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Abstract
Remote photoplethysmography (rPPG) measurement aims to esti-
mate physiological signals by analyzing subtle skin color changes in-
duced by heartbeats in facial videos. Existingmethods primarily rely
on the fundamental video frame features or vanilla facial ROI (re-
gion of interest) features. Recognizing the varying light absorption
and reactions of different facial regions over time, we adopt a new
perspective to conduct a more fine-grained exploration of the key
clues present in different facial regions within each frame and across
temporal frames. Concretely, we propose a novel clustering-driven
remote physiological measurement framework called Cluster-Phys,
which employs a facial ROI prototypical clustering module to adap-
tively cluster the representative facial ROI features as facial pro-
totypes and then update facial prototypes with highly semantic
correlated base ROI features. In this way, our approach can mine
facial clues from a more compact and informative prototype level
rather than the conventional video/ROI level. Furthermore, we also
propose a spatial-temporal prototype interaction module to learn fa-
cial prototype correlation from both spatial (across prototypes) and
temporal (within prototype) perspectives. Extensive experiments
are conducted on both intra-dataset and cross-dataset tests. The re-
sults show that our Cluster-Phys achieves significant performance
improvement with less computation consumption. The source code
will be available at https://github.com/VUT-HFUT/ClusterPhys.
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1 Introduction
Due to the periodic nature of the human heartbeat [20, 21, 54],
blood volume undergoes corresponding changes, manifesting in
variations in the skin’s light absorption rate [21, 47]. Although
the skin color change is imperceptible to the naked eye, this sub-
tle change in skin color can be recorded by an ordinary camera.
Building on this premise, remote photoplethysmography (rPPG)
technology [20, 21, 35, 36, 58] has been developed for physiological
signal measurements like estimating heart rate (HR), heart rate vari-
ability (HRV), and respiration frequency (RF). With the convenience
and non-intrusion nature, vision-based rPPG-based physiological
measurement has become a research hotspot and has been widely
applied in driver monitoring [10], atrial fibrillation screening [25],
and face anti-spoofing [13, 56].

Early studies primarily analyze the subtle skin color changes
with traditional signal processing algorithms, such as blind source
separation [14, 33] and color space transformation [3, 49]. However,
they heavily rely on prior knowledge or assumptions such as skin
reflection model [3, 49] or linear combination assumption [33, 34],
only applicable in well-controlled laboratory environments. Then,
data-driven methods [26, 27, 43, 58, 60] dominate this domain. 2D-
CNN [23, 32, 41] and 3D-CNN methods [42, 44, 55, 58] usually esti-
mate the rPPG signal from the original video frame and utilize atten-
tion mechanism [9, 23] to highlight high-quality facial regions. To
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Figure 1: Performance and complexity evaluation for cross-
dataset testing on MMSE-HR dataset . The proposed Cluster-
Phys achieves 31% performance gain on RMSE than Phys-
Former++ [59] while being 0.68× smaller than CVD [30]. The
diameter of the circle indicates the model size.

reduce the high computation costs of 3D-CNN, the spatial-temporal
map is proposed, and the researchers [26, 27, 30, 31, 38] focus on the
design of various architecture to embedding the spatial-temporal
maps for better alignment with rPPG signals. To increase the robust-
ness of rPPG estimation, some methods [26, 30] attempt to disentan-
gle the physiological information with non-physiological features
from the spatial-temporal map to obtain distilled physiological
features. Recently, Transformer [46] is introduced for this field in
terms of capturing the spatiotemporal contexts of rPPG [24, 59, 60].
In fact, because different physiological tissue structures, capillary
density, and blood flow exist in different facial regions, their light
absorption is not constant. This brings huge challenges to modeling
the rPPG signals.

Considering the subtle changes in the face are imperceptible by
the human eye, we magnified the video frame by the magnification
methods [48, 51], thereby better revealing these subtle changes.
As shown in Fig. 2 (a), we can see that different facial regions
absorb light differently and exhibit different reactions over time.
For example, in the first frame, the forehead exhibits a high reaction
(i.e., bright) while the right cheek exhibits a high reaction in the
3rd frame. The video-based rPPG estimation aims to capture these
subtle changes from all frames. Intuitively, this motivates us to
first model the light absorption of different facial regions in each
frame and then capture the periodically changing rPPG signals by
modeling across frames. To this end, as shown in Fig. 2 (b), we
attempt to build compact and representative facial prototypes for
each frame to represent the predominant light absorption from
different facial regions. Then, the facial prototypes from all frames
are used for rPPG estimation. Such a facial prototype-based method
enables us to achieve superior performance while using much fewer
parameters. As shown in Fig. 1, our method surpasses the previous
SOTA method PhysFormer++ [59] by 31% in terms of the RMSE
metric and the GFLOPs number of our method is ×68% smaller than
CVD [30].

Specifically, we propose a novel rPPG-based physiological sig-
nal measurement framework named Cluster-Phys, which aims to
capture the latent periodic physiological signals from all frames
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Figure 2: (a) Illustration of magnified facial region changes
caused by heartbeats in video-based rPPG signal estimation.
(b) The core idea of the proposed Cluster-Phys. We aim to
capture the representative prototypes containing semanti-
cally similar instances of subtle changes in each frame.

through progressive facial ROI prototypical clustering (FPC). As
shown in Fig. 3, in the facial ROI prototypical clustering module
(§ 3.2), we aim to iteratively build compact and representative facial
prototypes using a “learn-and-cluster” manner. In the learn phase,
we first learn a soft assignment matrix through semantic similarity
distance measurement between initialized prototypes and facial
ROI features. In the cluster phase, we use the soft matrix to adap-
tively cluster representative facial ROI prototypes. Considering that
facial physiological signals change over time, we devise a proto-
type updating strategy based on the semantic similarity between
prototypes and ROI features to update the prototypes. The proto-
type updating strategy updates facial ROI prototypes of all frames,
making it better capture global physiological signal changes for
rPPG estimation. The established prototypes are processed in our
spatial-temporal prototype interaction module (§ 3.3) where we fo-
cus on mining spatial and temporal correlations among prototypes
to further enrich them. Considering that rPPG estimation necessi-
tates modeling spatial changes in facial regions, and the temporal
smoothness and periodic pattern consistency in rPPG signals, we
separately use spatial and temporal interactions to perceive the spa-
tial correlations among prototypes within each frame and periodic
pattern consistencies. We recurrently perform the above prototype
clustering and interaction processes to build the compact facial
representation. Finally, we use the rPPG regression head (§ 3.4) to
predict the rPPG signal based on the compact and representative
prototypes learned above.

In summary, our contributions can be summarized as follows:

• Tomine informative facial ROI clues for remote physiological
measurement, we propose a Facial ROI Prototypical Cluster-
ing method to progressively learn and utilize representative
ROI prototypes. To the best of our knowledge, it is the first
attempt at prototypical clustering in this field.

• To capture the spatiotemporal contexts in ROI prototypes,
we propose a spatial-temporal prototype interaction module
that performs interaction on spatial and temporal separately.
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• Extensive experiments show that our method achieves state-
of-the-art performance on the four benchmark datasets re-
ferring to both intra-dataset and cross-dataset testing.

2 Related Work
Deep learning-based rPPG Measurement. In the early years,
CNN-based methods [8, 41] with native backbone [37] are proposed
to capture time-frequency representation for rPPG prediction. To
capture the dynamic changes in temporal contexts, attention-based
CNN method [2, 23, 44] and CNN-RNN based methods [15, 57] are
proposed capture spatiotemporal features to eliminate the nega-
tive effect of head movements. To enhance the robustness of the
rPPG predictor against unseen noises, Generative Adversarial Net-
works (GANs)-based methods [26, 38] are proposed to improve
the distinguishability of the rPPG predictor. Recently, with the
great success of transformer [17, 18, 52, 53, 63], Transformer-based
methods [24, 60] have been proposed to aggregate long-range spa-
tiotemporal features for rPPG estimation. Different from the above
approaches, the proposed Cluster-Phys employs a facial ROI proto-
typical clustering method to build representative facial ROI proto-
types, and uses a spatiotemporal interaction module to mine facial
cues in the prototypes for rPPG estimation.
Prototypical Clustering for Video Feature Aggregation. Rep-
resentative and compact feature representation is the pursuit of
video understanding [7, 11, 12, 19, 62], such as group activity recog-
nition [19], video retrieval [11]. Among these works, prototypical
clustering aims to capture representative embeddings for groups
of semantically similar instances. For example, Li et al. [19] de-
signed a clustered attention transformer that captures both intra-
and inter-group relations, thereby constructing better group in-
formative features for group action recognition. In this paper, we
focus on rPPG measurement from facial videos. Existing studies in
this domain primarily concentrate on modeling subtle and sensi-
tive physiological signals [2, 16, 58, 60], and mainly design models
based on the original video feature sequences. We hypothesize that
prototypical clustering can facilitate the extraction of crucial clues
related to rPPG, and endeavor to verify this hypothesis in this field.

3 Methodology
3.1 Overview
Let an RGB facial video as X𝑣 ∈ R𝑇×𝐻×𝑊 ×3, where 𝑇 , 𝐻 , and𝑊
denote frame number, height, width of the video, respectively. The
quasi-periodic pulse signal originates from subtle light reflections
of blood vessels under the skin. The remote physiological measure-
ment task aims to predict one-dimensional rPPG signal 𝑠𝑝𝑟𝑒 ∈ R𝑇
that can reflect the quasi-periodic heartbeat from facial videos. Con-
sidering the motivation outlined in the introduction, i.e., facial ROI
is composed of different facial regions and each ROI has different
physiological signals, we build the prototypes for the facial ROIs of
each frame to learn representative embedding of semantically simi-
lar physiological information. To capture the spatial correlations
between prototypes with each frame and the periodic variation in
the temporal dimension, we design the spatiotemporal prototype
interaction to capture its information separately. As illustrated in
Fig. 3, we first transform the video X𝑣 into an ROI-based MSTmap
X𝑚𝑎𝑝 ∈ R𝑇×𝑁×6, where 𝑁 denotes the detected facial ROI number.

Then, we embed the MSTmap X𝑚𝑎𝑝 to high-dimensional feature
X ∈ R𝑇×𝑁×𝐷 . Subsequently, we take the X as the input and design
a facial ROI prototypical clustering strategy to build prototypes.
Then, facial ROI prototypes are fed into the spatial-temporal pro-
totype interaction module to learn the global spatial and temporal
correlation of rPPG clues. Finally, we use an rPPG regression head
to predict the one-dimensional rPPG signal 𝑠𝑝𝑟𝑒 ∈ R𝑇 .

3.2 Facial ROI Prototypical Clustering
In this field, the gap between facial ROI-level features and latent
rPPG clues has not been completely elaborately explored. Intu-
itively, physiological information implicit in facial ROIs is closely
related to the rPPG signal. In this work, we focus on the modeling
of facial ROI information and discovering crucial semantics from
subtle differences in faces. The rPPG estimation is based on the
periodic changes in optical absorption of a local tissue with changes
in blood volume, corresponding to the heartbeats. Therefore, the
facial ROI will exhibit periodic variation within the time cycles.
In addition, the facial ROI is composed of different facial regions
and each region has different physiological signals. To capture this
periodic variation for accurate rPPG estimation, we build the pro-
totypes for the facial ROIs of each frame to learn representative
embedding of semantically similar instances.

3.2.1 Facial ROI Prototype Initialization. Our facial ROI prototype
initialization includes two steps, i.e., facial ROI feature preparation
and prototype initialization.

Facial ROI feature Preparation. Compared with the back-
ground, the face contains wealthy rPPG-related physiological in-
formation. In addition, since blood flow in blood vessels under the
skin varies in different facial areas, different facial areas need to
be analyzed separately. In our work, we detect facial landmarks of
the video and divide the whole facial region into multiple facial
ROI as MSTmap[27, 29, 30]. Specifically, we detect 6 meta-ROI (i.e.,
forehead, left upper cheek, left lower cheek, right upper cheek, right
lower cheek, and chin) of the face, and generate 𝑁 = (26 − 1) = 63
informative ROI combination blocks. Then, the average pixel val-
ues of each facial ROI are concatenated along the temporal dimen-
sion to build the MSTmap X𝑚𝑎𝑝 ∈ R𝑇×𝑁×6, where 6 represents
{R,G,B,Y,U,V} color channels. Finally, we embed the MSTmap𝑀 to
high-dimensional feature X ∈ R𝑇×𝑁×𝐷 using a fully connected
layer as the ROI feature representation.

Prototype Initialization. In view of the previous discussion
of motivation, here we implement facial clue clustering. Given the
input ROI feature embeddings X ∈ R𝑇×𝑁×𝐷 , we adopt the density
peaks clustering algorithm to initialize facial ROI prototypes as C ∈
R𝑇×𝐾×𝐷 , where 𝐾 = 𝑁 × 𝜌 is the number of facial ROI prototypes,
and 𝜌 is the cluster sparse ratio hyper-parameter. Specifically, for
the input feature embeddings {𝑥𝑖 }𝑁𝑖=1 ∈ R𝑁×𝐷 of each frame, we
first calculate its local density by:

𝜑𝑖 = exp(− 1
𝑘

∑︁
𝑥 𝑗 ∈KNN(𝑥𝑖 )

𝜎 (𝑥𝑖 , 𝑥 𝑗 )), (1)

where 𝜎 (·, ·) denotes the Euclidean distance, KNN (𝑥𝑖 ) denotes the
𝑘-nearest neighbors of 𝑥𝑖 . Subsequently, we compute the relative
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Figure 3: Overview of our Cluster-Phys. § 3.2 Facial ROI Prototypical Clustering (FPC). We first build the Facial ROI cluster
using a “learn-and-cluster” manner to iteratively learn semantic correlations between prototypes and features and cluster
prototypes. § 3.3 Spatio-Temporal Prototype Interaction. We separately mine spatial correlations and temporal periodic clues of
rPPG signals to enrich prototypes. § 3.4 rPPG Signal Estimation. The learned prototypes are used for rPPG estimation.

distance indicator between 𝜑𝑖 and 𝜑 𝑗 as follows:

𝛿𝑖 =

{
min𝑗 :𝜑 𝑗>𝜑𝑖 𝜎 (𝑥𝑖 , 𝑥 𝑗 ), if ∃ 𝑗 s.t. 𝜑 𝑗 >𝜑𝑖 ,
max𝑗 𝜎 (𝑥𝑖 , 𝑥 𝑗 ), otherwise.

(2)

Intuitively, 𝜑𝑖 represents the local density around 𝑥𝑖 , and 𝛿𝑖 repre-
sents 𝑥𝑖 ’s distance to other high-density features. In order to select
the appropriate initial prototype (or cluster center), we use the
product method to simultaneously consider the local density 𝜑𝑖 of
features 𝑥𝑖 and its degree 𝛿𝑖 of isolation from other dense regions.
We define the 𝑥𝑖 ’s score as 𝜑𝑖 × 𝛿𝑖 , and select representative top-𝐾
of them as the learnable facial ROI prototypes C(0) ∈ R𝑇×𝐾×𝐷 .

3.2.2 Prototype Clustering. After getting the learnable prototypes
C(0) in prototype initialization, we perform prototype clustering to
aggregate rPPG-related information from facial ROI features and
build a prototype center. Considering that we aim to mine rPPG-
related information from the input feature X ∈ R𝑇×𝑁×𝐷 , we use
the Expectation-Maximization (E-M) approach cluster prototype in
𝑀 iterations. As shown in Fig. 3, in 𝐸 phase, we first construct a soft
assignmentmatrixA(𝑚) tomodel the correlation between the initial
prototypes C(0) ∈ R𝑇×𝐾×𝐷 and the input feature X ∈ R𝑇×𝑁×𝐷 :

𝐸-phase: A(𝑚) =softmax(Q𝐶 (𝑚)(K𝑋 )⊺)K , (3)

where𝑚 ∈ {1, · · · , 𝑀}, Q𝐶 ∈ R𝑇×𝐾×𝐷 denotes the query vector
projected from the facial ROI prototype C, and K𝑋 ∈ R𝑇×𝑁×𝐷

correspond to the key vectors projected from the input features X.
The soft assignment matrix globally represents the correlation be-
tween prototype and feature, unlike DPC-KNN which only updates
clustering using hard-matching with the features of prototype.

Based on the soft assignment matrix A(𝑚) from the E phase, we
use it to cluster facial ROI prototypes in M phase:

𝑀-phase: C(𝑚+1) =A(𝑚)V𝑋 ∈R𝑇×𝐾×𝐷 , (4)

where V𝑋 ∈ R𝑇×𝑁×𝐷 indicates the value vectors projected from
the input features X. In each iteration𝑚, this prototype clustering
strategy iteratively learns the soft assignment matrix A(𝑚) in 𝐸
phase and use it to cluster the facial ROI prototypes C in𝑀 phase.
This dynamic “learn-and-cluster” strategy can continuously learn
the soft assignment matrix between prototypes and the facial ROI
features to build better prototypes.

3.2.3 Prototype Update. Based on the aforementioned prototype
clustering strategy, we obtained the facial ROI prototypes by con-
sidering the soft assignment correlation between input features
and initial learnable prototypes. However, considering that facial
physiological signals change over time [34, 39], there will be signif-
icant differences between facial ROI prototypes at different times.
Therefore, we need to make the prototype more representative of
facial ROI prototypes at all times so that it can better capture global
physiological signal changes for rPPG estimation. To this end, we
propose the prototype updating strategy based on the semantic
similarity between prototypes and input features. Specifically, for
each time 𝑡 , we use the cosine similarity to calculate the semantic
similarity S ∈ R𝑁×𝐾 between the facial ROI prototypesC𝑡 ∈ R𝐾×𝐷

and input features X𝑡 ∈ R𝑁×𝐷 :

S =
X𝑡 · C⊺𝑡
∥X𝑡 ∥∥C𝑡 ∥

, (5)

where S𝑖, 𝑗 denotes the similarity between 𝑖-th features 𝑥𝑖 in X𝑡 and
𝑗-th prototype 𝑐 𝑗 in C𝑡 . To expand the influence of semantic closer
input features to the prototypes while also avoiding potential flaws
from irrelevant features, we apply the nearest matching strategy
to divide the input features into different prototype clusters and
update the prototypes based on the intra-cluster associations. We
define 𝑆𝑒𝑡 (𝑐 𝑗 ) as the intra-cluster features, which denote the set of
input features assigned to the prototype 𝑐 𝑗 . Next, we use a similarity-
based weighting fusing method to update the prototype from the
clustering level. For intra-cluster features, features close to the
prototype should have a greater impact on clustering and require
greater weight. Therefore, we calculate the weights of prototype
and intra-cluster features respectively according to the semantic
similarity S:

𝑊𝑖 =
exp(S𝑖, 𝑗 )∑

𝑥𝑖 ∈𝑆𝑒𝑡 (𝑐 𝑗 ) exp(S𝑖, 𝑗 ) + 𝑒
,

𝑊𝑗 =
𝑒∑

𝑥𝑖 ∈𝑆𝑒𝑡 (𝑐 𝑗 ) exp(S𝑖, 𝑗 ) + 𝑒
.

(6)

For each 𝑐 𝑗 in C𝑡 , we use weights𝑊𝑖 and𝑊𝑗 to update its feature:

𝑐′𝑗 =𝑊𝑗 · 𝑐 𝑗 +
∑𝑁
𝑖=1𝑊𝑖 · 𝑥𝑖 . (7)

Finally, for each frame 𝑡 , we can get the updated facial ROI proto-
type C′

𝑡 = {𝑐′
𝑖
}𝐾
𝑖=1 ∈ R𝐾×𝐷 . Therefore, the video-level prototype
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representation is C′ ∈ R𝑇×𝐾×𝐷 . To gradually mine informative
rPPG clues to update the prototypes, we perform 𝐿 steps for facial
ROI prototypical hierarchically. The spatial-temporal interaction
module is followed by each facial ROI prototypical clustering block.

3.3 Spatial-Temporal Prototype Interaction
After the facial ROI prototypical clustering mentioned above, we ob-
tained the compact prototypes C′ that enhanced the representation
of the facial ROI. Considering that rPPG estimation necessitates
spatial-temporal modeling changes in facial signals, it is required
to learn the spatial correlation within these facial ROI prototypes.
Furthermore, to maintain temporal smoothness and periodic pat-
tern consistency in video-based rPPG estimation, temporal inter-
actions of facial ROI prototypes are also required. We employ a
Prototype Interactor to capture both spatial and temporal contex-
tual information. 1). For spatial-wise interaction, we first divide C′

into C′
𝑠𝑝𝑎𝑡𝑖𝑎𝑙

= {c′(𝑡 ) ∈ R𝐾×𝐷 |𝑡 = 1, . . . ,𝑇 }, then feed it into the
ProtoInter(.) operator to model the spatial correlation between 𝐾
prototypes at each frame. 2). Similarly, for temporal-wise interaction,
we convert C′ into C′

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
= {c′(𝑘 ) ∈ R𝑇×𝐷 |𝑘 = 1, . . . , 𝐾}, then

feed it into the ProtoInter(.) operator to model temporal correla-
tion between 𝑇 frames of each prototype. Suppose the facial ROI
prototype features C′ ∈ R𝑇×𝐾×𝐷 . The ProtoInter can be formu-
lated as follows. The input C′ (C′

𝑠𝑝𝑎𝑡𝑖𝑎𝑙
and C′

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
) of Eq. 8 is

determined by spatial-wise or temporal-wise operation.

C′′ = ProtoInter(C′) ⇔{
Ĉ = MSA(LN(C′))+C′;
C′′ = FFN(LN(Ĉ)) + Ĉ,

(8)

whereMSA, LN, and FFN are multi-head attention, layer norm and
feed-forward layer in [46].

3.4 Model Training
From the entire Facial ROI Prototype modeling, we obtain the final
facial ROI prototypes C′′ ∈ R𝐾 (𝐿)×𝑇×𝐷 . Next, we use an rPPG
regression head consisting of a spatial average pooling layer and a
linear projection layer to predict 1D rPPG signal 𝑠𝑝𝑟𝑒 ∈ R𝑇 based
on the prototype features C′′. Following the practice [26, 30, 60],
the standard Negative Pearson Correlation loss is used to minimize
error between 𝑠𝑝𝑟𝑒 and ground truth rPPG signals 𝑠𝑔𝑡 ∈ R𝑇 :

L𝑟𝑃𝑃𝐺 = 1 −
𝐶𝑜𝑣 (𝑠𝑝𝑟𝑒 , 𝑠𝑔𝑡 )√︁

𝐶𝑜𝑣 (𝑠𝑝𝑟𝑒 , 𝑠𝑝𝑟𝑒 )
√︁
𝐶𝑜𝑣 (𝑠𝑔𝑡 , 𝑠𝑔𝑡 )

, (9)

where 𝐶𝑜𝑣 (𝑥,𝑦) denotes the covariance of variables 𝑥 and 𝑦.

4 Experiments
4.1 Experimental Setup
Datasets. UBFC-rPPG [1] is a commonly used pure dataset for
physiological estimation. It contains 42 facial videos of 42 partici-
pants. PURE [1] contains 60 facial videos from 10 subjects. Each
person records 6 videos in 6 different scenarios. VIPL-HR [29] is a
challenging large-scale dataset for rPPG estimation. It records 2,378
facial videos from 107 subjects under 9 complicated and diverse

scenarios, such as different head motions and illumination condi-
tions. MMSE-HR [45] has 102 videos captured from 40 subjects of
different races with diverse facial expressions.
Implementation Details. For HR estimation, following previous
work [24, 60], we apply a 1st-order Butterworth filter to convert
the rPPG signal into an HR value with a cutoff frequency range
of [0.75Hz, 2.5Hz], corresponding to [45, 150] beats per minute.
Subsequently, we perform the PSD [50] to estimate HR values for
video segments. Finally, we get a video-level HR by averaging HR
values from all segments.

4.2 Intra-dataset Testing
HR Estimation on UBFC-rPPG. We first evaluate the proposed
method on the UBFC-rPPG dataset, which has simple scenarios and
high-quality data. As illustrated in Table 1, the proposed method
outperforms both traditional and deep learning-based methods.
Compared with state-of-the-art Dual-GAN [26], our method signif-
icantly reduces MAE and RMSE by 43% and 25%, respectively. Fur-
thermore, compared to the recent supervised version of Contrast-
Phys+ [43] based on contrastive loss, we have achieved a leading
advantage in most metrics. These noteworthy advancements un-
derscore the effectiveness of our clustering strategy in capturing
informative rPPG clues, leading to a notable improvement in HR
estimation accuracy.
HR Estimation on PURE. Unlike the UBFC-rPPG dataset, the
extensive head movements in PURE significantly disrupt rPPG ac-
quisition, posing significant challenges. Nevertheless, our model
achieves substantial improvements, such as a 53% lower RMSE com-
pared to Dual-GAN [26] and a 62% reduction compared to Li et
al. [22]. These results indicate that our clustering strategy effec-
tively consolidates crucial facial signals even in complex environ-
ments, successfully minimizing the impact of external disturbances.
HR Estimation on VIPL-HR. The large-scale VIPL-HR dataset is
known for its extremely complex external noise challenges, such as
head movements, talking, and dark and bright scenarios. Following
the protocol in [27, 29, 60], we conduct the subject-exclusive 5-fold
cross-validation. As shown in Table 1, we can see that our model
surpasses previous state-of-the-art NEST (MAE of 4.76 bpm and
RMSE of 7.51 bpm) by a large margin, indicating the effectiveness
of Cluster-Phys in mitigating the impact of various noises. While
noise-induced variation may be more pronounced than rPPG sig-
nals, our aggregation strategy allows the model to focus on more
high-quality facial cues and filter the noisy information.
HRV Estimation on UBFC-rPPG. In addition to HR estimation,
we also conduct the heart rate variability (HRV) and respiration
frequency (RF) estimation. HRV and RF estimations require accu-
rately measured high-quality rPPG signals. As shown in Table 2,
we can see that the proposed approach outperforms the existing
state-of-the-art traditional methods by a large margin.

4.3 Cross-dataset Testing
Cross-dataset testing is essential for assessing the model’s gen-
eralization capabilities in unseen scenarios. Following previous
works [24, 26, 60], we conduct three cross-dataset tests . The exper-
imental results are reported in Table 3.
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Method Venue UBFC-rPPG PURE VIPL-HR
MAE↓ RMSE↓ 𝑟 ↑ MAE↓ RMSE↓ 𝑟 ↑ MAE↓ RMSE↓ 𝑟 ↑

Tr
ad
iti
on
al

GREEN [47] Optics Express’08 7.50 14.41 0.62 7.23 17.05 0.69 - - -
ICA [34] Optics Express’10 5.17 11.76 0.65 3.76 12.60 0.85 - - -
CHROM [3] TBE’13 2.37 4.91 0.89 2.07 9.92 0.99 11.4 16.9 0.27
2SR [4] PM’14 6.90 18.50 0.65 2.44 3.06 0.98 - - -
SAMC [45] CVPR’16 - - - - - - 15.9 21.0 0.24
POS [49] TBE’16 4.05 8.75 0.78 0.80 4.11 0.98 11.5 17.2 0.24

D
ee
p
Le
ar
ni
ng
-b
as
ed

SynRhythm [28] ICPR’18 5.59 6.82 0.72 - - - - - -
DeepPhys [2] ECCV’18 2.90 3.63 - 0.83 1.54 0.99 11.0 13.8 0.72
PhysNet [57] BMVC’19 2.95 3.67 - 1.90 3.44 0.98 10.8 14.8 0.20
RhythmNet [29] TIP’19 - - - - - - 5.30 8.14 0.76
CVD [30] ECCV’20 - - - - - - 5.02 7.97 0.79
Siamese-rPPG [44] SAC’20 0.48 0.97 - 0.51 1.56 0.83 - - -
PulseGAN [38] JBHI’21 1.19 2.10 0.98 - - - - - -
Gideon et al. [6] ICCV’21 1.85 4.28 0.93 2.30 2.90 0.99 9.01 14.02 0.58
Dual-GAN [26] CVPR’21 0.44 0.67 0.99 0.82 1.31 0.99 4.93 7.68 0.81
PhysFormer [60] CVPR’22 - - - - - - 4.97 7.79 0.78
Contrast-Phys [42] ECCV’22 0.64 1.00 0.99 1.00 1.40 0.99 32.1 36.1 0.04
TFA-PFE [16] AAAI’23 0.76 1.62 - 1.44 2.50 - - - -
SiNC [40] CVPR’23 0.59 1.83 0.99 0.61 1.84 1.00 - - -
NEST [27] CVPR’23 - - - - - - 4.76 7.51 0.84
Li et al. [22] ICCV’23 0.48 0.64 1.00 0.64 1.16 0.99 4.97 7.79 0.78
PhysFormer++ [59] IJCV’23 - - - - - - 4.88 7.62 0.80
Yue et al. [61] TPAMI’23 0.58 0.94 0.99 1.23 2.01 0.99 - - -
Contrast-Phys+[43] TPAMI’24 0.21 0.80 0.99 0.48 0.98 0.99 - - -
Cluster-Phys(Ours) - 0.25 0.50 1.00 0.37 0.61 1.00 4.07 6.79 0.84

Table 1: Intra-dataset HR estimation results on the UBFC-rPPG, PURE, and VIPL-HR datasets. The best results are highlighted
in bold, and the second-best results are underlined.

Method Venue LF (n.u.) HF (n.u) LF/HF RF (Hz)
SD↓ RMSE↓ 𝑟 ↑ SD↓ RMSE↓ 𝑟 ↑ SD↓ RMSE↓ 𝑟 ↑ SD↓ RMSE↓ 𝑟 ↑

Tr
ad
. GREEN [47] Optics Express’08 0.186 0.186 0.280 0.186 0.186 0.280 0.361 0.365 0.492 0.087 0.086 0.111

ICA [34] Optics Express’10 0.243 0.240 0.159 0.243 0.240 0.159 0.655 0.645 0.226 0.086 0.089 0.102
POS [49] TBE’16 0.171 0.169 0.479 0.171 0.169 0.479 0.405 0.399 0.518 0.109 0.107 0.087

D
L-
ba
se
d

CVD [30] ECCV’20 0.053 0.056 0.740 0.053 0.065 0.740 0.169 0.168 0.812 0.017 0.018 0.252
Dual-GAN [26] CVPR’21 0.034 0.035 0.891 0.034 0.034 0.891 0.131 0.136 0.881 0.010 0.010 0.395
Gideon et al. [6] ICCV’21 0.091 0.139 0.694 0.091 0.139 0.694 0.525 0.691 0.684 0.061 0.098 0.103
Contras-Phys [42] ECCV’22 0.050 0.098 0.798 0.050 0.098 0.798 0.205 0.395 0.782 0.055 0.083 0.347
Contrast-Phys+ [43] TPAMI’24 0.025 0.025 0.947 0.025 0.025 0.947 0.064 0.066 0.963 0.029 0.029 0.803
Cluster-Phys (Ours) - 0.021 0.021 0.960 0.021 0.021 0.960 0.067 0.062 0.970 0.007 0.007 0.816

Table 2: Heart Rate Variability (HRV) and Respiration Frequency (RF) estimation on the UBFC-rPPG dataset. LF, HF, and RF
represent low frequency, high frequency, and respiration frequency, respectively. “n.u.” denotes normalized units.

PURE→UBFC-rPPG. Since the PURE dataset is much more com-
plex than the UBFC-rPPG dataset, this adaption process could be
relatively easy. Compared with state-of-the-art Dual-GAN [26],
our method achieves further breakthroughs in all metrics. Notably,
the RMSE of our method is lower than 1 bpm, indicating that the
predicted HRs are closely aligned with the ground truth HRs.
UBFC-rPPG→PURE. From Table 3, we observe that all deep
learning-basedmethods performed poorly, with RMSE exceeding 10
bpm. When compared to the complex to simple test (PURE→UBFC-
rPPG), the significant performance degradation in this mode may
be attributed to the introduction of head movement scenarios in the
PURE dataset. In such situations, the methods struggle to extract
rPPG signals from chaotic facial features, resulting in inaccurate
HR estimations. In contrast, our approach attains an RMSE lower
than 10 bpm and a Pearson 𝑟 close to 1, significantly outperforming
previous methods. These results show that our clustering strategy
prefers to learn the intrinsic rPPG clues of face regions.

VIPL-HR→MMSE-HR. In this cross-dataset test, VIPL-HR con-
tains different motion patterns and light changes, while MMSE-HR
contains diverse facial expressions. As shown in Table 3, ourmethod
achieves the lowest MAE (1.74), lowest RMSE (3.51), and highest
𝑟 (0.96), respectively. Compared to the EfficientPhys-T1 [24] and
PhysFormer family [59, 60] based on spatial-temporal Transformer,
our Cluster-Phys has significant advantages across all metrics. We
attributed it to the proposed clustering strategy that can extract
representative rPPG-aware prototypes, which shows robustness in
this challenging cross-dataset test.

4.4 Ablation Studies
Impact ofMainComponents.As shown in Table 4, we investigate
the main components including Facial ROI Prototypical Clustering
(§ 3.2) and Spatial-Temporal Prototype Interaction (§ 3.3). From row
2, we can see that the model without prototype clustering leads to
large performance degradation, e.g., MAE is dropped from 3.47 to
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Method Venue PURE→ UBFC-rPPG UBFC-rPPG → PURE VIPL-HR →MMSE-HR
MAE↓ RMSE↓ 𝑟 ↑ MAE↓ RMSE↓ 𝑟 ↑ MAE↓ RMSE↓ 𝑟 ↑

Tr
ad
iti
on
al CHROM [3] TBE’13 3.10 6.84 0.93 5.77 14.93 0.81 - 13.97 0.55

Li2014 [21] CVPR’14 - - - - - - - 19.95 0.38
POS [49] TBE’16 3.52 8.38 0.90 3.67 11.82 0.88 - - -
SAMC [45] CVPR’16 - - - - - - - 11.37 0.71

D
ee
p
Le
ar
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ng
-b
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ed

DeepPhys [2] ECCV’18 1.21 2.90 0.99 5.54 18.51 0.66 - - -
PhysNet [57] BMVC’19 1.63 3.79 0.98 9.36 20.63 0.62 - 13.25 0.44
RhythmNet [29] TIP’19 - - - - - - - 7.33 0.78
CVD [30] ECCV’20 - - - - - - 5.02 7.97 0.79
TS-CAN [23] NeurIPS’20 1.30 2.87 0.99 3.69 13.80 0.82 3.85 7.21 0.86
Dual-GAN [26] CVPR’21 0.74 1.02 0.99 - - - - - -
Contrast-Phys [42] ECCV’22 10.22 - 0.45 19.61 - 0.33 - - -
PhysFormer [60] CVPR’22 - - - - - - 2.84 5.36 0.92
EfficientPhys-C [24] WACV’23 2.13 3.00 0.99 5.47 17.04 0.71 2.91 5.43 0.92
EfficientPhys-T1 [24] WACV’23 3.83 5.62 0.87 - - - 3.48 7.21 0.86
SiNC [40] CVPR’23 6.64 - 0.59 4.02 - 0.86 - - -
Li et al. [22] ICCV’23 0.71 1.45 0.99 - - - - - -
PhysFormer++ [59] IJCV’23 - - - - - - 2.71 5.15 0.93
Cluster-Phys (Ours) - 0.61 0.95 1.00 3.08 7.35 0.96 1.74 3.51 0.96

Table 3: Cross-dataset testing results on the PURE→UBFC-rPPG, UBFC-rPPG→PURE, and VIPL-HR→MMSE-HR.

Proto. Clustering Proto. Interaction MAE↓ RMSE↓ 𝑟↑Cluster Update Spatial Temporal
1 – – ✓ ✓ 3.87 6.95 0.79
2 ✓ – ✓ ✓ 3.55 6.41 0.84
3 ✓ ✓ – – 4.06 7.35 0.78
4 ✓ ✓ ✓ – 3.70 6.73 0.83
5 ✓ ✓ – ✓ 3.61 6.68 0.83
6 ✓ ✓ ✓ ✓ 3.47 6.23 0.85

Table 4: Ablation studies of the main components on the
VIPL-HR dataset.

3.87. This result reflects that facial prototype clustering can capture
crucial rPPG-related clues for rPPG estimation. When incorporat-
ing the prototype cluster, the model will perform better as it learns
better features from the cluster. From rows 3-5, we can conclude
that both the spatial prototype interaction and temporal prototype
interaction can help the model learn the spatial and temporal cor-
relations for boosting rPPG estimation. Furthermore, we employ
Bland-Altman plots to analyze the data consistency between our
predicted and ground-truth HR. As shown in Fig. 6, we can see that
our facial ROI prototypical clustering strategy contributes to better
data consistency, i.e., smaller standard deviation. Since the evalu-
ated VIPL-HR dataset has extreme noise, such as head movements
and light flickering, therefore the model without FPC leads to a
significant standard deviation from the ground truth.
Impact of Clustering Strategy. We evaluate different cluster-
ing strategies, i.e., “Random”, “K-means”, “DPC”, and the proposed
“FPC”. As shown in Table 5, we can find that the “Random” cluster
strategy performed worst because it randomly clusters all ROIs,
making it hard for the model to learn the rPPG signals. The K-
means strategy performs slightly better than Random, as it clusters
ROIs based on feature similarity. In contrast, the DPC strategy is
inferior to our method, as it predominantly relies on local density
and does not perform well with facial ROI features characterized
by high density. It’s evident that the proposed FPC performs the
best, we attribute to the FPC can iteratively cluster effective facial
ROI prototypes guided by semantic similarity.

Clustering Strategy MAE↓ RMSE↓ 𝑟 ↑
Random 4.04 7.30 0.80
K-means 3.88 6.92 0.81
DPC [5] 3.65 6.57 0.84
FPC (Ours) 3.47 6.23 0.85

Table 5: Ablation studies of clustering strategy on the VIPL-
HR dataset. FPC denotes the proposed Facial ROI Prototypi-
cal Clustering.

4.5 Qualitative Results
(1) Visualization of Feature Clustering. As depicted in Fig. 4, we
visualize the prototypes in our facial ROI prototypical clustering
model. Given a video, in the 1st stage, 63 meta-ROIs are clustered
into 32 prototypes, we can see that (a1) captures the forehead and
chin, while (a2) captures the left cheek, the right cheek, and the
chin. In the 2nd stage, (b) captures the most representative ROIs,
i.e., the left cheek and the right cheek. Similarly, in the 3rd and
4th stages, (c) and (d) capture the left and right cheek. The facial
prototypical clustering strategy adaptively aggregates the most
representative ROIs to construct compact prototypes for rPPG es-
timation. (2) Robust HR Estimation Cases. We visualize four
complex scenarios in Fig. 5 to verify the robustness of the model.
From examples (a)-(c), we can obviously observe that not only
on rPPG periodicity but also on the continuity and smoothness
of the rPPG curve, our Cluster-Phys performs much better than
PhysFormer [60]. It indicates the good robustness and accuracy of
our method. In addition, we also give an extremely complex rPPG
measurement scenario with both head movement and occlusion
noises in Fig. 5 (d). Despite the challenges we encountered with our
approach, it still outperforms PhysFormer.

4.6 Model Complexity Analysis
As shown in Table 6, we give detailed statistics on the complexity of
the model of our method and open-source methods. Compared to
the CNN-based method EfficientPhys-C, our method significantly
outperforms it in RMSE with lower GFLOPs and fast inference
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63 meta-ROIs Facial ROI prototypical clustering Output
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…
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32 prototypes

Pred
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56 bpm
56 bpm

(a1)

(a2)
(b)

(c) (d)

2nd stage
16 prototypes

3rd stage
8 prototypes

4th stage
4 prototypes

0 1

Figure 4: Visualization of cluster-based feature aggregation on the VIPL-HR dataset. In each stage, the facial ROI prototype
clustering (FPC) module adaptively aggregates the most representative ROIs for HR estimation.

(a) Talking
GT: 73 Pred: 76 𝒓: 0.21 GT: 73 Pred: 73 𝒓: 0.89

(b) Bright
GT: 69 Pred: 79 𝒓: 0.18 GT: 69 Pred: 69 𝒓: 0.86

(c) Head Movement
GT: 71 Pred: 78 𝒓: 0.23 GT: 71 Pred: 71   𝒓: 0.81

(d) Head movement & Occlusion
GT: 90 Pred: 85 𝒓: 0.72GT: 90 Pred: 68 𝒓: 0.15

PhysFormer Cluster-Phys (Ours)

PhysFormer Cluster-Phys (Ours) PhysFormer Cluster-Phys (Ours)

PhysFormer Cluster-Phys (Ours)

Figure 5: The comparison of prediction results with ground truth under different complex scenarios on the VIPL-HR dataset.
Compared with Physformer, our method predicts smoother and more accurate rPPG signals.

(a) Cluster-Phys w/o FPC (b) Cluster-Phys with FPC

Figure 6: The BlandAltman plots show the data consistency
between predicted and ground-truth HR on the VIPL-HR
dataset.

speed. Similarly, compared to the Transformer-based method Phys-
Former, our method consumes only 5.28% GFLOPs and achieves
better performance. In summary, these results validate the lower
complexity and superior performance of our method.

5 Conclusion
In this paper, we propose Cluster-Phys, a novel facial prototypical
aggregation architecture for remote physiological measurement.

Method Arch. GFLOPs↓ #Param.↓ Infer. ↓ RMSE↓
PhysNet [57] CNN 130.38 0.73 33 13.25
TS-CAN [23] CNN 123.92 3.91 98 7.21
CVD [30] CNN 15.34 12.34 86 7.97
EfficientPhys-C [24] CNN 62.64 3.84 71 7.21
Contrast-Phys+ [43] CNN 274.85 0.86 1215 5.34
EfficientPhys-T1 [24] Trans. 106.09 6.87 5486 5.91
PhysFormer [60] Trans. 94.02 7.03 109 5.36
PhysFormer++ [59] Trans. 99.70 9.79 - 5.15
Cluster-Phys (Ours) Trans. 4.97 1.92 82 3.51

Table 6: The comparisons of Model GFLOPs, Parameters (M),
and Inference Latency (ms).

We propose a Facial ROI Prototypical Clustering (FPC) module to
progressively mine and aggregate facial ROI clues to build proto-
types. To capture the spatial correlations among prototypes within
each frame and ensure the temporal periodic pattern consistency
in rPPG signals, we devise a spatial-temporal prototype interaction
module that separately perceives these correlations and consis-
tencies. Extensive experiments conducted on both intra-dataset
and cross-dataset tests show that our Cluster-Phys achieves new
state-of-the-art performance.
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