-modality instructions to robotic actions with large language model. arXiv preprint
arXiv:2305.11176, 2023a.

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023b.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Heewoo Jun and Alex Nichol. Shap-e: Generating conditional 3d implicit functions. arXiv preprint
arXiv:2305.02463, 2023.

Vincent Leroy, Yohann Cabon, and Jérome Revaud. Grounding image matching in 3d with mast3r.
arXiv preprint arXiv:2406.09756, 2024.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martin-
Martin, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In Conference
on Robot Learning, pp. 80-93. PMLR, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493-9500. IEEE, 2023.

William Liang, Sam Wang, Hung-Ju Wang, Yecheng Jason Ma, Osbert Bastani, and Dinesh Jayara-
man. Environment curriculum generation via large language models. In 8th Annual Conference
on Robot Learning.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg. Text2motion:
From natural language instructions to feasible plans. Autonomous Robots, 47(8):1345-1365,
2023.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
open-set object detection. arXiv preprint arXiv:2303.05499, 2023.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bas-
tani, and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. arXiv
preprint arXiv:2406.01967, 2024.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HihnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for rein-
forcement learning. https://github.com/Denys88/rl_games, May 2021.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song. Real2code: Reconstruct articulated
objects via code generation. arXiv preprint arXiv:2406.08474, 2024.

12

https://github.com/Denys88/rl_games

Under review as a conference paper at ICLR 2025

Amy McGovern, Doina Precup, Balaraman Ravindran, Satinder Singh, and Richard S Sutton. Hi-
erarchical optimal control of mdps. In Proceedings of the Tenth Yale Workshop on Adaptive and
Learning Systems, pp. 186191, 1998.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
alist robots. arXiv preprint arXiv:2406.02523, 2024.

Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan, Alexander
Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment: Robotic
learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Luigi Piccinelli, Yung-Hsu Yang, Christos Sakaridis, Mattia Segu, Siyuan Li, Luc Van Gool, and
Fisher Yu. Unidepth: Universal monocular metric depth estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10106—-10116, 2024.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Can Qin, Shu Zhang, Ning Yu, Yihao Feng, Xinyi Yang, Yingbo Zhou, Huan Wang, Juan Car-
los Niebles, Caiming Xiong, Silvio Savarese, et al. Unicontrol: A unified diffusion model for
controllable visual generation in the wild. arXiv preprint arXiv:2305.11147, 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Ridle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. arXiv preprint arXiv:2408.007 14, 2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2(5):9, 2023.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceed-
ings of the annual conference of the cognitive science society, pp. 2601-2606. Cognitive Science
Society, 2009.

Jost Tobias Springenberg, Abbas Abdolmaleki, Jingwei Zhang, Oliver Groth, Michael Bloesch,
Thomas Lampe, Philemon Brakel, Sarah Bechtle, Steven Kapturowski, Roland Hafner, et al. Of-
fline actor-critic reinforcement learning scales to large models. arXiv preprint arXiv:2402.05546,
2024.

Sanjana Srivastava, Chengshu Li, Michael Lingelbach, Roberto Martin-Martin, Fei Xia, Kent Elliott
Vainio, Zheng Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behavior: Benchmark for
everyday household activities in virtual, interactive, and ecological environments. In Conference
on robot learning, pp. 477-490. PMLR, 2022.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. arXiv preprint arXiv:2403.03949, 2024.

13

Under review as a conference paper at ICLR 2025

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shridhar, Chen Bao, Yuzhe Qin, Bailin Wang,
Huazhe Xu, and Xiaolong Wang. Gensim: Generating robotic simulation tasks via large language
models. arXiv preprint arXiv:2310.01361, 2023b.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang, Yian Wang, Katerina Fragkiadaki, Za-
ckory Erickson, David Held, and Chuang Gan. Robogen: Towards unleashing infinite data for
automated robot learning via generative simulation. arXiv preprint arXiv:2311.01455, 2023c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 17868-17879, 2024.

Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, and Ying Shan. Instantmesh:
Efficient 3d mesh generation from a single image with sparse-view large reconstruction models.
arXiv preprint arXiv:2404.07191, 2024.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering atari games
with limited data. Advances in neural information processing systems, 34:25476-25488, 2021.

Tianhe Yu, Ted Xiao, Austin Stone, Jonathan Tompson, Anthony Brohan, Su Wang, Jaspiar Singh,
Clayton Tan, Jodilyn Peralta, Brian Ichter, et al. Scaling robot learning with semantically imag-
ined experience. arXiv preprint arXiv:2302.11550, 2023a.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023b.

A APPENDIX

A.1 IMPLEMENTATION DETAILS OF CODE GENERATION

Examples of Generated Codes To further illustrate the generated codes described in Sec. {.2]
we take the task insert fork into storage as an example, shown in Fig. []] We provide
detailed prompts and examples to inform the GPT-40 for code generation. In the beginning, we gen-
erate 8 code samples and then leverage GPT-40 to select the most reasonable one as the base code.
Afterward, we perform iterations for the reward function part, during which only the reward function
code is required to generate. For each iteration, we learn RL policies under the N different reward
functions and select the one with the highest success rates as the base code for the next iteration.
Noticed that the VLM can add some states such as dist_to_fork and change the observation
space automatically.

14

B W=

BN

=]

11
12
13

14
15
16

18
19
20
21

Under review as a conference paper at ICLR 2025

from factory.tasks.task import Task
scene_info = {'task_class_name': ..., 'objects': ...}

class InsertForkIntoStorageBox (Task) :

wnn

insert fork into storage box
wnn

def _ _init__ (self, envs, urdf_assets_root) > None:
super () .__init__ (envs, urdf_assets_root, scene_info)
self.task_description = "insert fork into storage box"

def reset_objects_states(self, env_ids):
return super () .reset_objects_states (env_ids)
def compute_observation_key(self, states):
obs_keys = super () .compute_observation_key (states
Add distance observation between the end-effector and the fork
dist_to_fork = torch.norm(states["fork_pos"] - states["eef_pos"], dim=-1)
states["dist_to_fork"] = dist_to_fork
obs_keys.append ("dist_to_fork")
Add distance observation between the fork and the storage box
dist_fork_to_box = torch.norm(states["fork_pos"] - states["storage_box_pos"], dim=-1)
states["dist_fork_to_box"] = dist_fork_to_box
obs_keys.append ("dist_fork_to_box"
return obs_keys
def get_observation_space (self):
obs_space = super () .get_observation_space ()
Increase the observation space by the number of new observations added
return obs_space + 2
def compute_success(self, states):
the fork in the storage
xy position of the fork is within the storage box
z position of the fork is within the storage box
xy_distance = torch.norm(states["fork_pos"][:, :2] - states["storage_box_pos"][:, :2], dim=-1)

fork should be inside the storage box's boundary in Z-axis
z_condition = (lower_z_of_fork < upper_z_of_box) & (upper_z_of_fork > lower_z_of_box)
fork should be inside the storage box's boundary in XY-axis
xy_condition = xy_distance < 0.01
success = z_condition & xy_condition
return success
def compute_reward(self, actions, states):
return reward_function (actions, states)

REWARD FUNCTION
@torch.jit.script
def reward_function (actions, states):

Figure 7: An example of the generated code for the task Insert.

Analysis of Policy Feedback
1. xxDistance from Gripper to Garlic (dist_grasp_reward) **

— x+Observationx+: The values fluctuate around 0.1, with a minimum of 0.0018 and a maximum of 0.1320.

< The last value is 0.1272.

— xxSuggestionxx: The fluctuation indicates variability, but the impact may be insufficient for success.

< Adjust the scale or temperature slightly for better sensitivity.
2. »+xDistance from Garlic to Bowl (dist_garlic_to_bowl)
— »xObservationx+: The values are quite low (0.0000 - 0.0029), indicating this component is not
< significantly contributing.
— xxSuggestionx*: Increase the temperature parameter for better gradient.
3. xxVelocity Reward (vel_reward) x

— x%xObservations+: The values show variability and seem to be contributing to the learning process.

— last value is 0.1746.
- xxSuggestionxx: It is effective but might need a slight adjustment in temperature and scaling.
4. xxFinal Position Reward (final_ position_reward) »x

The

«xObservationxx: This component consistently shows zeros, indicating it's not achieved in any of the

“— episodes.
- **Suggestion++: Rewriting or significantly adjusting this component is necessary.

5. #+Total Reward (total_reward) x*
— x+Observations+: The total reward has shown improvement over time but doesn't lead to success.
— fluctuates with no episodes achieving success.
— xxSuggestion*x: Improve the component scales to better balance the total reward for successful
— episodes.

Key Points for Improvement

— Re-scale or rewrite dist_garlic_to_bowl for better contribution.

— Rework or introduce final_position_reward to enhance the likelihood of success.

— Adjust the scales and temperatures for proper balance.

It

Figure 8: An example of the reward analysis for the task Throw.

15

SOCwuo U s L —

ORI N IO B — = e
QMEURN OV kW~

26
27
28
29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47

Under review as a conference paper at ICLR 2025

Examples of Code Evolutions Additionally, we also provide an example of modifying the reward
function based on the reward logs during training. During the reward iteration stage, we provide
examples of how humans adapt and refine the reward functions based on results. Also, we add the
logs of each reward component during training as prompts for the next iteration. These logs will be
categorized into two groups: from successful trajectories and from failure trajectories. This approach
allows the GPT-4o to identify which reward components are most significant in driving success. If
the training consistently results in failure without any successful outcomes, we will prompt GPT-40
to redesign the reward function to improve performance and outcomes. The analysis example by the
GPT-4o is shown in Fig. [§] and the newly generated reward function example is shown in Fig.

oved Reward F on
Based on the analysis and suggestions, here's an improved reward function:
@torch.jit.script
def reward_function (actions, states):
type: (Tensor, Dic
o

[str, Tensor]) -> Tup.

Chain of Thoughts for reward designs:
1. Grasp the garlic.

2. Throw the garlic towards the bowl.
3. Ensure the garlic reaches the bowl.
Reward Components:

1. The distance between the gripper and the garlic.

2. The garlic’s distance to the bowl.

3. The velocity of the garlic towards the bowl.

4. The final position of the garlic being inside the bowl.
wnn

batch_size = states['eef pos'].shape[0]

rewards = torch.zeros (batch_size, device=states['eef pos'].device, dtype=torch.float32)

reward. omponents = {}
1. from gripper to garlic reward
dist_eef_: to _garlic = torch.norm(states['garlic_pos'] - states['eef_pos'], dim=-1)

dist_grasp_reward = 1 - torch.tanh(8.0 » dist_eef_ to_garlic) # Ac
reward_components|['dist_grasp_reward'] = dist_grasp_reward x 0.15
2. ased temperature for distance between gar and bowl
dist_garlic_to_bowl = 1 - torch.tanh(12.0 x states[' dlst _garlic_to_bowl']) # Increased temperature for
— better gradient
reward_components|['dist_garlic_to_bowl'] =
rature increase)
]

dist_garlic_to_bowl % 0.25 # Incr

3. Velocity reward (slight tem
garlic_vel = states['garlic_vel_linear'
garlic_to_bowl_dir = states['bowl_pos'] - states['garlic_pos']

garlic_to_bowl_dir = garlic_to_bowl_dir / torch.norm(garlic_to_bowl_dir, dim=-1, keepdim=True)
vel_towards_bowl = torch.sum(garlic_vel * garlic_to bowl _dir, dim=-1)
vel_reward = torch.tanh (4.0 = vel_towards_bowl) adj ment in temperature

reward_components['vel reward'] = vel _reward x 0. Increa d scale to 0.30 for stronger

4. Final Position Reward (revised and scaled)

dist_xy_to_center = torch.norm(states['garlic_pos'][:, :2] - states['bowl _pos'][:, :2], dim=-1
upper_z_of_bowl = states["bowl_pos"][:, 2] + states["bowl_size"][:, 2] / 2

lower_z_of_bowl = states["bowl_pos"][:, 2] - states["bowl_size"][:, 2] / 2

garlic_in_bowl = ((dist_xy_to_center < (states['bowl_size'][:, 0] / 2)) & (states['garlic_pos'][:, 2] <
— upper_z_of_bowl) & (states['garlic_pos'][:, 2] > lower_z_of_bowl)) .float ()
final_position_reward = garlic_in_bowl % 0.70 # Actually achievable state
reward_components|['final_position_reward'] = final_position_reward

Total Reward including penalties

total_reward = dist_grasp_reward * 0.15 + dist_garlic_to_bowl * 0.25 + vel_reward = 0.30 +

< final_position_reward * 0.70
step_penalty = torch.ones_like (total_reward) = 0.01

rewards = total_reward - step_penalty
reward_components['total reward'] = total_reward
reward_components|['step_penalty'] = step_penalty

return rewards, reward_components

Figure 9: An example of the newly generated reward function for the task Throw.

A.2 MORE EXPERIMENTS

Robustness analysis for each component. To quantify the robustness of our method, we evaluate
vision models used in our pipeline individually by testing their reconstruction success rates. For
instance, when assessing the grounding accuracy of DINO, we sample 20 videos. Similarly, for
evaluating the segmentation accuracy of SAM-2, we sample 20 successful bounding boxes generated
by DINO. Following this approach, we systematically test the robustness of each module in the
pipeline. If the reconstruction is broken or identifies the wrong object, it is classified as a failure
case. The results are in Tab. [f] We can find that the segmentation and mesh reconstruction parts are
more robust than the others.

Moreover, we also conduct experiments to evaluate the noise effects of the depth estimation compo-
nent. For one thing, we use the depth-aware Realsense Camera to get the ground-truth depth of the

16

Under review as a conference paper at ICLR 2025

Generated Tasks (Lift, Uncover and Throw) Time Efficiency vs Success Rate

o
©

0.8

o
©

(9] § 0.7
T 07 @
ﬁ ©
g % 06
0.6 w0
g g
a o
305
0.5 a
0.4 0.4
———————————————————————————————————— bbeok e+ e ke t et el ettt st e sk
0.34 T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 0.2 0.4 0.6 0.8 1.0
Reward Iteration Time Efficiency (1/hour)
== RoboGen —— Video2Policy

Video2Policy w.o. Evolution (16 samples) —&— Eureka

Figure 10: Video2Policy achieves better performance across iteration, which demonstrates better
superior Pareto optimality.

Table 4: Failure rates (smaller is better) of the vision models in our pipeline. The average failure
rate is 42%, and SAM-2 is the most robust model.

Failure Rates | Grounding DINO SAM-2 InstantMesh FoundationPose | Avg.
SSv2 Videos ‘ 0.60 0.15 0.35 0.55 ‘ 0.42

Table 5: D1 distance between the predicted depth by Unidep (Piccinelli et al., 2024) and the ground-
truth depth in S1iding video.

| Full size Center region (0.8x crop) ~ Object bounding box
dl distance | 67.3% 86.9% 93.4%

Table 6: D1 distance between the predicted depth by Unidep (Piccinelli et al., 2024) and the ground-
truth depth in S1iding video.

Object | Remote Control Mouse

Predicted Size (I, w, h) (0.18, 0.04, 0.02) (0.17, 0.10, 0.05)
Ground-truth Size (I, w, h) | (0.21, 0.05,0.02) (0.19, 0.08, 0.03)

Delta size (1, w, h) | (0.03,0.01,0.00) (0.02,0.02,0.02)

self-recorded video S1iding and evaluate the d1 metric (higher is better) for the video (Piccinellj
Number of pixels where M’%ﬂtdg” >0.1m

et al., 2024).d1 = - . The results are in Tab. |5} The depth estimation

Total number of pixels
of the object region is accurate. And the size error under the depth prediction is as shown in Tab.

[6l The error of the size prediction is small. Furthermore, we resize the objects to the GT size and
apply the previously trained model to study how the noise affects the final performance. We keep
the same state inputs. The performance drops from 97% to 83%, but the model can still solve the
task at a high success rate.

Performance analysis for iterative generation. Following Eureka 2023)), we visualize
the performance of our method and baselines after each evolution iteration in Fig. [I0} And we
also conduct an ablation study, Video2Policy w.o. Evolution (16 Samples), which only performs
the initial reward generation step without iterative improvement. The results are based on the tasks
lifting, uncover, throw, which follow the setting in Sec. @ This study examines whether,
given a fixed reward function budget, it is more effective to allocate resources toward iterative evolu-
tion or simply generate more first-attempt rewards. The results demonstrate that our method signifi-

17

oIS - NV N IO S

33
34
35

36
37

Under review as a conference paper at ICLR 2025

cantly outperforms the other baselines across multiple iterations. Our method demonstrates superior
Pareto optimality, effectively balancing multiple objectives to achieve optimal trade-offs compared
to other approaches, shown in Fig. [I0]

A.3 MORE ABLATION RESULTS

All the ablation experiments follow the setting in Sec. [5.3]

Tracking prompts help for policy learning. Here we investigate the tolerance of 6D position errors
for the tracking part. We conduct an ablation study that removes the 6D position tracking informa-
tion obtained from FoundationPose in Tab. m As shown, after removing the tracking information,
the performance drops for the tasks with multiple objects.

Table 7: After removing the tracking information in prompts, the performance drops from 87% to
75%, which is still superior to Eureka.

| Lifting Up Uncover Throw | Average
Video2Policy 093 +£0.05 0.97 £0.05 0.70 +£0.36 0.87
Video2Policy, w.o. tracking info | 0.90 £ 0.08 0.77 £0.13 0.57 £ 0.17 0.75
Eureka 0.83+0.13 0.63+0.38 0.37+0.29 0.61

Example 1:

def compute_observation_key(self, states):
obs_keys = super () .compute_observation_key (states
return obs_keys

def get_observation_space (self):
obs_space = super () .get_observation_space ()
return obs_space)\

def compute_success (self, states):

card_lifted = (states['card_pos'][:, 2] - states['table_height']) > (torch.max(states['card_size']) /
— 2)
success = card_lifted

return success

Example 2:

def compute_observation_key (self, states):
obs_keys = super () .compute_observation_key (states
dist_gripper_card = torch.norm(states["card_pos"] states["eef_pos"], dim=-1)
states["dist_gripper_card"] = dist_gripper_card
obs_keys.append ("dist_gripper_card")
return obs_keys

def get_observation_space (self):
obs_space = super () .get_observation_space ()
return obs_space + 1

def compute_success (self, states):

card_height_above_table = states['card_pos'][:, 2] - states['table_height']
card_lifted = card_height_above_table > 0.2
success = card_lifted & (states['card_vel_linear'].norm(dim=-1) < 0.01)

return success

Example 2 is more reasonable and better for several reasons:

1. Inclusion of the End-Effector-Card Distance in Observations:
This is beneficial because it provides an additional critical feature that can help the agent understand
< its relative position to the target object. This added information is highly useful for learning
< tasks involving object manipulation.

2. Enhanced Success Criteria: ...
The second implementation refines the success criteria by adding a condition that the card's linear
— velocity should be minimal (states['card_vel_linear'].norm(dim=-1) < 0.01), ensuring that the card
< 1is not just lifted but also stable. This is a more precise definition of success for manipulation
<~ tasks.

3. Dynamic and Informative Observations:
4. Observation Space Adjustment:

Figure 11: An example of how GPT-40 picks better code for less hallucination.

Hallucination issue can be alleviated by picking under GPT-40. To evaluate the validity of the
generated task code, we have some instructions. For example, for correctness, we inform the GPT-
4o to read and analyze the success part; for reasonability, we inform the GPT-40 to avoid picking
the code that assumes some scalar value or states. To quantify the frequency of the hallucination,

18

Under review as a conference paper at ICLR 2025

we run Video2Policy (16 samples, 1 iteration) for the 3 tasks (Lifting, Uncover, Throw). Here we
remove the while-loop generation so that not all samples are runnable. (Previously, if one sample
fails, we regenerate again until all 8 samples are runnable.) Here the hallucination samples include
non-runnable samples and zero-score samples. We can find that after picking by GPT-4o, the hallu-
cination problem alleviates in a degree. Here is an example of how GPT-40 picks better task codes,
shown in Fig. [T1]

Table 8: Querying GPT-4o for choosing across multiple samples helps alleviate hallucination.

| Without Picking Picking by GPT-40

Hallucination \ 0.40 0.19
Hallucination - Non-runnable 0.25 0.13
Hallucination - Runnable 0.15 0.07

The generated codes do not reset cheating. Since the task codes are generated under different
prompts for all the methods, we conduct ablation studies by choosing the same 'reset’ function from
our method for the baselines. For the code-as-policy, we generate the policy code and execute it
in the Issac Gym. Thus, the 'reset’ function is the same as the Video2Policy since they share the
task code. We choose 3 tasks, one of a single object and two of multiple objects. The results are
illustrated in Tab. [0} For tasks with a single object, the results are the same because the generated
‘reset’ function calls the base reset function. For tasks with multiple objects, the results have limited
changes. The reason is that when generating the reset function, the LLM introduces certain con-
stants. These constants may vary. However, the variance has limited effects on the final results. It
indicates that there is no reset cheating.

Table 9: Using the same ’reset’ function as the Video2Policy, the baselines have limited changes
for the evaluation results. This proves that the better results of our method do not come from ’reset’
cheating.

| Lifting Up Uncover Throw | Average
Video2Policy 0.93 £ 0.05 0.97 £0.05 0.70 +0.36 0.87
Code-as-Policy 0.33+0.21 0.10£0.08 0.00+ 0.00 0.14
RoboGen 0.28+£0.09 0.67+0.26 0.03+0.05 0.33
RoboGen (same reset function) | 0.28 +£0.09 0.60 +0.28 0.03 4+ 0.05 0.30
Eureka 0.83 £0.13 0.63£0.38 0.37+0.29 0.61
Eureka (same reset function) 0.83+0.13 0.67 +0.21 0.37 £0.29 0.62

A.4 EXPERIMENTS OF SIM2REAL

Although this work aims to leverage internet videos for simulation policy learning, we also conduct
some sim2real experiments to verify the effectiveness. Specifically, following Sec. [5.2} we collect
200 trajectories from each reconstructed scene in simulation for 100 1ifting tasks. Then we
train a general policy via imitation learning and subsequently deployed the policy in the real-world
setting.

To alleviate the sim-to-real gap, we employed the following two strategies:

Input Representation and Network Architecture. We take as input the 0/1 segmentation masks
of the image, the robot’s end-effector (EEF) state, and the gripper state. SAM-2 is adopted for
segmentation, where the pixel position of the target object is provided manually as input in the
first frame, shown in Fig. [T2] We stack 2 frames and add an additional multi-layer perceptron
(MLP) layer to map the robot state into a 256-dimensional feature vector. Furthermore, the rotation
component of the action is scaled by a factor of 0.2 for better stability.

Domain Randomization. During data collection in the simulation, randomization is applied to the
actions with noise levels of 0.02 and a random delay of 0.01-0.02 seconds. Moreover, the physical

19

Under review as a conference paper at ICLR 2025

Figure 12: Examples of the 0-1 Segmentation Mask Observation between the simulation and the
real, which can better bridge the sim2real gap.

properties of the object, such as size and weight, are also randomized. We ensure consistency
between the camera poses in simulation and the real world.

In real-world experiments, the object’s position varies within a 10 cm range. The image input had
a resolution of 256x256. In terms of the setup, we use Franka robotic arms, Robotiq grippers, and
Stereolabs cameras. We evaluate the performance of the policy towards lifting a mouse, a cup, and a
piece of bread. Notably, while there are some mouse and bottle objects in the simulation, the bread
is absent in the collected simulation dataset and is soft.

Here the general 11 ft ing policy achieves a success rate of 72% across 10 novel objects in simula-
tion. The sim2real results are as shown in Tab. @[Compared to the 72% success rate in simulation,
it achieves 47% success rate in the real world. It proves the efficacy of our pipeline, which builds
the pipeline of internet videos to policies. We notice that gripping slippery objects, such as a cup,
pose challenges for the robot, resulting in a relatively low success rate. For the bread, the task was
relatively easier despite the object being unseen in the simulation. This can be attributed to the seg-
mentation mask observation and the bread’s relatively large surface area, which facilitates successful
manipulation.

Overall, these experiments demonstrate that the general policy trained in simulation possesses effec-
tive sim-to-real transfer capabilities. Additionally, the results highlight the potential of the proposed
Video2Policy pipeline, underscoring its effectiveness in enabling good performance, scalability, and
deployment in real-world scenarios.

| Mouse Cup Bread | Average
Succ. | 0.50 040 050 | 047

Table 10: The success rates of the learned policy for 11 ft ing tasks on real robots.

20

	Introduction
	Related Work
	Background
	Generating Simulated Tasks and Policies from Human Videos
	Scene Reconstruction from Videos
	Task Code generation and Policy Learning
	Training General Policies in Simulation

	Experiments
	Policy Learning from Videos
	Policy Generalization Analysis from diverse videos
	Ablation Study

	Discussion
	Reproducibility Statement
	Appendix
	Implementation Details of Code Generation
	More experiments
	More Ablation Results
	Experiments of Sim2Real

