
AMBIPUN: Generating Puns with Ambiguous Context

Anonymous ACL submission

Abstract

Computational humor has garnered interest in001
the natural language processing community due002
to its wide applications to real-world scenarios.003
One way to express humor is via the use of004
puns. In this paper, we propose a simple yet ef-005
fective way to generate pun sentences that does006
not require any training on existing puns. Our007
approach is inspired by humor theories that am-008
biguity comes from the context rather than the009
pun word itself. Given a pair of definitions of a010
pun word, our model first produces a list of re-011
lated concepts through a reverse dictionary. We012
then utilize one-shot GPT3 to generate context013
words and then generate puns incorporating014
context words from both concepts. We also015
investigate how the position of a pun word ap-016
pearing in the sentence will influence the gener-017
ation results. Human evaluation shows that our018
method successfully generates pun 52% of the019
time, outperforming well crafted baselines and020
the state-of-the-art models by a large margin.021

1 Introduction022

Humor has the tendency to provoke laughter and023

provide amusement. By creating an engaging and024

conducive environment, it is one of the most im-025

portant forms of human communication (Booth-026

Butterfield and Wanzer, 2018). Teaching comput-027

ers to understand and generate humorous texts such028

as puns pave the way for various practical appli-029

cations, such as improving creativity in machine-030

aided writing and making chat-bots more engaging.031

In this paper, we tackle the problem of generat-032

ing homographic puns (Miller et al., 2017): two033

or more meanings of a polysemy for an intended034

humorous or rhetorical effect. For example, the035

three punning jokes listed in Figure 1 exploits two036

contrasting meanings of the word sentence: 1) a037

string of words that are grammatical, and 2) the038

punishment by a court assigned to a guilty person.039

Compared with heterographic puns where the am-040

biguity comes from two near homophones spelled041

Sense 1
Definition

a string of words that is complete in itself, typically
containing a subject and predicate

Sense 2
Definition

(criminal law) a final judgment of guilty in a
criminal case and the punishment that is imposed

Ours 1 The sentence is ungrammatical. The jury didn't
hear it.

Ours 2 I'm sorry I said the sentence was too long but
punishments are endless.

Human The Judge has got a stutter. Looks like I am not
getting a sentence.

Figure 1: An illustration of homographic puns. The
target pun word “sentence” and the two sense defini-
tions are given to the model as input, and the desired
outputs are many punning sentences. To make the tar-
get word interpretable in both senses, we propose to
include context words related to both sense definitions.
We highlight the context words of each sense in blue
and pink.

in a different way, the challenge of processing ho- 042

mographic puns is even bigger: we must differenti- 043

ate contrasting senses of words that sound and are 044

spelled in the same way. 045

Due to the lack of sizable training data, existing 046

approaches to generate puns are all heavy-weighted 047

in order to not rely on pun sentences for training. 048

For example, (Yu et al., 2018) train a constrained 049

neural language model Mou et al. (2015) from a 050

general text corpus, and then use a joint decoding 051

algorithm to guarantee that both definitions of the 052

target pun word will make sense in the generated 053

sequence. He et al. (2019) propose a local-global 054

surprisal principle, and Luo et al. (2019) leverage 055

the Generative Adversarial Nets (Goodfellow et al., 056

2014) to encourage ambiguity of the outputs via 057

reinforcement learning. We, on the other hand, 058

propose a simple yet effective way to tackle this 059

problem: encouraging ambiguity by incorporating 060

context words related to each sense. 061

Inspired by humor theories (Lippman and Dunn, 062

2000), we hypothesize that it is the contextual con- 063

nections rather than the pun word itself that are 064

1

Figure 2: Overview of the approach. Given a pun word and its senses, we convert them to their sense definitions.
then we use reverse dictionary to obtain the related words. Using few-shot GPT3, we generate context word for
each related word. Using a combination of context words along with the pun word, we generate several candidates
sentences using T5. Finally, we use a classifier to choose the most humorous sentences. We also give an example
for pun word ’sentence’ for each part of the approach.

crucial for the success of pun generation. For in-065

stance, in Figure 1 we observe that context related066

to both senses (e.g., ungrammatical and jury) ap-067

pear in a punning sentence. Such observation is068

important as the error analysis of the state-of-the-069

art model (Luo et al., 2019) shows that 46% of the070

generated sentences fail to be puns due to single071

word sense, and another 27% fail due to being too072

general, both of which can be resolved by introduc-073

ing more context.074

Specifically, given the two sense definitions of a075

target pun word, we first use a reverse dictionary1076

to generate related words that are monosemous077

for both senses. This first step helps us circumvent078

the obstacle of processing pun words with the same079

written form. However, related words alone are not080

enough to generate coherent pun sentences because081

they are clustered and tend to be synonyms. We082

hence propose to use context words (described083

in Section 2.3) to link the contrasting senses and084

make our target pun word reasonable when inter-085

preted in both definitions. We explore three differ-086

ent settings: retrieval-based (TF-IDF), similarity-087

based (Word2Vec), and generative-based (Few-shot088

GPT3). Finally, we finetune the T5 model (Raffel089

et al., 2020) on general non-humorous texts to gen-090

erate coherent sentences given the pun word and091

contexts words as input.092

Interestingly, our experimental results show that093

to retrieve-and-extract context words outperforms094

the giant few-shot GPT3 model in terms of gen-095

erating funny pun sentences, although the latter096

has shown to be much more powerful in many097

sophisticated tasks (Brown et al., 2020). Our098

simple pipeline remarkably outperforms all the099

1https://reversedictionary.org/

more heavy-weighted approaches including the 100

constrained language models with special decoding 101

(Yu et al., 2018) and the state-of-the-art Pun-GAN 102

model (Luo et al., 2019).2 103

2 Methodology 104

2.1 Overview and Motivation 105

We first give an overview of different steps in our 106

approach. Our input is the target pun word (P) and 107

its two senses (S1, S2), and the expected output is 108

a list of humorous punning sentences where P can 109

be interpreted in both senses. We implement the 110

ambiguity principle proposed in (Kao et al., 2016): 111

a pun sentence should contain one or more context 112

words corresponding to each of the two senses of 113

the pun word. 114

The overview of our approach is visualized 115

in Figure 2 and formally written in Algo- 116

rithm 1. Given two different sense descriptions 117

(SenseDef), we first use a reverse dictionary to 118

generate a list of words that semantically match the 119

query descriptions. We call them related words 120

(RW) and describe full details in Section 2.2. How- 121

ever, those related words are synonyms of each 122

other and only cover a few focused topics, thus 123

failing to compose humorous punning sentences. 124

For example, for the sentence: “The Judge has got 125

a stutter. Looks like I am not getting a sentence.”, 126

The word representing the first sense (i.e. a final 127

judgment of guilty in a criminal case and the pun- 128

ishment that is imposed) is represented by Judge. 129

Judge could not be generated using the sense defi- 130

nition, but is used frequently along with the sense 131

definition. 132

2Our code and data will be released upon acceptance.

2

Algorithm 1 Pun Generation
1: function GENPUN(P , S1, S2)
2: Input: Tuple of pun word and its sense - P , S1, S2

3: Output: List of final sentences - Sentfinal

4: for P , S1, S2 in P , S1, S2 do
5: SenseDef = get_sense_definitions(S1,S2)
6: RW = reverse_dictionary(SenseDef) ▷ get related

words from sense definitions
7: RWrefined = refine(RW)
8: CW = get_context_words(RWrefined)▷ get context

words from related words
9: CWrefined = refine(CW)

10: Sentcandidates = generate_sentences(CWrefined)
11: Sentfinal = classify_sentences(Sentcandidates)

return Sentfinal

Considering such nuances, in Section 2.3 we133

propose three different methods to obtain the con-134

text words (CW1, CW2) of all the related words.135

They are TF-IDF (retrieve-and-extract), similarity-136

based (word2vec), and generative model (few-shot137

GPT3). Finally, in Section 2.4 and Section 2.5,138

we introduce a keyword-to-text generator to gen-139

erate candidate sentences (Sentcandidates), and a140

humor classifier to rule out some of the non-pun141

sentences. Final sentences (Sentfinal) are then142

randomly sampled for evaluation.3 All our training143

data is general, non-humorous corpus except for144

the humor classifier.145

2.2 Related words146

We aim at differentiating the two senses of a pol-147

ysemy by taking the related words, so that each148

sense will be represented by a set of monosemous149

words. To this end, we leverage the Reverse Dic-150

tionary (Qi et al., 2020; Zhang et al., 2020) which151

takes as input a description and generates multiple152

related words whose semantic meaning match the153

query description. For each sense definition, we154

generate five words.155

2.3 Context words156

For context words, we compare three different ap-157

proaches. Refinement of the context words is men-158

tioned in Section 3.2.159

Method 1: TF-IDF For each related word, we re-160

trieve sentences from the One Billion Word dataset161

that contains that word and then extract a few key-162

words. Next, we implement TF-IDF (Ramos, 2003)163

to rank them. For a given word and corpora, the164

3Note that all previous works produce only the best sen-
tence during decoding time, while we aim at generating tens
or hundreds of sentences for a target pun word, so that our
task is actually more challenging.

Algorithm 2 TF-IDF for context words
function GETCW(KW1, KW2)

2: Input: List of related words - KW1, KW2

Output: List of context words - CW1, CW2

4: Initialize CW1, CW2 to empty
for KW in zip(KW1, KW2) do

6: for w in KW do
S = generate_sentences(w) ▷ Retrieve sentences

for each word
8: kw = generate_keywords(S)

FS = get_freq_sentences(kw)
10: FC = get_freq_corpora(kw)

FK = get_tfidf(FS ,FC)
12: CW1 = append(FK) ▷ Add top TF-IDF words

to context words list
return CW1, CW2

TF-IDF value is given in Equation 1, where FS 165

corresponds to the frequency of that word in the 166

retrieved sentences and FC corresponds to the fre- 167

quency of the word in the entire corpora. Based on 168

this value, we choose the top 10 context words that 169

are mostly likely to be used along with the related 170

words and therefore the pun word. Detailed steps 171

for the process are listed in Algorithm 2. 172

tf(W, C) = FS

FC + 1
(1) 173

Method 2: Word2Vec Inspired by the idea that 174

“a word is characterized by the company it keeps” 175

(Firth, 1957), we propose to get context words 176

from word2vec (Mikolov et al., 2013), which pro- 177

vides distributed word representations. Following 178

a previous work (Ghazvininejad et al., 2016), we 179

train a continuous-bag-of-words model with win- 180

dow size 40 and word vector dimension 200, and 181

then calculate the cosine similarity between words. 182

Ghazvininejad et al. (2016) have also shown that 183

the training corpus for word2vec plays a crucial 184

role on the quality of generated context words. 185

Hence, we try to train word2vec models on three 186

different corpus: the largest available humorous 187

Dataset, rJokes (Weller and Seppi, 2020), the En- 188

glish Gigaword (Graff et al., 2003) which is an 189

archive of newswire text data, and the one-billion 190

Wikipedia corpus4. We find that the topics covered 191

by rJokes is far from what it needs to train a good 192

word2vec model, and that the word2vec model 193

trained on Gigaword strongly favors newsy words 194

than the others. Hence, we train on Wikipedia. 195

Method 3: GPT3 For the generative version, we 196

use the powerful language model, one-shot GPT3 197

4http://mattmahoney.net/dc/enwik9.zip

3

(Brown et al., 2020) to generate context words. We198

choose not to train another model because the out-199

put of one-shot GPT3 is already satisfactory. An200

example can be seen in Table 1, where we com-201

pare the output of context words for the pun word202

‘sentence’.203

204

2.4 Candidate Sentence generation205

After receiving context words for each sense, we206

generate humorous puns. For this step, we finetune207

a keyword-to-sentence model using T5 (Raffel208

et al., 2020), as it is capable of handling text-to-text209

tasks. To train this we need to create a dataset210

that replicate the expected behaviour i.e. given211

a prompt (in a specific format), generate a well212

formed and humorous sentence. The prompt will213

contain information about the pun word (P), and 2214

words from each of the two senses (S1a, S1b, S2a,215

S2b). We expect our generated output to contain the216

pun word and context words related to each sense.217

The following prompt is given to the trained model:218

219

generate sentence: P , S1a, S1b, S2a, S2b.
220

For example for the word ‘sentence’, a possible221

prompt can be generate sentence: sentence, judge,222

trail, noun, comma. However, we also investigate223

whether the position of the pun word will affect the224

quality of generated sentences. We insert the pun225

word in the start (first place), middle (third place),226

and end (fifth place) of the prompt and generate227

candidate sentences using these prompt configura-228

tions. We discuss our findings in Section 4.3.229

2.5 Humor Classification230

Finally, we introduce a classification model to as-231

sist us in selecting (i.e., ranking) punning sentences.232

Since we do not have sizable training data for puns,233

we propose to train our classification model on234

humorous dataset in a distantly supervised fash-235

ion. Specifically, we train BERT-large (Devlin236

et al., 2019) on the ColBERT dataset that contains237

200,000 jokes and non-jokes used for humor detec-238

tion. We use the probability produced by the classi-239

fication model to rank our candidate sentences.240

Our error analysis shows that our distantly su-241

pervised classification model can successfully rule242

out the bad generations, i.e., non-puns, as puns are243

humorous by nature. However, the model is not244

great at choosing the best samples.5. Therefore, we 245

use this classifier only to remove the bottom third 246

candidates. We leave this for open future work to 247

accurately pick out high-quality punning sentences 248

instead of funny sentences. 249

3 Experiments 250

3.1 Datasets 251

Training dataset: For the context word generation 252

steps, we use the One Billion word dataset (Chelba 253

et al., 2013) to retrieve sentences for.a given word. 254

To calculate TF-IDF, we use this dataset to calcu- 255

late the frequency of words. This dataset contains 256

roughly 0.8B words and is obtained from WMT 257

2011 News crawl data. 258

For training the candidate generation module, 259

we use ColBERT dataset (Khattab and Zaharia, 260

2020). It contains 100k positives and 100k negative 261

samples collected from various sources like Reddit, 262

news headlines, etc. For each sentence, we extract 263

the keywords using RAKE (Rose et al., 2010). We 264

also use the same data to finetune BERT-large to 265

develop our humor classifier. 266

Evaluation dataset: On lines of other recent 267

pun generation works, we use the SemEval 2017 268

Task 7 (Miller et al., 2017) for evaluation. The 269

dataset contains 1,163 human written pun sentences 270

with a total of 895 unique pun words. Each sen- 271

tences has the target pun word, location of the pun 272

word and the WordNet sense keys of the two senses. 273

3.2 Implementation Details 274

Experimental Settings For the word2vec model 275

we train a continuous-bag-of-words model with 276

window size 40 and word vector dimension 200. 277

For the candidate generation module, we train the 278

T5-base model on 10 epochs and select the best 279

performing model based on validation loss. Max 280

sequence length for target and source is set to 30. 281

Batch size is set to 64. 282

Data Refinement The process to generate key- 283

words (i.e., both related and context words) can 284

entail many words that are not ideal. Continuing 285

with these words would further propagate and en- 286

large the noise. Hence, to minimize this noise, we 287

implement the following data refinement steps to 288

ensure the keywords stick to our standards: we 289

avoid using polysemous words as keywords during 290

5A few samples along with their assigned probabilities can
be seen in Table ?? in the appendix

4

Sense 1 Sense 2

Definition a string of words satisfying
the grammatical rules of a language

a final judgment of guilty in a
criminal case and the punishment

that is imposed

Related words syllable, syntax, lexicon, thesaurus,
grammatical

punishment, verdict, sentencing,
retrial, penalty

TF-IDF syllables, words, three, spelling,
even, said, describe, typos

cruel, expected, end, court,
scheduled, set, spector, seeking

Word2Vec syllable, pronounced, words, rhyme,
verbs, meaning, hence, example

punished, crimes, offender, torture,
moral, guilt, abuse, offender

GPT3 words, letters, punctuation, grammar,
synonym, dictionary, meaning, comma

prison, judge, jury, trial,
justice, lawyer, court, evidence

Table 1: Comparison of the three different context word generation mechanism. We take this example for the word
’sentence’. The table lists sense definitions of the two senses. Then list the related words obtained from the sense
definitions. For these related words, we obtain context words using three different mechanisms.

intermediate steps because their perceived sense is291

highly ambiguous. We also disregard any numbers292

and special characters produced by our systems.293

3.3 Baselines294

There are two existing works on homographic pun295

generation, the same task as ours. Besides, we also296

compare our model with the powerful few-shot297

learner, GPT3 (Brown et al., 2020).298

Neural Pun Yu et al. (2018) propose the first299

neural approach to homographic puns based on a300

conditional neural language model. A constrained301

beam search algorithm is proposed to jointly de-302

code the two distinct senses of the same word.303

Pun-GAN The state-of-the-art-model introduced304

by Luo et al. (2019) that adopts the Generative Ad-305

versarial Net (GAN) (Goodfellow et al., 2014) to306

generate homographic puns. Specifically, a gener-307

ator is responsible for generating a pun sentence,308

and a discriminator is trained to tell human-written309

puns from machine generated puns. Such setting310

encourages the ambiguity of the generated sentence311

via reinforcement learning (RL).312

Few-shot GPT3 We also generate puns with a313

few examples feeding into GPT3 davinci-instruct-314

beta, the most capable model in the GPT3 family315

to follow the instructions and generate creative lan-316

guage.6 We provide the target pun word and its two317

senses in our prompt along with the instruction.318

Ablations of our own models We also compare319

three methods proposed by us to obtain the context320

words (described in Section 2.3). We call them Ext321

AMBIPUN, Sim AMBIPUN, and Gen AMBIPUN.322

6https://beta.openai.com/docs/engines/instruct-series-
beta

3.4 Evaluation 323

Automatic Evaluation Previous works use two 324

metrics to automatically evaluate the quality of the 325

generated puns. First, both (He et al., 2019) and 326

Luo et al. (2019) report the the unusualness of an 327

n-length output, which is defined as the normalized 328

log-probability of each token xi subtracted by its 329

training probability under a language model 330

U
△
= − 1

n
log

(
p (x1, . . . , xn) /

n∏
i=1

p (xi)

)
.

(2) 331

Although He et al. (2019)further show that unusu- 332

alness does not correlate well with human ratings 333

of puns, we still follow the same procedure. Be- 334

sides, (Luo et al., 2019) and (Yu et al., 2018) use 335

distinct unigram and bigrams (Li et al., 2015) to 336

measure the diversity of each system on a sentence- 337

level. However, we observe that certain systems 338

tend to generate sentences with fixed patterns. 339

Namely, those generation models lack diversity 340

corpus-wise, but could still gain high distinctive- 341

ness score sentence-wise. Hence, we propose to 342

measure the diversity from both levels. We also 343

report the the average sentence length produced. 344

Human Evaluation It is known that currently 345

available automatic evaluation metrics could not 346

reflect the nuances of language, including humor 347

and creativity. Following the procedure of previ- 348

ous works (Yu et al., 2018; He et al., 2019), we 349

randomly shuffle and select 100 sentences for hu- 350

man evaluation. We collected our human ratings 351

on Amazon Mechanical Turk (AMT). For each sen- 352

tence, three workers are explicitly given the target 353

pun word. We first ask them to judge if a given 354

sentence is a pun sentence on a binary scale. Then, 355

they are asked the questions:“How funny is this 356

5

Model Avg
Sequence
Length

Sentence-level Diversity Corpus-level Diversity Unusualness
Dist-1 Dist-2 Dist-1 Dist-2

Few-shot GPT3 12.3 37.1 80.4 94.5 91.5 0.09
Neural Pun 12.6 30.2 73.0 91.3 90.5 0.22
Pun GAN 9.7 34.6 71.9 90.2 87.6 0.47

Sim AMBIPUN 13.4 32.4 77.1 92.9 91.2 0.26
Gen AMBIPUN 13.5 32.8 77.8 93.6 91.2 0.26
Ext AMBIPUN 14.0 31.7 78.7 96.3 92.3 0.28

Human 14.1 36.6 81.9 95.5 92.4 0.35

Table 2: Results of automatic evaluation on average sequence length, sentence-level and corpus-level diversity, and
the unusualness scores. Boldface denotes the best performance and underline denotes the second best performance
among systems. We compare with three strong baselines: Few-shot GPT3, Neural Pun (Yu et al., 2018), and Pun
GAN (Luo et al., 2019), and three variations of our own method: similarity-based context generation(Sim AMBIPUN),
generative context generation (Gen AMBIPUN) and extraction-based context generation (Ext AMBIPUN). Note that
unusualness has been shown to have weak correlation with human ratings by He et al. (2019).

Model Success
Rate Fun Coherence

Few-shot GPT3 13.0% 1.82 3.77
Neural Pun 35.3% 2.17 3.21
Pun GAN 35.8% 2.28 2.97

Sim AMBIPUN 45.5% 2.69 3.38
Gen AMBIPUN 50.5% 2.94 3.53
Ext AMBIPUN 52.2% 3.00 3.48

Human 70.2% 3.43 3.66

Table 3: Human evaluation results on all the pun gener-
ation systems. We how the success rates, and average
scores of funniness and coherence of each system. Over-
all, Ext AMBIPUNperforms the best.

sentence?” and “How coherent or fluent is this357

sentence?” on a scale from 1 (not at all) to 5 (ex-358

tremely). We provide detailed instructions and ex-359

amples with explanation for each criteria. We also360

adopt attention questions and qualification types361

to make our collected results more reliable. For362

pun judgement (binary), we take the majority vote363

among three workers, while for funniness and co-364

herence (1 to 5), we take the average ratings. We365

then use the pairwise kappa coefficient to measure366

the inter-annotator agreement. The average inter-367

annotator agreement of all raters for pun success,368

funniness and coherence are 0.55, 0.48 and 0.40,369

meaning that our collected results are reliable.370

4 Results and Analysis371

4.1 Pun Generation Results372

Automatic Evaluation Results of the automatic373

evaluation can be seen in Table 2. We compare374

three baselines, three variations of our own model375

AMBIPUN, and the human written puns. First, the376

average length of our generated sentence are closest377

to human written sentences. Although our baseline 378

Pun-GAN has higher distinct ratio at sentence level, 379

we observe that is mainly due to a short sequence 380

length. Moreover, it falls short in corpus-level di- 381

versity, meaning that the generated sentences have 382

similar syntax patterns. On the other hand, our 383

Ext AMBIPUN achieves the highest corpus-level 384

diversity. As for unusualness, Pun GAN also ob- 385

tains unreasonably high score compared with gold. 386

A possible explanation is that the model generate 387

incoherently, which is also verified by our human 388

ratings. Our experimental results resonate with the 389

findings by He et al. (2019) that unusualness does 390

not correlate well with human ratings. 391

Human Evaluation Results from the automatic 392

evaluation can be seen in Table 3. We evaluate 393

the success rate, funniness, and coherence of the 394

generated outputs. The superiority of our models 395

are obvious. All three of our systems outperform 396

the baselines in terms of success rate and funniness. 397

On the other hand, GPT3 could generate even more 398

coherently than humans. 399

Analysis between extractive and generative 400

method. Interestingly, Ext AMBIPUN has higher 401

success rates and is funnier than Gen AMBIPUN, 402

indicating that extracting salient words from human 403

written sentences could introduce more surprising 404

and uncommon words than language models. We 405

posit that those atypical words refresh people’s eyes 406

and thus boost the pun success rate as well as the 407

funniness score. On the other hand, we also tried to 408

equip GPT3 with greater creatively by top-k sam- 409

pling with a large temperature T . However, larger 410

T s also result in arbitrary responses that human 411

may find unreadable. We hope our discovery could 412

6

Pun word Irrational
Sense 1 Real but not expressible as the quotient of two integers
Sense 2 Not consistent with or using reason

Model Example Pun Funny
GPT3 I can’t make a decision with all this irrationality going on. No 1.4
Neural Pun Note that this means that there is an irrational problem. Yes 2.4
Pun-GAN It can be use the irrational system. No 1.2
Ext AMBIPUN I have an irrational

::::::
paranoia about mathematical integers. Yes 3.8

Gen AMBIPUN My calculator is unjust and
:::::
illogic. It’s irrational. Yes 3.4

Human Old math teachers never die, they just become irrational. Yes 3.8

Pun word Drive
Sense 1 A journey in a vehicle (usually an automobile)
Sense 2 The trait of being highly motivated

Model Example Pun Funny
GPT3 I am exhausted, I need a nap before I can drive any more. No 2.0
Neural Pun It is that it can be use to drive a variety of function? No 1.6
Pun-GAN In he drive to the first three years. No 1.2
Ext AMBIPUN What do you call a

:::::
genius with cunning drive? racecar driver. Yes 3.6

Gen AMBIPUN I have the determination to
::::
travel to my

::::::::
destination. But i don’t have the drive. Yes 4.0

Human A boy saving up for a car has a lot of drive. Yes 4.2

Table 4: We show generated sentences for the word ’Irrational’ and ’Drive’ in the above table, along with their two
senses. For the results of our top performing models Gen AMBIPUN and Ext AMBIPUN, we underline the context
words that are related to each sense. All the generations are evaluated by external annotators, not the authors.

Success Rate
Beginning 46.7%
Middle 52.0%
End 54.7%

Table 5: The pun success rate sentences based on their
position annotated by human.

draw the community’s attention to those traditional413

techniques for creative generation.414

4.2 Case Study415

To better understand the advantages of our method416

from a qualitative perspective, we conduct a case417

study for the pun word “Irrational” and “Drive” and418

evaluate the generated samples by our top perform-419

ing models as well as the baselines. The generated420

outputs along with human evaluation results can be421

seen in Table 4. For both the examples pun words,422

at most one of the baselines successfully gener-423

ates a punning sentence. As discussed earlier, one424

possible reason is the absence of both senses. On425

the other hand, both Ext AMBIPUN and Sim AM-426

BIPUN introduce context words for the two senses427

and thus are able to generate of high quality puns428

that almost match the human written puns in terms429

of the funniness score.430

4.3 The Position of Pun Words431

As is mentioned in Section 2.4, we play with the432

position of the pun word in the prompt given to the433

candidate generation model. We try three variants434

Figure 3: Analysis of the position of pun word in hu-
man written puns. The y-axis indicates the number of
sentences and the x-axis indicates the position of pun
word on a scale from 0 (start) to 1 (end). The analysis
is based on 1,163 human written sentences included in
the SemEval 2017 Task 7 (Miller et al., 2017).

by putting the target pun word at the start, in the 435

middle, and at the end. For each variant, we then 436

ask Mechanical Turkers to judge if the given sen- 437

tences are puns. Again, each sentence is rated by 438

three Turkers and we take the majority answer if 439

the workers disagree. Results from this analysis 440

can be seen in Table 5. We observe that people find 441

a sentence more likely to be a pun when the target 442

word appears at the end. 443

To verify such hypothesis, we also calculate the 444

position of the pun words of 1,163 human written 445

pun sentences and report the distribution in Figure 446

3. The histogram corroborates with the human 447

7

annotated samples in that both suggest that keeping448

the pun word at the end of the sentence generates449

funnier puns. Theory of humor which says that the450

"joke" in a funny sentences some towards the end451

of the sentence (Shahaf et al., 2015) validates our452

analysis.453

5 Related Works454

5.1 Creative Language Generation455

Pun generation. Many of the previous works456

on pun generation have focused on phonological457

or syntactic pattern rather than semantic pattern458

(Miller and Gurevych, 2015; Hong and Ong, 2009;459

Petrović and Matthews, 2013; Valitutti et al., 2013)460

thus lacking creativity and flexibility. He et al.461

(2019) make use of local-global surprisal principle462

to generate homophonic puns and Yu et al. (2020)463

uses constrained lexical rewriting for the same task.464

Hashimoto et al. (2018) use a retrieve and edit ap-465

proach to generate homographic puns and Yu et al.466

(2018); Luo et al. (2019) propose complex neural467

model architecture such as constrained language468

model and GAN, and do not put emphasis on the469

linguistic structure of puns. We identify their ab-470

sence of both the senses as a shortcoming and build471

our approach from there.472

Figurative language generation. There have473

been several attempts to generate other types474

of figurative language such as metaphor, simile475

(Chakrabarty et al., 2020b), sarcasm, etc. Yu476

and Wan (2019) use metaphorically used verbs477

to generate metaphors in an unsupervised fashion.478

(Chakrabarty et al., 2021) generates metaphors us-479

ing symbolism and discriminative decoding. Stowe480

et al. (2021) study diverse metaphor generation481

using conceptual mapping. Mishra et al. (2019)482

propose a modular architecture for unsupervised483

sarcasm generation Chakrabarty et al. (2020a) use484

commonsense knowledge for the same task. Tian485

et al. (2021) leverage semantic structure and com-486

monsense and counterfactual knowledge to gener-487

ate hyperbole.488

As for stories, recent works focus on hierar-489

chical story generation that first plans a plot and490

then writes stories based on the storyline (Martin491

et al., 2018; Yao et al., 2019; Fan et al., 2019).492

Goldfarb-Tarrant et al. (2020) incorporates SRL493

extracted event representations in storylines with494

several event related decoding objectives.495

Humor generation. With the recent advent of 496

diverse datasets (Hasan et al. (2019), Mittal et al. 497

(2021), Yang et al. (2021)), it has become easier 498

to detect and generate humor. While large pre- 499

trained model have fairly successful in detection, 500

humor generation still remains an unsolved prob- 501

lem. Therefore, humor generation is usually stud- 502

ied in a specific setting. Petrović and Matthews 503

(2013) generates joke of the type ’I like my X like 504

I like my Y, Z’. Garimella et al. (2020) develops a 505

model to fill blanks in madlibs format to generate 506

humorous sentences and Yang et al. (2020) edit 507

headlines to make them funny. More research is 508

required to generate humorous sentences that are 509

not constrained by their semantic structure. 510

5.2 Pun detection 511

Being able to detect puns can be an essential step 512

to generate them as will be evident in the com- 513

ing sections. SemEval 2017 Task 7 (Miller et al., 514

2017) introduced the challenge of pun detection, 515

location detection and sense interpretation for ho- 516

mographic and homophonic puns. It also released 517

a dataset which becomes the backbone of our and 518

several other related works. Diao et al. (2019) make 519

use of Gated Attention network to detection ho- 520

mophonic puns. Zou and Lu (2019) introduces a 521

tagging schemes which lets them detect puns as 522

well as their location. They apply this approach to 523

both homophonic and homographic puns. 524

6 Conclusion 525

We propose a novel approach towards homographic 526

puns generation. Unlike previous works that are 527

mathematically heavy, our approach is back-boned 528

by the humor theory that ambiguity is achieved 529

by the context. Both automatic and human evalua- 530

tions show that our model AMBIPUN outperforms 531

the current state-of-the-art model by a significant 532

margin. We also analyze why our extraction-based 533

variation are more humorous than generation-based 534

variation, and investigate the role of the position 535

of pun words, which corresponds with human writ- 536

ten sentences. In future work, we want to make a 537

step further and explore the part of speech tags by 538

filtering out the context words based on their POS 539

tags and make combinations accordingly. Another 540

interesting direction could be to apply our proposed 541

approach to set phrases, which also make use of 542

different senses. 543

8

References544

Melanie Booth-Butterfield and Melissa Wanzer. 2018.545
Humor in interpersonal communication.546

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie547
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind548
Neelakantan, Pranav Shyam, Girish Sastry, Amanda549
Askell, et al. 2020. Language models are few-shot550
learners. arXiv preprint arXiv:2005.14165.551

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-552
san, and Nanyun Peng. 2020a. rΘ3: Reverse, retrieve,553
and rank for sarcasm generation with commonsense554
knowledge. arXiv preprint arXiv:2004.13248.555

Tuhin Chakrabarty, Smaranda Muresan, and Nanyun556
Peng. 2020b. Generating similes effortlessly like a557
pro: A style transfer approach for simile generation.558
arXiv preprint arXiv:2009.08942.559

Tuhin Chakrabarty, Xurui Zhang, Smaranda Muresan,560
and Nanyun Peng. 2021. Mermaid: Metaphor gener-561
ation with symbolism and discriminative decoding.562

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,563
Thorsten Brants, Phillipp Koehn, and Tony Robinson.564
2013. One billion word benchmark for measuring565
progress in statistical language modeling.566

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and567
Kristina Toutanova. 2019. Bert: Pre-training of deep568
bidirectional transformers for language understand-569
ing.570

Yufeng Diao, Hongfei Lin, Liang Yang, Xiaochao Fan,571
Di Wu, Dongyu Zhang, and Kan Xu. 2019. Het-572
erographic pun recognition via pronunciation and573
spelling understanding gated attention network. In574
The World Wide Web Conference, WWW ’19, page575
363–371, New York, NY, USA. Association for Com-576
puting Machinery.577

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.578
Strategies for structuring story generation. In ACL.579

John R Firth. 1957. A synopsis of linguistic theory,580
1930-1955. Studies in linguistic analysis.581

Aparna Garimella, Carmen Banea, Nabil Hossain, and582
Rada Mihalcea. 2020. “judge me by my size (noun),583
do you?” YodaLib: A demographic-aware humor584
generation framework. In Proceedings of the 28th585
International Conference on Computational Linguis-586
tics, pages 2814–2825, Barcelona, Spain (Online).587
International Committee on Computational Linguis-588
tics.589

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and Kevin590
Knight. 2016. Generating topical poetry. In Proceed-591
ings of the 2016 Conference on Empirical Methods592
in Natural Language Processing, pages 1183–1191.593

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty, Ralph594
Weischedel, and Nanyun Peng. 2020. Content plan-595
ning for neural story generation with aristotelian596
rescoring. arXiv preprint arXiv:2009.09870.597

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, 598
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron 599
Courville, and Yoshua Bengio. 2014. Generative 600
adversarial nets. Advances in neural information 601
processing systems, 27. 602

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. 603
2003. English gigaword. Linguistic Data Consor- 604
tium, Philadelphia, 4(1):34. 605

Md Kamrul Hasan, Wasifur Rahman, AmirAli 606
Bagher Zadeh, Jianyuan Zhong, Md Iftekhar Tanveer, 607
Louis-Philippe Morency, and Mohammed (Ehsan) 608
Hoque. 2019. Ur-funny: A multimodal language 609
dataset for understanding humor. Proceedings of 610
the 2019 Conference on Empirical Methods in Natu- 611
ral Language Processing and the 9th International 612
Joint Conference on Natural Language Processing 613
(EMNLP-IJCNLP). 614

Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, and 615
Percy Liang. 2018. A retrieve-and-edit framework 616
for predicting structured outputs. 617

He He, Nanyun Peng, and Percy Liang. 2019. 618
Pun generation with surprise. arXiv preprint 619
arXiv:1904.06828. 620

Bryan Anthony Hong and Ethel Ong. 2009. Automati- 621
cally extracting word relationships as templates for 622
pun generation. In Proceedings of the Workshop 623
on Computational Approaches to Linguistic Creativ- 624
ity, pages 24–31, Boulder, Colorado. Association for 625
Computational Linguistics. 626

Justine T Kao, Roger Levy, and Noah D Goodman. 2016. 627
A computational model of linguistic humor in puns. 628
Cognitive science, 40(5):1270–1285. 629

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi- 630
cient and effective passage search via contextualized 631
late interaction over bert. 632

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, 633
and Bill Dolan. 2015. A diversity-promoting objec- 634
tive function for neural conversation models. arXiv 635
preprint arXiv:1510.03055. 636

Louis G Lippman and Mara L Dunn. 2000. Contextual 637
connections within puns: Effects on perceived humor 638
and memory. The journal of general psychology, 639
127(2):185–197. 640

Fuli Luo, Shunyao Li, Pengcheng Yang, Baobao Chang, 641
Zhifang Sui, Xu Sun, et al. 2019. Pun-gan: Gener- 642
ative adversarial network for pun generation. arXiv 643
preprint arXiv:1910.10950. 644

Lara J Martin, Prithviraj Ammanabrolu, Xinyu Wang, 645
William Hancock, Shruti Singh, Brent Harrison, and 646
Mark O Riedl. 2018. Event representations for au- 647
tomated story generation with deep neural nets. In 648
Thirty-Second AAAI Conference on Artificial Intelli- 649
gence. 650

9

https://doi.org/10.1093/acrefore/9780190228613.013.660
http://arxiv.org/abs/2103.06779
http://arxiv.org/abs/2103.06779
http://arxiv.org/abs/2103.06779
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3308558.3313505
https://doi.org/10.1145/3308558.3313505
https://doi.org/10.1145/3308558.3313505
https://doi.org/10.1145/3308558.3313505
https://doi.org/10.1145/3308558.3313505
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/2020.coling-main.253
https://doi.org/10.18653/v1/d19-1211
https://doi.org/10.18653/v1/d19-1211
https://doi.org/10.18653/v1/d19-1211
http://arxiv.org/abs/1812.01194
http://arxiv.org/abs/1812.01194
http://arxiv.org/abs/1812.01194
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004
https://aclanthology.org/W09-2004
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832
http://arxiv.org/abs/2004.12832

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-651
rado, and Jeff Dean. 2013. Distributed representa-652
tions of words and phrases and their compositionality.653
In Advances in neural information processing sys-654
tems, pages 3111–3119.655

Tristan Miller and Iryna Gurevych. 2015. Automatic656
disambiguation of English puns. In Proceedings of657
the 53rd Annual Meeting of the Association for Com-658
putational Linguistics and the 7th International Joint659
Conference on Natural Language Processing (Vol-660
ume 1: Long Papers), pages 719–729, Beijing, China.661
Association for Computational Linguistics.662

Tristan Miller, Christian F Hempelmann, and Iryna663
Gurevych. 2017. Semeval-2017 task 7: Detection664
and interpretation of english puns. In Proceedings of665
the 11th International Workshop on Semantic Evalu-666
ation (SemEval-2017), pages 58–68.667

Abhijit Mishra, Tarun Tater, and Karthik Sankara-668
narayanan. 2019. A modular architecture for un-669
supervised sarcasm generation. In Proceedings of670
the 2019 Conference on Empirical Methods in Natu-671
ral Language Processing and the 9th International672
Joint Conference on Natural Language Processing673
(EMNLP-IJCNLP), pages 6144–6154.674

Anirudh Mittal, Pranav Jeevan, Prerak Gandhi, Diptesh675
Kanojia, and Pushpak Bhattacharyya. 2021. "so you676
think you’re funny?": Rating the humour quotient in677
standup comedy.678

Lili Mou, Rui Yan, Ge Li, Lu Zhang, and Zhi Jin.679
2015. Backward and forward language modeling680
for constrained sentence generation. arXiv preprint681
arXiv:1512.06612.682

Saša Petrović and David Matthews. 2013. Unsupervised683
joke generation from big data. In Proceedings of the684
51st Annual Meeting of the Association for Compu-685
tational Linguistics (Volume 2: Short Papers), pages686
228–232, Sofia, Bulgaria. Association for Computa-687
tional Linguistics.688

Fanchao Qi, Lei Zhang, Yanhui Yang, Zhiyuan Liu, and689
Maosong Sun. 2020. Wantwords: An open-source690
online reverse dictionary system. In Proceedings of691
the 2020 Conference on Empirical Methods in Nat-692
ural Language Processing: System Demonstrations,693
pages 175–181.694

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine695
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,696
Wei Li, and Peter J. Liu. 2020. Exploring the limits697
of transfer learning with a unified text-to-text trans-698
former.699

Juan Ramos. 2003. Using tf-idf to determine word700
relevance in document queries.701

Stuart Rose, Dave Engel, Nick Cramer, and Wendy702
Cowley. 2010. Automatic Keyword Extraction from703
Individual Documents, pages 1 – 20.704

Dafna Shahaf, Eric Horvitz, and Robert Mankoff. 2015. 705
Inside jokes: Identifying humorous cartoon captions. 706
In Proceedings of the 21th ACM SIGKDD Interna- 707
tional Conference on Knowledge Discovery and Data 708
Mining, KDD ’15, page 1065–1074, New York, NY, 709
USA. Association for Computing Machinery. 710

Kevin Stowe, Tuhin Chakrabarty, Nanyun Peng, 711
Smaranda Muresan, and Iryna Gurevych. 2021. 712
Metaphor generation with conceptual mappings. 713

Yufei Tian, Arvind krishna Sridhar, and Nanyun Peng. 714
2021. HypoGen: Hyperbole generation with com- 715
monsense and counterfactual knowledge. In Find- 716
ings of the Association for Computational Linguis- 717
tics: EMNLP 2021, pages 1583–1593, Punta Cana, 718
Dominican Republic. Association for Computational 719
Linguistics. 720

Alessandro Valitutti, Hannu Toivonen, Antoine Doucet, 721
and Jukka Toivanen. 2013. "let everything turn well 722
in your wife": Generation of adult humor using lexi- 723
cal constraints. volume 2. 724

Orion Weller and Kevin Seppi. 2020. The rjokes dataset: 725
a large scale humor collection. In Proceedings of The 726
12th language resources and evaluation conference, 727
pages 6136–6141. 728

Ziqing Yang, Yiming Cui, Zhipeng Chen, Wanxiang 729
Che, Ting Liu, Shijin Wang, and Guoping Hu. 2020. 730
TextBrewer: An Open-Source Knowledge Distilla- 731
tion Toolkit for Natural Language Processing. In 732
Proceedings of the 58th Annual Meeting of the Associ- 733
ation for Computational Linguistics: System Demon- 734
strations, pages 9–16, Online. Association for Com- 735
putational Linguistics. 736

Zixiaofan Yang, Shayan Hooshmand, and Julia 737
Hirschberg. 2021. CHoRaL: Collecting humor re- 738
action labels from millions of social media users. 739
In Proceedings of the 2021 Conference on Empiri- 740
cal Methods in Natural Language Processing, pages 741
4429–4435, Online and Punta Cana, Dominican Re- 742
public. Association for Computational Linguistics. 743

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin 744
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan- 745
and-write: Towards better automatic storytelling. In 746
Proceedings of the AAAI Conference on Artificial 747
Intelligence, volume 33, pages 7378–7385. 748

Zhiwei Yu, Jiwei Tan, and Xiaojun Wan. 2018. A neural 749
approach to pun generation. In Proceedings of the 750
56th Annual Meeting of the Association for Compu- 751
tational Linguistics (Volume 1: Long Papers), pages 752
1650–1660. 753

Zhiwei Yu and Xiaojun Wan. 2019. How to avoid sen- 754
tences spelling boring? towards a neural approach to 755
unsupervised metaphor generation. In Proceedings 756
of the 2019 Conference of the North American Chap- 757
ter of the Association for Computational Linguistics: 758
Human Language Technologies, Volume 1 (Long and 759
Short Papers), pages 861–871, Minneapolis, Min- 760
nesota. Association for Computational Linguistics. 761

10

https://doi.org/10.3115/v1/P15-1070
https://doi.org/10.3115/v1/P15-1070
https://doi.org/10.3115/v1/P15-1070
http://arxiv.org/abs/2110.12765
http://arxiv.org/abs/2110.12765
http://arxiv.org/abs/2110.12765
http://arxiv.org/abs/2110.12765
http://arxiv.org/abs/2110.12765
https://aclanthology.org/P13-2041
https://aclanthology.org/P13-2041
https://aclanthology.org/P13-2041
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1145/2783258.2783388
http://arxiv.org/abs/2106.01228
https://aclanthology.org/2021.findings-emnlp.136
https://aclanthology.org/2021.findings-emnlp.136
https://aclanthology.org/2021.findings-emnlp.136
https://doi.org/10.18653/v1/2020.acl-demos.2
https://doi.org/10.18653/v1/2020.acl-demos.2
https://doi.org/10.18653/v1/2020.acl-demos.2
https://aclanthology.org/2021.emnlp-main.364
https://aclanthology.org/2021.emnlp-main.364
https://aclanthology.org/2021.emnlp-main.364
https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092
https://doi.org/10.18653/v1/N19-1092

Zhiwei Yu, Hongyu Zang, and Xiaojun Wan. 2020. Ho-762
mophonic pun generation with lexically constrained763
rewriting. In Proceedings of the 2020 Conference on764
Empirical Methods in Natural Language Processing765
(EMNLP), pages 2870–2876, Online. Association for766
Computational Linguistics.767

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,768
Qun Liu, and Maosong Sun. 2020. Multi-channel769
reverse dictionary model. In Proceedings of the AAAI770
Conference on Artificial Intelligence, pages 312–319.771

Yanyan Zou and Wei Lu. 2019. Joint detection and772
location of English puns. In Proceedings of the 2019773
Conference of the North American Chapter of the774
Association for Computational Linguistics: Human775
Language Technologies, Volume 1 (Long and Short776
Papers), pages 2117–2123, Minneapolis, Minnesota.777
Association for Computational Linguistics.778

11

https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/2020.emnlp-main.229
https://doi.org/10.18653/v1/N19-1217
https://doi.org/10.18653/v1/N19-1217
https://doi.org/10.18653/v1/N19-1217

Appendix779

A Humor Classifier Results for Selecting780

Puns781

To further discuss the accuracy and recall of our hu-782

mor classifier, we show a representative output in783

Table 6. The table contains a few selected sentences784

ranked my the humor classifier. We also label each785

sentence as yes, no, and maybe to indicate if it is a786

pun or not. As discussed in the methodology, we787

train our classifier on humor dataset. As puns are788

an important part of humor generation, this model789

can help rule out some options. Basic theories of790

humor such as incongruity and surprise apply to791

both of them. As can be seen in the table, our792

classifier is able to successfully pull aside unfunny793

or non-coherent sentences. Looking at the exam-794

ples at the top and the middle, it can be observed795

that some better examples are classified lower than796

others. Making this observation across many pun797

words, we decided to use the classifier only to rule798

out the bottom third samples. For the rest of the799

generations, we randomly sample them.800

On manual observation, we realised that when801

we cherrypick samples, we’re able to find many802

sentences that meet our expectations. Therefore,803

building a classifier that can accurately find these804

sentences can increase the accuracy by a large mar-805

gin. We treat this as an opportunity for future work.806

B More Examples of Generated Puns807

We compile more examples generated by AM-808

BIPUNin Table 7 for the following pun words: sen-809

tence, case, bugs, delivery.This table further sup-810

ports our point that on manual selection our model811

is able to generate human-like sentences.812

12

Sentence Rank Pun

What’s the interest rate on a home mortgage? No interest. 1 Yes
My bank said I think they’re interested in me. I said no. 2 No
My girlfriend said she had an interest in banking so i loan her a quarter 3 Yes
I have no interest in being a guardian. It’s free. 4 Maybe
I’ve never had interest placed on borrowings. It’s a waste of time. 5 Yes
Why did the republican attack the bank? Because it was in its interest. 6 Maybe
What is the republican’s strategy? The interest rate. 7 No
What is the most dispensable interest in investment? 8 No
If trump had an interest in president he would make it an president-of-interest. 9 No

Table 6: An example of candidate pun sentences ranked by the humor classifier. As can be seen, the model is able to
rule out non-pun sentences but fails to pick out high-quality ones.

13

Target word sentence

Sense 1 A string of words satisfying the grammatical rules of a language
Sense 2 (Criminal law) a final judgment of guilty in a criminal case and the punishment that is imposed

1 The word jail is a sentence.
2 What’s the punishment for using antonyms in a sentence syntax is it a sentence?
3 I’m sorry I said the sentence was too long but punishments are endless.
4 The sentence in the dictionary doesn’t sound very guilty.

Target word case
Sense 1 A portable container for carrying several objects
Sense 2 A statement of facts and reasons used to support an argument

1 What’s the most durable luggage for a detective? jury case
2 A jury just found a container of leather there’s no reason to argue it’s a case
3 What do you call a container used for investigation research? a case study
4 Why did the cardboard get into a trial? because it was an investigation case

Target word bugs

Sense 1 General term for any insect or similar creeping or crawling invertebrate
Sense 2 A fault or defect in a computer program, system, or machine

1 Why did the garden restart its computer? it had bugs in it.
2 What do you call a pest that’s slow programmer? bugs bug
3 Why did the compost crash? it had bugs in it.
4 What do you call a bug that’s disgusting? a glitch in the internet

Target word delivery

Sense 1 the act of delivering or distributing something (as goods or mail)
Sense 2 your characteristic style or manner of expressing yourself orally

1 What did the letter say to the parcel? clear delivery!
2 What do you call a trucking truckdriver with no articulation? delivery driver.
3 The distribution center has a pronunciation dictionary. it’s a delivery service
4 What do you call a parcel with no dialogue and an accent? delivery service.

Table 7: More examples generated by Ext AMBIPUN.

14

