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ABSTRACT

Classifying sequential data as early and as accurately as possible is a challenging
yet critical problem, especially when a sampling cost is high. One algorithm
that achieves this goal is the sequential probability ratio test (SPRT), which is
known as Bayes-optimal: it can keep the expected number of data samples as small
as possible, given the desired error upper-bound. However, the original SPRT
makes two critical assumptions that limit its application in real-world scenarios: (i)
samples are independently and identically distributed, and (ii) the likelihood of the
data being derived from each class can be calculated precisely. Here, we propose
the SPRT-TANDEM, a deep neural network-based SPRT algorithm that overcomes
the above two obstacles. The SPRT-TANDEM sequentially estimates the log-
likelihood ratio of two alternative hypotheses by leveraging a novel Loss function
for Log-Likelihood Ratio estimation (LLLR) while allowing correlations up to
N(∈ N) preceding samples. In tests on one original and two public video databases,
Nosaic MNIST, UCF101, and SiW, the SPRT-TANDEM achieves statistically
significantly better classification accuracy than other baseline classifiers, with
a smaller number of data samples. The code and Nosaic MNIST are publicly
available at https://github.com/TaikiMiyagawa/SPRT-TANDEM.

1 INTRODUCTION

The sequential probability ratio test, or SPRT, was originally invented by Abraham Wald, and an
equivalent approach was also independently developed and used by Alan Turing in the 1940s (Good,
1979; Simpson, 2010; Wald, 1945). SPRT calculates the log-likelihood ratio (LLR) of two competing
hypotheses and updates the LLR every time a new sample is acquired until the LLR reaches one of
the two thresholds for alternative hypotheses (Figure 1). Wald and his colleagues proved that when
sequential data are sampled from independently and identically distributed (i.i.d.) data, SPRT can
minimize the required number of samples to achieve the desired upper-bounds of false positive and
false negative rates comparably to the Neyman-Pearson test, known as the most powerful likelihood
test (Wald & Wolfowitz, 1948) (see also Theorem (A.5) in Appendix A). Note that Wald used the
i.i.d. assumption only for ensuring a finite decision time (i.e., LLR reaches a threshold within finite
steps) and for facilitating LLR calculation: the non-i.i.d. property does not affect other aspects of
the SPRT including the error upper bounds (Wald, 1947). More recently, Tartakovsky et al. verified
that the non-i.i.d. SPRT is optimal or at least asymptotically optimal as the sample size increases
(Tartakovsky et al., 2014), opening the possibility of potential applications of the SPRT to non-i.i.d.
data series.

About 70 years after Wald’s invention, neuroscientists found that neurons in the part of the primate
brain called the lateral intraparietal cortex (LIP) showed neural activities reminiscent of the SPRT
(Kira et al., 2015); when a monkey sequentially collects random pieces of evidence to make a binary
choice, LIP neurons show activities proportional to the LLR. Importantly, the time of the decision
can be predicted from when the neural activity reaches a fixed threshold, the same as the SPRT’s
decision rule. Thus, the SPRT, the optimal sequential decision strategy, was re-discovered to be an
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Figure 1: Conceptual figure explaining the SPRT. The SPRT calculates the log-likelihood ratio (LLR) of two competing hypotheses and updates
the LLR every time a new sample (x(t) at time t) is acquired, until the LLR reaches one of the two thresholds. For data that is easy to
be classified, the SPRT outputs an answer after taking a few samples, whereas for difficult data, the SPRT takes in numerous samples
in order to make a “careful” decision. For formal definitions and the optimality in early classification of time series, see Appendix A.

algorithm explaining primate brains’ computing strategy. It remains an open question, however, what
algorithm will be used in the brain when the sequential evidence is correlated, non-i.i.d. series.

The SPRT is now used for several engineering applications (Cabri et al., 2018; Chen et al., 2017;
Kulldorff et al., 2011). However, its i.i.d. assumption is too crude for it to be applied to other
real-world scenarios, including time-series classification, where data are highly correlated, and key
dynamic features for classification often extend across more than one data point, violating the i.i.d.
assumption. Moreover, the LLR of alternative hypotheses needs to be calculated as precisely as
possible, which is infeasible in many practical applications.

In this paper, we overcome the above difficulties by using an SPRT-based algorithm that Treats data
series As an N-th orDEr Markov process (SPRT-TANDEM), aided by a sequential probability density
ratio estimation based on deep neural networks. A novel Loss function for Log-Likelihood Ratio
estimation (LLLR) efficiently estimates the density ratio that let the SPRT-TANDEM approach close
to asymptotic Bayes-optimality (i.e., Appendix A.4). In other words, LLLR optimizes classification
speed and accuracy at the same time. The SPRT-TANDEM can classify non-i.i.d. data series with
user-defined model complexity by changing N(∈ N), the order of approximation, to define the
number of past samples on which the given sample depends. By dynamically changing the number
of samples used for classification, the SPRT-TANDEM can maintain high classification accuracy
while minimizing the sample size as much as possible. Moreover, the SPRT-TANDEM enables a user
to flexibly control the speed-accuracy tradeoff without additional training, making it applicable to
various practical applications.

We test the SPRT-TANDEM on our new database, Nosaic MNIST (NMNIST), in addition to the
publicly available UCF101 action recognition database (Soomro et al., 2012) and Spoofing in the
Wild (SiW) database (Liu et al., 2018). Two-way analysis of variance (ANOVA, (Fisher, 1925))
followed by a Tukey-Kramer multi-comparison test (Tukey, 1949; Kramer, 1956) shows that our
proposed SPRT-TANDEM provides statistically significantly higher accuracy than other fixed-length
and variable-length classifiers at a smaller number of data samples, making Wald’s SPRT applicable
even to non-i.i.d. data series. Our contribution is fivefold:

1. We invented a deep neural network-based algorithm, SPRT-TANDEM, which enables Wald’s
SPRT on arbitrary sequential data without knowing the true LLR.

2. The SPRT-TANDEM extends the SPRT to non-i.i.d. data series without knowing the true
LLR.

3. With a novel loss, LLLR, the SPRT-TANDEM sequentially estimates LLR to optimize speed
and accuracy simultaneously.

4. The SPRT-TANDEM can control the speed-accuracy tradeoff without additional training.
5. We introduce Nosaic MNIST, a novel early-classification database.

2 RELATED WORK

The SPRT-TANDEM has multiple interdisciplinary intersections with other fields of research: Wald’s
classical SPRT, probability density estimation, neurophysiological decision making, and time-series
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classification. The comprehensive review is left to Appendix B, while in the following, we introduce
the SPRT, probability density estimation algorithms, and early classification of the time series.

Sequential Probability Ratio Test (SPRT). The SPRT, denoted by δ∗, is defined as the tuple of a
decision rule and a stopping rule (Tartakovsky et al., 2014; Wald, 1947):

Definition 2.1. Sequential Probability Ratio Test (SPRT). Let λt as the LLR at time t, and X(1,T )

as a sequential data X(1,T ) := {x(t)}Tt=1. Given the absolute values of lower and upper decision
threshold, a0 ≥ 0 and a1 ≥ 0, SPRT, δ∗, is defined as

δ∗ = (d∗, τ∗), (1)

where the decision rule d∗ and stopping time τ∗ are

d∗(X(1,T )) =

{
1 if λτ∗ ≥ a1

0 if λτ∗ ≤ −a0 ,
(2)

τ∗ = inf{T ≥ 0|λT /∈ (−a0, a1)} . (3)

We review the proof of optimality in Appendix A.4, while Figure 1 shows an intuitive explanation.

Probability density ratio estimation. Instead of estimating numerator and denominator of a
density ratio separately, the probability density ratio estimation algorithms estimate the ratio as a
whole, reducing the degree of freedom for more precise estimation (Sugiyama et al., 2010; 2012).
Two of the probability density ratio estimation algorithms that closely related to our work are the
probabilistic classification (Bickel et al., 2007; Cheng & Chu, 2004; Qin, 1998) and density fitting
approach (Sugiyama et al., 2008; Tsuboi et al., 2009) algorithms. As we show in Section 4 and
Appendix E, the SPRT-TANDEM sequentially estimates the LLR by combining the two algorithms.

Early classification of time series. To make decision time as short as possible, algorithms for early
classification of time series can handle variable length of data (Mori et al., 2018; Mori et al., 2016;
Xing et al., 2009; 2012) to minimize high sampling costs (e.g., medical diagnostics (Evans et al., 2015;
Griffin & Moorman, 2001), or stock crisis identification (Ghalwash et al., 2014)). Leveraging deep
neural networks is no exception in the early classification of time series (Dennis et al., 2018; Suzuki
et al., 2018). Long short-term memory (LSTM) variants LSTM-s/LSTM-m impose monotonicity on
classification score and inter-class margin, respectively, to speed up action detection (Ma et al., 2016).
Early and Adaptive Recurrent Label ESTimator (EARLIEST) combines reinforcement learning and a
recurrent neural network to decide when to classify and assign a class label (Hartvigsen et al., 2019).

3 PROPOSED ALGORITHM: SPRT-TANDEM

In this section, we propose the TANDEM formula, which provides the N -th order approximation
of the LLR with respect to posterior probabilities. The i.i.d. assumption of Wald’s SPRT greatly
simplifies the LLR calculation at the expense of the precise temporal relationship between data
samples. On the other hand, incorporating a long correlation among multiple data may improve
the LLR estimation; however, calculating too long a correlation may potentially be detrimental in
the following cases. First, if a class signature is significantly shorter than the correlation length in
consideration, uninformative data samples are included in calculating LLR, resulting in a late or
wrong decision (Campos et al., 2018). Second, long correlations require calculating a long-range of
backpropagation, prone to vanishing gradient problem (Hochreiter et al., 2001). Thus, we relax the
i.i.d. assumption by keeping only up to the N -th order correlation to calculate the LLR.

The TANDEM formula. Here, we introduce the TANDEM formula, which computes the approxi-
mated LLR, the decision value of the SPRT-TANDEM algorithm. The data series is approximated as
an N -th order Markov process. For the complete derivation of the 0th (i.i.d.), 1st, and N -th order
TANDEM formula, see Appendix C. Given a maximum timestamp T ∈ N, let X(1,T ) and y be a
sequential data X(1,T ) := {x(t)}Tt=1 and a class label y ∈ {1, 0}, respectively, where x(t) ∈ Rdx and
dx ∈ N. By using Bayes’ rule with the N -th order Markov assumption, the joint LLR of data at a
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timestamp t is written as follows:

log

(
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

)
=

t∑
s=N+1

log

(
p(y = 1|x(s−N), ..., x(s))

p(y = 0|x(s−N), ..., x(s))

)
−

t∑
s=N+2

log

(
p(y = 1|x(s−N), ..., x(s−1))

p(y = 0|x(s−N), ..., x(s−1))

)
− log

(
p(y = 1)

p(y = 0)

)
(4)

(see Equation (84) and (85) in Appendix C for the full formula). Hereafter we use terms k-let
or multiplet to indicate the posterior probabilities, p(y|x(1), ..., x(k)) = p(y|X(1,k)) that consider
correlation across k data points. The first two terms of the TANDEM formula (Equation (4)), N + 1-
let and N -let, have the opposite signs working in “tandem” adjusting each other to compute the LLR.
The third term is a prior (bias) term. In the experiment, we assume a flat prior or zero bias term, but
a user may impose a non-flat prior to handling the biased distribution of a dataset. The TANDEM
formula can be interpreted as a realization of the probability matching approach of the probability
density estimation, under an N -th order Markov assumption of data series.

Neural network that calculates the SPRT-TANDEM formula. The SPRT-TANDEM is designed
to explicitly calculate the N -th order TANDEM formula to realize sequential density ratio estimation,
which is the critical difference between our SPRT-TANDEM network and other architecture based on
convolutional neural networks (CNNs) and recurrent neural networks (RNN). Figure 2 illustrates
a conceptual diagram explaining a generalized neural network structure, in accordance with the
1st-order TANDEM formula for simplicity. The network consists of a feature extractor and a temporal
integrator (highlighted by red and blue boxes, respectively). They are arbitrary networks that a user
can choose depending on classification problems or available computational resources. The feature
extractor and temporal integrator are separately trained because we find that this achieves better
performance than the end-to-end approach (also see Appendix D). The feature extractor outputs
single-frame features (e.g., outputs from a global average pooling layer), which are the input vectors
of the temporal integrator. The output vectors from the temporal integrator are transformed with a
fully-connected layer into two-dimensional logits, which are then input to the softmax layer to obtain
posterior probabilities. They are used to compute the LLR to run the SPRT (Equation (2)). Note that
during the training phase of the feature extractor, the global average pooling layer is followed by a
fully-connected layer for binary classification.

How to choose the hyperparameter N? By tuning the hyperparameter N , a user can efficiently
boost the model performance depending on databases; in Section 5, we change N to visualize the
model performance as a function of N . Here, we provide two ways to choose N . One is to choose
N based on the specific time scale, a concept introduced in Appendix D, where we describe in
detail how to guess on the best N depending on databases. The other is to use a hyperparameter
tuning algorithm, such as Optuna, (Akiba et al., 2019) to choose N objectively. Optuna has multiple
hyperparameter searching algorithms, the default of which is the Tree-structured Parzen Estimator
(Bergstra et al., 2011). Note that tuning N is not computationally expensive, because N is only
related to the temporal integrator, not the feature extractor. In fact, the temporal integrator’s training
speed is much faster than that of the feature extractor: 9 mins/epoch vs. 10 hrs/epoch (N = 49,
NVIDIA RTX2080Ti, SiW database).

4 LLLR AND MULTIPLET CROSS-ENTROPY LOSS

Given a maximum timestamp T ∈ N and dataset size M ∈ N, let S := {(X(1,T )
i , yi)}Mi=1 be a

sequential dataset. Training our network to calculate the TANDEM formula involves the following
loss functions in combination: (i) the Loss for Log Likelihood Ratio estimation (LLLR), LLLR, and
(ii) multiplet cross-entropy loss, Lmultiplet. The total loss, Ltotal is defined as

Ltotal = LLLR + Lmultiplet . (5)
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Figure 2: Conceptual diagram of neural network for the SPRT-TANDEM where the order of approximation N = 1. The feature extractor
(red) extracts the feature vector for classification and outputs it to the temporal integrator (blue). Note that the temporal integrator
memorizes up toN preceding states in order to calculate the TANDEM formula (Equation (4)). LLR is calculated using the estimated
probability densities that are output from the temporal integrator. We use ·̂ to highlight a quantity estimated by a neural network.
Trainable weight parameters are shared across the boxes with the same color in the figure.

4.1 LOSS FOR LOG-LIKELIHOOD RATIO ESTIMATION (LLLR).

The SPRT is Bayes-optimal as long as the true LLR is available; however, the true LLR is often
inaccessible under real-world scenarios. To empirically estimate the LLR with the TANDEM formula,
we propose the LLLR

LLLR =
1

MT

M∑
i=1

T∑
t=1

∣∣∣∣∣yi − σ
(

log

(
p̂(x

(1)
i , x

(2)
i , ..., x

(t)
i |y = 1)

p̂(x
(1)
i , x

(2)
i , ..., x

(t)
i |y = 0)

))∣∣∣∣∣ , (6)

where σ is the sigmoid function. We use p̂ to highlight a probability density estimated by a neural
network. The LLLR minimizes the Kullback-Leibler divergence (Kullback & Leibler, 1951) between
the estimated and the true densities, as we briefly discuss below. The full discussion is given in
Appendix E due to page limit.

Density fitting. First, we introduce KLIEP (Kullback-Leibler Importance Estimation Procedure,
Sugiyama et al. (2008)), a density fitting approach of the density ratio estimation Sugiyama et al.
(2010). KLIEP is an optimization problem of the Kullback-Leibler divergence between p(X|y = 1)
and r̂(X)p(X|y = 0) with constraint conditions, where X and y are random variables corresponding
to X(1,t)

i and yi, and r̂(X) := p̂(X|y = 1)/p̂(X|y = 0) is the estimated density ratio. Formally,

argmin
r̂

[KL(p(X|y = 1)||r̂(X)p(X|y = 0))] = argmin
r̂

[
−
∫
dXp(X|y = 1) log(r̂(X))

]
(7)

with the constraints 0 ≤ r̂(X) and
∫
dXr̂(X)p(X|y = 0) = 1. The first constraint ensures the

positivity of the estimated density r̂(X)p(X|y = 0), while the second one is the normalization
condition. Applying the empirical approximation, we obtain the final optimization problem:

argmin
r̂

[
1

M1

∑
i∈I1

− log r̂(X
(1,t)
i )

]
, with r̂(X

(1,t)
i ) ≥ 0 and

1

M0

∑
i∈I0

r̂(X
(1,t)
i ) = 1 , (8)

where I1 := {i ∈ [M ]|yi = 1}, I0 := {i ∈ [M ]|yi = 0}, M1 := |I1|, and M0 := |I0|.

Stabilization. The original KLIEP (8), however, is asymmetric with respect to p(X|y = 1) and
p(X|y = 0). To recover the symmetry, we add 1

M0

∑
i∈I0 − log(r̂(X

(1,t)
i )−1) to the objective and

impose an additional constraint 1
M1

∑
i∈I1 r̂(X

(1,t)
i )−1 = 1. Besides, the symmetrized objective
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still has unbounded gradients, which cause instability in the training. Therefore, we normalize the
LLRs with the sigmoid function, obtaining the LLLR (6). We can also show that the constraints are
effectively satisfied due to the sigmoid funciton. See Appendix E for the details.

In summary, we have shown that the LLLR minimizes the Kullback-Leibler divergence of the true
and the estimated density and further stabilizes the training by restricting the value of LLR. Here we
emphasize the contributions of the LLLR again. The LLLR enables us to conduct the stable LLR
estimation and thus to perform the SPRT, the algorithm optimizing two objectives: stopping time and
accuracy. In previous works (Mori et al., 2018; Hartvigsen et al., 2020), on the other hand, these two
objectives are achieved with separate loss sub-functions.

Compared to KLIEP, the proposed LLLR statistically significantly boosts the performance of the
SPRT-TANDEM (Appendix E.4). Besides, experiment on multivariate Gaussian with a simple
toy-model also shows that the LLLR minimize errors between the estimated and the true density ratio
(Appendix F).

4.2 MULTIPLET CROSS-ENTROPY LOSS.

To further facilitate training the neural network, we add binary cross-entropy losses, though the LLLR
suffices to estimate LLR. We call them multiplet cross-entropy loss here, and defined as:

Lmultiplet :=

N+1∑
k=1

Lk-let , (9)

where

Lk-let :=
1

M(T −N)

M∑
i=1

T−(N+1−k)∑
t=k

(
− log p̂(yi|x(t−k+1)

i , ..., x
(t)
i )
)
. (10)

Minimizing the multiplet cross-entropy loss is equivalent to minimizing the Kullback-Leibler
divergence of the estimated posterior k-let p̂(yi|x(t−k+1)

i , ..., x
(t)
i ) and the true posterior

p(yi|x(t−k+1)
i , ..., x

(t)
i ) (shown in Appendix G), which is a consistent objective with the LLLR

and thus the multiplet loss accelerates the training. Note also that the multiplet loss optimizes all the
logits output from the temporal integrator, unlike the LLLR.

5 EXPERIMENTS AND RESULTS

In the following experiments, we use two quantities as evaluation criteria: (i) balanced accuracy, the
arithmetic mean of the true positive and true negative rates, and (ii) mean hitting time, the average
number of data samples used for classification. Note that the balanced accuracy is robust to class
imbalance (Luque et al., 2019), and is equal to accuracy on balanced datasets.

Evaluated public databases are NMNIST, UCF, and SiW. Training, validation, and test datasets are
split and fixed throughout the experiment. We selected three early-classification models (LSTM-s
(Ma et al., 2016), LSTM-m (Ma et al., 2016), and EARLIEST (Hartvigsen et al., 2019)) and one
fixed-length classifier (3DResNet (Hara et al., 2017)), as baseline models. All the early-classification
models share the same feature extractor as that of the SPRT-TANDEM for a fair comparison.

Hyperparameters of all the models are optimized with Optuna unless otherwise noted so that no
models are disadvantaged by choice of hyperparameters. See Appendix H for the search spaces and
fixed final parameters. After fixing hyperparameters, experiments are repeated with different random
seeds to obtain statistics. In each of the training runs, we evaluate the validation set after each training
epoch and then save the weight parameters if the balanced accuracy on the validation set updates
the largest value. The last saved weights are used as the model of that run. The model evaluation is
performed on the test dataset.

During the test stage of the SPRT-TANDEM, we used various values of the SPRT thresholds to obtain
a range of balanced accuracy-mean hitting time combinations to plot a speed-accuracy tradeoff (SAT)
curve. If all the samples in a video are used up, the thresholds are collapsed to a1 = a0 = 0 to force
a decision.
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Figure 3: Experimental results. (a-c) Speed-accuracy tradeoff (SAT) curves for three databases: NMNIST, UCF, and SiW. Note that only
representative results are shown. Error bars show the standard error of the mean (SEM). (d) Example LLR trajectories calculated
on the NMNIST database with the 10th-order SPRT-TANDEM. Red and blue trajectories represent odd and even digits, respectively.
(e) SAT curves of the ablation test comparing the effect of the Lmultiplet and the LLLR. (f) SAT curves comparing the SPRT and
Neyman-Pearson test (NPT) using the same 1st-order SPRT-TANDEM network trained on the NMNIST database.

To objectively compare all the models with various trial numbers, we conducted the two-way ANOVA
followed by the Tukey-Kramer multi-comparison test to compute statistical significance. For the
details of the statistical test, see Appendix I.

We show our experimental results below. Due to space limitations, we can only show representative
results. For the full details, see Appendix J. For our computing infrastructure, see Appendix K.

Nosaic MNIST (Noise + mosaic MNIST) database. We introduce a novel dataset, NMNIST,
whose video is buried with noise at the first frame, and gradually denoised toward the last, 20th frame
(see Appendix L for example data). The motivation to create NMNIST instead of using a preexisting
time-series database is as follows: for simple video databases such as Moving MNIST (MMNIST,
(Srivastava et al., 2015)), each data sample contains too much information so that well-trained
classifiers can correctly classify a video only with one or two frames (see Appendix M for the results
of the SPRT-TANDEM and LSTM-m on MMNIST).

We design a parity classification task, classifying 0− 9 digits into an odd or even class. The training,
validation, and test datasets contain 50,000, 10,000, and 10,000 videos with frames of size 28×28×1
(gray scale). Each pixel value is divided by 127.5, before subtracted by 1. The feature extractor of the
SPRT-TANDEM is ResNet-110 (He et al., 2016a), with the final output reduced to 128 channels. The
temporal integrator is a peephole-LSTM (Gers & Schmidhuber, 2000; Hochreiter & Schmidhuber,
1997), with hidden layers of 128 units. The total numbers of trainable parameters on the feature
extractor and temporal integrator are 6.9M and 0.1M, respectively. We train 0th, 1st, 2nd, 3rd,
4th, 5th, 10th, and 19th order SPRT-TANDEM networks. LSTM-s / LSTM-m and EARLIEST use
peephole-LSTM and LSTM, respectively, both with hidden layers of 128 units. 3DResNet has 101
layers with 128 final output channels so that the total number of trainable parameters is in the same
order (7.7M) as that of the SPRT-TANDEM.

Figure 3a and Table 1 shows representative results of the experiment. Figure 3d shows example LLR
trajectories calculated with the 10th order SPRT-TANDEM. The SPRT-TANDEM outperforms other
baseline algorithms by large margins at all mean hitting times. The best performing model is the 10th
order TANDEM, which achieves statistically significantly higher balanced accuracy than the other
algorithms (p-value < 0.001). Is the proposed algorithm’s superiority because the SPRT-TANDEM
successfully estimates the true LLR to approach asymptotic Bayes optimality? We discuss potential
interpretations of the experimental results in the Appendix D.

7



Published as a conference paper at ICLR 2021

Table 1: Representative mean balanced accuracy (%) calculated on NMNIST. For the complete list including standard errors, see Appendix J.

Model
Mean hitting time

#trials2 3 4 4.37 5 6 10 15 19 19.66

SPRT-
TANDEM
(proposed)

0th 92.43 97.47 98.82 99.03 99.20 99.37 99.50 99.50 99.50 99.50 100
1st 93.81 98.04 99.07 99.21 99.34 99.46 99.50 99.50 99.50 99.50 100
2nd 93.73 98.01 99.07 99.22 99.36 99.45 99.49 99.49 99.49 99.50 120
10th 93.77 98.02 99.09 99.23 99.37 99.47 99.51 99.51 99.51 99.51 139

19th (max) 94.25 98.26 99.12 99.23 99.37 99.46 99.50 99.50 99.50 99.50 100

LSTM-m 88.74 93.89 96.15 97.62 98.35 99.19 99.42 99.48 138
LSTM-s 89.01 94.13 96.47 97.91 98.43 99.28 99.45 99.52 120

EARLIEST 97.48 99.34 130
3DResNet 93.81 96.98 100

UCF101 action recognition database. To create a more challenging task, we selected two classes,
handstand-pushups and handstand-walking, from the 101 classes in the UCF database. At a glimpse
of one frame, the two classes are hard to distinguish. Thus, to correctly classify these classes,
temporal information must be properly used. We resize each video’s duration as multiples of 50
frames and sample every 50 frames with 25 frames of stride as one data. Training, validation, and test
datasets contain 1026, 106, and 105 videos with frames of size 224× 224× 3, randomly cropped
to 200 × 200 × 3 at training. The mean and variance of a frame are normalized to zero and one,
respectively. The feature extractor of the SPRT-TANDEM is ResNet-50 (He et al., 2016b), with the
final output reduced to 64 channels. The temporal integrator is a peephole-LSTM, with hidden layers
of 64 units. The total numbers of trainable parameters in the feature extractor and temporal integrator
are 26K and 33K, respectively. We train 0th, 1st, 2nd, 3rd, 5th, 10th, 19th, 24th, and 49th-order
SPRT-TANDEM. LSTM-s / LSTM-m and EARLIEST use peephole-LSTM and LSTM, respectively,
both with hidden layers of 64 units. 3DResNet has 50 layers with 64 final output channels so that the
total number of trainable parameters (52K) is on the same order as that of the SPRT-TANDEM.

Figure 3b and Table 2 shows representative results of the experiment. The best performing model is
the 10th order TANDEM, which achieves statistically significantly higher balanced accuracy than
other models (p-value < 0.001). The superiority of the higher-order TANDEM indicates that a
classifier needs to integrate longer temporal information in order to distinguish the two classes (also
see Appendix D).

Table 2: Representative mean balanced accuracy (%) calculated on UCF. For the complete list including standard errors, see Appendix J.

Model
Mean hitting time

#trials2 2.01 2.09 3 4 5 10 15 25 49

SPRT-
TANDEM
(proposed)

0th 92.92 92.94 93.00 93.38 94.06 94.66 96.04 96.83 96.91 96.91 200
1st 93.79 93.78 93.73 93.57 93.93 94.56 95.96 96.55 96.87 96.87 200
2nd 94.20 94.20 94.18 93.97 94.01 94.09 95.84 96.46 96.76 96.79 200
10th 94.37 94.37 94.31 94.29 94.77 95.10 96.18 96.85 97.12 97.25 256

49th (max) 94.52 94.51 94.52 94.40 94.36 94.51 96.20 97.03 96.96 96.72 200

LSTM-m 93.14 93.59 93.23 93.31 94.32 94.59 95.93 96.68 100
LSTM-s 90.87 92.36 92.82 93.17 93.75 94.23 95.93 96.45 101

EARLIEST 93.38 93.48 50
3DResNet 64.42 90.08 100

Spoofing in the Wild (SiW) database. To test the SPRT-TANDEM in a more practical situation,
we conducted experiments on the SiW database. We use a sliding window of 50 frames-length and 25
frames-stride to sample data, which yields training, validation, and test datasets of 46,729, 4,968, and
43,878 videos of live or spoofing face. Each frame is resized to 256× 256× 3 pixels and randomly
cropped to 244 × 244 × 3 at training. The mean and variance of a frame are normalized to zero
and one, respectively. The feature extractor of the SPRT-TANDEM is ResNet-152, with the final
output reduced to 512 channels. The temporal integrator is a peephole-LSTM, with hidden layers of
512 units. The total number of trainable parameters in the feature extractor and temporal integrator
is 3.7M and 2.1M, respectively. We train 0th, 1st, 2nd, 3rd, 5th, 10th, 19th, 24th, and 49th-order
SPRT-TANDEM networks. LSTM-s / LSTM-m and EARLIEST use peephole-LSTM and LSTM,
respectively, both with hidden layers of 512 units. 3DResNet has 101 layers with 512 final output
channels so that the total number of trainable parameters (5.3M) is in the same order as that of the
SPRT-TANDEM. Optuna is not applied due to the large database and network size.
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Figure 3c and Table 3 shows representative results of the experiment. The best performing model is
the 10th order TANDEM, which achieves statistically significantly higher balanced accuracy than
other models (p-value < 0.001). The superiority of the lower-order TANDEM indicates that each
video frame contains a high amount of information necessary for the classification, imposing less
need to collect a large number of frames (also see Appendix D).

Table 3: Representative mean balanced accuracy (%) calculated on SiW. For the complete list including standard errors, see Appendix J.

Model
Mean hitting time

#trials1.19 2 3 5 8.21 10 15 25 32.06 49

SPRT-
TANDEM
(proposed)

0th 99.78 99.82 99.85 99.87 99.87 99.87 99.87 99.87 99.87 99.87 100
1st 99.81 99.84 99.86 99.87 99.88 99.89 99.89 99.89 99.89 99.89 112
2nd 99.82 99.86 99.88 99.89 99.89 99.89 99.90 99.90 99.90 99.90 110
10th 99.84 99.87 99.88 99.88 99.88 99.88 99.88 99.89 99.88 99.88 107

49th (max) 99.83 99.88 99.88 99.88 99.88 99.88 99.88 99.88 99.88 96.72 73

LSTM-m 99.77 99.80 99.80 99.81 99.83 99.85 99.88 63
LSTM-s 99.77 99.80 99.80 99.81 99.83 99.84 99.87 58

EARLIEST 99.72 99.77 99.76 30
3DResNet 98.82 98.97 98.56 5

Ablation study. To understand contributions of the LLLR and Lmultiplet to the SAT curve, we
conduct an ablation study. The 1st-order SPRT-TANDEM is trained with LLLR only, Lmultiplet only,
and both LLLR and Lmultiplet. The hyperparameters of the three models are independently optimized
using Optuna (see Appendix H). The evaluated database and model are NMNIST and the 1st-order
SPRT-TANDEM, respectively. Figure 3e shows the three SAT curves. The result shows that LLLR

leads to higher classification accuracy, whereas Lmultiplet enables faster classification. The best
performance is obtained by using both LLLR and Lmultiplet. We also confirmed this tendency with
the 19th order SPRT-TANDEM, as shown in Appendix N.

SPRT vs. Neyman-Pearson test. As we discuss in Appendix A, the Neyman-Person test is the
optimal likelihood ratio test with a fixed number of samples. On the other hand, the SPRT takes a
flexible number of samples for an earlier decisions. To experimentally test this prediction, we compare
the SPRT-TANDEM and the corresponding Neyman-Pearson test. The Neyman-Pearson test classifies
the entire data into two classes at each number of frames, using the estimated LLRs with threshold
λ = 0. Results support the theoretical prediction, as shown in Figure 3f: the Neyman-Pearson test
needs a larger number of samples than the SPRT-TANDEM.

6 CONCLUSION

We presented the SPRT-TANDEM, a novel algorithm making Wald’s SPRT applicable to arbitrary
data series without knowing the true LLR. Leveraging deep neural networks and the novel loss func-
tion, LLLR, the SPRT-TANDEM minimizes the distance of the true LLR and the LLR sequentially
estimated with the TANDEM formula, enabling simultaneous optimization of speed and accuracy.
Tested on the three publicly available databases, the SPRT-TANDEM achieves statistically signif-
icantly higher accuracy over other existing algorithms with a smaller number of data points. The
SPRT-TANDEM enables a user to control the speed-accuracy tradeoff without additional training,
opening up various potential applications where either high-accuracy or high-speed is required.
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APPENDIX

A THEORETICAL ASPECTS OF THE SEQUENTIAL PROBABILITY RATIO TEST

In this section, we review the mathematical background of the SPRT following the discussion in
Tartakovsky et al. (2014). First, we define the SPRT based on the measure theory and introduce
Stein’s lemma, which assures the termination of the SPRT. To define the optimality of the SPRT, we
introduce two performance metrics that measure the false alarm rate and the expected stopping time,
and discuss their tradeoff — the SPRT solves it. Through this analysis, we utilize two important
approximations, the asymptotic approximation, and the no-overshoot approximation, which play
essential roles to simplify our analysis. The asymptotic approximation assumes the upper and lower
thresholds are infinitely far away from the origin, being equivalent to making the most careful decision
to reduce the error rate, at the expense of the stopping time. On the other hand, the no-overshoot
approximation assumes that we can neglect the threshold overshoots of the likelihood ratio.

Next, we show the superiority of the SPRT to the Neyman-Pearson test, using a simple Gaussian
model. The Neyman-Pearson test is known to be optimal in the two-hypothesis testing problem and is
often compared with the SPRT. Finally, we introduce several types of optimal conditions of the SPRT.

A.1 PRELIMINARIES

Notations. Let (Ω,F , P ) be a probability space; Ω is a sample space, F ⊂ PΩ is a sigma-algebra
of Ω, where PA denotes the power set of a set A, and P is a probability measure. Intuitively, Ω
represents the set of all the elementary events under consideration, e.g., Ω = {all the possible
elementary events such that "a human is walking through a gate."}. F is defined as a set of the subsets
of Ω, and stands for all the possible combinations of the elementary events; e.g., F 3 { "Akinori is
walking through the gate at the speed of 80 m/min," "Taiki is walking through the gate at the speed
of 77 m/min," or "Nothing happened."} P : F → [0, 1] is a probability measure, a function that is
normalized and countably additive; i.e., P measures the probability that the event A ∈ F occurs. A
random variable X is defined as the measurable function from Ω to a measurable space, practically
Rd (d ∈ N); e.g., if ω(∈ Ω) is "Taiki is walking through the gate with a big smile," then X(ω) may
be 100 frames of the color images with 128×128 pixels (d = 128 × 128 × 3 × 100), i.e., a video
recorded with a camera attached at the top of the gate. The probability that a random variable X takes
a set of values S ∈ Rd is defined as P (X ∈ S) := P (X−1(S)), where X−1 is the preimage of X .
By definition of the measurable function, X−1(S) ∈ F for all S ∈ Rd. Let {Ft}t≥0 be a filtration.
By definition, {Ft}t≥0 is a non-decreasing sequence of sub-sigma-algebras of F ; i.e., Fs ⊂ Ft ⊂ F
for all s and t such that 0 < s < t. Each element of filtration can be interpreted as the available
information at a given point t. (Ω,F , {Ft}t≥0, P ) is called a filtered probability space.

As in the main manuscript, let X(1,T ) := {x(t)}Tt=1 be a sequential data point sampled from the
density p, where T ∈ N ∪ {∞}. For each t ∈ [T ], x(t) ∈ Rdx , where dx ∈ N is the dimensionality
of the input data. In the i.i.d. case, p(X(1,T )) =

∏T
t=1 f(x(t)), where f is the density of x(1).

For each time-series data X(1,T ), the associated label y takes the value 1 or 0; we focus on the
binary classification, or equivalently the two-hypothesis testing throughout this paper. When y is a
class label, p(X(1,T )|θ) is the likelihood density function. Note that X(1,T ) with label y is sampled
according to density p(X(1,T )|y).

Our goal is, given a sequence X(1,T ), to identify which one of the two densities p1 or p0 the sequence
X(1,T ) is sampled from; formally, to test two hypotheses H1 : y = 1 and H0 : y = 0 given X(1,T ).
The decision function or test of a stochastic process X(1,T ) is denoted by d(X(1,T )) : Ω→ {1, 0}.
We can identify this definition with, for each realization of X(1,T ), d : Rdx×T → {1, 0}, i.e.,
X(1,T ) 7→ y, where y ∈ {1, 0}. Thus we write d instead of d(X(1,T )), for simplicity. The stopping
time of X(1,T ) with respect to a filtration {Ft}t≥0 is defined as τ := τ(X(1,T )) : Ω → R≥0 such
that {ω ∈ Ω|τ(ω) ≤ t} ∈ Ft. Accordingly, for fixed T ∈ N ∪ {∞} and y ∈ {1, 0}, {d = y}
means the set of time-series data such that the decision function accepts the hypothesis Hi with a
finite stopping time; more specifically, {d = y} = {ω ∈ Ω|d(X(1,T ))(ω) = y, τ(X(1,T ))(ω) <∞}.
The decision rule δ is defined as the doublet (d, τ). Let ΛT := Λ(X(1,T )) := p(X(1,T )|y=1)

p(X(1,T )|y=0)
and
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λT := log ΛT be the likelihood ratio and the log-likelihood ratio of X(1,T ). In the i.i.d. case,
ΛT =

∏T
t=1

p(x(t)|y=1)
p(x(t)|y=0)

=
∏T
t=1 Z

(t), where p(X(1,T )|y) =
∏T
t=1 p(x

(t)|y) (y ∈ {1, 0}) and

Z(t) := p(x(t)|y=1)
p(x(t)|y=0)

.

A.2 DEFINITION AND THE TRADEOFF OF FALSE ALARMS AND STOPPING TIME

Let us overview the theoretical structure of the SPRT. In the following, we assume that the time-series
data points are i.i.d. until otherwise stated.

Definition of the SPRT. The sequential probability ratio test (SPRT), denoted by δ∗ is defined as
the doublet of the decision function and the stopping time.

Definition A.1. Sequential probability ratio test (SPRT)
Let a0 = − logA0 ≥ 0 and a1 = logA1 ≥ 0 be (the absolute values of) a lower and an upper
threshold respectively.

δ∗ = (d∗, τ∗), (11)

d∗(X(1,T )) =

{
1 if λτ∗ ≥ a1

0 if λτ∗ ≤ −a0 ,
(12)

τ∗ = inf{T ≥ 0|λT /∈ (−a0, a1)} . (13)

Note that d∗ and τ∗ implicitly depend on a stochastic process X(1,T ). In general, a doublet δ of a
terminal decision function and a stopping time is called a decision rule or a hypothesis test.

Termination. The i.i.d.-SPRT terminates with probability one and all the moments of the stopping
time are finite, provided that the two hypotheses are distinguishable:

Lemma A.1. Stein’s lemma
Let (Ω,F , P ) be a probability space and {Y (t)}t≥1 be a sequence of i.i.d. random variables under
P . Define τ := inf{T ≥ 1|

∑T
t=1 Y

(t) /∈ (−a0, a1)}. If P (Y (1)) 6= 1, the stopping time τ is
exponentially bounded; i.e., there exist constants C > 0 and 0 < ρ < 1 such that P (τ > T ) ≤ CρT
for all T ≥ 1. Therefore, P (τ <∞) = 1 and E[τk] <∞ for all k > 0.

Two performance metrics. Considering the two-hypothesis testing, we employ two kinds of
performance metrics to evaluate the efficiency of decision rules from complementary points of view:
the false alarm rate and the stopping time. The first kind of metrics is the operation characteristic,
denoted by β(δ, y), and its related metrics. The operation characteristic is the probability of the
decision being 0 when the true label is y = y; formally,

Definition A.2. Operation characteristic
The operation characteristic is the probability of accepting the hypothesis H0 as a function of y:

β(δ, y) := P (d = 0|y) . (14)

Using the operation characteristic, we can define four statistical measures based on the confusion
matrix; namely, False Positive Rate (FPR), False Negative Rate (FNR), True Negative Rate (TNR),
and True Positive Rate (TPR).

FPR: α0(δ) := 1− β(δ, 0) = P (d = 1|y = 0) (15)
FNR: α1(δ) := β(δ, 1) = P (d = 0|y = 1) (16)
TNR: β(δ, 0) = 1− α0(δ) = 1− P (d = 1|y = 0) (17)
TPR: 1− β(δ, 1) = 1− α1(δ) = 1− P (d = 0|y = 1) (18)

Note that balanced accuracy is denoted by (1 + β(δ, 0)− β(δ, 1))/2 according to this notation. The
second kind of metrics is the mean hitting time, and is defined as the expected stopping time of the
decision rule:
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Definition A.3. Mean hitting time The mean hitting time is the expected number of time-series
data points that are necessary for testing a hypothesis when the true parameter value is y: Eyτ =∫

Ω
τdP (·|y). The mean hitting time is also referred to as the expected sample size of the average

sample number.

There is a tradeoff between the false alarm rate and the mean hitting time. For example, the quickness
may be sacrificed, if we use a decision rule δ that makes careful decisions, i.e., with the false alarm
rate 1 − β(δ, 0) less than some small constant. On the other hand, if we use δ that makes quick
decisions, then δ may make careless decisions, i.e., raise lots of false alarms because the amount of
evidences is insufficient. At the end of this section, we show that the SPRT is optimal in the sense of
this tradeoff.

The tradeoff of false alarms and stopping times for both i.i.d. and non-i.i.d. We formulate the
tradeoff of the false alarm rate and the stopping time. We can derive the fundamental relation of the
threshold to the operation characteristic in both i.i.d. and non-i.i.d. cases (Tartakovsky et al. (2014)):{

α∗1 ≤ e−a0(1− α∗0)

α∗0 ≤ e−a1(1− α∗1) ,
(19)

where we defined α∗y := αy(δ∗) (y ∈ {1, 0}). These inequalities essentially represent the tradeoff of
the false alarm rate and the stopping time. For example, as the thresholds ay (y ∈ {1, 0}) increase,
the false alarm rate and the false rejection rate decrease, as (19) suggests, but the stopping time is
likely to be larger, because more observations are needed to accumulate log-likelihood ratios to hit
the larger thresholds.

The asymptotic approximation and the no-overshoot approximation. Equation 19 is an exam-
ple of the tradeoff of the false alarm rate and the stopping time; further, we can derive another
example in terms of the mean hitting time. Before that, we introduce two types of approximations
that simplify our analysis.

The first one is the no-overshoot approximation. It assumes to ignore the threshold overshoots of
the log-likelihood ratio at the decision time. This approximation is valid when the log-likelihood
ratio of a single frame is sufficiently small compared to the gap of the thresholds, at least around the
decision time. On the other hand, the second one is the asymptotic approximation, which assumes
a0, a1 → ∞, being equivalent to sufficiently low false alarm rates and false rejection rates at the
expense of the stopping time. These approximations drastically facilitate the theoretical analysis; in
fact, the no-overshoot approximation alters (19) as follows (see Tartakovsky et al. (2014)):

α∗1 ≈ e−a0(1− α∗0), α∗0 ≈ e−a1(1− α∗1) , (20)

which is equivalent to

α∗0 ≈
ea0 − 1

ea0+a1 − 1
, α∗1 ≈

ea1 − 1

ea0+a1 − 1
(21)

⇐⇒ − a0 ≈ log

(
α∗1

1− α∗0

)
, a1 ≈ log

(
1− α∗1
α∗0

)
(22)

⇐⇒ β∗(0) ≈ ea1 − 1

ea1 − e−a0
, β∗(1) ≈ e−a1 − 1

e−a1 − ea0
, (23)

where β∗(y) := β(δ∗, y) (y ∈ {1, 0}). Further assuming the asymptotic approximation, we obtain

α∗0 ≈ e−a1 , α∗1 ≈ e−a0 . (24)

Therefore, as the threshold gap increases, the false alarm rate and the false rejection rate decrease
exponentially, while the decision making becomes slow, as is shown in the following.

Mean hitting time without overshoots. Let Iy := Ey[Z(1)] (y ∈ {1, 0}) be the Kullback-Leibler
divergence of f1 and f0. Iy is larger if the two densities are more distinguishable. Note that Iy 
 0

since Py(Z(1) = 0) � 1, and thus the mean hitting times of the SPRT without overshoots are
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expressed as

E1[τ∗] =
1

I1

[
(1− α∗1) log(

1− α∗1
α∗0

)− α∗1 log(
1− α∗0
α∗1

)

]
, (25)

E0[τ∗] =
1

I0

[
(1− α∗0) log(

1− α∗0
α∗1

)− α∗0 log(
1− α∗1
α∗0

)

]
(26)

In Tartakovsky et al. (2014). Introducing the function

γ(x, y) := (1− x) log(
1− x
y

)− x log(
1− y
x

) , (27)

we can simplify (25-26):

E1[τ∗] =
1

I1
γ(α∗1, α

∗
0) (28)

E0[τ∗] =
1

I1
γ(α∗0, α

∗
1) . (29)

(25-26) shows the tradeoff as we mentioned above: the mean hitting time of positive (negative) data
diverges if we are to set the false alarm (rejection) rate to be zero.

The tradeoff with overshoots. Introducing the overshoots explicitly, we can obtain the equality,
instead of the inequality such as (19), that connects the the error rates and the thresholds. We first
define the overshoots of the thresholds a0 and a1 at the stopping time as

κ1(a0, a1) := λτ∗ − a1 on{λτ∗ ≥ a1} (30)
κ0(a0, a1) := −(λτ∗ + a0) on{λτ∗ ≤ −a0}. (31)

We further define the expectation of the exponentiated overshoots as

e1(a0, a1) := E1[e−κ1(a0,a1)|λτ∗ ≥ a1] (32)

e0(a0, a1) := E0[e−κ0(a0,a1)|λτ∗ ≤ −a0] . (33)

Then we can relate the thresholds to the error rates (without the no-overshoots approximation,
Tartakovsky (1991)):

α∗0 =
e1(a0, a1)ea0 − e1(a0, a1)e0(a0, a1)

ea1+a0 − e1(a0, a1)e0(a0, a1)
, α∗1 =

e0(a0, a1)ea1 − e1(a0, a1)e0(a0, a1)

ea1+a0 − e1(a0, a1)e0(a0, a1)
. (34)

To obtain more specific dependence on the thresholds ay (y ∈ {1, 0}), we adopt the asymptotic
approximation. Let T0(a0) and T1(a1) be the one-sided stopping times, i.e., T0(a0) := inf{T ≥
1|λT ≤ −a0} and T1(a1) := inf{T ≥ 1|λT ≥ a1}. We then define the associated overshoots as

κ̃1(a1) := λT1
− a1 on{T1 <∞} , (35)

κ̃0(a0) := −(λT0
+ a0) on{T0 <∞} . (36)

According to Lotov (1988), we can show that

α∗0 ≈
ζ1e

a0 − ζ1ζ0
ea0+a1 − ζ1ζ0

, α∗1 ≈
ζ0e

a1 − ζ1ζ0
ea0+a1 − ζ1ζ0

(37)

under the asymptotic approximation. Note that

ζy := lim
ay→∞

Ey[e−κ̃y ] (y ∈ {1, 0}) (38)

have no dependence on the thresholds ay (y ∈ {1, 0}). Therefore we have obtained more precise
dependence of the error rates on the thresholds than (24):

Theorem A.1. The Asymptotic tradeoff with overshoots Assume that 0 < Iy < ∞ (y ∈ {1, 0}).
Let ζy be given in (38). Then

α∗0 = ζ1e
−a1(1 + o(1)), α∗1 = ζ0e

−a0(1 + o(1)) (a0, a1 −→∞) . (39)
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Mean hitting time with overshoots. A more general form of the mean hitting time is provided in
Tartakovsky (1991). We can show that

E1τ
∗ =

1

I1

[(
1− α∗1

)(
a1 + E1[κ1|τ∗ = T ]

)
− α∗1

(
a0 + E1[κ0|τ∗ = T0]

)]
(40)

E0τ
∗ =

1

I0

[(
1− α∗0

)(
a0 + E0[κ0|τ∗ = T ]

)
− α∗0

(
a1 + E0[κ1|τ∗ = T1]

)]
. (41)

The mean hitting times (40-41) explicitly depend on the overshoots, compared with (25-26). Let

χy := lim
ath→∞

Ey[κ̃y] (y ∈ {1, 0}) (42)

be the limiting average overshoots in the one-sided tests. Note that χy have no dependence on ay
(y ∈ {1, 0}). The asymptotic mean hitting times with overshoots are

E1τ
∗ =

1

I1
(a1 +χ1)+o(1), E0τ

∗ =
1

I0
(a0 +χ0)+o(1) (a0e

−a1 → 0, a1e
−a0 → 0) (43)

As expressed in Tartakovsky et al. (2014). Therefore, they have an asymptotically linear dependence
on the thresholds.

A.3 THE NEYMAN-PEARSON TEST AND THE SPRT

So far, we have discussed the tradeoff of the false alarm rate and the mean hitting time and several
properties of the operation characteristic and the mean hitting time. Next, we compare the SPRT with
the Neyman-Pearson test, which is well-known to be optimal in the classification of time-series with
fixed sample lengths; in contrast, the SPRT is optimal in the early classification of time-series with
indefinite sample lengths, as we show in the next section.

We show that the Neyman-Pearson test is optimal in the two-hypothesis testing problem or the binary
classification of time-series. Nevertheless, we show that in the i.i.d. Gaussian model, the SPRT
terminates earlier than the Neyman-Pearson test despite the same error rates.

Preliminaries. Before defining the Neyman-Pearson test, we specify what the "best" test should
be. There are three criteria, namely the most powerful test, Bayes test, and minimax test. To explain
them in detail, we have to define the size and the power of the test. The significance level, or simply
the size of test d is defined as1

α := P (d = 1|y = 0) . (44)
It is also known as the false positive rate, the false alarm rate, or the false acceptance rate of the test.
On the other hand, the power of the test d is given by

γ := 1− β := P (d = 1|y = 1) . (45)

γ is also called the true positive rate, the true acceptance rate. the recall, or the sensitivity. β is known
as the false negative rate or the false rejection rate.

Now, we can define the three criteria mentioned above.
Definition A.4. Most powerful test
The most powerful test d of significance level α(> 0) is defined as the test that for every other test d′
of significance level α, the power of d is greater than or equal to that of d′:

P (d = 1|y = 1) ≥ P (d′ = 1|y = 1) . (46)

Definition A.5. Bayes test
Let π0 := P (y = 0) and π1 := P (y = 1) = 1− π0 be the prior probabilities of hypotheses H0 and
H1, and ᾱ(d) be the average probability of error:

ᾱ(d) :=
∑
i=1,0

πiαi(d) , (47)

1P (d = 1|y = 0) is short for P ({ω ∈ Ω|d(X(1,T ))(ω) = 1}|y = 0) and is equivalent to
PX(1,T )∼p(X(1,T )|y=1)[d(X(1,T )) = 1] (i.e., the probability of the decision being 1, where X(1,T ) is sam-
pled from the density p(X(1,T )|y = 1) ).
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where αi(d) := P (d 6= i|y = i) is the false negative rate of the class i ∈ {1, 0}. A Bayes test,
denoted by dB, for the priors is defined as the test that minimizes the average probability of error:

dB := arginf
d
{ᾱ(d)} , (48)

where the infimum is taken over all fixed-sample-size decision rules.

Definition A.6. Minimax test
Let αmax(d) be the maximum error probability:

αmax(d) := max
i∈{1,0}

{αi(d)} . (49)

A minimax test, denoted by dM, is defined as the test that minimizes the maximum error probability:

αmax(dM) = inf
d
{αmax(d)} , (50)

where the infimum is taken over all fixed-sample-size tests.

Note that a fixed-sample-size decision rule or non-sequential rule is the decision rule with a fixed
stopping time T = N with probability one.

Definition and the optimality of the Neyman-Pearson test. Based on the above notions, we state
the definition and the optimality of the Neyman-Pearson test. We see the most powerful test for the
two-hypothesis testing problem is the Neyman-Pearson test; the theorem below is also the definition
of the Neyman-Pearson test.

Theorem A.2. Neyman-Pearson lemma Consider the two-hypothesis testing problem, i.e., the
problem of testing two hypotheses Ho : P = P0 and H1 : P1, where P0 and P1 are two probability
distributions with densities p0 and p1 with respect to some probability measure. The most powerful
test is given by

dNP(X(1,T )) :=

{
1 if Λ(X(1,T )) ≥ h(α)

0 otherwise ,
(51)

where Λ(X(1,T )) = p1(X(1,T ))
p0(X(1,T ))

is the likelihood ratio and the threshold h(α) is defined as

α0(dNP)

(
≡ P (dNP(X(1,T )) = 1|H0) = E0[dNP(X(1,T ))]

)
= α (52)

to ensure for the false positive rate to be the user-defined value α(> 0).

dNP is referred to as the Neyman-Pearson test and is also optimal with respect to the Bayes and
minimax criteria:

Theorem A.3. Neyman-Pearson test is Bayes optimal Consider the two-hypothesis testing problem.
Given a prior distribution πi (i ∈ {1, 0}) the Bayes test dB, which minimizes the average error
probability ᾱ(d) = π0α0(d) + π1α1(d), is given by

dB(X(1,T )) =

{
1 (if Λ(X(1,T )) ≥ π0/π1)

0 (otherwise) .
(53)

That is, the Bayesian test is given by the Neyman-Pearson test with the threshold π0/π1.

Theorem A.4. Neyman-Pearson test is minimax optimal Consider the two-hypothesis testing prob-
lem. the minimax test dM, which minimizes the maximal error probability αmax(d) = max

i∈{1,0}
{αi(d)},

is the Neyman-Pearson test with the threshold such that α0(dM) = α1(dM).

The proofs are given in Borovkov (1998) and Lehmann & Romano (2006).
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The SPRT is more efficient. We have shown that the Neyman-Pearson test is optimal in the two-
hypothesis testing problem, in the sense that the Neyman-Pearson test is the most powerful, Bayes, and
minimax test; nevertheless, we can show that the SPRT terminates faster than the Neyman-Pearson
test even when these two show the same error rate.

Consider the two-hypothesis testing problem for the i.i.d. Gaussian model:
Hi : y = yi (i ∈ {1, 0})
x(t) = y + ξ(t) (t ≥ 1, y ∈ R1)

ξ(t) ∼ N (0, σ2) (σ ≥ 0) ,

(54)

whereN (0, σ2) denotes the Gaussian distribution with mean 0 and variance σ2. The Neyman-Pearson
test has the form

dNP(X(1,n(α0,α1))) =

{
1 (if λn(α0,α1) ≥ h(α0, α1))

0 (otherwise) .
(55)

The sequence length n = n(α0, α1) and the threshold h = h(α0, α1) are defined so as for the false
positie rate and the false negative rate to be equal to α0 and α1 respectively; i.e.,

P (λn ≥ h|y = y0) = α0 , (56)
P (λn < h|y = y1) = α1 . (57)

We can solve them for the i.i.d. Gaussian model (Tartakovsky et al. (2014)). To see the efficiency of
the SPRT to the Neyman-Pearson test, we define

E0(α0, α1) =
E[τ∗|y = y0]

n(α0, α1)
(58)

E1(α0, α1) =
E[τ ∗ |y = y1]

n(α0, α1)
. (59)

Assuming the overshoots are negligible, we obtain the following asymptotic efficiency (Tartakovsky
et al. (2014)):

lim
max{α0,α1}→0

Ey(α0, α1) =
1

4
(y ∈ {1, 0}) . (60)

In other words, under the no-overshoot and the asymptotic assumptions, the SPRT terminates four
times earlier than the Neyman-Pearson test in expectation, despite the same false positive and negative
rates.

A.4 THE OPTIMALITY OF THE SPRT

Optimality in i.i.d. cases. The theorem below shows that the SPRT minimizes the expected hitting
times in the class of decision rules that have bounded false positive and negative rates. Consider the
two-hypothesis testing problem. We define the class of decision rules as
C(α0, α1) = {δ s.t. P (d = 1|H0) ≤ α0, P (d = 0|H1) ≤ α1,E[τ |H0] <∞,E[τ |H1] <∞} .

(61)
Then the optimality theorem states:
Theorem A.5. I.I.D. Optimality (Tartakovsky et al. (2014)) Let the time-series data points x(t),
t = 1, 2, ... be i.i.d. with density f0 under H0 and with density f1 under H1, where f0 6≡ f1. Let
α0 > 0 and α1 > 0 be fixed constants such that α0 + α1 < 1. If the thresholds −ao and a1 satisfies
α∗0(a0, a1) = α0 and α∗1(a0, a1) = α1, then the SPRT δ∗ = (d∗, τ∗) satisfies

inf
δ=(d,τ)∈C(α0,α1)

{
E[τ |H0]

}
= E[τ∗|H0] and inf

δ=(d,τ)∈C(α0,α1)

{
E[τ |H1]

}
= E[τ∗|H1] (62)

A similar optimality holds for continuous-time processes (Irle & Schmitz (1984)). Therefore the
SPRT terminates at the earliest stopping time in expectation of any other decision rules achieving the
same or less error rates — the SPRT is optimal.

Theorem A.5 tells us that given user-defined thresholds, the SPRT attains the optimal mean hitting
time. Also, remember that the thresholds determine the error rates (e.g., Equation (24)). Therefore,
the SPRT can minimize the required number of samples and achieve the desired upper-bounds of
false positive and false negative rates.

21



Published as a conference paper at ICLR 2021

Asymptotic optimality in general non-i.i.d. cases. In most of the discussion above, we have
assumed the time-series samples are i.i.d. For general non-i.i.d. distributions, we have the asymptotic
optimality; i.e., the SPRT asymptotically minimizes the moments of the stopping time distribution
(Tartakovsky et al. (2014)).

Before stating the theorem, we first define a type of convergence of random variables.

Definition A.7. r-quick convergence Let {x(t)}t≥1 be a stochastic process. Let Tε({x(t)}t≥1) be
the last entry time of the stochastic process {x(t)}t≥1 in the region (ε,∞) ∪ (−∞,−ε), i.e.,

Tε({x(t)}t≥1) = sup
t≥1
{t s.t. |x(t)| > ε}, sup{∅} := 0 . (63)

Then, we say that the stochastic process {x(t)}t≥1 converges to zero r-quickly, or

x(t) r−quickly−−−−−−→
t→∞

0 , (64)

for some r > 0, if
E[(Tε({x(t)}t≥1))r] <∞ for every ε > 0 . (65)

r-quick convergence ensures that the last entry time in the large-deviation region (Tε({x(t)}t≥1)) is
finite almost surely. The asymptotic optimality theorem is:
Theorem A.6. Non-i.i.d. asymptotic optimality If there exist positive constants I0 and I1 and an
increasing non-negative function ψ(t) such that

λt
ψ(t)

P1−r−quickly−−−−−−−−−→
t→∞

I1 and
λt
ψ(t)

P0−r−quickly−−−−−−−−−→
t→∞

−I0 , (66)

where λt is defined in section A.1, then

E[(τ∗)r|y = i] <∞ (i ∈ {1, 0}) for any finite a0 and a1. (67)

Moreover, if the thresholds a0 and a1 are chosen to satisfy (19), a0 → log(1/α∗1), and a1 →
log(1/α∗0) (ai →∞), then for all 0 < m ≤ r,

inf
δ∈C(α0,α1)

{E[τm|y = y1]} − E[(τ∗)m|y = y1] −→ 0 (68)

inf
δ∈C(α0,α1)

{E[τm|y = y0]} − E[(τ∗)m|y = y0] −→ 0 (69)

as max{α0, α1} −→ 0 with | logα0/ logα1| −→ c, where c ∈ (0,∞).
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B SUPPLEMENTARY REVIEW OF THE RELATED WORK

Primate’s decision making and parietal cortical neurons. The process of decision making in-
volves multiple steps, such as evidence accumulation, reward prediction, risk evaluation, and action
selection. We give a brief overview regarding mainly to neural activities of primate parietal lobe
and their relationship to the evidence accumulation, instead of providing a comprehensive review of
the decision making literature. Interested readers may refer to review articles, such as Doya (2008);
Gallivan et al. (2018); Gold & Shadlen (2007).

In order to study neural correlates of decision making, Roitman & Shadlen (2002) used a random
dot motion (RDM) task on non-human primates. They found that the neurons in the cortical area
lateral intraparietal cortex, or LIP, gradually accumulated sensory evidence represented as increasing
firing rate, toward one of the two thresholds corresponding to the two-alternative choices. Moreover,
while a steeper increase of firing rates leads to an early decision of the animal, the final firing rates at
the decision time is almost constant regardless of reaction time. Thus, at least in population-level
LIP neurons are representing information very similar to that of the LLR in the SPRT algorithm (It
is under active discussion whether the ramping activity is seen only in averaged population firing
rate or both in population and single neuron level. See Latimer et al. (2015); Shadlen et al. (2016)).
But also see Okazawa et al. (2021) for a recent finding that evidence accumulation is represented
in a high-dimensional manifold of neural population. In any case, LIP neurons seem to represent
accumulated evidence as their activity patterns.

To test whether the ramping activity is explained by Wald’s SPRT, Kira et al. (2015) used visual
stimuli associated with reward likelihood: each stimulus indicates the answer of the binary choice task
with a certain probability (e.g., if stimulus ’A’ is presented, choice 1 is the correct answer with 30%
probability). LIP neurons’ activities in response to these randomly presented stimuli are proportional
to LLR calculated from the associated likelihood of the stimuli, letting authors concluded that the
activity of LIP neurons are best explained by SPRT than other alternative models. It remains unclear,
however, what algorithm is used in the brain when stimuli are not randomly presented but temporary
dependent.

More complex decision making involving risk evaluation such as ”delayed, large reward V.S. imme-
diate, small reward” is thought to be guided by other regions including orbitofrontal cortex, dorsal
striatum or dorsal prefrontal cortex (McClure et al. (2004); Rudebeck et al. (2006); Tanaka et al.
(2004)).

Application of SPRT. Ever since Wald’s formulation, the sequential hypothesis testing was applied
to study decision making and its reaction time (Stone (1960); Edwards (1965); Ashby (1983)). Several
extensions to more general problem settings were also proposed. In order to test more than two
hypotheses, multi-hypothesis SPRT (MSPRT) was introduced (Armitage (1950); Baum & Veeravalli
(1994)), and shown to be asymptotically optimal (Dragalin et al. (1999; 2000); Veeravalli & Baum
(1995)). The SPRT was also generalized for non-i.i.d. data (Lai (1981); Tartakovsky (1999)), and
theoretically shown to be asymptotically optimal, given the known LLR (Dragalin et al. (1999; 2000)).
Tartakovsky et al. (2014) provided a comprehensive review of these theoretical analyses, a part of
whose reasoning we also follow to show optimality in Appendix A. The SPRT, and closely related,
generalized LLR test, applied to solve several problems includes drug safety surveillance (Kulldorff
et al. (2011)), exoplanet detection (Hu et al. (2019)), and the LLR test out of weak classifiers
(WaldBoost, Sochman & Matas (2005)), to name a few. On an A/B test, Johari et al. (2017) tackled
an important problem of inflating error rates at the sequential hypothesis testing. Ju et al. (2019)
proposed an inputed Girshick test to determine a better variant.

Time-series classification. Here, we use the term “Time-series” interchangeably to mention both
continuous data or discrete data such as video frames.

One of the traditional approaches to univariate or multivariate time series classification is distance-
based methods, such as dynamic time warping (Bagnall (2014); Jeong et al. (2011); Kate (2015)) or
k-nearest neighbors (Dau et al. (2018); Wei & Keogh (2006); Yang & Shahabi (2007)). More recently,
Collective Of Transformation-based Ensembles (COTE) and its variant, COTE with Hierarchical
Vote system (HIVE-COTE) showed high classification performance at the expense of their high
computational cost (Bagnall et al. (2015); Lines et al. (2016)). Word Extraction for time series
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classification (WEASEL) and its variant, WEASEL+MUSE take a bag-of-pattern approach to utilize
carefully designed feature vectors (Schäfer & Leser (2017)).

The advent of deep learning allows researchers to classify not only univariate/multivariate data,
but also large-size, video data using convolutional neural networks (Hara et al. (2017); Carreira &
Zisserman (2017); Karim et al. (2018); Wang et al. (2017)). Thanks to the increasing computation
power and memory of modern processing units, each video data in a minibatch are designed to be
sufficiently long in the time domain such that class signature can be contained. Video length of
the training, validation, and test data are often assumed to be fixed; however, ensuring sufficient
length for all data may compromise the classification speed (i.e., number of samples that used for
classification). We extensively test this issue in Section 5.
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C DERIVATION OF THE TANDEM FORMULA

The derivations of the important formulas in Section 3 are provided below.

The 0th order (i.i.d.) TANDEM formula. We use the following probability ratio to identify if the
input sequence {x(s)}ts=1 is derived from either hypothesis H1 : y = 1 or H0 : y = 0.

p(x(1), ..., x(t)|y = 1)

p(x(1), ..., x(t)|y = 0)
. (70)

We can rewrite it with the posterior. First, by repeatedly using the Bayes rule, we obtain

p(x(1), x(2), ..., x(t)|y)

= p(x(t)|x(t−1), x(t−2), ..., x(1), y)p(x(t−1), x(t−2), ..., x(1)|y)

= p(x(t)|x(t−1), x(t−2), ..., x(1), y)

× p(x(t−1)|x(t−2), x(t−3), ..., x(1), y)p(x(t−2), x(t−3), ..., x(1), y)

= ...

...

= p(x(t)|x(t−1), x(t−2), ..., x(1), y)p(x(t−1)|x(t−2), x(t−3), ..., x(1), y) . . . p(x(2)|x(1), y) . (71)

We use this formula hereafter. Let us assume that the process {x(s)}ts=1 is conditionally-independently
and identically distributed (hereafter simply noted as i.i.d.), namely

p(x(1), x(2), ..., x(t)|y) =

t∏
s=1

p(x(s)|y) , (72)

which yields the following LLR representation ("0-th order Markov process"):

p(x(t)|x(t−1), x(t−2), ..., x(1), y) = p(x(t)|y) . (73)

Then

p(x(1), x(2), ..., x(t)|y)

= p(x(t)|y)p(x(t−1)|y) . . . p(x(2)|y)p(x(1)|y)

=

t∏
s=1

[
p(x(s)|y)

]
=

t∏
s=1

[
p(y|x(s))p(x(s))

p(y)

]
.

Hence
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)
=

t∏
s=1

[
p(y = 1|x(s))

p(y = 0|x(s))

](
p(y = 0)

p(y = 1)

)t
, (74)

or

log

(
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

)
=

t∑
s=1

log

(
p(y = 1|x(s))

p(y = 0|x(s))

)
− tlog

(
p(y = 1)

p(y = 0)

)
. (75)

The 1st-order TANDEM formula. So far, we have utilized the i.i.d. assumption (73) or (72). Now
let us derive the probability ratio of the first-order Markov process, which assumes

p(x(t)|x(t−1), x(t−2), ..., x(1), y) = p(x(t)|x(t−1), y) . (76)
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Applying (76) to (71), we obtain
p(x(1), x(2), ..., x(t)|y)

= p(x(t)|x(t−1), y)p(x(t−1)|x(t−2), y) . . . p(x(2)|x(1), y)p(x(1)|y)

=

t∏
s=2

[
p(x(s)|x(s−1), y)

]
p(x(1)|y)

=

t∏
s=2

[
p(y|x(s), x(s−1))p(x(s), x(s−1))

p(x(s−1), y)

]
p(y|x(1))p(x(1))

p(y)

=

t∏
s=2

[
p(y|x(s), x(s−1))p(x(s), x(s−1))

p(y|x(s−1))p(x(s−1))

]
p(y|x(1))p(x(1))

p(y)
, (77)

for t ≥ 2. Hence
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)
=

t∏
s=2

[
p(y = 1|x(s), x(s−1))

p(y = 0|x(s), x(s−1))

] t∏
s=3

[
p(y = 0|x(s−1))

p(y = 1|x(s−1))

]
p(y = 0)

p(y = 1)
, (78)

or

log

(
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

)
=

t∑
s=2

log

(
p(y = 1|x(s), x(s−1))

p(y = 0|x(s), x(s−1))

)
−

t∑
s=3

log

(
p(y = 1|x(s−1))

p(y = 0|x(s−1))

)
− log

(
p(y = 1)

p(y = 0)

)
. (79)

For t = 1 and t = 2, the natural extensions are

log

(
p(x(1)|y = 1)

p(x(1)|y = 0)

)
= log

(
p(y = 1|x(1))

p(y = 0|x(1))

)
− log

(
p(y = 1)

p(y = 0)

)
log

(
p(x(1), x(2)|y = 1)

p(x(1), x(2)|y = 0)

)
= log

(
p(y = 1|x(1), x(2))

p(y = 0|x(1), x(2))

)
− log

(
p(y = 1)

p(y = 0)

)
.

(80)

The N -th order TANDEM formula. Finally we extend the 1st order TANDEM formula so that it
can calculate the general N -th order log-likelihood ratio. The N -th order Markov process is defined
as

p(x(t)|x(t−1), x(t−2), ..., x(1), y) = p(x(t)|x(t−1), ..., x(t−N), y) . (81)
Therefore, for t ≥ N + 2

p(x(1), x(2), ..., x(t)|y)

= p(x(t)|x(t−1), ..., x(t−N), y)p(x(t−1)|x(t−2), ..., x(t−N−1), y) . . . p(x(2)|x(1), y)p(x(1)|y)

=

t∏
s=N+1

[
p(x(s)|x(s−1), ..., x(s−N), y)

]
p(x(N), x(N−1), ..., x(1)|y)

=

t∏
s=N+1

[
p(y|x(s), ..., x(s−N))p(x(s), ..., x(s−N))

p(x(s−1), ..., x(s−N), y)

]
p(y|x(N), ..., x(1))p(x(N), ..., x(1))

p(y)

=

t∏
s=N+1

[
p(y|x(s), ..., x(s−N))p(x(s), ..., x(s−N))

p(y|x(s−1), ..., x(s−N))p(x(s−1), ..., x(s−N))

]
p(y|x(N), ..., x(1))p(x(N), ..., x(1))

p(y)
.

(82)
Hence

p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)
=

t∏
s=N+1

[
p(y = 1|x(s), ..., x(s−N))

p(y = 0|x(s), ..., x(s−N))

] t∏
s=N+2

[
p(y = 0|x(s−1), ..., x(s−N))

p(y = 1|x(s−1), ..., x(s−N))

]
p(y = 0)

p(y = 1)
, (83)
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or

log

(
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

)
=

t∑
s=N+1

log

(
p(y = 1|x(s), ..., x(s−N))

p(y = 0|x(s), ..., x(s−N))

)
−

t∑
s=N+2

log

(
p(y = 1|x(s−1), ..., x(s−N))

p(y = 0|x(s−1), ..., x(s−N))

)
− log

(
p(y = 1)

p(y = 0)

)
. (84)

For t < N + 2, we obtain

log

(
p(x(1), x(2), ..., x(t)|y = 1)

p(x(1), x(2), ..., x(t)|y = 0)

)
= log

(
p(y = 1|x(1), x(2), ..., x(t))

p(y = 0|x(1), x(2), ..., x(t))

)
− log

(
p(y = 1)

p(y = 0)

)
. (85)

27



Published as a conference paper at ICLR 2021

D SUPPLEMENTARY DISCUSSION

Why is the SPRT-TANDEM superior to other baselines? The potential drawbacks common
to the LSTM-s/m and EARLIEST is that they incorporate long temporal correlation: it may lead
to (1) the class signature length problem and (2) vanishing gradient problem, as we described in
Section 3. (1) If a class signature is significantly shorter than the correlation length in consideration,
uninformative data samples are included in calculating the log-likelihood ratio, resulting in a late or
wrong decision. (2) long correlations require calculating a long-range of backpropagation, prone to
the vanishing gradient problem.

An LSTM-s/m-specific drawback is similar to that of Neyman-Pearson test, in the sense that it
fixes the number of samples before performance evaluations. On the other hand, the SPRT, and
the SPRT-TANDEM, classify various lengths of samples: thus, the SPRT-TANDEM can achieve a
smaller sampling number with high accuracy on average. Another potential drawback of LSTM-s/m
is that their loss function explicitly imposes monotonicity to the scores. While the monotonicity is
advantageous for quick decisions, it may sacrifice flexibility: the LSTM-s/m can hardly change its
mind during a classification.

EARLIEST, the reinforcement-learning based classifier, decides on the various length of samples. A
potential EARLIEST-specific drawback is that deep reinforcement learning is known to be unstable
(Nikishin et al. (2018); Kumar et al.).

How optimal is the SPRT-TANDEM? In practice, it is difficult to strictly satisfy the necessary
conditions for the SPRT’s optimality (Theorem A.5 and A.6) because of experimental limitations.

One of our primary interests is to apply the SPRT, the provably optimal algorithm, to real-world
datasets. A major concern about extending Wald’s SPRT is that we need to know the true likelihood
ratio a priori to implement the SPRT. Thus we propose the SPRT-TANDEM with the help of machine
learning and density ratio estimation to remove the concern, if not completely. However, some
technical limitations still exist. Let us introduce two properties of the SPRT that can prevent the
SPRT-TANDEM from approaching exact optimality.

Firstly, the SPRT is assumed to terminate for all the LLR trajectories under consideration with
probability one. The corresponding equation stating this assumption is Equation (61) and (66) under
the i.i.d. and non-i.i.d. condition, respectively. Given that this assumption (and the other minor
technical conditions in Theorem A.5 and A.6) is satisfied, the more precisely we estimate the LLRs,
the more we approach the genuine SPRT implementation and thus its asymptotic Bayes optimality.

Secondly, the non-i.i.d. SPRT is asymptotically optimal when the maximum number of samples
allowed is not fixed (infinite horizon). On the other hand, our experiment truncates the SPRT (finite
horizon) at the maximum timestamp, which depends on the datasets. Under the truncation, gradually
collapsing thresholds are proven to give the optimal stopping (Tartakovsky et al. (2014)); however, the
collapsing thresholds are obtained via backward induction (Bingham et al. (2006)), which is possible
only after observing the full sequence. Thus, under the truncation, finding the optimal solutions in a
strict sense critically limits practical applicability.

The truncation is just an experimental requirement and is not an essential assumption for the SPRT-
TANDEM. Under the infinite horizon settings, the LLRs is assumed to increase or decrease toward
the thresholds (Theorem A.6) in order to ensure the asymptotic optimality. However, we observed
that the estimated LLRs tend to be asymptotically flat, especially when N is large (Figure 10, 11, and
12); the estimated LLRs can violate the assumption of Theorem A.6.

One potential reason for the flat LLRs is the TANDEM formula: the first and second term of the
formula has a different sign. Thus, the resulting log-likelihood ratio will be updated only when the
difference between the two terms are non-zero. Because the first and second term depends on N + 1
and N inputs, respectively, it is expected that the contribution of one input becomes relatively small
as N is enlarged. We are aware of this issue and already started working on it as future work.

Nevertheless, the flat LLRs at least do not spoil the practical efficiency of the SPRT-TANDEM, as our
experiment shows. In fact, because we cannot know the true LLR of real-world datasets, it is not easy
to discuss whether the assumption of the increasing LLRs is valid on the three databases (NMNIST,
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UCF, and SiW) we tested. Numerical simulation may be possible, but it is out of our scope because
our primary interest is to implement a practically usable SPRT under real-world scenarios.

The best order N of the SPRT-TANDEM. The order N is a hyperparamer, as we mentioned in
Section 3 and thus needs to be tuned to attain the best performance. However, each dataset has its
own temporal structure, and thus it is challenging to acquire the best order a priori. In the following,
we provide a rough estimation of the best order, which may give dramatic benefit to the users and
may lead to exciting future works.

Let us introduce a concept, specific time scale, which is used in physics to analyze qualitative
behavior of a physical system. Here, we define the specific time scale of a physical system as a
temporal interval in which the physical system develops dramatically. For example, suppose that a
physical system under consideration is a small segment of spacetime in which an unstable particle,
ortho-positronium (o-Ps), exists. In this case, a specific time scale can be defined as the lifetime
of o-Ps, 0.14µs (Czarnecki (1999)), because the o-Ps is likely to vanish in 0.14 × O(1)µs — the
physical system has changed completely. Note that the definition of specific time scale is not unique
for one physical system; it depends on the phenomena the researcher focuses on. Specific (time)
scale are often found in fundamental equations that describes physical systems. In the example above,
the decay equation N(t) = A exp(−t/τ) has the lifetime τ ∈ R in itself. Here N(t) ∈ R is the
expected number of o-Ps’ at time t ∈ R, and A ∈ R is a constant.

Let us borrow the concept of the specific time scale to estimate the best order of the SPRT-TANDEM
before training neural networks, though there is a gap in scale. In this case, we define the specific
time scale of a dataset as the number of frames after which a typical video in the dataset shows
completely different scene. As is discussed below, we claim that the specific time scale of a dataset
is a good estimation of the best order of the SPRT-TANDEM, because the correlations shorter than
the specific time scale are insufficient to distinguish each class, while the longer correlations may be
contaminated with noise and keep redundant information.

First, we consider Nosaic MNSIT (NMNIST). The specific time scale of NMNIST can be defined as
the half-life2 of the noise, i.e., the necessary temporal interval for half of the noise to disappear. It is 10
frames by definition of NMNIST, and approximately matches the best order of the SPRT-TANDEM:
in Figure 3, our experiment shows that the 10th order SPRT-TANDEM (with 11-frames correlation)
outperforms the other orders in the latter timestamps, though we did not perform experiments with
all the possible orders. A potential underlying mechanism is: Too long correlations keep noisy
information in earlier timestamps, causing degradation, while too short correlations do not fully
utilize the past information.

Next, we discuss the two classes in UCF101 action recognition database, handstand pushups and
handstand walking, which are used in our experiment. A specific time scale is ∼ 10 frames because
of the following reasons. The first class, handstand pushups, has a specific time scale of one cycle
of raising and lowering one’s body ∼ 50 frames (according to the shortest video in the class). The
second class, handstand walking, has a specific time scale of one cycle of walking, i.e., two steps,
∼ 10 frames (according to the longest video in the class). Therefore the specific time scale of UCF is
∼ 10, the smaller one, since we can see whether there is a class signature in a video within at most
∼ 10 frames. The specific time scale matches the best order of the SPRT-TANDEM according to
Figure 3.

Finally, a specific time scale of SiW is ∼ 1 frame, because a single image suffices to distinguish a
real person and a spoofing image, because of the reflection of the display, texture of the photo, or the
movement specific to a live person3. The best order in Figure 3 is ∼ 1, matching the specific time
scale.

We make comments on two potential future works related to estimation of the best order of the
SPRT-TANDEM. First, as our experiments include only short videos, it is an interesting future work
to estimate the best order of the SPRT-TANDEM in super-long video classification, where gradient
vanishing becomes a problem and likelihood estimation becomes more challenging. Second, it is an

2This choice of words is, strictly speaking, not correct, because the noise decay in NMNIST is linear; the
definition of half-life in physics assumes the decay to be exponential.

3In fact, the feature extractor, which classified a single frame to two classes, showed fairly high accuracy in
our experiment, without temporal information.
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exciting future work to analyse the relation of the specific time scale to the best order when there
are multiple time scales. For example, recall the discussion of locality above in this Appendix D:
Applying the SPRT-TANDEM to a dataset with distributed class signatures is challenging. Distributed
class signatures may have two specific time scales: e.g., one is the mean length of the signatures, and
the other is the mean interval between the signatures.

The best threshold λτ∗ of the SPRT-TANDEM. In practice, a user can change the thresholds after
deploying the SPRT-TANDEM algorithm once and control the speed-accuracy tradeoff. Computing
the speed-accuracy-tradeoff curve is not expensive, and importantly computable without re-training.
According to the speed-accuracy-tradeoff curve, a user can choose the desired accuracy and speed.
Note that this flexible property is missing in most other deep neural networks: controlling speed
usually means changing the network structures and training it all over again.

End-to-end v.s. separate training. The design of SPRT-TANDEM does not hamper an end-to-end
training of neural networks; the feature extractor and temporal integrator can be readily connected
for thorough backpropagation calculation. However, in Section 5, we trained the feature integrator
and temporal integrator separately: after training the feature integrator, its trainable parameters
are fixed to start training the temporal integrator. We decided to train the two networks separately
because we found that it achieves better balanced accuracy and mean hitting time. Originally we
trained the network using NMNIST database with an end-to-end manner, but the accuracy was far
lower than the result reported in Section 5. We observed the same phenomenon when we trained
the SPRT-TANDEM on our private video database containing 1-channel infrared videos. These
observations might indicate that while the separate training may lose necessary information for
classification compared to the end-to-end approach, it helps the training of the temporal integrator by
fixing information at each data point. It will be interesting to study if this is a common problem in
early-classification algorithms and find the right balance between the end-to-end and separate training
to benefit both approaches.

Feedback to the field of neuroscience. Kira et al. (2015) experimentally showed that the SPRT
could explain neural activities in the area LIP at the macaque parietal lobe. They randomly presented
a sequence of visual objects with associated reward probability. A natural question arises from here:
what if the presented sequence is not random, but a time-dependent visual sequence? Will the neural
activity be explained by our SPRT-TANDEM, or will the neurons utilize a completely different
algorithm? Our research provides one driving hypothesis to lead the neuroscience community to a
deeper understanding of the brain’s decision-making system.

Usage of statistical tests. As of writing this manuscript, not all of the computer science papers use
statistical tests to evaluate their experiments. However, in order to provide an objective comparison
across proposed and existing models, running multiple validation trials with random seeds followed
by a statistical test is helpful. Thus, the authors hope that our paper stimulates the field of computer
science to utilize statistical tests more actively.

Ethical concern. The proposed method, SPRT-TANDEM, is a general algorithm applicable to a
broad range of serial data, such as auditory signals or video frames. Thus, any ethical concerns
entirely depend on the application and training database, not on our algorithm per se. For example, if
SPRT-TANDEM is applied to a face spoofing detection, using faces of people of one particular racial
or ethnic group as training data may lead to a bias toward or against people of other groups. However,
this bias is a concern in machine learning in general, not specific to the SPRT-TANDEM.

Is the SPRT-TANDEM “too local”? In our experiments in Section 5, the SPRT-TANDEM with
maximum correlation allowed (i.e., 19th, 49th, and 49th on NMNIST, UCF, and SiW databases,
respectively) does not necessarily reach the highest accuracy with a larger number of frames. Instead,
depending on the database, the lower order of approximation, such as 10th order TANDEM, out-
performs the other orders. In the SiW database, this observation is especially prominent: the model
records the highest balanced accuracy is the 2nd order SPRT-TANDEM. While this may indicate our
TANDEM formula with the “dropping correlation” strategy works well as we expected, a remaining
concern is the SPRT may integrate too local information. What if class signatures are far separated in
time?
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In such a case, the SPRT-TANDEM may fail to integrate the distributed class signatures for correct
classification. On the other hand, the SPRT-TANDEM may be able to add the useful information of
the class signatures to the LLR only when encountering the signatures (in other words, do not add
non-zero values to the LLR without seeing class signatures). The SPRT-TANDEM may be able to skip
unnecessary data points without modification, or with a modification similar to SkipRNN (Campos
et al. (2018)), which actively achieve this goal: by learning unnecessary data point, the SkipRNN
skips updating the internal state of RNN to attend just to informative data. Similarly, we can modify
the SPRT-TANDEM so that it learns to skip updating LLR upon encountering uninformative data. It
will be exciting future work, and the authors are looking forward to testing the SPRT-TANDEM on a
challenging database with distributed class signatures.

A more challenging dataset: Nosaic MNIST-Hard (NMNIST-H). In the main text, we see the
accuracy of the SPRT-TANDEM saturates within a few timestamps. Therefore, it is worth testing the
models on a dataset that require more samples for reaching good performance. We create a more
challenging dataset, Nosaic MNIST-Hard: The MNIST handwritten digits are buried with heavier
noise than the orifinal NMNIST (only 10 pixels/frame are revealed, while it is 40 pixels/frame for
the original NMNIST). The resulting speed-accuracy tradeoff curves below show that the SPRT-
TANDEM outperforms LSTM-s/m more than the error-bar range, even on the more challenging
dataset requiring more timestamps to attain the accuracy saturation.

Figure 4: The speed-accuracy tradeoff curve. Compare this with Figure 3 in the main text. "10th TANDEM" means the 10-th order SPRT-
TANDEM. "19th TANDEM" means the 19-th order SPRT-TANDEM. The numbers of trials for hyperparameter tuning if 200 for all
the models. The error bars are standard error of mean (SEM). The numbers of trials for statistics are 440, 240, 200, and 200 for 10th
TANDEM, 19th TANDEM, LSTM-s, and LSTM-m, respectively.

31



Published as a conference paper at ICLR 2021

E LOSS FOR LOG-LIKELIHOOD RATIO ESTIMATION (LLLR)

In this section, we discuss a deep connection of the novel loss function, LLLR

LLLR =
1

M

∑
i∈I1

|1− σ(log r̂(Xi))|+
1

M

∑
i∈I0

σ(log r̂(Xi)) , (86)

to density ratio estimation (Sugiyama et al. (2012; 2010)). Here, Xi := {x(t)
i ∈ Rdx}Tt=1 and

yi ∈ {1, 0} (i ∈ I := I1 ∪ I0, T ∈ N, dx ∈ N) are a sequence of samples and a label, respectively,
where I , I1, and I0 are the index sets of the whole dataset, class 1, and class 0, respectively. r̂(Xi)
(i ∈ I) is the likelihood ratio of Xi. The hatted notation ( ·̂ ) means that the quantity is an estimation
with, e.g., a neural network on the training dataset {(Xi, yi)}i∈I . Note that we do not necessarily have
to compute p̂(Xi|y = 1) and p̂(Xi|y = 0) separately to obtain the likelihood ratio r̂(Xi) = p̂(X|y=1)

p̂(X|y=0) ;
we can estimate r̂ directly, as is explained in the following subsections.

In the following, we first introduce KLIEP (Kullback-Leibler Importance Estimation Procedure,
Sugiyama et al. (2008)), which underlies the theoretical aspects of the LLLR. KLIEP was originally
invented to estimate density ratio without directly estimating the densities. The idea is to minimize the
Kullback-Leibler divergence of the true density p(X|y = 1) and the estimated density r̂(X)p(X|y =
0), where (X, y) is a sequential data-label pair defined on the same space as (Xi, yi)’s. Next, we
introduce the symmetrized KLIEP, which cares about not only p(X|y = 1) and r̂(X)p(X|y = 0),
but p(X|y = 0) and r̂−1(X)p(X|y = 1) to remove the asymmetry inherent in the Kullback-Leibler
divergence. Finally, we show the equivalence of the symmetrized KLIEP to the LLLR; specifically,
we show that the LLLR minimizes the Kullback-Leibler divergence of the true and the estimated
density, and further stabilizes the training by restricting the value of likelihood ratio.

E.1 DENSITY RATIO ESTIMATION AND KLIEP

In this section, we briefly review density ratio estimation and introduce KLIEP.

Density estimation is the construction of underlying probability densities based on observed datasets.
Taking their ratio, we can naively estimate the density ratio; however, division by an estimated
quantity is likely to enhance the estimation error (Sugiyama et al. (2012; 2010)). Density ratio
estimation has been developed to circumvent this problem. We can categorize the methods to the
following four: probabilistic classification, moment matching, density ratio fitting, and density fitting.

Probabilistic classification. The idea of the probabilistic classification is that the posterior density
p(Y |X) is easier to estimate than the likelihood p(X|Y ). Notice that

r̂(X) =
p̂(X|y = 1)

p̂(X|y = 0)
=
p̂(y = 1|X)

p̂(y = 0|X)

p̂(y = 0)

p̂(y = 1)
=
p̂(y = 1|X)

p̂(y = 0|X)

M0

M1
, (87)

where M1 and M0 denote the number of the training data points with label 1 and 0 respectively. Thus
we can estimate the likelihood ratio from the estimated posterior ratio. The multiplet cross-entropy
loss conducts the density ratio estimation in this way.

Moment matching. The moment matching approach aims to match the moments of p(X|y = 1)
and r̂(X)p(X|y = 0), according to the fact that two distributions are identical if and only if all
moments agree with each other.

Density ratio fitting. Without knowing the true densities, we can directly minimize the difference
between the true and estimated ratio as follows:

argmin
r̂

[∫
dXp(X|y = 0)(r̂(X)− r(X))2

]
(88)

=argmin
r̂

[∫
dXp(X|y = 0)r̂(X)2 − 2

∫
dXp(X|y = 1)r̂(X)

]
(89)

;argmin
r̂

[
1

M0

∑
i∈I0

r̂(Xi)
2 − 2

M1

∑
i∈I1

r̂(Xi)

]
. (90)
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Here, we applied the empirical approximation. In addition, we restrict the value of r̂(X): r̂(X) ≥ 0.
Since (90) is not bounded below, we must add other terms or put more constraints, as is done in the
original paper (Kanamori et al. (2009)). This formulation of density ratio estimation is referred to as
least-squares importance fitting (LSIF, Kanamori et al. (2009)).

Density fitting. Instead of the squared expectation, KLIEP minimizes the Kullback-Leibler diver-
gence:

argmin
r̂

[KL(p(X|y = 1)||r̂p(X|y = 0))] (91)

=argmin
r̂

[∫
dXp(X|y = 1) log(

p(X|y = 1)

r̂(X)p(X|y = 0)
)

]
(92)

=argmin
r̂

[
−
∫
dXp(X|y = 1) log(r̂(X))

]
. (93)

We need to restrict r̂: 
0 ≤ r̂(X) (94)∫
dXr̂(X)p(X|y = 0) = 1 , (95)

The first inequality ensures the positivity of the probability ratio, while the second equation is the
normalization condition. Applying the empirical approximation, we obtain the final objective and the
constraints:

argmin
r̂

[
1

M1

∑
i∈I1

− log r̂(Xi)

]
(96)


r̂(X) ≥ 0 (97)

1

M0

∑
i∈I0

r̂(Xi) = 1 (98)

Several papers implement the algorithms mentioned above using deep neural networks. In Nam &
Sugiyama (2015), LSIF is applied to outlier detection with the deep neural network implementation,
whereas in Khan et al. (2019), KLIEP and its variant are applied to changepoint detection.

E.2 THE SYMMETRIZED KLIEP LOSS

As shown above, KLIEP minimizes the Kullback-Leibler divergence; however, its asymmetry can
cause instability of the training, and thus we introduce the symmetrized KLIEP loss. A similar idea
was proposed in Khan et al. (2019) independently of our analysis.

First, notice that

KL(p(X|y = 1)||r̂p(X|y = 0)) =

∫
dXp(X|y = 1) log(

p(X|y = 1)

r̂(X)p(X|y = 0)
) (99)

= −
∫
dXp(X|y = 1) log(r̂(X)) + const. (100)

The constant term is independent of the weight parameters of the network and thus negligible in the
following discussion. Similarly,

KL(p(X|y = 0)||r̂−1p(X|y = 1)) = −
∫
dXp(X|y = 1) log(r̂(X)−1) + const. (101)

We need to restrict the value of r̂ in order for p(X|y = 1) and p(X|y = 0) to be probability densities:
0 ≤ r̂(X)p(X|y = 0) (102)∫
dXr̂(X)p(X|y = 0) = 1 , (103)
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and 
0 ≤ r̂(X)−1p(X|y = 1) (104)∫
dXr̂(X)−1p(X|y = 1) = 1 , (105)

Therefore, we define the symmetrized KLIEP loss as

LKLIEP :=

∫
dX(−p(X|y = 1) log r̂(X))−

∫
dX(−p(X|y = 0) log r̂(X)) (106)

with the constraints (102)-(105). The estimated ratio function argminr̂(X)LKLIEP with the constraints
minimizes KL(p(X|y = 1)||r̂(X)p(X|y = 0)) + KL(p(X|y = 0)||r̂−1p(X|y = 1))). According
to the empirical approximation, they reduce to

LKLIEP({Xi}Mi=1) ;
1

M1

∑
i∈I1

− log(r̂(Xi)) +
1

M0

∑
i∈I0

− log(r̂(Xi)
−1), (107)



r̂(X) ≥ 0 (108)
1

M0

∑
i∈I0

r̂(Xi) = 1 (109)

1

M1

∑
i∈I1

r̂(Xi)
−1 = 1 . (110)

E.3 THE LLLR AND DENSITY RATIO ESTIMATION

Let us investigate the LLLR in connection with the symmetrized KLIEP loss.

Divergence terms. First, we focus on the divergence terms in (107):

1

M1

∑
i∈I1

− log(r̂(Xi)) (111)

1

M0

∑
i∈I0

− log(r̂(Xi)
−1) . (112)

As shown above, decreasing (111) and (112) leads to minimizing the Kullback-Leibler divergence
of p(X|y = 1) and r̂p(X|y = 0) and that of p(X|y = 0) and r̂−1p(X|y = 1) respectively. The
counterparts in the LLLR are

LLLR =
1

M

∑
i∈I1

|1− σ(log r̂(Xi))| ↔ 1

M1

∑
i∈I1

− log(r̂(Xi)) (113)

+
1

M

∑
i∈I0

σ(log r̂(Xi)) ↔ 1

M0

∑
i∈I0

− log(r̂(Xi)
−1) , (114)

because, on one hand, both terms in (113) ensures the likelihood ratio r̂ to be large for class 1, and,
on the other hand, both terms in (114) ensures r̂ to be small for class 0. Therefore, minimizing
LLLR is equivalent to decreasing both (111) and (112) and therefore to minimizing (108), i.e., the
Kullback-Leibler divergences of the true and estimated densities.

Again, we emphasize that the LLLR is more stable, since LLLR is lower-bounded unlike the KLIEP
loss.

Constraints. Next, we show that the LLLR implicitly keeps r̂ not too large nor too small; specifi-
cally, with increasing R̂(Xi) := | log r̂(Xi)|, the gradient converges to zero before R̂(Xi) enters the
region, e.g., R̂(Xi) & 1. Therefore the gradient descent converges before r̂(Xi) becomes too large
or small. To show this, we first write the gradients explicitly:

∇Wσ(log(r̂(Xi))) = σ′(log r̂(Xi)) · ∇W log r̂(Xi) (115)
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where W is the weight and σ is the sigmoid function. We see that with increasing R̂(Xi) =
| log r̂(Xi)|, the factor

σ′(log r̂(Xi)) (116)

converges to zero, because (116) ∼ 0 for too large or small r̂(Xi), e.g., for around R̂(Xi) & 1. Thus
the gradient (115) vanishes before r̂(Xi) becomes too large or small, i.e., keeping r̂(Xi) moderate.

In conclusion, the LLLR minimizes the difference between the true (p(X|y = 1) and p(X|y = 0))
and the estimated (r̂−1(X)p(X|y = 1) and r̂(X)p(X|y = 0)) densities in the sense of the Kullback-
Leibler divergence, including the effective constraints.

THE TRIVIAL SOLUTION IN EQUATION (115). We show that vanishing

∇W log r̂(Xi) (117)

in (115) corresponds to a trivial solution ; i.e., we show that (117)= 0 forces the bottleneck feature
vectors to be zero. Let us follow the notations in Table 4 and Figure 5. We particularly focus on the last
components in the gradient∇W log r̂(Xi), i.e.,∇

W
(L)
ab

log r̂(Xi) (a ∈ [dL−1] and b ∈ [dL] = {0, 1}).
Specifically,

∇
W

(L)
ab

log r̂ = ∇
W

(L)
ab

log ˆp(X|y = 1)−∇
W

(L)
ab

log ˆp(X|y = 0)

=
∑
y=1,0

[
∂g

(L)
y

∂W
(L)
ab

∂ log ˆp(X|y = 1)

∂g
(L)
y

− ∂g
(L)
y

∂W
(L)
ab

∂ log ˆp(X|y = 0)

∂g
(L)
y

]
. (118)

Since ∂ log p̂y′/∂g
(L)
y = δyy′ − p̂y , where y, y′ ∈ {1, 0} and δy,y′ is the Kronecker delta, we see

∂ log r̂

∂g
(L)
y

= (δy1 − p̂y)− (δy0 − p̂y) =

{
1 (if y = 1)

−1 (if y = 0)
(119)

∴ (118) =
∂g

(L)
1

W
(L)
ab

· 1 +
∂g

(L)
0

∂W
(L)
ab

· (−1) = δ1bf
(L−1)
a − δ0bf (L−1)

a . (120)

Thus (117) = 0 =⇒ (118)= 0⇐⇒ f
(L−1)
a = 0 (∀a ∈ [dL−1]), which is a trivial solution, because

the bottleneck feature vector collapses to zero at convergence. Our experiments, however, show that
our model does not tend to such a trivial solution; otherwise, the SPRT-TANDEM cannot attain such
a high performance.

f (0)(xi) = (f
(0)
1 , ..., f

(0)
dx

)T = xi ∈ Rd0=dx

f (l)(xi) = (f
(l)
1 , ..., f

(l)
dl

)T = σ(g(l)(xi)) ∈ Rdl(l = 0, 1, 2..., L− 1)

f (L)(xi) = (f
(L)
1 , ..., f

(L)
dL

)T = softmax(g(L)(xi)) ∈ RdL=2

g(l)(xi) = (g
(l)
1 , ..., g

(l)
dl

)T = W (l)T
f (l−1)(xi) ∈ Rdl(l = 0, 1, 2..., L− 1)

W (l) ∈ Rdl−1×dl(l = 0, 1, 2..., L− 1)

S = {(xi, ti)}Mi=1: training dataset dx: input dimension
xi ∈ Rdx : input vector L: number of layers
ti ∈ R2: one-hot label vector σ: activation function

Table 4: Notation. f(0)(xi) = xi is the input vector with dimension dx ∈ N. f(l)(xi) is a feature vector after the activation function σ
with dimension dl ∈ N. f(L)(xi) is the output of the softmax function, and has dL = 2, since we focus on the binary classification
problem in this paper. g(l)(xi) is a feature vector before the activation function with dimension dl ∈ N. W (l) is a weight matrix
in the neural network. Figure 5 visualizes the network structure.
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Figure 5: Visualization of the notation given in Table 4. We assume that the network has L fully-connected layers W l and the activation
function σ, with the final softmax with cross-entropy loss.

E.4 PREPARATORY EXPERIMENT TESTING THE EFFECTIVENESS OF THE LLLR

To test if the proposed LLLR could effectively train a neural network, we ran two preliminary experi-
ments before the main manuscript. First, we compared training the proposed network architecture
Lmultiplet, with and without LLLR. Next, we compared training the network using Lmultiplet with LLLR,
and training with Lmultiplet with the KLIEP loss, LKLIEP, whose numerator and denominator were
carefully bounded so that the LKLIEP did not diverge.

2D face

3D face

Original video Extracted facial feature points

(a) (b)

Figure 6: Depth-from-motion dataset for the face 3D-ness detection task. Only three frames out of ten frames are shown. Top and bottom faces
are 3D and 2D faces, respectively. (a) Video of faces taken from various angles. (b) Facial feature points that are extracted with the
feature extractor, fwFE (x(t))

We tested the effectiveness of LLLR on a 3D-ness detection task on a depth-from-motion (DfM)
dataset 4. The DfM dataset was a small dataset containing 2320 and 2609 3D- and 2D- facial videos,
respectively, each of which consisted of 10 frames. In each of the video, a face was filmed from
various angles (Figure 6a), so that the dynamics of the facial features could be used to determine
whether the face appearing in a video is flat, 2D face, or had a 3D structure. The recording device was
an iPhone7. Here, the feature extractor fwFE(x(t)) was the LBP-AdaBoost algorithm (Viola & Jones
(2001)) combined with the supervised descent method (Xiong & De la Torre (2013)), which took the
t-th frame of the given video as input x(t) and output facial feature points (Figure 6b). The feature
points were output as a vector of 152 lengths, consisted of vertical and horizontal pixel positions of
76 facial feature points. The temporal integrator gwTI(x

(t)) is an LSTM, whose number of hidden
units was the same as that of feature points. The 1st-order SPRT-TANDEM was evaluated on two
hypotheses, y = 1: 2D face, and y = 0: 3D face. We assumed a flat prior, p(y = 1) = p(y = 0). The
validation and test data were 10% of the entire data randomly selected at the beginning of training,

4For the protection of personal information, this database cannot be made public.
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respectively. We conducted a 10-fold cross-validation test to evaluate the effect of LLLR.
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***(p=9.56E-10)

Figure 7: Statistical test of equal error rates (EERs) in 10-fold cross-validation test. Two-way ANOVA are conducted with a loss factor
(LLLR +Lmultiplet,LKLIEP +Lmultiplet, andLmultiplet) and a epoch factor (21−100-th epoch). P-values with asterisks are statistically
significant: one, two and three asterisks show p < 0.05, p < 0.01, and p < 0.001, respectively. Error bars show the standard
errors of the mean (SEM).

We compared the classification performance of the SPRT-TANDEM network using both LLLR and
Lmultiplet, and using Lmultiplet only. We also compare LLLR + Lmultiplet and LKLIEP + Lmultiplet. To
use LKLIEP without making a loss diverge, we set the upper and lower bound of the numerator and
denominator of r̂ as 105 and 10−5, respectively. Out of 100 training epochs, the results of the last 80
epochs were used to calculate test equal error rates (EERs). Two-way ANOVA with factors “loss type”
and “epoch” were conducted to see if the difference in loss function caused statistically significantly
different EERs. We included the epoch as a factor in order to see if the value of EER reached a
plateau in the last 80 epochs (i.e., statistically NOT significant). As we expected, EER values across
training epochs were not significantly different (p = 0.17). On the other hand, the loss type caused
statistically significant differences between the loss groups (i.e., LLLR + Lmultiplet, LKLIEP + Lmultiplet,
and Lmultiplet. p < 0.001). Following Tukey-Kramer multi-comparison test showed that training with
LLLR loss statistically significantly reduced the EER, compared to both LKLIEP (p = 9.56 ∗ 10−10)
and the LLLR-ablated loss (p = 9.56 ∗ 10−10). The result is plotted in Figure 7.
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F PROBABILITY DENSITY RATIO ESTIMATION WITH THE LLLR

Below we test whether the proposed LLLR can help a neural network estimating the true probability
density ratio. Providing the ground-truth probability density ratio was difficult in the three databases
used in the main text, because it was prohibitive to find the true probability distribution out of the
public databases containing real-world scenes. Thus, we create a toy-model estimating the probability
density ratio of the two multivariate Gaussian distributions. Experimental results show that a multi-
layer perceptron (MLP) trained with the proposed LLLR achieves smaller estimation error than an
MLP with crossentropy (CE)-loss.

F.1 EXPERIMENTAL SETTINGS

Following Sugiyama et al. 2008 Sugiyama et al. (2008), let p0(x) be the d-dimensional Gaussian
density with mean (2, 0, 0, ..., 0) and covariance identity, and p1(x) be the d-dimensional Gaussian
density with mean (0, 2, 0, ..., 0) and covariance identity.

The task for the neural network is to estimate the density ratio:

r̂(xi) =
p̂1(xi)

p̂0(xi)
. (121)

Here, x is sampled from one of the two Gaussian distributions, p0 or p1, and is associated with class
label y = 0 or y = 1, respectively. We compared the two loss functions, CE-loss and LLLR:

LLLR :=
1

N

N∑
i=1

|y − σ (log r̂i)| (122)

where σ is the sigmoid function.

A simple Neural network consists of 3-layer fully-connected network with nonlinear activation
(ReLU) is used for estimating r̂(x).

Evaluation metric is normalized mean squared error (NMSE, Sugiyama et al. (2008)):

NMSE :=
1

N

N∑
i=1

(
r̂j∑N
j=1 r̂j

− ri∑N
j=1 rj

)2

(123)

F.2 DENSITY ESTIMATION RESULTS

To calculate statistics, the MLP was trained either with the LLLR or CE-loss, repeated 40 times
with different random initial vairables. Figure 8 shows the mean NMSE with the shading shows
standard error of the mean. Although the training with LLLR does not decrease NMSE well at the
first few thousands of trials, the NMSE reaches as low as 10−5 around 14000 iterations. In contrast,
the training with CE shows a steep decrease of NMSE in the first 2000 iterations, but saturates after
that. Thus, the proposed LLLR not only facilitates the sequential binary hypothesis testing, but also
facilitates the estimation of true density ratio.
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Figure 8: Normalized mean squared error (NMSE) - iteration curve. A multi-layer perceptron is trained either cross-entropy loss (blue) or the
LLLR (red). Shades show the standard error of the mean (SEM).

G MULTIPLET CROSS-ENTROPY LOSS

In this section, we show that estimation of the true posterior is realized by minimizing the multiplet
cross-entropy loss defined in Section 4 on the basis of the principle of maximum likelihood estimation.

First, let us consider the 1st order for simplicity. The multiplet cross-entropy loss ensures for the
posterior p̂(y|x(t)) estimated by the network to be close to the true posterior p(y|x(t)). Consider
the Kullback-Leibler divergence of p̂(y|x(t)) and p(y|x(t)) for some x(t) ∈ Rdx (t ∈ N), where
y ∈ {0, 1}:

argmin
p̂

E
x(t)∼p(x(t))

[KL(p(y|x(t))||p̂(y|x(t)))] (124)

= argmin
p̂

E
(x(t),y)∼p(x(t),y)

[− log p̂(y|x(t))] (125)

; argmin
p̂

1

M

M∑
i=1

[− log p̂(yi|x(t)
i )] (126)

Thus, the last line shows the smaller singlet loss leads to the smaller Kullback-Leibler divergence; in
other words, we can estimate the true posterior density by minimizing the multiplet loss, which is
necessary to run the SPRT algorithm.

Similarly, we adopt the doublet cross-entropy to estimate the true posterior p(y|x(t), x(t+1)):

argmin
p̂

E
(x(t),x(t+1))∼p(x(t),x(t+1))

[KL(p(y|x(t), x(t+1))||p̂(y|x(t), x(t+1)))] (127)

; argmin
p̂

1

M

M∑
i=1

[− log p̂(yi|x(t)
i , x

(t+1)
i )] . (128)

The crucial difference from the singlet loss is that the doublet loss involves the temporal correlation
between x(t) and x(t+1), being necessary to implement the SPRT-TANDEM. Similar statements hold
for other orders.
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H HYPERPARAMETER OPTIMIZATION

We used Optuna, the optimization software, to determine hyperparameters. Hyperparameter search
trials are followed by performance evaluation trials of the fixed hyperparameter configuration. The
evaluation criteria used by Optuna to find the best parameter combination is balanced accuracy. For
models that produce multiple balanced accuracies / mean hitting time combinations, we use the
average of balanced accuracy at every natural number of the mean hitting time (e.g., one frame, two
frames).

H.1 NOSAIC MNIST (NMNIST)

SPRT-TANDEM: feature extractor. ResNet version 1 with 110 layers and 128 final output chan-
nels (total trainable parameters: 6.9M) is used. Hyperparameters are searched within the following
space:

learning rate ∈ {10−2, 10−3}
optimizer ∈ {Adam,Momentum,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.

Where Adam, Momentum, and RMSprop are based on (Kingma & Ba (2014), Rumelhart et al. (1986),
and Graves (2013)), respectively. Numbers of batch size and training epoch are fixed to 64 and 50,
respectively. The best hyperparameter combination is summarized in Table 5.

Table 5: Hyperparameter tuning result of the SPRT-TANDEM feature extractor on NMNIST database.

Trial Learning rate Batch size Optimizer Weight decay Dropout

80 10−2 1024 Adam 10−5 0

One search trial takes approximately 5 hours on our computing infrastructure (see Appendix K).

SPRT-TANDEM: temporal integrator. Peephole-LSTM with a hidden layer of size 128 (total
trainable parameters: 0.1M) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−2, 10−3, 10−4, 10−5}
batch size ∈ {256, 512, 1024}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

Where Adagrad is based on (Duchi et al. (2011)). Number of training epochs is fixed to 50. The
number of search trials and resulting best hyperparameter combination are summarized in Table 6.

Table 6: Hyperparameter tuning result of the SPRT-TANDEM temporal integrator. on NMNIST database.

Trial Learning rate Batch size Optimizer Weight decay Dropout

0th 186 10−2 1024 Adam 10−5 0
1st 151 10−3 1024 RMSprop 10−5 0
2nd 182 10−2 1024 RMSprop 10−5 0
3rd 140 10−2 1024 Adam 10−5 0
4th 139 10−2 1024 Adam 10−5 0
5th 140 10−2 1024 Adam 10−5 0
10th 142 10−2 1024 Adam 10−5 0
19th 193 10−3 1024 RMSprop 10−4 0

One search trial takes approximately 3 hours on our computing infrastructure (see Appendix K).
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LSTM-m / LSTM-s. Peephole-LSTM with a hidden layer of size 128 (total trainable parameters:
0.1M) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−2, 10−3, 10−4, 10−5}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}
lambda ∈ {0.01, 0.1, 1, 6, 10, 100}

where the lambda is a specific parameter of LSTM-m / LSTM-s. Batch size and number of training
epochs are fixed to 1024 and 100, respectively. The number of search trials and resulting best
hyperparameter combination are summarized in Table 7.

Table 7: Hyperparameter tuning result of the LSTM-m / LSTM-s on NMNIST database.

Trial Learning rate Optimizer Weight decay Dropout Lambda

LSTM-m 160 1e-002 Adam 1e-004 0 1e-001
LSTM-s 159 1e-003 RMSprop 1e-004 0 1e-002

One search trial takes approximately 3 hours on our computing infrastructure (see Appendix K).

EARLIEST. LSTM with a hidden layer of size 128 (total trainable parameters: 0.1M) is used.
Hyperparameters are searched within the following space:

learning rate ∈ {10−1, 10−2, 10−3, 10−4, 10−5}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

Batch size and number of training epochs are fixed to 15 and 2, respectively. The number of search
trials and resulting best hyperparameter combination are summarized in Table 8.

Table 8: Hyperparameter tuning result of the EARLIEST on NMNIST database,

Trial Learning rate Optimizer Weight decay Dropout s

EARLIEST (lambda:1e-002) 161 1e-003 Adam 1e-004 0
EARLIEST (lambda:1e-003) 110 1e-003 Adam 1e-004 0

One search trial takes approximately 48 hours on our computing infrastructure (see Appendix K)

3DResNet. 3DResNet with 101 layers and 128 final output channels (total trainable parameters:
7.7M) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−3, 10−4, 10−5}
batch size ∈ {100, 200, 500}

weight decay ∈ {10−3, 10−4, 10−5}.
(129)

Optimizer and number of training epochs are fixed to Adam and 50, respectively. The number of
search trials and resulting best hyperparameter combination are summarized in Table 9.

Table 9: Hyperparameter tuning result of the 3DResNet on NMNIST database,

Input frames Trial Learning rate Batch size Weight decay

5 50 1e-003 100 1e-004
10 50 1e-003 200 1e-004

5As of writing this manuscript, the original code of EARLIEST does not allow batch size larger than 1.
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Ablation experiment. Peephole-LSTM with a hidden layer of size 128 (total trainable parameters:
0.1M) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−1, 10−2, 10−3, 10−4, 10−5}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

Batch size and number of training epochs are fixed to 1024 and 100, respectively. The number of
search trials and resulting best hyperparameter combination are summarized in Table 10.

Table 10: Hyperparameter tuning result on the ablation experiment.

Trial Learning rate Optimizer Weight decay Dropout

Multiplet only 1st 143 1e-003 Adam 1e-004 0
19th 156 1e-003 RMSprop 1e-005 0

LLLR only 1st 141 1e-003 RMSprop 1e-005 0
19th 156 1e-003 Adam 1e-005 0

H.2 UCF101

SPRT-TANDEM: feature extractor. ResNet version 2 with 50 layers and 64 final output channels
(total trainable parameters: 26K) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−3, 10−4, 10−5, 10−6}
weight decay ∈ {10−3, 10−4, 10−5}.

(130)

Numbers of batch size, optimizer, and training epochs are fixed to 512, Adam, and 100, respectively.
The best hyperparameter combination is summarized in Table 11.

Table 11: Hyperparameter tunnning result of the SPRT-TANDEM feature extractor on UCF database.

Trial Learning rate Weight decay

146 10−3 10−5

SPRT-TANDEM: temporal integrator. Peephole-LSTM with a hidden layer of size 64 (total
trainable parameters: 33K) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−4, 10−5, 10−6, 10−7}
batch size ∈ {57, 114, 171, 342}
optimizer ∈ {Adam,RMSprop}

dropout ∈ {0.1, 0.2, 0.3, 0.4}

Numbers of weight decay and training epochs are fixed to 10−4 and 100, respectively. The number
of search trials and the best hyperparameter combination are summarized in Table 12.

Table 12: Hyperparameter tuning result of the SPRT-TANDEM temporal integrator on UCF database.

Trial Learning rate Batch size Optimizer Dropout

0th 100 1e-004 114 RMSprop 0.2
1st 100 1e-004 57 RMSprop 0.4
2nd 100 1e-004 342 RMSprop 0.3
3rd 100 1e-004 57 RMSprop 0.3
5th 100 1e-004 114 RMSprop 0.1

10th 100 1e-004 171 RMSprop 0.1
14th 100 1e-004 114 RMSprop 0.1
24th 100 1e-004 171 RMSprop 0.1
49th 100 1e-004 342 RMSprop 0.1
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LSTM-m / LSTM-s. Peephole-LSTM with a hidden layer of size 64 (total trainable parameters:
33K) is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−4, 10−5, 10−6, 10−7}
batch size ∈ {57, 114, 171, 342}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0.1, 0.2, 0.3, 0.4}
lambda ∈ {0.01, 0.1, 1, 6, 10, 100}

The number of training epochs is fixed to 100. The number of search trials and resulting best
hyperparameter combination are summarized in Table 13.

Table 13: Hyperparameter tuning result of the LSTM-m / LSTM-s on UCF database.

Trial Batch size Learning rate Optimizer Weight decay Dropout Lambda

LSTM-m 100 171 1e-003 Adam 1e-003 0 100
LSTM-s 100 171 1e-003 Adam 1e-003 0 100

EARLIEST. LSTM with a hidden layer of size 64 (total trainable parameters: 33K) is used.
Hyperparameters are searched within the following space:

learning rate ∈ {10−1, 10−2, 10−3, 10−4, 10−5}
optimizer ∈ {Adam,Momentum,Adagrad,RMSprop}

weight decay ∈ {10−3, 10−4, 10−5}.
dropout ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}

Batch size and number of training epochs are fixed to 1 and 30, respectively. The number of search
trials and resulting best hyperparameter combination are summarized in Table 14.

Table 14: Hyperparameter combination of the EARLIEST on UCF database.

Trial Learning rate Optimizer Weight decay Dropout

EARLIEST (lambda:1e-001) 50 1e-005 Adam 1e-005 0.3
EARLIEST (lambda:1e-005) 50 1e-004 Adam 1e-004 0.3

3DResNet. 3DResNet with 50 layers and 64 final output channels (total trainable parameters: 52K)
is used. Hyperparameters are searched within the following space:

learning rate ∈ {10−3, 10−4, 10−5}
weight decay ∈ {10−3, 10−4, 10−5}.

(131)

Batch size, optimizer and number of training epochs are fixed to 19, Adam, and 50, respectively. The
number of search trials and resulting best hyperparameter combination are summarized in Table 15.

Table 15: Hyperparameter tuning result of the 3DResNet on NMNIST database,

Input frames Trial Learning rate Batch size Weight decay

15 50 1e-004 100 1e-005
25 50 1e-004 200 1e-005

H.3 SIW

The large database and network size prevent us to run multiple parameter search trials on SiW
database. Thus, we manually selected hyperparameters as follows.
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SPRT-TANDEM: feature extractor. ResNet version 2 with 152 layers and 512 final output chan-
nels (total trainable parameters: 3.7M) is used. Table 16 shows the fixed parameter combination.

Table 16: Hyperparameter tuning result of the SPRT-TANDEM feature extractor on SiW database.

Epoch Batch size Learning rate Optimizer Weight decay

30 83 1e-004 Adam 1e-004

SPRT-TANDEM: temporal integrator. Peephole-LSTM with a hidden layer of size 512s (total
trainable parameters: 2.1M) is used. Table 17 shows the fixed parameter combination.

Table 17: Hyperparameter tuning result of the SPRT-TANDEM temporal integratorabase.

Epoch Batch size Learning rate Optimizer Weight decay Dropout

50 83 1e-004 Adam 1e-004 0.3

LSTM-m / LSTM-s. Peephole-LSTM with a hidden layer of size 512s (total trainable parameters:
2.1M) is used. Table 18 shows the fixed parameter combination.

Table 18: Hyperparameter tuning result of the LSTM-m / LSTM-s. on SiW database.

Epoch Batch size Learning rate Optimizer Weight decay Dropout Lambda

50 83 1e-003 Adam 1e-003 0 100

EARLIEST. LSTM with a hidden layer of size 512s (total trainable parameters: 2.1M) is used.
Table 19 shows the fixed parameter combination.

Table 19: Hyperparameter combination of the EARLIEST on UCF database.

Epoch Learning rate Optimizer Weight decay Dropout

30 1e-004 Adam 1e-004 0.2

3DResNet. 3DResNet with 101 layers and 512 final output channels (total trainable parameters:
5.3M) is used. Table 20 shows the fixed parameter combination.

Table 20: Hyperparameter combination of the 3DResNet, on UCF database.

Input frames Epoch Learning rate Batch size Optimizer Weight decay

5 30 1e-004 5 Adam 1e-004
15 30 1e-004 3 Adam 1e-004
25 30 1e-004 3 Adam 1e-004
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I STATISTICAL TEST DETAILS

The models we compared in the experiment have various numbers of trials due to the difference in
training time; some models were prohibitively expensive for multiple runs (for example, 3DResNet
takes 20 hrs/epoch on SiW database with NVIDIA RTX2080Ti.) In order to have an objective
comparison of these models, we conducted statistical tests, Two-way ANOVA6 followed by Tukey-
Kramer multi-comparison test. In the tests, small numbers of trials lead to reduced test statistics,
making it difficult to claim significance, because the test statistic of Tukey-Kramer method is
proportional to 1/

√
(1/n+ 1/m), where n and m are trial numbers of two models to be compared.

Nevertheless, the SPRT-TANDEM is statistically significantly better than other baselines. One
intuitive interpretation of this result is that “the SPRT-TANDEM achieved accuracy high enough so
that only a few trials of baselines were needed to claim the significance.” These statistical tests are
standard practice in some research fields such as biological science, in which variable trial numbers
are inevitable in experiments.

All the statistical tests are executed with a customized MATLAB (2017) script. Here, the two factors
for ANOVA are (1) the model factor contains four members: the SPRT-TANDEM with the best
performing order on the given database, LSTM-m, EARLIEST, and 3DResNet, and (2) the phase
factor contains two or three members: early phase and late phase (NMNIST, UCF), or early, mid, and
the late phase (SiW). The early, mid, and late phases are defined based on the number of frames used
for classification. The actual number of frames is chosen so that the compared models can use as
similar data samples as possible and thus depends on the database. The SPRT-TANDEM, LSTM-m,
and 3DResNet can be compared with the same number of samples used. However, EARLIEST
cannot flexibly change the average number of samples (i.e., mean hitting time); thus, we include the
results of EARLIEST to groups with the closest number of data possible.

For NMNIST, five frames and ten frames are used to calculate the statistics of the early and late phases,
respectively, except EARLIEST uses 4.37 and 19.66 frames on average in each phase. For UCF, 15
frames and 25 frames are used to calculate the statistics of the early and late phases, respectively,
except EARLIEST uses 2.01 and 2.09 frames on average in each phase7. For SiW, 5, 15, and 25
frames are used to calculate the early, mid, and late phases, respectively, except EARLIEST uses 1.19,
8.21, and 32.06 frames. The p-values are summarized in the Tables 21-24. P-values with asterisks
are statistically significant: one, two and three asterisks show p < 0.05, p < 0.01, and p < 0.001,
respectively.

Table 21: p-values from the two-way ANOVA conducted on the three public databases.

NMNIST UCF SiW

model ***0.00 ***0.00 ***0.00
phase ***2.84E-261 ***1.86E-65 0.63

Table 22: p-values from the Tukey-Kramer multi-comparison test conducted on NMNIST.

10th-order SPRT-TANDEM LSTM-m EARLIEST 3DResNet
early late early late early late early

10th-order
SPRT-TANDEM late ***5.99E-08

LSTM-m early ***5.99E-08 ***5.99E-08
late ***6.01E-08 ***5.99E-08 ***5.99E-08

EARLIEST early ***5.99E-08 ***5.99E-08 1.00 ***5.99E-08
late ***1.26E-07 ***5.99E-08 ***5.99E-08 1.00 ***5.99E-08

3DResNet early ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08
late ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08

6Note that we also conducted a three-way ANOVA with model, phase, and database factors to achieve
qualitatively the same result verifying superiority of the SPRT-TANDEM over other algorithms.

7On UCF, EARLIEST does not use a large number of frames even when the hyperparameter lambda is set to
a small value.
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Table 23: p-values from the Tukey-Kramer multi-comparison test conducted on UCF.

10th-order SPRT-TANDEM LSTM-m EARLIEST 3DResNet
early late early late early late early

10th-order
SPRT-TANDEM late ***5.99E-08

LSTM-m early ***1.24E-05 ***5.99E-08
late ***5.99E-08 ***1.24E-05 ***5.99E-08

EARLIEST early ***9.42E-07 ***5.99E-08 0.24 ***5.99E-08
late **3.49E-03 ***9.42E-07 ***6.37E-08 0.24 ***5.99E-08

3DResNet early ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08
late ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08

Table 24: p-values from the Tukey-Kramer multi-comparison test conducted on SiW.

2nd-order SPRT-TANDEM LSTM-m EARLIEST 3DResNet
early late early late early late early

2nd-order
SPRT-TANDEM late 1.00

LSTM-m early ***6.56E-08 ***3.24E-04
late ***1.38E-05 ***6.56E-08 1.00

EARLIEST early ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08
late ***5.99E-08 ***5.99E-08 ***6.01E-08 ***5.99E-08 1.00

3DResNet early ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08
late ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08 ***5.99E-08
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J DETAILS OF THE EXPERIMENTS IN SECTION 5

Here we present the details of the experiments in Section 5. Figure 9 shows the SAT curves of all the
models we use in the experiment. Figure 10, 11, and 12 show example LLR trajectories calculated
using NMNIST, UCF, and SiW database, respectively. Tables 25 to 40 shows average balanced
accuracy and standard error of the mean (SEM) at the corresponding number of frames that used for
classification.

(c) (d)

(a) (b)

(e) (f)

Figure 9: Speed-accuracy tradeoff (SAT) curves of all the models. The right three panels show magnified views of the left three panels. The
magnified region is same as the region plotted in the insets in Figure 3a, 3b, and 3c. Error bars show the standard error of the mean
(SEM). (a,b) NMNIST database. (c,d) UCF database. (e,f) SiW database.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

Figure 10: Log-likelihood ratio (LLR) trajectories calculated on NMNIST database. Red and blue trajectories represent odd and even class,
respectively. Panels (a-i) shows results of 0th, 1st, 2nd, 3rd, 5th, 10th, 14th, 24th, and 49th-order SPRT-TANDEM, respectively.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

(i)

Figure 11: Log-likelihood ratio (LLR) trajectories calculated on UCF database. Red and blue trajectories represent handstand-pushups and
handstand-walking class, respectively. Panels (a-i) shows results of 0th, 1st, 2nd, 3rd, 5th, 10th, 14th, 24th, and 49th-order SPRT-
TANDEM, respectively.
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(c) (d)

(a) (b)

(e) (f)

(g) (h)

(i)

Figure 12: Log-likelihood ratio (LLR) trajectories calculated on SiW database. Red and blue trajectories represent live and spoof class, respec-
tively. Panels (a-i) shows results of 0th, 1st, 2nd, 3rd, 5th, 10th, 14th, 24th, and 49th-order SPRT-TANDEM, respectively.
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Table 25: Database: NMNIST, model: SPRT-TANDEM (1/2)

0th 1st 2nd 3rd
Frame Mean SEM Mean SEM Mean SEM Mean SEM

2 92.4260 3.5055e-004 93.8059 1.8919e-004 93.7317 1.8441e-004 93.5697 2.2729e-004
3 97.4691 1.0305e-004 98.0409 7.3110e-005 98.0061 8.2347e-005 97.9515 9.5436e-005
4 98.8174 5.1880e-005 99.0658 4.8780e-005 99.0728 4.9126e-005 99.0582 5.3061e-005
5 99.2033 3.4794e-005 99.3400 3.5587e-005 99.3565 4.2477e-005 99.3593 4.0801e-005
6 99.3700 3.4820e-005 99.4601 3.4799e-005 99.4456 3.8399e-005 99.4633 3.4886e-005
7 99.4480 3.2822e-005 99.4866 3.2035e-005 99.4783 3.5115e-005 99.4946 3.2541e-005
8 99.4837 2.9617e-005 99.4928 3.0137e-005 99.4897 3.3744e-005 99.5041 3.1241e-005
9 99.4957 2.9651e-005 99.4948 3.0002e-005 99.4917 3.2540e-005 99.5071 3.1055e-005
10 99.5004 2.8810e-005 99.4953 2.9388e-005 99.4926 3.2438e-005 99.5088 3.0463e-005
11 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4929 3.2466e-005 99.5099 3.0071e-005
12 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5105 2.9752e-005
13 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5106 2.9649e-005
14 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5107 2.9599e-005
15 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5107 2.9599e-005
16 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5108 2.9628e-005
17 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5108 2.9628e-005
18 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5108 2.9628e-005
19 99.5007 2.8895e-005 99.4954 2.9156e-005 99.4928 3.2570e-005 99.5108 2.9628e-005

stat. #trials 100 100 120 120

Table 26: Database: NMNIST, model: SPRT-TANDEM (2/2)

4th 5th 10th 19th
Frame Mean SEM Mean SEM Mean SEM Mean SEM

2 93.5525 3.0287e-004 93.5443 3.5917e-004 93.7672 1.7120e-004 94.2514 1.0840e-004
3 97.9744 9.7434e-005 97.9483 1.5584e-004 98.0168 8.0357e-005 98.2590 5.3897e-005
4 99.0528 7.7568e-005 99.0647 6.0556e-005 99.0854 4.1829e-005 99.1162 4.0463e-005
5 99.3464 5.6959e-005 99.3553 5.1067e-005 99.3714 4.0986e-005 99.3675 3.7986e-005
6 99.4538 4.9952e-005 99.4513 4.3367e-005 99.4657 3.4016e-005 99.4645 3.5654e-005
7 99.4854 4.3020e-005 99.4803 4.3188e-005 99.4940 3.1882e-005 99.4943 3.3249e-005
8 99.4934 4.2301e-005 99.4894 4.2109e-005 99.5049 3.0668e-005 99.4975 3.3069e-005
9 99.5000 4.1649e-005 99.4940 4.1320e-005 99.5096 2.9477e-005 99.4976 3.3061e-005
10 99.5002 4.0642e-005 99.4964 4.1014e-005 99.5119 2.9025e-005 99.4976 3.3061e-005
11 99.5013 4.0759e-005 99.4969 4.0133e-005 99.5132 2.9260e-005 99.4976 3.3061e-005
12 99.5019 4.0572e-005 99.4970 4.0075e-005 99.5135 2.9101e-005 99.4977 3.3142e-005
13 99.5020 4.0595e-005 99.4977 3.9750e-005 99.5138 2.9129e-005 99.4977 3.3142e-005
14 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5143 2.9373e-005 99.4977 3.3142e-005
15 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5144 2.9410e-005 99.4977 3.3142e-005
16 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5144 2.9410e-005 99.4977 3.3142e-005
17 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5144 2.9410e-005 99.4977 3.3142e-005
18 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5144 2.9410e-005 99.4977 3.3142e-005
19 99.5022 4.0562e-005 99.4980 4.0004e-005 99.5144 2.9410e-005 99.4977 3.3142e-005

stat. #trials 70 70 139 100

Table 27: Database: NMNIST, model: LSTM-m/s

LSTM-m LSTM-s
Frame Mean SEM Mean SEM

1 77.4855 1.7242e-003 77.9245 9.4813e-005
2 88.7368 1.1776e-003 89.0127 9.0176e-005
3 93.8943 8.0486e-004 94.1324 7.0497e-005
4 96.1456 5.1075e-004 96.4685 6.6315e-005
5 97.6231 4.1456e-004 97.9092 4.6285e-005
6 98.3505 3.5449e-004 98.4303 4.0016e-005
7 98.7364 2.8124e-004 98.8419 3.6436e-005
8 99.0151 2.4863e-004 99.0461 4.2539e-005
9 99.0935 2.0928e-004 99.1751 4.2772e-005

10 99.1911 1.8862e-004 99.2758 4.7584e-005
11 99.2693 1.6739e-004 99.3305 4.4399e-005
12 99.3401 1.6169e-004 99.3907 3.8428e-005
13 99.3945 1.5403e-004 99.4398 4.6851e-005
14 99.3994 1.4535e-004 99.4494 4.4525e-005
15 99.4207 1.4639e-004 99.4548 4.2956e-005
16 99.4009 1.2789e-004 99.4469 3.4843e-005
17 99.4142 1.2698e-004 99.4518 3.8027e-005
18 99.4918 1.3414e-004 99.5131 3.9145e-005
19 99.4820 1.2662e-004 99.5178 3.2760e-005
20 99.4963 1.2963e-004 99.5217 3.2808e-005

stat. #trials 138 120
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Table 28: Database: NMNIST, model: EARLIEST

Lambda: 1e-2 Lambda: 1e-3
Mean hitting time Mean SEM Mean hitting time Mean SEM

4.37 97.4830 1.7986e-004 19.66 99.3407 4.3111e-005

stat. #trials 130 130

Table 29: Database: NMNIST, model: 3DResNet

5 frames 10 frames
Mean SEM Mean SEM

93.8059 5.4340e-004 96.9833 6.9308e-004

stat. #trials 100 200

Table 30: Database: UCF, model: SPRT-TANDEM (1/2)

0th 1st 2nd 3rd 5th
Frame Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

2 92.9177 1.4953e-003 93.7855 8.0825e-004 94.2036 9.6600e-004 94.4136 8.9367e-004 94.4764 6.0138e-004
3 93.3782 1.4701e-003 93.5709 1.0460e-003 93.9745 1.3348e-003 93.8827 1.3175e-003 94.3345 8.2804e-004
4 94.0586 1.5222e-003 93.9336 1.2928e-003 94.0073 1.3351e-003 93.7145 1.4442e-003 94.3264 8.7777e-004
5 94.6577 1.4199e-003 94.5586 1.3820e-003 94.0909 1.3482e-003 93.8582 1.4708e-003 94.5364 8.7558e-004
6 95.0777 1.3280e-003 95.1100 1.2698e-003 94.3550 1.3701e-003 94.2305 1.4317e-003 94.8036 8.8973e-004
7 95.3464 1.2162e-003 95.3909 1.1564e-003 94.7977 1.3590e-003 94.6282 1.3468e-003 94.8827 9.3600e-004
8 95.6127 1.1504e-003 95.6595 1.0512e-003 95.2432 1.3280e-003 95.0000 1.2496e-003 95.2145 9.8280e-004
9 95.8473 1.1150e-003 95.8295 1.0307e-003 95.6018 1.2870e-003 95.2432 1.2262e-003 95.4045 9.8075e-004
10 96.0418 1.1038e-003 95.9627 1.0613e-003 95.8377 1.2843e-003 95.4218 1.2005e-003 95.6064 1.0118e-003
11 96.1782 1.0819e-003 96.0909 1.0505e-003 95.9918 1.3183e-003 95.5318 1.1916e-003 95.8023 1.0206e-003
12 96.2664 1.0701e-003 96.2341 1.0541e-003 96.1245 1.2994e-003 95.6382 1.1507e-003 96.0500 9.5854e-004
13 96.4968 1.0795e-003 96.3382 1.0504e-003 96.2764 1.3292e-003 95.6905 1.1642e-003 96.1882 9.5132e-004
14 96.6577 1.0987e-003 96.4627 1.0824e-003 96.3818 1.3388e-003 95.7232 1.1691e-003 96.3395 9.3848e-004
15 96.8273 1.0797e-003 96.555 1.0815e-003 96.4618 1.3237e-003 95.7886 1.1597e-003 96.4382 9.3831e-004
16 96.8868 1.0663e-003 96.6600 1.0617e-003 96.5232 1.3099e-003 95.8759 1.1770e-003 96.5023 9.0577e-004
17 96.9009 1.0672e-003 96.7055 1.0741e-003 96.5714 1.3077e-003 95.9677 1.1931e-003 96.5264 8.9523e-004
18 96.9100 1.0621e-003 96.7700 1.0667e-003 96.5950 1.2969e-003 96.0177 1.1833e-003 96.5695 8.7976e-004
19 96.9050 1.0605e-003 96.8155 1.0478e-003 96.6500 1.2776e-003 96.0909 1.1694e-003 96.6064 8.8584e-004
20 96.9050 1.0605e-003 96.8609 1.0204e-003 96.6691 1.2741e-003 96.1927 1.1463e-003 96.6345 8.8151e-004
21 96.9095 1.0603e-003 96.8700 1.0182e-003 96.6873 1.2733e-003 96.2518 1.1451e-003 96.6668 8.6249e-004
22 96.9095 1.0603e-003 96.8655 1.0313e-003 96.7055 1.2740e-003 96.2845 1.1448e-003 96.6950 8.5438e-004
23 96.9095 1.0603e-003 96.8700 1.0312e-003 96.7327 1.2627e-003 96.3077 1.1310e-003 96.7182 8.3851e-004
24 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7464 1.2558e-003 96.3486 1.1241e-003 96.7223 8.4269e-004
25 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7555 1.2561e-003 96.3759 1.1030e-003 96.7268 8.4295e-004
26 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7555 1.2561e-003 96.3941 1.1085e-003 96.7409 8.3699e-004
27 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7645 1.2453e-003 96.4032 1.1102e-003 96.7455 8.2897e-004
28 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7782 1.2406e-003 96.4077 1.1092e-003 96.7545 8.2935e-004
29 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7827 1.2407e-003 96.4123 1.1100e-003 96.7545 8.2935e-004
30 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7873 1.2407e-003 96.4123 1.1100e-003 96.7545 8.2935e-004
31 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
32 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
33 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
34 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
35 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
36 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
37 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
38 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
39 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
40 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
41 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
42 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
43 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
44 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
45 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
46 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
47 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
48 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004
49 96.9095 1.0603e-003 96.8655 1.0399e-003 96.7918 1.2424e-003 96.4168 1.1033e-003 96.7591 8.3202e-004

stat. #trials 200 200 200 200 200
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Table 31: Database: UCF, model: SPRT-TANDEM (2/2)

10th 14th 24th 49th
Frame Mean SEM Mean SEM Mean SEM Mean SEM

2 94.3693 7.0583e-004 94.5973 6.3592e-004 94.4741 6.5887e-004 94.5164 5.4415e-004
3 94.2933 9.2496e-004 94.4836 7.6021e-004 94.6227 7.1819e-004 94.4027 5.6738e-004
4 94.7670 1.2622e-003 94.6000 8.4566e-004 94.7445 8.5464e-004 94.3614 6.3765e-004
5 95.1009 1.2382e-003 94.7959 9.7762e-004 94.9823 1.0140e-003 94.5136 7.4998e-004
6 95.4595 1.2265e-003 95.0105 1.0293e-003 95.0127 1.0180e-003 94.6668 8.6725e-004
7 95.7621 1.1532e-003 95.1614 1.0559e-003 95.1064 1.0513e-003 95.0105 9.9242e-004
8 95.9233 1.2003e-003 95.3300 1.0940e-003 95.1927 1.0602e-003 95.3632 1.0896e-003
9 95.9844 1.1858e-003 95.5682 1.1080e-003 95.4273 1.0599e-003 95.7618 1.1041e-003
10 96.1847 1.1972e-003 95.8186 1.1270e-003 95.8045 9.8347e-004 96.2027 1.0252e-003
11 96.3864 1.1868e-003 96.0300 1.0826e-003 96.1218 9.5190e-004 96.5682 9.4495e-004
12 96.5376 1.1523e-003 96.3145 1.0642e-003 96.4105 9.7122e-004 96.8759 9.6024e-004
13 96.6683 1.1441e-003 96.4641 9.9651e-004 96.5586 9.6887e-004 96.8882 9.2910e-004
14 96.7571 1.1529e-003 96.5886 9.7034e-004 96.6436 9.3090e-004 97.0291 8.5486e-004
15 96.8494 1.1567e-003 96.6045 9.7399e-004 96.7273 8.7228e-004 97.0350 8.5588e-004
16 96.8558 1.1123e-003 96.6395 9.5199e-004 96.7314 8.5885e-004 97.0091 8.5215e-004
17 96.8565 1.0894e-003 96.6732 9.3998e-004 96.7618 8.5201e-004 96.9873 8.6177e-004
18 96.8636 1.0654e-003 96.7214 9.3324e-004 96.7486 8.3516e-004 96.9891 8.4492e-004
19 96.9304 1.0291e-003 96.7586 9.4147e-004 96.7814 8.1684e-004 96.9605 8.3036e-004
20 96.9901 1.0344e-003 96.7764 9.3966e-004 96.8059 7.9474e-004 97.0177 8.1004e-004
21 97.0405 1.0043e-003 96.7945 9.3204e-004 96.8295 7.8640e-004 97.0082 8.1590e-004
22 97.0767 1.0043e-003 96.8314 9.1138e-004 96.8245 7.9476e-004 97.0186 7.8815e-004
23 97.0746 4.0004e-005 96.8455 9.0550e-004 96.8477 7.9762e-004 96.9991 7.9405e-004
24 97.1179 9.5514e-004 96.8350 9.1151e-004 96.8373 8.0698e-004 96.9886 7.9391e-004
25 97.1243 9.6886e-004 96.8677 8.9903e-004 96.8600 8.1298e-004 96.9591 7.8125e-004
26 97.1385 9.6524e-004 96.8864 9.0036e-004 96.8605 8.0449e-004 96.9377 8.0226e-004
27 97.1740 9.6070e-004 96.8945 9.0864e-004 96.8595 8.3259e-004 96.9423 8.1041e-004
28 97.1882 9.6176e-004 96.9182 9.0371e-004 96.8600 8.3312e-004 96.9036 8.2951e-004
29 97.2024 9.5737e-004 96.9132 9.0583e-004 96.8441 8.4849e-004 96.8595 8.3695e-004
30 97.2173 9.5695e-004 96.9268 8.9741e-004 96.8191 8.6376e-004 96.8150 8.6132e-004
31 97.2386 9.5507e-004 96.9414 8.8623e-004 96.7941 8.8176e-004 96.8150 8.5573e-004
32 97.2386 9.5507e-004 96.9595 8.9188e-004 96.7986 8.7948e-004 96.8045 8.5903e-004
33 97.2386 9.5507e-004 96.9595 8.9188e-004 96.7936 8.8576e-004 96.7895 8.6692e-004
34 97.2386 9.5507e-004 96.9595 8.9188e-004 96.7986 8.8208e-004 96.7595 8.9009e-004
35 97.2457 9.5259e-004 96.9545 8.9598e-004 96.8036 8.7836e-004 96.7445 8.9987e-004
36 97.2457 9.5259e-004 96.9495 8.9724e-004 96.8036 8.7836e-004 96.7395 9.0308e-004
37 97.2457 9.5259e-004 96.9495 8.9724e-004 96.8036 8.7836e-004 96.7250 9.1193e-004
38 97.2457 9.5259e-004 96.9495 8.9724e-004 96.8036 8.7836e-004 96.7250 9.1193e-004
39 97.2457 9.5259e-004 96.9495 8.9724e-004 96.8036 8.7836e-004 96.7250 9.1193e-004
40 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7986 8.8208e-004 96.7250 9.1193e-004
41 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7986 8.8208e-004 96.7205 9.0941e-004
42 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
43 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
44 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
45 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
46 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
47 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
48 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7936 8.8292e-004 96.7155 9.1751e-004
49 97.2457 9.5259e-004 96.9495 8.9724e-004 96.7891 8.8285e-004 96.7155 9.1751e-004

stat. #trials 228 200 200 200
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Table 32: Database: UCF, model: LSTM-m/s

LSTM-m LSTM-s
Frame Mean SEM Mean SEM

1 92.3218 3.4054e-003 84.2160 1.1426e-002
2 93.1418 2.5895e-003 90.8731 4.1958e-003
3 93.5945 2.1883e-003 92.3609 2.9801e-003
4 93.2318 2.0714e-003 92.8218 2.5565e-003
5 93.3100 1.9444e-003 93.1665 2.2873e-003
6 93.1673 1.9889e-003 92.8992 2.1601e-003
7 93.0718 1.9675e-003 92.7300 1.9121e-003
8 93.1936 1.8432e-003 92.8425 1.8468e-003
9 93.8773 1.8754e-003 93.1998 1.8342e-003

10 94.3245 1.8930e-003 93.7480 1.7591e-003
11 94.4927 1.9408e-003 93.8524 1.6778e-003
12 94.7718 1.9919e-003 94.0666 1.6810e-003
13 95.0364 1.8573e-003 94.3366 1.8066e-003
14 94.6818 1.9646e-003 94.2475 1.7542e-003
15 94.5936 1.9803e-003 94.2277 1.6357e-003
16 94.5455 1.8724e-003 94.2187 1.6134e-003
17 94.8809 1.8213e-003 94.5104 1.6086e-003
18 95.3664 1.7234e-003 94.8128 1.6269e-003
19 95.5745 1.6877e-003 95.0261 1.4468e-003
20 95.7255 1.6622e-003 95.4770 1.4714e-003
21 95.7536 1.6173e-003 95.7462 1.4674e-003
22 95.8109 1.6107e-003 95.8596 1.4104e-003
23 95.8236 1.6813e-003 95.8812 1.4703e-003
24 95.900 1.6703e-003 95.8686 1.4755e-003
25 95.9273 1.6787e-003 95.9253 1.4515e-003
26 95.9500 1.7337e-003 95.9460 1.4797e-003
27 95.9364 1.7446e-003 95.9406 1.4437e-003
28 95.9536 1.7631e-003 95.9586 1.4707e-003
29 95.9391 1.7810e-003 95.9550 1.4902e-003
30 96.0027 1.7433e-003 95.9730 1.4463e-003
31 96.0209 1.7723e-003 96.0414 1.5190e-003
32 96.0964 1.7272e-003 96.0567 1.5807e-003
33 96.0727 1.8089e-003 96.0468 1.5618e-003
34 96.1527 1.8490e-003 96.1134 1.6079e-003
35 96.3518 1.9190e-003 96.2592 1.6641e-003
36 96.3991 1.7732e-003 96.2313 1.5489e-003
37 96.3882 1.7635e-003 96.3762 1.4489e-003
38 96.3973 1.7492e-003 96.4833 1.3558e-003
39 96.3655 1.7172e-003 96.5203 1.3800e-003
40 96.3836 1.6966e-003 96.5005 1.3618e-003
41 96.3727 1.6963e-003 96.5410 1.3637e-003
42 96.4718 1.6655e-003 96.5734 1.2837e-003
43 96.5882 1.6877e-003 96.6013 1.3400e-003
44 96.5873 1.7095e-003 96.6094 1.2952e-003
45 96.6445 1.6614e-003 96.5986 1.3716e-003
46 96.7209 1.6584e-003 96.5500 1.3648e-003
47 96.6427 1.6560e-003 96.5032 1.4112e-003
48 96.6118 1.7179e-003 96.4329 1.4514e-003
49 96.6845 1.6819e-003 96.4545 1.5521e-003
50 96.6891 1.7006e-003 96.5149 1.5340e-003

stat. #trials 100 101

Table 33: Database: UCF, model: EARLIEST

Lambda: 1e-3 Lambda: 1e-5
Mean hitting time Mean SEM Mean hitting time Mean SEM

2.0710 93.4600 1.2397e-003 2.0924 93.4800 8.5977e-004

stat. #trials 130 130

Table 34: Database: UCF, model: 3DResNet

15 frames 25 frames
Mean SEM Mean SEM

64.4188 8.7905e-003 90.0827 4.9585e-003

stat. #trials 49 100
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Table 35: Database: SiW, model: SPRT-TANDEM (1/2)

0th 1st 2nd 3rd 5th
Frame Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

2 99.8243 6.3459e-006 99.8441 1.2108e-005 99.862 9.1680e-006 99.8677 7.4066e-006 99.8647 1.1755e-005
3 99.8482 8.7040e-006 99.8604 1.3893e-005 99.8781 8.4124e-006 99.8846 9.1821e-006 99.8782 1.0775e-005
4 99.8596 1.2285e-005 99.8671 1.3990e-005 99.8884 8.0382e-006 99.8904 7.5388e-006 99.8861 1.0707e-005
5 99.8665 1.0850e-005 99.8741 1.5640e-005 99.8918 7.2057e-006 99.8917 6.7430e-006 99.8880 1.0342e-005
6 99.8695 1.0821e-005 99.8797 1.6082e-005 99.8933 7.0796e-006 99.8920 6.5525e-006 99.8885 9.6929e-006
7 99.8710 1.1622e-005 99.8834 1.5900e-005 99.8939 7.3545e-006 99.8925 6.5869e-006 99.8888 9.2890e-006
8 99.8722 1.1225e-005 99.8841 1.5857e-005 99.8940 7.2435e-006 99.8930 6.5214e-006 99.8888 9.2371e-006
9 99.8734 1.0900e-005 99.8847 1.5688e-005 99.8944 7.0277e-006 99.8935 6.5158e-006 99.8890 9.1903e-006
10 99.8743 1.1475e-005 99.8859 1.5007e-005 99.8947 7.4926e-006 99.8938 6.5011e-006 99.8892 8.9494e-006
11 99.8745 1.1716e-005 99.8868 1.4293e-005 99.8954 7.4938e-006 99.8939 6.4358e-006 99.8893 9.1568e-006
12 99.8745 1.1710e-005 99.8880 1.3965e-005 99.8960 7.0799e-006 99.8940 6.4512e-006 99.8893 9.1771e-006
13 99.8745 1.1710e-005 99.8886 1.3493e-005 99.8961 7.0500e-006 99.8940 6.4760e-006 99.8894 9.1487e-006
14 99.8745 1.1710e-005 99.8888 1.3068e-005 99.8961 7.0445e-006 99.8940 6.4613e-006 99.8894 9.1073e-006
15 99.8745 1.1710e-005 99.8890 1.2824e-005 99.8961 6.9214e-006 99.8940 6.4501e-006 99.8893 9.1593e-006
16 99.8745 1.1710e-005 99.8892 1.2619e-005 99.8962 6.9156e-006 99.8940 6.4501e-006 99.8894 9.1099e-006
17 99.8745 1.1710e-005 99.8893 1.2774e-005 99.8962 6.9156e-006 99.8940 6.4501e-006 99.8894 9.0983e-006
18 99.8745 1.1710e-005 99.8893 1.2955e-005 99.8962 6.9156e-006 99.8940 6.4501e-006 99.8894 9.1055e-006
19 99.8745 1.1710e-005 99.8892 1.3248e-005 99.8962 6.9156e-006 99.8940 6.4501e-006 99.8894 9.1055e-006
20 99.8745 1.1710e-005 99.8892 1.3414e-005 99.8962 6.9156e-006 99.8940 6.5535e-006 99.8894 9.1055e-006
21 99.8745 1.1710e-005 99.8892 1.3440e-005 99.8962 6.9156e-006 99.8940 6.5535e-006 99.8894 9.1055e-006
22 99.8745 1.1710e-005 99.8891 1.3708e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8894 9.1055e-006
23 99.8745 1.1710e-005 99.8891 1.3804e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8894 9.1055e-006
24 99.8745 1.1710e-005 99.8890 1.3890e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8894 9.1055e-006
25 99.8745 1.1710e-005 99.8891 1.3882e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
26 99.8745 1.1710e-005 99.8891 1.3882e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
27 99.8745 1.1710e-005 99.8891 1.3877e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
28 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
29 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
30 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
31 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
32 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
33 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
34 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
35 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
36 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
37 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
38 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
39 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
40 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
41 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
42 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
43 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
44 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
45 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
46 99.8745 1.1710e-005 99.8891 1.3922e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
47 99.8745 1.1710e-005 99.75 1.3222e-005 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
48 N.A. N.A. N.A. N.A. 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006
49 N.A. N.A. N.A. N.A. 99.8961 7.0169e-006 99.8940 6.5535e-006 99.8893 9.0979e-006

stat. #trials 116 112 110 109 109
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Table 36: Database: SiW, model: SPRT-TANDEM (2/2)

10th 14th 24th 49th
Frame Mean SEM Mean SEM Mean SEM Mean SEM

2 99.8726 1.3614e-005 99.8706 1.7393e-005 99.8749 8.6377e-006 99.8774 1.2239e-005
3 99.8818 1.2983e-005 99.8762 1.7440e-005 99.8781 8.4636e-006 99.8780 1.2553e-005
4 99.8840 1.3748e-005 99.8772 1.7972e-005 99.8787 8.8320e-006 99.8784 1.1964e-005
5 99.8829 1.2982e-005 99.8770 1.7717e-005 99.8789 9.4704e-006 99.8788 1.1849e-005
6 99.8827 1.3123e-005 99.8766 1.7587e-005 99.8789 9.9605e-006 99.8790 1.1873e-005
7 99.8826 1.3214e-005 99.8769 1.7567e-005 99.8791 1.0263e-005 99.8791 1.1747e-005
8 99.8826 1.3378e-005 99.8770 1.7595e-005 99.8792 1.0219e-005 99.8793 1.1696e-005
9 99.8826 1.3489e-005 99.8770 1.7693e-005 99.8793 1.0189e-005 99.8794 1.1529e-005
10 99.8826 1.3590e-005 99.8768 1.7846e-005 99.8793 1.0293e-005 99.8795 1.1611e-005
11 99.8827 1.3508e-005 99.8767 1.7933e-005 99.8793 1.0553e-005 99.8796 1.1370e-005
12 99.8828 1.3459e-005 99.8768 1.8085e-005 99.8794 1.0665e-005 99.8796 1.1568e-005
13 99.8828 1.3483e-005 99.8768 1.8005e-005 99.8792 1.0980e-005 99.8797 1.1657e-005
14 99.8829 1.3567e-005 99.8768 1.8001e-005 99.8794 1.1115e-005 99.8797 1.1590e-005
15 99.8830 1.3633e-005 99.8769 1.7941e-005 99.8795 1.1157e-005 99.8799 1.1677e-005
16 99.8831 1.3554e-005 99.8770 1.7929e-005 99.8795 1.1151e-005 99.8800 1.1644e-005
17 99.8833 1.3680e-005 99.8771 1.7919e-005 99.8796 1.1150e-005 99.8801 1.1814e-005
18 99.8837 1.3756e-005 99.8771 1.7914e-005 99.8796 1.1183e-005 99.8804 1.1772e-005
19 99.8840 1.3827e-005 99.8771 1.7910e-005 99.8797 1.1165e-005 99.8805 1.1870e-005
20 99.8842 1.4034e-005 99.8771 1.8036e-005 99.8797 1.1265e-005 99.8806 1.1850e-005
21 99.8846 1.4100e-005 99.8771 1.8068e-005 99.8797 1.1437e-005 99.8805 1.1870e-005
22 99.8850 1.4170e-005 99.8772 1.8052e-005 99.8796 1.1560e-005 99.8806 1.2015e-005
23 99.8853 1.4267e-005 99.8772 1.8090e-005 99.8796 1.1647e-005 99.8805 1.2147e-005
24 99.8854 1.4274e-005 99.8775 1.8268e-005 99.8797 1.1655e-005 99.8806 1.2093e-005
25 99.8856 1.4233e-005 99.8777 1.8324e-005 99.8798 1.1665e-005 99.8806 1.2077e-005
26 99.8858 1.4249e-005 99.8780 1.8502e-005 99.8798 1.1682e-005 99.8807 1.2167e-005
27 99.8859 1.4328e-005 99.8783 1.8562e-005 99.8799 1.1696e-005 99.8807 1.2167e-005
28 99.8860 1.4389e-005 99.8785 1.8597e-005 99.8799 1.1685e-005 99.8807 1.2174e-005
29 99.8860 1.4422e-005 99.8790 1.8702e-005 99.8801 1.1653e-005 99.8814 1.2269e-005
30 99.8861 1.4459e-005 99.8797 1.9037e-005 99.8808 1.2218e-005 99.8807 1.2158e-005
31 99.8860 1.4525e-005 99.8796 1.9993e-005 99.8799 1.3022e-005 99.8812 1.2066e-005
32 99.8859 1.4595e-005 99.8799 2.0144e-005 99.8805 1.3221e-005 99.8817 1.1924e-005
33 99.8859 1.4610e-005 99.8798 1.9976e-005 99.8810 1.3483e-005 99.8819 1.1909e-005
34 99.8858 1.4752e-005 99.8798 1.9963e-005 99.8811 1.3512e-005 99.8821 1.1898e-005
35 99.8858 1.4743e-005 99.8799 1.9998e-005 99.8813 1.3567e-005 99.8821 1.1915e-005
36 99.8858 1.4757e-005 99.8802 2.0120e-005 99.8814 1.3630e-005 99.8821 1.1899e-005
37 99.8858 1.4749e-005 99.8802 2.0154e-005 99.8815 1.3667e-005 99.8822 1.1883e-005
38 99.8858 1.4749e-005 99.8804 2.0233e-005 99.8816 1.3677e-005 99.8822 1.1828e-005
39 99.8858 1.4732e-005 99.8805 2.0255e-005 99.8816 1.3695e-005 99.8822 1.1830e-005
40 99.8858 1.4713e-005 99.8805 2.0155e-005 99.8818 1.3735e-005 99.8824 1.1719e-005
41 99.8857 1.4698e-005 99.8803 2.0054e-005 99.8820 1.3742e-005 99.8825 1.1632e-005
42 99.8856 1.4673e-005 99.8803 2.0004e-005 99.8821 1.3765e-005 99.8825 1.1632e-005
43 99.8856 1.4673e-005 99.8802 1.9986e-005 99.8822 1.3852e-005 99.8825 1.1632e-005
44 99.8856 1.4625e-005 99.8802 1.9992e-005 99.8825 1.3955e-005 99.8825 1.1632e-005
45 99.8856 1.4625e-005 99.8801 1.9928e-005 99.8825 1.3976e-005 99.8825 1.1632e-005
46 99.8856 1.4625e-005 99.8801 1.9904e-005 99.8826 1.3984e-005 99.8825 1.1632e-005
47 99.8856 1.4625e-005 99.8801 1.9904e-005 99.8826 1.4013e-005 99.8825 1.1632e-005
48 99.8856 1.4625e-005 99.8801 1.9892e-005 99.8826 1.4013e-005 99.8825 1.1632e-005
49 99.8856 1.4625e-005 99.8801 1.9892e-005 99.8826 1.4013e-005 99.8825 1.1632e-005

stat. #trials 107 108 107 73
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Table 37: Database: SiW, model: LSTM-m/s

LSTM-m LSTM-s
Frame Mean SEM Mean SEM

1 99.6207 7.6320e-005 99.6207 7.6320e-005
2 99.7677 2.2591e-005 99.7677 2.2591e-005
3 99.8044 1.1279e-005 99.8044 1.1279e-005
4 99.8089 6.0939e-006 99.8089 6.0939e-006
5 99.8029 8.5723e-006 99.8029 8.5723e-006
6 99.7969 1.2098e-005 99.7969 1.2098e-005
7 99.7951 1.3207e-005 99.7951 1.3207e-005
8 99.8003 1.1980e-005 99.8003 1.1980e-005
9 99.8031 1.3397e-005 99.8031 1.3397e-005

10 99.8057 1.4686e-005 99.8057 1.4686e-005
11 99.8092 1.6821e-005 99.8092 1.6821e-005
12 99.8159 1.8133e-005 99.8159 1.8133e-005
13 99.8196 1.8401e-005 99.8196 1.8401e-005
14 99.8241 1.7274e-005 99.8241 1.7274e-005
15 99.8264 1.5607e-005 99.8264 1.5607e-005
16 99.8290 1.4499e-005 99.8290 1.4499e-005
17 99.8316 1.6679e-005 99.8316 1.6679e-005
18 99.8335 1.6096e-005 99.8335 1.6096e-005
19 99.8374 1.8177e-005 99.8374 1.8177e-005
20 99.8383 1.8938e-005 99.8383 1.8938e-005
21 99.8391 1.7974e-005 99.8391 1.7974e-005
22 99.8405 1.7900e-005 99.8405 1.7900e-005
23 99.8422 1.7473e-005 99.8422 1.7473e-005
24 99.8449 1.8326e-005 99.8449 1.8326e-005
25 99.8474 1.8391e-005 99.8474 1.8391e-005
26 99.8497 1.9941e-005 99.8497 1.9941e-005
27 99.8525 2.0347e-005 99.8525 2.0347e-005
28 99.8540 1.9410e-005 99.8540 1.9410e-005
29 99.8550 1.9969e-005 99.8550 1.9969e-005
30 99.8562 1.9671e-005 99.8562 1.9671e-005
31 99.8571 1.9252e-005 99.8571 1.9252e-005
32 99.8578 1.9140e-005 99.8578 1.9140e-005
33 99.8600 1.8532e-005 99.8600 1.8532e-005
34 99.8627 2.0120e-005 99.8627 2.0120e-005
35 99.8634 2.1863e-005 99.8634 2.1863e-005
36 99.8642 2.2477e-005 99.8642 2.2477e-005
37 99.8663 2.2142e-005 99.8663 2.2142e-005
38 99.8675 2.1921e-005 99.8675 2.1921e-005
39 99.8675 2.1091e-005 99.8675 2.1091e-005
40 99.8679 2.0355e-005 99.8679 2.0355e-005
41 99.8683 2.0592e-005 99.8683 2.0592e-005
42 99.8692 2.1503e-005 99.8692 2.1503e-005
43 99.8705 2.1348e-005 99.8705 2.1348e-005
44 99.8726 2.1915e-005 99.8726 2.1915e-005
45 99.8748 2.3104e-005 99.8748 2.3104e-005
46 99.8754 2.1851e-005 99.8754 2.1851e-005
47 99.8759 2.1820e-005 99.8759 2.1820e-005
48 99.8764 2.1974e-005 99.8764 2.1974e-005
49 99.8780 2.2132e-005 99.8780 2.2132e-005
50 99.8782 2.0800e-005 99.8782 2.0800e-005

stat. #trials 63 58

Table 38: Database: SiW, model: EARLIEST

Lambda: 1e-3 Lambda: 1e-5 Lambda: 1e-10
Mean hitting time Mean SEM Mean hitting time Mean SEM Mean hitting time Mean SEM

1.1924 99.7156 4.4309e-005 8.2087 99.7753 2.9947e-005 32.0550 99.6823 4.5947e-005

stat. #trials 30 17 2

Table 39: Database: SiW, model: 3DResNet

Frame Mean SEM

5 98.8160 1.6762e-003
15 98.9740 1.1066e-003
25 98.5560 1.1066e-003

Table 40: Database: SiW, model: 3DResNet

5 frames 15 frames 25 frames
Mean SEM Mean SEM Mean SEM

98.8160 1.6762e-003 98.9740 1.1066e-003 98.5560 1.1066e-003

stat. #trials 5 5 5
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K COMPUTING INFRASTRUCTURE

All the experiments are conducted with custom python scripts running on NVIDIA GeForce RTX
2080 Ti, GTX 1080 Ti, or GTX 1080 graphics card. Numpy (Harris et al. (2020)) and Scipy (Virtanen
et al. (2020)) are used for mathematical computations. We use Tensorflow 2.0.0 (Abadi et al. (2015))
as a machine learning framework except when running baseline algorithms that are implemented with
PyTorch (Paszke et al. (2019)).
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L AN EXAMPLE VIDEO OF THE NOSAIC MNIST DATABASE.

As we described in Section 5, the Nosaic (Noise + mOSAIC) MNIST, NMNIST for short, contains
videos with 20 frames of MNIST handwritten digits, buried with noise at the first frame, gradually
denoised toward the last frame. The first frame has all 255-valued pixels (white) except only 40
masks of pixels that are randomly selected to reveal the original image. Another forty pixels are
randomly selected at each of the next timestamps, finally revealing the original image at the last, 20th
frame. An example video is shown in Figure 13.

Figure 13: Nosaic MNIST (NMNIST) database consists of videos of 20 frames, each of which has 28× 28× 1 pixels. The frames are buried
with noise at the first frame, gradually denoised toward the last frame. NMNIST provides a typical task in early classification of
time series.
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M SUPPLEMENTARY EXPERIMENT ON MOVING MNIST DATABASE

Prior to the experiment on Nosaic MNIST, we conducted a preliminary experiment on the Moving
MNIST (MMNIST) database. 1st, 2nd, 3rd, and 5th-order SPRT-TANDEM were compared to
the LSTM-m. Hyperparameters of each model were independently optimized with Optuna. The
result plotted in Figure 14 showed that the balanced accuracy of the SPRT-TANDEM peaked and
reached the plateau phase only after two or three frames. This indicated that each of the frames in
MMNIST contained too much information so that a well-trained classifier could classify a video easily.
Thus, although our SPRT-TANDEM outperformed LSTM-m with a large margin, we decided to
design the original database, Nosaic MNNIST (NMNIST) for the early-classification task. NMNIST
contains videos with noise-buried handwritten digits, gradually denoised towards the end of the
videos, increasing mean hitting time compared to the MMNIST.

Figure 14: Speed-accuracy tradeoff (SAT) curves of the Moving MNIST database. Error bars show the standard error of the mean (SEM).
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N SUPPLEMENTARY ABLATION EXPERIMENT

In addition to the ablation experiment presented in Figure 3e, which is calculated with 1st-order
SPRT-TANDEM, we also conduct an experiment with 19th-order SPRT-TANDEM. The result shown
in Figure 15 is qualitatively in line with Figure 3e: the Lmultiplet has an advantage at the early phase
with a few data samples, while the LLLR leads to the higher final balanced accuracy at the late phase,
and using both loss functions the best SAT curves can be obtained.

Figure 15: Speed-accuracy tradeoff (SAT) curves of the ablation experiment with the 19th-order SPRT-TANDEM on NMNIST database. Error
bars show the standard error of the mean (SEM).
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