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Abstract

Current graph representation learning techniques use Graph Neural Networks
(GNNs) to extract features from dataset embeddings. In this work, we examine
the quality of these embeddings and assess how changing them can affect the
accuracy of GNNs. We explore different embedding extraction techniques for both
images and texts; and find that the performance of different GNN architectures
is dependent on the embedding style used. We see a prevalence of bag of words
(BoW) embeddings and text classification tasks in available graph datasets. Given
the impact embeddings has on GNN performance. this leads to a phenomenon that
GNNs being optimised for BoW vectors.

1 Introduction

Current advancements in Graph Neural Networks (GNNs) are being evaluated on a small range of
tasks and accompanying datasets. Though these datasets are sourced from different domains, they
require preprocessing the raw data into a computationally digestable format to be usable by GNNs,
referred to as embeddings. In this work we focus on node classification and thus node embeddings.

Common node classification datasets [2, 5, 9, 12] focus on text classification with the primary node
embedding being Bag of Words (BoW). Though this is a suitable method for text, this results in
current GNNs being optimised to BoW. Equally, this form of node embedding is not always applicable,
image data for example, and so GNNs are only being optimised for limited forms of data, mainly
text. Existing literature has focused on the shortcomings of GNN training and the effect that the
dataset can have on the model performance [9], but there is no comment on how different node data
preprocessing may affect performance.

To demonstrate this problem we introduce three new datasets as alterations of existing datasets that are
commonly used in literature. Each dataset is accompanied by a set of node embeddings. To evaluate
the effect of node embeddings on GNN performance we train and test standard GNN archictures:
Graph Convolution Network [5], Graph Attention Network[11] (with GATv2 [1]), and GraphSAGE
[2] with two different samplers. For these models we find that their performance and relative rank is
dependant on the embeddings used. In this work we make the following contributions:

• We put forward three new datasets and a rich set of accompanying embeddings to better test the
performance of GNNs.

• We demonstrate that GNN performance depends on the embedding used. The choice of embed-
ding provides large variance and prevents a fair comparison of different architectures.

• We demonstrate that current GNN architecture design overfits to limited styles of embedding.
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2 Background and Related Work
Given a graph, G(V, E ,X), with raw node data, X , there exists a transformation function, fe, to
project the raw data to a more compact feature space, Xe, such that Xe = fe(X). A GNN then
trains and is evaluated on this transformed node data rather than the original raw data. A (dataset (G),
embedding (fe)) pair is a specific graph, G, with a specific embedding function, fe.

This work focuses on the standard set of Graph Neural Networks (GNNs): Graph Convolution
Network (GCN) [5], Graph Attention Network (GAT [11] and GATv2 [1]) and graphSAGE [2].
These proposed models were evaluated using a small selection of datasets including the citation
networks, Reddit, Amazon and Flickr. These datasets are also prevalent in current literature as
a method of comparing new GNN architectures against prior architectures. This results in any
shortcomings in these datasets propagating through successive papers. To combat this Hu et al. [4]
developed the Open Graph Benchmark to standardise the datasets used for comparison.

However, we find that the vast majority of datasets focus on text classification tasks and utilise bag of
words (BoW) extensively. This is not a good representation of all tasks that GNNs may be used
for as BoW is not always applicable to the raw data. Furthermore, simple text classification does not
require particularly complex or rich node features and therefore does not test the capabilites of GNNs.

Shchur et al. [9] focused on common pitfalls in GNN evaluation. Changing the train, evaluation and
test split on a dataset can cause large changes in accuracy and the rank of different GNN architectures,
even though other hyperparameters remained constant. This paper supports the idea that there are
many factors that might affect the evaluation of the performance of GNNs. However, Shchur et al. [9]
did not look into the embedding of the data which we find to be important for model performance.

3 Datasets
We introduce three new datasets: Flickr_v2, to highlight the importance of embeddings for non-text
databases, and two Amazon datasets (AmazonElectronics and AmazonInstruments), to evaluate new
text embeddings against the standard bag of words (BoW) approach. In each dataset we carry out a
meta-label approach to generate labels for each node. Each node in the three datasets has a set of tags
or categories which are converted into a word vector through GLoVe. These vectors are compared to
each meta-label vector and the closest is chosen as the new label. Review and comparison to other
datasets is detailed in Appendix A.

3.1 Flickr_v2

This is an image classification task using the same graph structure as the prior Flickr [7] dataset. Each
node represents an individual image in the network where the raw data is the image data itself. Each
edge represents some connection between images based on comments, likes and groups. As stated
before, in the case of images, BoW is not applicable. Instead using image classification modelss
provides a method of encoding raw image data in a compact feature space. Extracting these node
embeddings from this feature space yields a sensible embedding to be used in a graph dataset.

We can initialise these image classification models with pre-trained weights to embed the images
rather than needing to train the model ourselves. This does also open up the possibility of carry out
further training of the image classification model to be better suited to GNN providing adaptable
node embeddings. For the Flickr_v2 we use a selection of convolutional neural networks (CNNs),
namely two variations of ResNet [3] (ResNet18 and ResNet50) and VGG16 [10], to provide the three
embeddings for the Flickr dataset.

It is important to highlight the exclusion of BoW from Flickr_v2 as this is the embedding used in
the current Flickr dataset [7]. Given that Flickr_v2 uses raw image data we cannot sensibly generate
BoW embeddings and instead need to use an image based technique. The previous Flickr used human
descriptions of the images which is not always possible when all that is available is raw image data.

3.2 AmazonElectronics and AmazonInstruments

Both Amazon datasets are text classification tasks using the graph structure induced by the ”similar
items", ”co-viewed" and ”co-bought". Each node represents a single item from a the specified
category where the raw data is the review text.
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In comparison to Flickr_v2 BoW is a suitable candidate as an embedding as the raw data is text
reviews. Keeping with the approach for Flickr_v2 we utilise a text transformer model, specifically
the roBERTa [6] transformer. Compared to the CNNs we have multiple stages in the classification to
extract embeddings from: the preprocessing step converting the raw text into byte-pair encodings, the
transformer encodings and the final feature vector before classification. These three embeddings are
called Byte-Pair, roBERTa-Encoded and roBERTa respectively.

The roBERTa model also uses pre-trained weights in this case we use a roBERTa model trained on the
MNLI dataset. This does mean that this specific model is not optimised for simple text classification,
as MNLI is designed for sentiment analysis.

4 Evaluation
4.1 Experimental Setup

Each GNN is setup following their respective papers, in all cases this entails a 2 layer architecture
with a final classification layer. Each of these architectures remains the same across all (dataset,
embedding) pairs. As the datasets are based on existing datasets where the graph structure and input
vector sizes are similar we use the same hyperparameters as the original papers. To prevent bias from
training we use the same optimizer.

Each dataset is split into train, validation and test splits into 70%, 10% and 20% respectively. The
same split is used across all the embeddings for a given dataset to prevent this influencing the
performance. Each epoch of training uses the train and validation splits with the test split held out for
evaluation. Each GNN is given 300 epochs to train on a (dataset, embedding) pair and we carry out 3
runs to calculate a mean accuracy and confidence interval.

Table 1: Test accuracy on Flickr_v2 with different embeddings.

Model
Embedding Styles

ResNet18 ResNet50 VGG16

GCN 41.8% ± 0.4 38.3% ± 0.5 35.5% ± 0.3
GAT 38.1% ± 0.6 37.1% ± 1.1 27.3% ± 1.2

GAT2 42.1% ± 1.8 41.0% ± 1.5 34.2% ± 0.8
GraphSAGE (Random) 45.4% ± 0.1 47.0% ± 0.0 35.2% ± 0.2

GraphSAGE (Neighbour) 45.8% ± 0.2 44.5% ± 0.1 34.5% ± 0.2

4.2 Flickr_v2 and AmazonElectronics Results

Table 1 demonstrates how the different image node embeddings affect the performance of the five
models. We see in the case of ResNet the best performing model is graphSAGE with the only
difference being the sampler. This is contrary to the previous results seen on the prior Flickr dataset
where Graph Attention Network (GAT) and the improved version GATv2 out-performed GraphSAGE.

When looking at the results for VGG16 we notice that there is less variation in the results for each
GNN and a reduction in the accuracy of the models. However, when trained on the underlying
images VGG16 out-performed both ResNet18 and ResNet50 achieving 47.0% accuracy compared to
45.2% and 46.9% respectively for the ResNet models. Therefore it is not only the performance of
the network used to create the embeddings that is important but rather the feature vectors produced
before classification.

We also see that the ranking of the models remains relatively consistent across the embeddings,
though in the case of VGG16 the models perform relatively the same. Importantly this ranking is
different from those presented when evaluating on the bag of words (BoW) version of Flickr.

Table 2 demonstrates how different text node embeddings affects the performance of the models. It
is clear that the common standard of Bag of Words (Bow) is far superior to other embedding styles.
What is more interesting is that fact that in this case we see that both GAT models out-perform
the other models by a significant margin. But when looking at the roBERTa encoding we see that
GraphSAGE performs the best in line with what we see in Flickr_v2.
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Table 2: Test accuracy on AmazonElectronics with different embeddings.

Model
Embedding styles

Bag of Words Byte Pair roBERTa Encoded roBERTa

GCN 69.1% ± 0.1 21.7% ± 0.2 22.7% ± 1.1 22.3% ± 1.2
GAT 81.1% ± 0.2 22.2% ± 0.5 46.1% ± 1.5 40.3% ± 2.9

GAT2 81.8% ± 0.3 22.2% ± 0.6 41.8% ± 5.1 35.7% ± 5.6
GraphSAGE (Random) 71.3% ± 0.1 26.3% ± 0.3 57.0% ± 0.5 53.7% ± 0.5

GraphSAGE (Neighbour) 76.4% ± 0.3 40.4% ± 0.4 67.8% ± 0.4 66.4% ± 0.3

Unlike in the case of Flickr_v2 we see that the results are more inline with the results we see from
previous BoW datasets. We also see that the ranking of the models follows those that are presented in
prior papers suggesting that improvement of models has been focusing on optimising for BoW
embeddings. In this case the best embedding option is BoW, however, not always applicable.

It is important to note that we are not promoting an alternative embedding function other than BoW,
since BoW shows the best performance in Table 2. However, we are showing the phenomenon that
current GNN architecture design and evaluation is promoting overfitting to BoW embeddings.
We see in the majority of node embeddings, which are not BoW, that GraphSAGE performs the best.
This suggests that when using a wider range of embeddings our expected accuracy is better if we
were to use GraphSAGE over GAT even though GAT is often consider state of the art. Results for
AmazonInstruments are available in Appendix B.

4.3 Discussion and Limitations

Discussion In the case of text classification where our labels are representations of words or phrases
we anticipate BoW to perform best. This is because BoW provides a discrete collection of word
presence, if these can be linked to words in the labels then there is a simple direct connection between
a few bits in the node vector and the output classification. In the case of Amazon the BoW vectors
contain direct synonyms of the label words or phrases.

This invites the question as to why GAT performs far better on BoW wherease GraphSAGE performs
better on model embeddings. In the case of BoW we have discrete inclusion or exclusion of a specific
word but in the case of model embeddings we have a continuous vector that varies within the model’s
feature space. Therefore, it is more likely that GAT is good at picking out discrete features than
GraphSAGE, which is to be expected given the architecture can utilise multiple heads to focus on
individual entries. On the contrary GraphSAGE is better suited to continuous vectors as it takes the
whole vector into account at once when computing a classification.

In comparison, the field of NLP is moving away from BoW. This is mainly because more complex
tasks such as sentimental analysis or language modelling benefit from richer embeddings This in turn
questions the focus on text-based graph datasets: is text classification on a graph really the task we
want to use to assess the quality of our GNNs?

Limitations The datasets we provide are a small subsection of all possible representation learning
tasks that could be carried out on graph networks. Similarly we only provide a handful of embeddings
and do not endeavour to find the optimal embedding for each tasks. Thus these results do not represent
all possible GNN tasks however we do still see clear trends. Due to the brevity of an extended abstract
we only focus on variations on three standard models rather than analysing the effect of embeddings
on more niche models. There has been a lot of work into simplified GNNs moving away from the
layered approach of the models presented in this paper. These new models may be better suited or
more consistent across the different node embeddings.

5 Conclusion
Current approaches to evaluating graph neural networks (GNNs) focuses on text classification using
bag of words (BoW) embedding to transform the raw text into a compact node feature. However, this
approach is not general for all types of data and thus the evaluation of GNNs is overfitting to BoW
and text classification.
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Our work demonstrates how the GNN performance is dependent on the node embeddings used in
training and evalutation, providing new embedding candidates where BoW is not applicable. In
evaluating different choices of embeddings we introduce three new datasets each with their own set
of embeddings. We show that each node embedding favours different GNN architectures rather than
simply effecting the accuracy.
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A Comparison to Other Datasets
We aim to maintain the same graph structure as previous versions of our three datasets describted
below. This is to keep the number of varying factors to a minimum and just focus on how the
embeddings effect the result. To achieve this we use the same adjacency matrices published with
these prior datasets. Although we were unable to source all the raw data these deviations are limited.

Due to the importance of fe on GNN performance there is a lot to discuss about prior datasets that
exist within the space of GNNs in regards to these functions.

A.1 Pytorch Geometric

Pytorch Geometric python library provides a standard interface on top of Pytorch to allow for the
development of graph based machine learning. The library also provides a sample of datasets from
previous papers published in this field.

As is clear from the table the current standard embedding for datasets is bag of words. In the cases
where bag of words approaches are not used the approach is grounded in classical text representations
such as n-grams and word vectors.

The tasks in these popular datasets are node classification where the node data is frequently text.
We therefore say that on the node level these are text classification tasks. The only instance of a
non-text classification task is Flickr [12], though based on the fact that the underlying data is image
descriptions this could also be considered a text classification task.

This demonstrates how limited the reach of GNNs currently stand as they are being trained on datasets
that behave very similarly where the only difference is the specifics of the available data. We feel
that this does not therefore fully test the capabilities of GNNs and puts too much emphasis on bag of
words and text classification.

A.2 Open Graph Benchmark

The results in this paper focus on node property prediction as the data that unconnected models
ordinarily work on is easily transferred to nodes in a graph. So when discussing Open Graph
Benchmark [4] the focus is on the node property prediction subset (OGBN).

The goal of OGB is to create a standard set of datasets that can be used to compare different GNN
architectures so a discussion as to way we did not use their datasets is warranted. The available
datasets ogbn-products, ogbn-proteins, ogbn-arxiv, ogbn-papers100M and ogbn-mag all use variations
on the same text representations used in Appendix A.1. These include Bag of Words (BoW), word2vec
and skip-gram. This means the same discussions on these classical text holds here.

We see that the majority of the tasks focus on text classification, excluding ogbn-protein, this again
draws into question how well these datasets are testing the range of classification tasks. Further to
this, focusing mainly on BoW style embeddings raises the question of whether we are building good
BoW extractors or graph information extractors.

A.3 Flickr

The prior Flickr dataset used in Zeng et al. [12] originated from McAuley et al. [7] which aimed to
utilize network connections and image descriptions rather than the images themselves. The specific
embedding function that the paper used is Bag of Words.

This embedding function is a valid representation of images but it is not easily applicable to other
image datasets. Thus GNNs trained on this dataset are confined to images with descriptions that have
been transformed using the same top 500 words. Noting that this list of top 500 words is not readily
available.

A.4 Amazon

Zeng et al. [12] also provide an Amazon dataset (AmazonProducts) covering the entirety of Amazon.
Without a known source we instead use available Amazon databases online to download and generate
our own dataset. The embedding function used is to tokenise the reviews by 4-grams and take the
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single value decomposition. This is, as with Flickr, not easily applicable outside of the original
dataset.

An alternative Amazon dataset (Amazon) is also available from Shchur et al. [9] created originally
in McAuley et al. [8]. Though the original source of the dataset used a pre-trained Caffe model to
embed the product images this dataset did not use these. Instead they created their own embeddings
using the bag of words standard with the product reviews as the raw data.

B Further Results
Table 3 contains the further results collected for AmazonInstruments

Table 3: Test accuracy on AmazonInstruments with different embeddings demonstrating how the
different embeddings effects the performance and relative ranking of GNN models. Included is the
standard deviation of each result.

Model
Embedding Styles

Bag of Words Byte Pair roBERTa Encoded roBERTa

GCN 64.0% ± 0.5 20.8% ± 0.3 20.4% ± 0.8 20.4% ± 0.8
GAT 79.3% ± 0.6 21.6% ± 0.9 47.5% ± 1.9 46.1% ± 4.3

GAT2 79.4% ± 0.3 21.2% ± 0.6 49.8% ± 5.0 47.8% ± 2.8
GraphSAGE (Random) 67.5% ± 0.3 23.9% ± 0.6 45.1% ± 1.2 41.9% ± 0.6

GraphSAGE (Neighbour) 72.6% ± 0.3 43.4% ± 0.5 62.4% ± 0.5 59.9% ± 0.6

C Hyperparameters
Table 4 details the layers of each model used providing the output hidden features of each layer, the
sampler used (the specifics shown in Table 5) and the maximum and minimum learning rates. Where
there is a difference in learning rates we use a learning rate scheduler that decreases the learning rate
when validation accuracy plateaus. Where two models use the same sampler the parameters of those
samplers are identical to keep consistency across the tests.

For GraphSAINTSampler all setups use a walk length of 2 with 5 steps sampling 100 nodes per node
for normalisation calculation.

Table 4: Model architecture, sampler and learning rate

Model Hidden Features Sampler
Learning Rate

Max. Min.

GCN 256 Random Node 1e-2 1e-2256

GAT 256 GraphSAINT RW 1e-2 1e-2256

GAT2 256 GraphSAINT RW 1e-2 1e-2256

GraphSAGE (Random) 256 Random Node 1e-3 1e-3256

GraphSAGE (Neighbour) 256 Neighbour 1e-3 1e-3256

ResNet18 as provided - 1e-4 5e-6
ResNet50 as provided - 1e-4 5e-6
VGG16 as provided - 1e-4 5e-6
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Table 5: Sampler parameters

Sampler Dataset Split Setup

GraphSAINT RW [12]
Train roots: 6000

Validation roots: 1250
Test roots: 2000

Random Node
Train # partitions:512

Validation # partitions:128
Test # partitions:256

Neighbour [2]
Train # neighbours:[25, 10], batch size:512

Validation # neighbours:[25, 10], batch size:128
Test # neighbours:[25, 10], batch size:256

8


	1 Introduction
	2 Background and Related Work
	3 Datasets
	3.1 Flickr_v2
	3.2 AmazonElectronics and AmazonInstruments

	4 Evaluation
	4.1 Experimental Setup
	4.2 Flickr_v2 and AmazonElectronics Results
	4.3 Discussion and Limitations

	5 Conclusion
	A Comparison to Other Datasets
	A.1 Pytorch Geometric
	A.2 Open Graph Benchmark
	A.3 Flickr
	A.4 Amazon

	B Further Results
	C Hyperparameters

