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Abstract

Computational humor has garnered interest in
the natural language processing community due
to its wide applications to real-world scenarios.
One way to express humor is via the use of
puns. In this paper, we propose a simple yet ef-
fective way to generate pun sentences that does
not require any training on existing puns. Our
approach is inspired by humor theories that am-
biguity comes from the context rather than the
pun word itself. Given a pair of definitions of a
pun word, our model first produces a list of re-
lated concepts through a reverse dictionary. We
then utilize one-shot GPT3 to generate context
words and then generate puns incorporating
context words from both concepts. We also
investigate how the position of a pun word ap-
pearing in the sentence will influence the gener-
ation results. Human evaluation shows that our
method successfully generates pun 52% of the
time, outperforming well crafted baselines and
the state-of-the-art models by a large margin.

1 Introduction

Humor has the tendency to provoke laughter and
provide amusement. By creating an engaging and
conducive environment, it is one of the most im-
portant forms of human communication (Booth-
Butterfield and Wanzer, 2018). Teaching comput-
ers to understand and generate humorous texts such
as puns pave the way for various practical appli-
cations, such as improving creativity in machine-
aided writing and making chat-bots more engaging.

In this paper, we tackle the problem of generat-
ing homographic puns (Miller et al., 2017): two
or more meanings of a polysemy for an intended
humorous or rhetorical effect. For example, the
three punning jokes listed in Figure 1 exploits two
contrasting meanings of the word sentence: 1) a
string of words that are grammatical, and 2) the
punishment by a court assigned to a guilty person.
Compared with heterographic puns where the am-
biguity comes from two near homophones spelled

Sense 1 a string of words that is complete in itself, typically

Definition | containing a subject and predicate

Sense 2 (criminal law) a final judgment of guilty in a

Definition | criminal case and the punishment that is imposed

QOurs 1 The sentence is ungrammatical. The jury didn't
hear it.

Ours 2 I'm sorry | said the sentence was too long but
punishments are endless.

Human The Judge has got a stutter. Looks like | am not
getting a sentence.

Figure 1: An illustration of homographic puns. The
target pun word “sentence” and the two sense defini-
tions are given to the model as input, and the desired
outputs are many punning sentences. To make the tar-
get word interpretable in both senses, we propose to
include context words related to both sense definitions.
We highlight the context words of each sense in blue
and pink.

in a different way, the challenge of processing ho-
mographic puns is even bigger: we must differenti-
ate contrasting senses of words that sound and are
spelled in the same way.

Due to the lack of sizable training data, existing
approaches to generate puns are all heavy-weighted
in order to not rely on pun sentences for training.
For example, (Yu et al., 2018) train a constrained
neural language model Mou et al. (2015) from a
general text corpus, and then use a joint decoding
algorithm to guarantee that both definitions of the
target pun word will make sense in the generated
sequence. He et al. (2019) propose a local-global
surprisal principle, and Luo et al. (2019) leverage
the Generative Adversarial Nets (Goodfellow et al.,
2014) to encourage ambiguity of the outputs via
reinforcement learning. We, on the other hand,
propose a simple yet effective way to tackle this
problem: encouraging ambiguity by incorporating
context words related to each sense.

Inspired by humor theories (Lippman and Dunn,
2000), we hypothesize that it is the contextual con-
nections rather than the pun word itself that are
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Figure 2: Overview of the approach. Given a pun word and its senses, we convert them to their sense definitions.
then we use reverse dictionary to obtain the related words. Using few-shot GPT3, we generate context word for
each related word. Using a combination of context words along with the pun word, we generate several candidates
sentences using T5. Finally, we use a classifier to choose the most humorous sentences. We also give an example

for pun word ’sentence’ for each part of the approach.

crucial for the success of pun generation. For in-
stance, in Figure 1 we observe that context related
to both senses (e.g., ungrammatical and jury) ap-
pear in a punning sentence. Such observation is
important as the error analysis of the state-of-the-
art model (Luo et al., 2019) shows that 46% of the
generated sentences fail to be puns due to single
word sense, and another 27% fail due to being too
general, both of which can be resolved by introduc-
ing more context.

Specifically, given the two sense definitions of a
target pun word, we first use a reverse dictionary'
to generate related words that are monosemous
for both senses. This first step helps us circumvent
the obstacle of processing pun words with the same
written form. However, related words alone are not
enough to generate coherent pun sentences because
they are clustered and tend to be synonyms. We
hence propose to use context words (described
in Section 2.3) to link the contrasting senses and
make our target pun word reasonable when inter-
preted in both definitions. We explore three differ-
ent settings: retrieval-based (TF-IDF), similarity-
based (Word2Vec), and generative-based (Few-shot
GPT?3). Finally, we finetune the TS model (Raffel
et al., 2020) on general non-humorous texts to gen-
erate coherent sentences given the pun word and
contexts words as input.

Interestingly, our experimental results show that
to retrieve-and-extract context words outperforms
the giant few-shot GPT3 model in terms of gen-
erating funny pun sentences, although the latter
has shown to be much more powerful in many
sophisticated tasks (Brown et al., 2020). Our
simple pipeline remarkably outperforms all the

"https://reversedictionary.org/

more heavy-weighted approaches including the
constrained language models with special decoding
(Yu et al., 2018) and the state-of-the-art Pun-GAN
model (Luo et al., 2019).?

2 Methodology

2.1 Overview and Motivation

We first give an overview of different steps in our
approach. Our input is the target pun word (P) and
its two senses (S7, S2), and the expected output is
a list of humorous punning sentences where P can
be interpreted in both senses. We implement the
ambiguity principle proposed in (Kao et al., 2016):
a pun sentence should contain one or more context
words corresponding to each of the two senses of
the pun word.

The overview of our approach is visualized
in Figure 2 and formally written in Algo-
rithm 1. Given two different sense descriptions
(SenseDef), we first use a reverse dictionary to
generate a list of words that semantically match the
query descriptions. We call them related words
(RW) and describe full details in Section 2.2. How-
ever, those related words are synonyms of each
other and only cover a few focused topics, thus
failing to compose humorous punning sentences.
For example, for the sentence: “The Judge has got
a stutter. Looks like I am not getting a sentence.”,
The word representing the first sense (i.e. a final
judgment of guilty in a criminal case and the pun-
ishment that is imposed) is represented by Judge.
Judge could not be generated using the sense defi-
nition, but is used frequently along with the sense
definition.

2Qur code and data will be released upon acceptance.



Algorithm 1 Pun Generation

Algorithm 2 TF-IDF for context words

: function GENPUN(P, S1, S3)
: Input: Tuple of pun word and its sense - P, S1, S
Output: List of final sentences - Sent final
for P, 51, Sz in P, Sl, Sz do

SenseDef = get_sense_definitions(S1,52)

RW = reverse_dictionary(SenseDef) > get related
words from sense definitions

RWefinea = refine(RW)

CW = get_context_words(RW e finea)> get context
words from related words
9: CW,efined = refine(CW)
10: Sentcandidates = generate_sentences(CWie fined)
11: Sent pinal = classify_sentences(Sentcandidates)
return Sent finai
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Considering such nuances, in Section 2.3 we
propose three different methods to obtain the con-
text words (CW1, CW5) of all the related words.
They are TF-IDF (retrieve-and-extract), similarity-
based (word2vec), and generative model (few-shot
GPT3). Finally, in Section 2.4 and Section 2.5,
we introduce a keyword-to-text generator to gen-
erate candidate sentences (Sent.qndidates), and a
humor classifier to rule out some of the non-pun
sentences. Final sentences (Sentf;q) are then
randomly sampled for evaluation.? All our training
data is general, non-humorous corpus except for
the humor classifier.

2.2 Related words

We aim at differentiating the two senses of a pol-
ysemy by taking the related words, so that each
sense will be represented by a set of monosemous
words. To this end, we leverage the Reverse Dic-
tionary (Qi et al., 2020; Zhang et al., 2020) which
takes as input a description and generates multiple
related words whose semantic meaning match the
query description. For each sense definition, we
generate five words.

2.3 Context words

For context words, we compare three different ap-
proaches. Refinement of the context words is men-
tioned in Section 3.2.

Method 1: TF-IDF For each related word, we re-
trieve sentences from the One Billion Word dataset
that contains that word and then extract a few key-
words. Next, we implement TF-IDF (Ramos, 2003)
to rank them. For a given word and corpora, the

3Note that all previous works produce only the best sen-
tence during decoding time, while we aim at generating fens
or hundreds of sentences for a target pun word, so that our
task is actually more challenging.

function GETCW( KW1, KW5)
2: Input: List of related words - KW, KW
Qutput: List of context words - CW;, CW;
4: Inmitialize CW1, CW5 to empty
for KW in zip(KW;, KW53) do
6: for win KW do
S = generate_sentences(w) > Refrieve sentences
Jfor each word

8: kw = generate_keywords(.S)
Fs = get_freq_sentences(kw)
10: Fc = get_freq_corpora(kw)
FK = get_tfidf(Fs ,Fc )
12: CW1 = append(F K ) > Add top TF-IDF words

to context words list

return CWy, CWs

TF-IDF value is given in Equation 1, where Fg
corresponds to the frequency of that word in the
retrieved sentences and JF¢ corresponds to the fre-
quency of the word in the entire corpora. Based on
this value, we choose the top 10 context words that
are mostly likely to be used along with the related
words and therefore the pun word. Detailed steps
for the process are listed in Algorithm 2.

J’.‘
tf(W,C) = Til (1)

Method 2: Word2Vec Inspired by the idea that
“a word is characterized by the company it keeps”
(Firth, 1957), we propose to get context words
from word2vec (Mikolov et al., 2013), which pro-
vides distributed word representations. Following
a previous work (Ghazvininejad et al., 2016), we
train a continuous-bag-of-words model with win-
dow size 40 and word vector dimension 200, and
then calculate the cosine similarity between words.
Ghazvininejad et al. (2016) have also shown that
the training corpus for word2vec plays a crucial
role on the quality of generated context words.
Hence, we try to train word2vec models on three
different corpus: the largest available humorous
Dataset, rJokes (Weller and Seppi, 2020), the En-
glish Gigaword (Graff et al., 2003) which is an
archive of newswire text data, and the one-billion
Wikipedia corpus*. We find that the topics covered
by rJokes is far from what it needs to train a good
word2vec model, and that the word2vec model
trained on Gigaword strongly favors newsy words
than the others. Hence, we train on Wikipedia.

Method 3: GPT3 For the generative version, we
use the powerful language model, one-shot GPT3

*http://mattmahoney.net/dc/enwik9.zip



(Brown et al., 2020) to generate context words. We
choose not to train another model because the out-
put of one-shot GPT3 is already satisfactory. An
example can be seen in Table 1, where we com-
pare the output of context words for the pun word
‘sentence’.

2.4 Candidate Sentence generation

After receiving context words for each sense, we
generate humorous puns. For this step, we finetune
a keyword-to-sentence model using T5 (Raffel
et al., 2020), as it is capable of handling text-to-text
tasks. To train this we need to create a dataset
that replicate the expected behaviour i.e. given
a prompt (in a specific format), generate a well
formed and humorous sentence. The prompt will
contain information about the pun word (P), and 2
words from each of the two senses (S14, S16, S24,
Sap). We expect our generated output to contain the
pun word and context words related to each sense.
The following prompt is given to the trained model:

[ generate sentence: P, S, S1p, 524, S2- ]

For example for the word ‘sentence’, a possible
prompt can be generate sentence: sentence, judge,
trail, noun, comma. However, we also investigate
whether the position of the pun word will affect the
quality of generated sentences. We insert the pun
word in the start (first place), middle (third place),
and end (fifth place) of the prompt and generate
candidate sentences using these prompt configura-
tions. We discuss our findings in Section 4.3.

2.5 Humor Classification

Finally, we introduce a classification model to as-
sist us in selecting (i.e., ranking) punning sentences.
Since we do not have sizable training data for puns,
we propose to train our classification model on
humorous dataset in a distantly supervised fash-
ion. Specifically, we train BERT-large (Devlin
et al., 2019) on the ColBERT dataset that contains
200,000 jokes and non-jokes used for humor detec-
tion. We use the probability produced by the classi-
fication model to rank our candidate sentences.
Our error analysis shows that our distantly su-
pervised classification model can successfully rule
out the bad generations, i.e., non-puns, as puns are
humorous by nature. However, the model is not

great at choosing the best samples.’. Therefore, we
use this classifier only to remove the bottom third
candidates. We leave this for open future work to
accurately pick out high-quality punning sentences
instead of funny sentences.

3 Experiments

3.1 Datasets

Training dataset: For the context word generation
steps, we use the One Billion word dataset (Chelba
et al., 2013) to retrieve sentences for.a given word.
To calculate TF-IDF, we use this dataset to calcu-
late the frequency of words. This dataset contains
roughly 0.8B words and is obtained from WMT
2011 News crawl data.

For training the candidate generation module,
we use ColBERT dataset (Khattab and Zaharia,
2020). It contains 100k positives and 100k negative
samples collected from various sources like Reddit,
news headlines, etc. For each sentence, we extract
the keywords using RAKE (Rose et al., 2010). We
also use the same data to finetune BERT-large to
develop our humor classifier.

Evaluation dataset: On lines of other recent
pun generation works, we use the SemEval 2017
Task 7 (Miller et al., 2017) for evaluation. The
dataset contains 1,163 human written pun sentences
with a total of 895 unique pun words. Each sen-
tences has the target pun word, location of the pun
word and the WordNet sense keys of the two senses.

3.2 Implementation Details

Experimental Settings For the word2vec model
we train a continuous-bag-of-words model with
window size 40 and word vector dimension 200.
For the candidate generation module, we train the
T5-base model on 10 epochs and select the best
performing model based on validation loss. Max
sequence length for target and source is set to 30.
Batch size is set to 64.

Data Refinement The process to generate key-
words (i.e., both related and context words) can
entail many words that are not ideal. Continuing
with these words would further propagate and en-
large the noise. Hence, to minimize this noise, we
implement the following data refinement steps to
ensure the keywords stick to our standards: we
avoid using polysemous words as keywords during

S A few samples along with their assigned probabilities can
be seen in Table ?? in the appendix



Sense 1

Sense 2

a string of words satisfying

a final judgment of guilty in a

Definition . criminal case and the punishment
the grammatical rules of a language ..
that is imposed
Related words syllable, syntax, lex1f:0n, thesaurus, punishment, .Verdlct, sentencing,
grammatical retrial, penalty
TF-IDF syllables, words, three, spelling, cruel, expected, end, court,
even, said, describe, typos scheduled, set, spector, seeking
syllable, pronounced, words, rhyme, punished, crimes, offender, torture,
Word2Vec . .
verbs, meaning, hence, example moral, guilt, abuse, offender
GPT3 words, letters, punctuation, grammar, prison, judge, jury, trial,

synonym, dictionary, meaning, comma

justice, lawyer, court, evidence

Table 1: Comparison of the three different context word generation mechanism. We take this example for the word
’sentence’. The table lists sense definitions of the two senses. Then list the related words obtained from the sense
definitions. For these related words, we obtain context words using three different mechanisms.

intermediate steps because their perceived sense is
highly ambiguous. We also disregard any numbers
and special characters produced by our systems.

3.3 Baselines

There are two existing works on homographic pun
generation, the same task as ours. Besides, we also
compare our model with the powerful few-shot
learner, GPT3 (Brown et al., 2020).

Neural Pun Yu et al. (2018) propose the first
neural approach to homographic puns based on a
conditional neural language model. A constrained
beam search algorithm is proposed to jointly de-
code the two distinct senses of the same word.

Pun-GAN The state-of-the-art-model introduced
by Luo et al. (2019) that adopts the Generative Ad-
versarial Net (GAN) (Goodfellow et al., 2014) to
generate homographic puns. Specifically, a gener-
ator is responsible for generating a pun sentence,
and a discriminator is trained to tell human-written
puns from machine generated puns. Such setting
encourages the ambiguity of the generated sentence
via reinforcement learning (RL).

Few-shot GPT3 We also generate puns with a
few examples feeding into GPT3 davinci-instruct-
beta, the most capable model in the GPT3 family
to follow the instructions and generate creative lan-
guage.® We provide the target pun word and its two
senses in our prompt along with the instruction.

Ablations of our own models We also compare
three methods proposed by us to obtain the context
words (described in Section 2.3). We call them Ext
AMBIPUN, Sim AMBIPUN, and Gen AMBIPUN.

Shttps://beta.openai.com/docs/engines/instruct-series-
beta

3.4 Evaluation

Automatic Evaluation Previous works use two
metrics to automatically evaluate the quality of the
generated puns. First, both (He et al., 2019) and
Luo et al. (2019) report the the unusualness of an
n-length output, which is defined as the normalized
log-probability of each token z; subtracted by its
training probability under a language model

us

n
—%log p(z1,... ,mn)/Hp(:cZ)

i=1

2

Although He et al. (2019)further show that unusu-
alness does not correlate well with human ratings
of puns, we still follow the same procedure. Be-
sides, (Luo et al., 2019) and (Yu et al., 2018) use
distinct unigram and bigrams (Li et al., 2015) to
measure the diversity of each system on a sentence-
level. However, we observe that certain systems
tend to generate sentences with fixed patterns.
Namely, those generation models lack diversity
corpus-wise, but could still gain high distinctive-
ness score sentence-wise. Hence, we propose to
measure the diversity from both levels. We also
report the the average sentence length produced.

Human Evaluation It is known that currently
available automatic evaluation metrics could not
reflect the nuances of language, including humor
and creativity. Following the procedure of previ-
ous works (Yu et al., 2018; He et al., 2019), we
randomly shuffle and select 100 sentences for hu-
man evaluation. We collected our human ratings
on Amazon Mechanical Turk (AMT). For each sen-
tence, three workers are explicitly given the target
pun word. We first ask them to judge if a given
sentence is a pun sentence on a binary scale. Then,
they are asked the questions:“How funny is this



Model | S Iﬁlfnce | Sentence-level Diversity | Corpus-level Diversity | Unusualness
| Tl | Distl Dist-2 | Dist-1 Dist2 |
1gth
Few-shot GPT3 |  12.3 37.1 80.4 94.5 91.5 0.09
Neural Pun 12.6 30.2 73.0 91.3 90.5 0.22
Pun GAN 9.7 34.6 71.9 90.2 87.6 0.47
Sim AMBIPUN 13.4 324 77.1 92.9 91.2 0.26
Gen AMBIPUN 135 32.8 77.8 93.6 91.2 0.26
Ext AMBIPUN 14.0 31.7 78.7 96.3 92.3 0.28
Human | 141 | 366 81.9 | 955 924 | 035

Table 2: Results of automatic evaluation on average sequence length, sentence-level and corpus-level diversity, and
the unusualness scores. Boldface denotes the best performance and underline denotes the second best performance
among systems. We compare with three strong baselines: Few-shot GPT3, Neural Pun (Yu et al., 2018), and Pun
GAN (Luo et al., 2019), and three variations of our own method: similarity-based context generation(Sim AMBIPUN),
generative context generation (Gen AMBIPUN) and extraction-based context generation (Ext AMBIPUN). Note that
unusualness has been shown to have weak correlation with human ratings by He et al. (2019).

Model Success Fun  Coherence
Rate
Few-shot GPT3 13.0% 1.82 3.77
Neural Pun 35.3% 2.17 3.21
Pun GAN 358%  2.28 2.97
Sim AMBIPUN 45.5% 2.69 3.38
Gen AMBIPUN 50.5% 2.94 3.53
Ext AMBIPUN 522%  3.00 348
Human 702%  3.43 3.66

Table 3: Human evaluation results on all the pun gener-
ation systems. We how the success rates, and average
scores of funniness and coherence of each system. Over-
all, Ext AMBIPUNperforms the best.

sentence?” and “How coherent or fluent is this
sentence?”” on a scale from 1 (not at all) to 5 (ex-
tremely). We provide detailed instructions and ex-
amples with explanation for each criteria. We also
adopt attention questions and qualification types
to make our collected results more reliable. For
pun judgement (binary), we take the majority vote
among three workers, while for funniness and co-
herence (1 to 5), we take the average ratings. We
then use the pairwise kappa coefficient to measure
the inter-annotator agreement. The average inter-
annotator agreement of all raters for pun success,
funniness and coherence are 0.55, 0.48 and 0.40,
meaning that our collected results are reliable.

4 Results and Analysis

4.1 Pun Generation Results

Automatic Evaluation Results of the automatic
evaluation can be seen in Table 2. We compare
three baselines, three variations of our own model
AMBIPUN, and the human written puns. First, the
average length of our generated sentence are closest

to human written sentences. Although our baseline
Pun-GAN has higher distinct ratio at sentence level,
we observe that is mainly due to a short sequence
length. Moreover, it falls short in corpus-level di-
versity, meaning that the generated sentences have
similar syntax patterns. On the other hand, our
Ext AMBIPUN achieves the highest corpus-level
diversity. As for unusualness, Pun GAN also ob-
tains unreasonably high score compared with gold.
A possible explanation is that the model generate
incoherently, which is also verified by our human
ratings. Our experimental results resonate with the
findings by He et al. (2019) that unusualness does
not correlate well with human ratings.

Human Evaluation Results from the automatic
evaluation can be seen in Table 3. We evaluate
the success rate, funniness, and coherence of the
generated outputs. The superiority of our models
are obvious. All three of our systems outperform
the baselines in terms of success rate and funniness.
On the other hand, GPT3 could generate even more
coherently than humans.

Analysis between extractive and generative
method. Interestingly, Ext AMBIPUN has higher
success rates and is funnier than Gen AMBIPUN,
indicating that extracting salient words from human
written sentences could introduce more surprising
and uncommon words than language models. We
posit that those atypical words refresh people’s eyes
and thus boost the pun success rate as well as the
funniness score. On the other hand, we also tried to
equip GPT3 with greater creatively by top-k sam-
pling with a large temperature 7. However, larger
T's also result in arbitrary responses that human
may find unreadable. We hope our discovery could



Pun word Irrational

Sense 1 Real but not expressible as the quotient of two integers

Sense 2 Not consistent with or using reason

Model Example | Pun | Funny
GPT3 I can’t make a decision with all this irrationality going on. No 1.4
Neural Pun Note that this means that there is an irrational problem. Yes 2.4
Pun-GAN It can be use the irrational system. No 1.2
Ext AMBIPUN | Thave an irrational paranoia about mathematical integers. Yes 3.8
Gen AMBIPUN | My calculator is unjust and illogic. It’s irrational. Yes 34
Human Old math teachers never die, they just become irrational. Yes 3.8
Pun word Drive

Sense 1 A journey in a vehicle (usually an automobile)

Sense 2 The trait of being highly motivated

Model Example Pun | Funny
GPT3 I am exhausted, I need a nap before I can drive any more. No 2.0
Neural Pun It is that it can be use to drive a variety of function? No 1.6
Pun-GAN In he drive to the first three years. No 1.2
Ext AMBIPUN | What do you call a genius with cunning drive? racecar driver. Yes 3.6
Gen AMBIPUN | I have the determination to travel to my destination. Buti don’t have the drive. | Yes 4.0
Human A boy saving up for a car has a lot of drive. Yes 4.2

Table 4: We show generated sentences for the word "Irrational” and *Drive’ in the above table, along with their two
senses. For the results of our top performing models Gen AMBIPUN and Ext AMBIPUN, we underline the context
words that are related to each sense. All the generations are evaluated by external annotators, not the authors.

Success Rate

Beginning 46.7%
Middle 52.0%
End 54.7%

Table 5: The pun success rate sentences based on their
position annotated by human.

draw the community’s attention to those traditional
techniques for creative generation.

4.2 Case Study

To better understand the advantages of our method
from a qualitative perspective, we conduct a case
study for the pun word “Irrational” and “Drive” and
evaluate the generated samples by our top perform-
ing models as well as the baselines. The generated
outputs along with human evaluation results can be
seen in Table 4. For both the examples pun words,
at most one of the baselines successfully gener-
ates a punning sentence. As discussed earlier, one
possible reason is the absence of both senses. On
the other hand, both Ext AMBIPUN and Sim AM-
BIPUN introduce context words for the two senses
and thus are able to generate of high quality puns
that almost match the human written puns in terms
of the funniness score.

4.3 The Position of Pun Words

As is mentioned in Section 2.4, we play with the
position of the pun word in the prompt given to the
candidate generation model. We try three variants

800

600

500

400

300

Number of occuerences

200

100

0.0 0.2 0.4 0.6 0.8 10
Relative position of the pun word

Figure 3: Analysis of the position of pun word in hu-
man written puns. The y-axis indicates the number of
sentences and the x-axis indicates the position of pun
word on a scale from O (start) to 1 (end). The analysis
is based on 1,163 human written sentences included in
the SemEval 2017 Task 7 (Miller et al., 2017).

by putting the target pun word at the start, in the
middle, and at the end. For each variant, we then
ask Mechanical Turkers to judge if the given sen-
tences are puns. Again, each sentence is rated by
three Turkers and we take the majority answer if
the workers disagree. Results from this analysis
can be seen in Table 5. We observe that people find
a sentence more likely to be a pun when the target
word appears at the end.

To verify such hypothesis, we also calculate the
position of the pun words of 1,163 human written
pun sentences and report the distribution in Figure
3. The histogram corroborates with the human



annotated samples in that both suggest that keeping
the pun word at the end of the sentence generates
funnier puns. Theory of humor which says that the
"joke" in a funny sentences some towards the end
of the sentence (Shahaf et al., 2015) validates our
analysis.

5 Related Works

5.1 Creative Language Generation

Pun generation. Many of the previous works
on pun generation have focused on phonological
or syntactic pattern rather than semantic pattern
(Miller and Gurevych, 2015; Hong and Ong, 2009;
Petrovi¢ and Matthews, 2013; Valitutti et al., 2013)
thus lacking creativity and flexibility. He et al.
(2019) make use of local-global surprisal principle
to generate homophonic puns and Yu et al. (2020)
uses constrained lexical rewriting for the same task.
Hashimoto et al. (2018) use a retrieve and edit ap-
proach to generate homographic puns and Yu et al.
(2018); Luo et al. (2019) propose complex neural
model architecture such as constrained language
model and GAN, and do not put emphasis on the
linguistic structure of puns. We identify their ab-
sence of both the senses as a shortcoming and build
our approach from there.

Figurative language generation. There have
been several attempts to generate other types
of figurative language such as metaphor, simile
(Chakrabarty et al., 2020b), sarcasm, etc. Yu
and Wan (2019) use metaphorically used verbs
to generate metaphors in an unsupervised fashion.
(Chakrabarty et al., 2021) generates metaphors us-
ing symbolism and discriminative decoding. Stowe
et al. (2021) study diverse metaphor generation
using conceptual mapping. Mishra et al. (2019)
propose a modular architecture for unsupervised
sarcasm generation Chakrabarty et al. (2020a) use
commonsense knowledge for the same task. Tian
et al. (2021) leverage semantic structure and com-
monsense and counterfactual knowledge to gener-
ate hyperbole.

As for stories, recent works focus on hierar-
chical story generation that first plans a plot and
then writes stories based on the storyline (Martin
et al., 2018; Yao et al., 2019; Fan et al., 2019).
Goldfarb-Tarrant et al. (2020) incorporates SRL
extracted event representations in storylines with
several event related decoding objectives.

Humor generation. With the recent advent of
diverse datasets (Hasan et al. (2019), Mittal et al.
(2021), Yang et al. (2021)), it has become easier
to detect and generate humor. While large pre-
trained model have fairly successful in detection,
humor generation still remains an unsolved prob-
lem. Therefore, humor generation is usually stud-
ied in a specific setting. Petrovi¢ and Matthews
(2013) generates joke of the type ’I like my X like
Ilike my Y, Z’. Garimella et al. (2020) develops a
model to fill blanks in madlibs format to generate
humorous sentences and Yang et al. (2020) edit
headlines to make them funny. More research is
required to generate humorous sentences that are
not constrained by their semantic structure.

5.2 Pun detection

Being able to detect puns can be an essential step
to generate them as will be evident in the com-
ing sections. SemEval 2017 Task 7 (Miller et al.,
2017) introduced the challenge of pun detection,
location detection and sense interpretation for ho-
mographic and homophonic puns. It also released
a dataset which becomes the backbone of our and
several other related works. Diao et al. (2019) make
use of Gated Attention network to detection ho-
mophonic puns. Zou and Lu (2019) introduces a
tagging schemes which lets them detect puns as
well as their location. They apply this approach to
both homophonic and homographic puns.

6 Conclusion

We propose a novel approach towards homographic
puns generation. Unlike previous works that are
mathematically heavy, our approach is back-boned
by the humor theory that ambiguity is achieved
by the context. Both automatic and human evalua-
tions show that our model AMBIPUN outperforms
the current state-of-the-art model by a significant
margin. We also analyze why our extraction-based
variation are more humorous than generation-based
variation, and investigate the role of the position
of pun words, which corresponds with human writ-
ten sentences. In future work, we want to make a
step further and explore the part of speech tags by
filtering out the context words based on their POS
tags and make combinations accordingly. Another
interesting direction could be to apply our proposed
approach to set phrases, which also make use of
different senses.
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Appendix

A Humor Classifier Results for Selecting
Puns

To further discuss the accuracy and recall of our hu-
mor classifier, we show a representative output in
Table 6. The table contains a few selected sentences
ranked my the humor classifier. We also label each
sentence as yes, no, and maybe to indicate if it is a
pun or not. As discussed in the methodology, we
train our classifier on humor dataset. As puns are
an important part of humor generation, this model
can help rule out some options. Basic theories of
humor such as incongruity and surprise apply to
both of them. As can be seen in the table, our
classifier is able to successfully pull aside unfunny
or non-coherent sentences. Looking at the exam-
ples at the top and the middle, it can be observed
that some better examples are classified lower than
others. Making this observation across many pun
words, we decided to use the classifier only to rule
out the bottom third samples. For the rest of the
generations, we randomly sample them.

On manual observation, we realised that when
we cherrypick samples, we’re able to find many
sentences that meet our expectations. Therefore,
building a classifier that can accurately find these
sentences can increase the accuracy by a large mar-
gin. We treat this as an opportunity for future work.

B More Examples of Generated Puns

We compile more examples generated by AM-
BIPUNin Table 7 for the following pun words: sen-
tence, case, bugs, delivery. This table further sup-
ports our point that on manual selection our model
is able to generate human-like sentences.
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Sentence Rank  Pun
What’s the interest rate on a home mortgage? No interest. 1 Yes
My bank said I think they’re interested in me. I said no. 2 No
My girlfriend said she had an interest in banking so i loan her a quarter 3 Yes
I have no interest in being a guardian. It’s free. 4 Maybe
I’ve never had interest placed on borrowings. It’s a waste of time. 5 Yes
Why did the republican attack the bank? Because it was in its interest. 6 Maybe
What is the republican’s strategy? The interest rate. 7 No
What is the most dispensable interest in investment? 8 No
If trump had an interest in president he would make it an president-of-interest. 9 No

Table 6: An example of candidate pun sentences ranked by the humor classifier. As can be seen, the model is able to

rule out non-pun sentences but fails to pick out high-quality ones.
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Target word sentence

Sense 1 A string of words satisfying the grammatical rules of a language

Sense 2 (Criminal law) a final judgment of guilty in a criminal case and the punishment that is imposed
1 The word jail is a sentence.

2 What’s the punishment for using antonyms in a sentence syntax is it a sentence?

3 I’m sorry I said the sentence was too long but punishments are endless.

4 The sentence in the dictionary doesn’t sound very guilty.

Target word case

Sense 1 A portable container for carrying several objects

Sense 2 A statement of facts and reasons used to support an argument

1 What’s the most durable luggage for a detective? jury case

2 A jury just found a container of leather there’s no reason to argue it’s a case
3 What do you call a container used for investigation research? a case study
4 Why did the cardboard get into a trial? because it was an investigation case

Target word  bugs

Sense 1 General term for any insect or similar creeping or crawling invertebrate
Sense 2 A fault or defect in a computer program, system, or machine

1 Why did the garden restart its computer? it had bugs in it.

2 What do you call a pest that’s slow programmer? bugs bug

3 Why did the compost crash? it had bugs in it.

4 What do you call a bug that’s disgusting? a glitch in the internet

Target word delivery

Sense 1 the act of delivering or distributing something (as goods or mail)

Sense 2 your characteristic style or manner of expressing yourself orally

1 What did the letter say to the parcel? clear delivery!

2 What do you call a trucking truckdriver with no articulation? delivery driver.
3 The distribution center has a pronunciation dictionary. it’s a delivery service
4 What do you call a parcel with no dialogue and an accent? delivery service.

Table 7: More examples generated by Ext AMBIPUN.
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