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ABSTRACT

We introduce PEROV-H3, a rigorous benchmark targeting ABH3 perovskites,
designed to evaluate generative models under controlled size and symmetry
shifts with structure-aware metrics. In materials science, models often excel
on ideal, periodic crystals yet degrade on finite nanoparticles where size, sur-
faces, and edges dominate. PEROV-H3 closes this gap by pairing two com-
plementary tasks: (i) unit-cell → nanoparticle generation, probing surface- and
size-dependent distortions; and (ii) nanoparticle → unit-cell reconstruction, re-
covering bulk lattice parameters and symmetry. The benchmark comprises 100
DFT-relaxed ABH3 compositions and 210,000 nanoparticle configurations span-
ning radii R ∈ {6, . . . , 30}Angstrom (systematic size splits for ID/OOD). Base-
lines reveal substantial errors under extrapolation, especially in symmetry and
lattice recovery, indicating that current models memorize templates rather than
learn the physics of scale. PEROV-H3 thus provides a chemically diverse,
size-systematic, and structurally clean testbed for stress-testing generative mod-
els beyond bulk crystals. The dataset and the implementation are available at
https://anonymous.4open.science/r/PEROV-H3.

1 INTRODUCTION

Materials modelling has historically been divided between two complementary but distinct regimes.
The first is the regime of perfect crystals, where structures are represented by a unit cell defined
through lattice constants, atomic positions, and space group symmetry (Tarantino et al., 2017). This
abstraction, codified in crystallographic information files (CIFs), captures the periodic order of an
infinite solid and underpins the foundations of solid-state physics and computational chemistry (Kit-
tel & McEuen, 2018; Ashcroft & Mermin, 1976). The second regime is that of nanoparticles, finite
clusters of atoms that break translational invariance. In nanoparticles, surfaces, edges, and under-
coordinated sites dominate, leading to reconstructions, distortions, and quantum confinement effects
that strongly alter material properties (Pizzagalli et al., 2001; Bera et al., 2010). Real materials of-
ten bridge these two representations, and understanding the transition between them is critical for
predicting catalytic activity, optical response, stability, and electronic behavior (Vergara et al., 2017).
Despite advances in computational modelling and machine learning, bridging these regimes remains
a major challenge (Li et al., 2023). Models trained exclusively on bulk data typically perform well at
reproducing unit cell properties, but degrade when asked to generate nanoparticles or to reconstruct
unit cells from nanoparticle inputs (Gleason et al., 2024). Errors include misidentification of space
group symmetry, inaccurate lattice parameters, and an inability to capture size-dependent surface re-
constructions. Existing benchmarks reinforce these limitations: CSPBench, for example, has shown
that even state-of-the-art crystal structure prediction algorithms frequently fail unless test cases are
closely aligned with their training distributions (Wei et al., 2024). Other datasets in the perovskite
domain emphasize targeted applications such as band gap prediction or photovoltaic efficiency, but
do not evaluate bidirectional structure conversion or systematic size variation (Pollice et al., 2021;
Kusaba et al., 2022).
To address this gap, we propose PEROV-H3, an evaluation framework explicitly designed to test both
nanoparticle generation from unit cells and unit cell reconstruction from nanoparticles. The frame-
work consists of 100 chemically diverse ABH3 perovskite compounds—a family of materials that
has been extensively investigated for hydrogen storage applications (Kuo et al., 2024; Ahsin et al.,
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2020). Each compound is represented by a bulk unit cell and a large collection of systematically gen-
erated nanoparticles spanning radii from 6 Å to 30 Å. By focusing on a consistent perovskite motif,
the framework allows controlled variation in size and chemistry without introducing confounding
structural classes. Two tasks define the evaluation. The forward task challenges models to gener-
ate nanoparticles of specified size from a given unit cell, requiring accurate treatment of surface
relaxation and finite-size distortions. The inverse task requires reconstructing the unit cell from a
nanoparticle, testing whether models can identify underlying symmetry and lattice constants despite
surface noise. Crucially, PEROV-H3 employs in-distribution splits for intermediate sizes and out-of-
distribution splits for extreme sizes, providing a clear test of extrapolative generalization. Baseline
experiments using state-of-the-art methods demonstrate that while existing approaches perform ad-
equately at intermediate radii, their accuracy deteriorates at small and large extremes, with failures
most pronounced in symmetry recovery and lattice parameter prediction (Chen & Ong, 2021; Li
et al., 2021). By coupling systematic nanoparticle variation with clean, paired unit cell represen-
tations, PEROV-H3 provides a rigorous and chemically diverse benchmark for assessing whether
models can genuinely learn the physics of scale rather than interpolate between familiar cases.

2 RELATED WORK

2.1 CRYSTALS: UNIT CELLS AND NANOPARTICLES

Crystalline solids are defined by their unit cell, the smallest repeating motif specified by lattice con-
stants, space group symmetry, and atomic basis (Anosova et al., 2024). This description underpins
crystallography, density functional theory (DFT), and the majority of large materials databases (Car-
bogno et al., 2022; Hellenbrandt, 2004). The unit cell abstraction is powerful because it condenses
infinite periodic order into a compact blueprint (Jain et al., 2013). However, real materials rarely
manifest exclusively as perfect crystals (Baig et al., 2021). At the nanoscale, finite clusters of atoms
form nanoparticles, where translational symmetry is broken and surfaces dominate (Cheng et al.,
2024; Ye et al., 2024). In these systems, under-coordinated atoms, surface reconstructions, and
edge distortions significantly alter structural and functional behavior (Zhang et al., 2023). Under-
standing the correspondence between unit cells and nanoparticles is essential for many applications
(Cheng et al., 2024). Catalysis, for example, depends on surface terminations and defects, while
optical properties in perovskite quantum dots depend on quantum confinement (Ye et al., 2024). Yet
modelling nanoparticles from bulk inputs—or recovering bulk parameters from nanoparticle struc-
tures—remains a fundamental challenge due to the scale gap and the nonlinear effects introduced by
surfaces (Zhang et al., 2023).

2.2 DATASETS FOR STRUCTURAL MODELLING

Several large-scale datasets have driven progress in computational materials science. The Mate-
rials Project (Jain et al., 2013) and the OQMD (Kirklin et al., 2015) provide millions of crystal
structures in CIF format, supporting both supervised learning of material properties and unsuper-
vised exploration of chemical space. CSPBench (Wei et al., 2024) offers curated benchmarks for
crystal structure prediction, focusing on stability ranking and bulk structure recovery. PubChemQC
(Kim et al., 2025) extends quantum chemical calculations to millions of molecules, enabling cross-
domain learning. Perov-5 (Castelli et al., 2012a;b) provides a large-scale collection of perovskite
structures and properties, while OC20 (Chanussot et al., 2021) connects relaxed metal-surface struc-
tures with atomic forces and OC22 (Tran et al., 2023) further expands surface reaction benchmarks.
CrysMTM (Polat et al., 2025) introduces a multitask benchmark focused on crystal graph represen-
tations. While these resources have been transformative, they remain limited to bulk representations
and do not include nanoparticles or systematic size variation. Other benchmarks have expanded
to test robustness and generalization. Matbench (Dunn et al., 2020) defines a suite of supervised
property prediction tasks spanning multiple datasets. In the perovskite domain, specialized datasets
have been constructed for photovoltaic efficiency, thermodynamic stability, and band-gap predic-
tion. These collections support important application-driven tasks but are not designed to probe the
structural transition from bulk to nanoparticles. At present, no dataset pairs each unit cell with sys-
tematically generated nanoparticles across a controlled range of radii. This gap limits the evaluation
of models that aim to learn the physics of scale or to transfer knowledge between bulk and finite
systems. The lack of such benchmarks motivates the design of PEROV-H3.
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2.3 MODELS LEVERAGING EXISTING DATASETS

Machine learning methods in materials science have advanced rapidly through access to bulk crys-
tal datasets. Early work focused on graph neural networks such as CGCNN (Xie & Grossman,
2018) and message passing neural networks (Klipfel et al., 2023). More recently, equivariant neu-
ral networks such as DimeNet (Gasteiger et al., 2020), PaiNN (Schütt et al., 2021), and NequIP
(Batzner et al., 2022) have achieved state-of-the-art performance on force and energy prediction
tasks by enforcing rotational and translational symmetries. Generative approaches, including vari-
ational autoencoders (Luo et al., 2024), diffusion models (Khastagir et al., 2025), LLM based flow
models Sriram et al. (2024), and autoregressive graph models (Antunes et al., 2024), have been pro-
posed for crystal structure generation and inverse design. Without datasets that link unit cells and
nanoparticles, it is impossible to rigorously evaluate how well models generalize across size and
scale. PEROV-H3 addresses this by providing paired data and well-defined tasks for nanoparticle
generation from unit cells and unit cell reconstruction from nanoparticles, thereby filling a critical
gap in the benchmarking ecosystem.

Figure 1: Comprehensive element usage analysis of the PEROV-H3 dataset for hydrogen storage
applications. The periodic table visualization highlights the systematic chemical diversity across
100 ABH3 perovskite materials, where A-site cations (blue) include 10 alkali and alkaline earth
metals, B-site elements (red) encompass 27 transition metals and main group elements, and hydro-
gen (green) serves as the X-site anion. The dataset represents two distinct space groups (Pm3m
and Cmcm), reflecting both cubic and orthorhombic perovskite structures. Physical properties span
lattice parameters from 3.12 to 5.80 Å, unit cell volumes from 30.5 to 706.5 Å3, and electronegativ-
ity values from 0.70 to 2.58, demonstrating the broad compositional and structural space covered.
This systematic exploration enables comprehensive evaluation of structure-property relationships in
perovskite hydrogen storage materials, supporting generative model development for both unit cell
to nanoparticle structure prediction and nanoparticle to unit cell reconstruction tasks.

3 FRAMEWORK CREATION

3.1 NANOPARTICLE CONSTRUCTION

We curated 100 distinct ABH3 compositions with high hydrogen-storage potential and retrieved their
DFT-relaxed lattice parameters from the literature and open databases. From the corresponding CIFs
we first built the primitive unit cell, then expanded to a supercell that accommodates the target radius.
Finite nanoparticles were obtained by retaining atoms within a sphere of radius R centered at x0.
No additional relaxation or surface/ligand modeling was applied, thereby isolating size/geometry
effects while remaining consistent with vetted bulk parameters.
Supercell size. For each ABH3 composition, we constructed a 20×20×20 supercell by replicating
the primitive unit cell along a, b, c, yielding box lengths Li = 20 ai (i∈ {a, b, c}). This satisfies
Li ≥ 2Rmax+∆ for the maximum carving radius Rmax = 30 Å with a safety margin ∆ ≈ 5–10 Å,
ensuring carved nanoparticles remain well-separated from periodic images.
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Spherical carving. A finite nanoparticle of target radius R is carved by retaining all atoms whose
Cartesian positions fall inside a sphere of radius R centered at a chosen origin,

R ∈ {6, 7, 8, . . . , 30} Å, CR = {xi ∈ R3 | ∥xi − x0∥ ≤ R }.
This yields a controlled family of clusters per composition, covering the transition from strongly
surface-dominated (small R) to near-bulk behavior (large R). Elements included in PEROV-H3 are
shared in Figure 1.

3.2 ROTATION SAMPLING AND DATASET SPLITS

To remove orientation bias and enforce strict separation between training and evaluation, each
nanoparticle is augmented by rigid rotations sampled on SO(3) (Shoemake, 1985). Rotations are
represented by unit quaternions q ∈ H, ∥q∥ = 1. The geodesic angle between two rotations qi, qj is

d(qi, qj) = 2 arccos
(∣∣⟨qi, qj⟩∣∣) ,

where ⟨·, ·⟩ is the Euclidean inner product in R4. A greedy sampler generates a set Q(θ) such that
d(qi, qj) ≥ θ ∀ i ̸= j,

with angular spacing θ controlling density. Approximating coverage by spherical caps on SO(3)
gives the heuristic

N(θ) ≈ 4π

2π (1− cos θ)
=

2

1− cos θ
,

so that coarser spacings produce fewer orientations and denser spacings produce more (Kuffner,
2004). For the spacings used here,

N(15◦) ≈ 59, N(12◦) ≈ 92, N(9◦) ≈ 163.

Let Qtrain denote the fixed training grid (seeded deterministically). To guarantee disjointness, can-
didate evaluation quaternions are accepted only if they satisfy an exclusion margin from the training
set,

d(q, q′) ≥ δsplit ∀ q′ ∈ Qtrain,

with δID = 6◦ and δOOD = 4.5◦. Because d(qi, qj) = 2 arccos(|⟨qi, qj⟩|), these constraints are
equivalent to

|⟨q, q′⟩| ≤ cos
(
1
2δsplit

)
.

Fixed left-multiplications RID and ROOD are applied to all ID and OOD rotations, respectively,
qeff = Rsplit · q,

using deterministic offsets (e.g., Euler (6◦, 8◦, 12◦) for ID and (15◦, 25◦, 35◦) for OOD) to further
decorrelate orientations without affecting geodesic distances.
Radius-based partitions are

RID = {10, 11, 17, 21, 24, 26}, ROOD = {6, 7, 29, 30},
with all remaining radii used for training. Training uses θtrain = 15◦, ID uses θID = 12◦, and OOD
uses θOOD = 9◦.

3.3 DESIGN RATIONALE FOR SPLIT VALUES AND ANGULAR SPACINGS

The choice of radii and angular spacings follows a coarse-to-dense principle that balances learn-
ability, statistical power, and fairness. Training spans the interior of the radius range with a coarse
orientation lattice (θtrain = 15◦), while ID tests use mid-range radii (10, 11, 17, 21, 24, 26) and a
denser lattice (θID = 12◦, about 92 orientations) to stabilize metrics without adding diversity. The
OOD set probes extremes (6, 7, 29, 30), where errors are harder due to scaling (S/V ∼ 3/R), and
uses an even denser lattice (θOOD = 9◦, about 163 orientations) to reduce estimator variance. In all
cases, evaluation orientations are kept at nonzero geodesic distance from training via δID and δOOD,
guaranteeing no overlap. Formally, for an error functional E and rotation operator Rq , orientation-
averaged performance is

E(R) =
1

|QR|
∑

q∈QR

E(Rq(prediction), Rq(reference)) ,

and the denser grids reduce variance of E(R). Highly symmetric structures are further dedupli-
cated by retaining only one representative quaternion per unique rotation. Full split details are in
Appendix A.1.
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3.4 CHEMICAL COMPOSITION ANALYSIS

Figure 2 summarizes the chemical composition of PEROV-H3 across A- and B-site sublattices. The
A-site contains ten elements, mainly alkali and alkaline earth metals, with Li (21), Na (16), and K
(14) most common. Their electronegativity distribution has a mean of 0.999 ± 0.218, while ionic
radii are broadly dispersed (1.160±0.300 Å), reflecting size-driven variability that strongly impacts
distortions and stability. The B-site is more chemically diverse, spanning 27 species dominated
by transition metals and metalloids, led by V and Rh (8 each), followed by Cu and Zn (6 each).
Unlike the A-site, its properties are more uniform, with electronegativity 1.543 ± 0.114 and radii
0.694± 0.040 Å, indicating chemical variety without extreme size mismatches. In total, the dataset
covers 85 distinct A–B combinations, most frequently Li–V, offering a balanced space for probing
both size- and chemistry-driven effects.

Figure 2: Chemical composition analysis of PEROV-H3 materials showing element distributions,
electronegativity, and ionic radius properties. (a) A-site element electronegativity distribution (n=10
elements) with mean 0.999 and standard deviation 0.218, dominated by alkali and alkaline earth met-
als. (b) B-site element electronegativity distribution (n=27 elements) with mean 1.543 and standard
deviation 0.114, showing transition metals and metalloids. (c) A-site element frequency distribu-
tion with Li being the most common (21 occurrences), followed by Na (16) and K (14). (d) B-site
element frequency distribution with V and Rh being most common (8 occurrences each), followed
by Cu and Zn (6 each). (e) A-site ionic radius distribution with mean 1.160 Å and standard devia-
tion 0.300 Å, reflecting the size diversity of A-site cations. (f) B-site ionic radius distribution with
mean 0.694 Å and standard deviation 0.040 Å, showing more uniform sizes for B-site elements.
The dataset contains 85 unique A-B combinations from 100 materials, with Li-V being the most
frequent combination. Bar values are positioned alternately for optimal readability.

3.5 SIZE ANALYSIS

Figure 3 shows the scaling of PEROV-H3 nanoparticles across 25 radii (R = 6.0–30.0 Å), where
atom counts grow from 81 to 10,408 (mean 3333 ± 3118) and volumes follow V = 4

3πR
3, rang-

ing from 491.7 to 107,498.7 Å3 (mean 33,520.9 ± 32,299.7). Surface areas scale quadratically as
S = 4πR2, spanning 325.7–11,007.0 Å2 (mean 4501.9). Structural ratios reveal strong size effects:
surface-to-volume decreases from 0.668 Å−1 at R = 6 to 0.102 Å−1 at R = 30 (mean 0.230),
density remains bulk-like at 9.060 × 10−24 g/Å3 with low variance, and per-atom volumes average
9.323 Å3/atom (bounded 6.092–10.328). These results confirm that PEROV-H3 adheres closely to
analytic scaling laws while preserving realistic statistical variation, providing a rigorous platform
for testing nanoparticle models across length scales.

5
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Figure 3: Size analysis of PEROV-H3 materials showing the relationship between R-value and var-
ious structural properties. (a) Volume per atom analysis revealing atomic packing efficiency and
density variations across different R-values. The dataset comprises 25 R-values ranging from 6.0
to 30.0 Å, with corresponding volumes from 491.7 to 107,498.7 Å3 and surface areas from 325.7
to 11,007.0 Å2. (b) Volume scaling behavior following the theoretical V = (4/3)πR3 relationship,
with experimental data showing excellent agreement. (c) Surface area distribution following the S =
4πR2 scaling law, critical for catalytic activity assessment. (d) Surface-to-volume ratio (S/V = 3/R)
distribution, indicating higher efficiency for smaller R-values. (e) Material density distribution as
a function of R-value, demonstrating the inverse cubic relationship with R-value. (f) Atom count
distribution showing the scaling relationship between R-value and total atomic content. Error bars
represent standard deviations across multiple samples.

3.6 CRYSTALLOGRAPHIC STRUCTURE ANALYSIS

Figure 4 summarizes lattice parameter distributions and correlations for the 100 unit cells in
PEROV-H3. The a and c parameters are narrowly distributed (means 3.858 Å and 3.882 Å, std.
< 0.6 Å), while b varies widely from 3.124–17.230 Å (std. 1.844 Å), reflecting flexibility in certain
chemistries. Unit cell volumes span 30.480–706.533 Å3 (mean 69.046 Å3), capturing both compact
and expanded perovskite phases. Correlation analysis shows a and c are most strongly coupled
(r = 0.967), consistent with cubic/pseudocubic symmetry, followed by b–c (r = 0.887) and a–b
(r = 0.741), with distortions along b driving orthorhombicity. These results highlight that PEROV-
H3 balances near-cubic metrics with chemically induced distortions, offering a structurally rich
landscape to evaluate algorithms for lattice prediction and reconstruction.

3.7 TASK DEFINITIONS

The evaluation is organized around two complementary transformations: one moving from the crys-
tallographic unit cell to a finite nanoparticle, and the other reversing that process. Both directions are
essential for testing whether models capture the physics that governs scale transitions. Performance
is assessed on both in-distribution radii (interpolation) and out-of-distribution radii (extrapolation).

Task 1: From Unit Cell to Nanoparticle. The forward mapping begins with a primitive unit cell,
denoted Um, together with a radius parameter R. The goal is to construct a particle P in three-
dimensional space that exhibits both the periodic ordering encoded in Um and the finite-size surface
distortions induced by truncation at radius R. Formally,

F1 : (Um, R) −→ P ⊂ R3. (1)

Accuracy of F1 is quantified by comparing the predicted particle P with the reference structure P†

using geometric and structural measures:

6
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Figure 4: Crystallographic structure analysis of PEROV-H3 materials showing lattice parameter dis-
tributions and correlations. (a) Lattice parameter a distribution (n=100 samples) with mean 3.858
Å and range 3.124-5.800 Å. (b) Lattice parameter b distribution with mean 4.080 Å and range
3.124-17.230 Å, showing the largest variation. (c) Lattice parameter c distribution with mean 3.882
Åand range 3.124-7.070 Å. (d) Correlation between lattice parameters a and b (r = 0.741), revealing
structural relationships important for material design. (e) Strong correlation between lattice param-
eters a and c (r = 0.967), indicating crystallographic symmetry constraints. (f) Correlation between
lattice parameters b and c (r = 0.887), showing structural dependencies affecting thermal expansion
properties. Statistical lines indicate mean (red dashed), min/max (orange/purple dotted), and stan-
dard deviation (green dash-dot). The alternating bar value positioning ensures optimal readability
across the parameter ranges.

Root-mean-square deviation (RMSD).

RMSD(P,P†) =

√√√√ 1

N

N∑
i=1

∥ri − r†i∥2, (2)

where N denotes the number of atoms, ri ∈ P and r†i ∈ P† represent the atomic coordinates after
optimal alignment. This measures coordinate-level similarity.
Hausdorff distance.

dHaus(P,P†) = max
{
sup
p∈P

inf
q∈P†

∥p− q∥, sup
q∈P†

inf
p∈P

∥q− p∥
}
, (3)

where p and q represent points on the particle surfaces. This quantifies the worst-case geometric
discrepancy.
Convex hull volume difference.

∆Vhull(P,P†) =

∣∣V(Hull(P)
)
− V

(
Hull(P†)

)∣∣
V
(
Hull(P†)

) , (4)

where Hull(·) is the convex hull of a particle and V (·) its volume. This captures global shape fidelity.
Radial distribution function error.

ERDF(P,P†) =

∫ Rmax

0

(
gP(r)− gP†(r)

)2
dr, (5)

where gP(r) and gP†(r) are the radial distribution functions of P and P†, and Rmax is a cutoff
radius. This assesses differences in local atomic environments.
Local environment variance.

VR(P) =
σ2
(
{vi : vi ∈ NR(ri)}

)
µ2
(
{vi : vi ∈ NR(ri)}

) , (6)

7
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where NR(ri) defines the set of atoms within radius R of site ri, vi represents the coordination
number of ri, σ2(·) stands for the variance, and µ(·) denotes the mean. This measures heterogeneity
of local environments.
Together, these metrics capture coordinate-level similarity, global shape fidelity, and consistency of
local atomic arrangements.

Task 2: From Nanoparticle to Lattice. The inverse transformation seeks to recover crystallo-
graphic invariants from a finite particle. Given a nanoparticle P , the model must infer both the
lattice parameters and the symmetry group that define the underlying periodic structure. In compact
form,

F2 : P −→
(
Λ = (a, b, c, α, β, γ), Γ ∈ S

)
, (7)

where Λ denotes the six lattice constants (edge lengths a, b, c and interaxial angles α, β, γ) and Γ is
an element of the crystallographic space-group set S.
Evaluation of F2 compares predictions (Λ,Γ) to the ground truth (Λ†,Γ†) using the following met-
rics:
Root-mean-square error of lattice parameters.

RMSE(Λ,Λ†) =

√√√√1

6

6∑
i=1

(
λi − λ†

i

)2
, (8)

where Λ = (λ1, . . . , λ6) are the predicted lattice constants and Λ† = (λ†
1, . . . , λ

†
6) are the true

values. This metric quantifies the average deviation in lattice geometry.
Space-group classification accuracy.

⊮[Γ = Γ†] =

{
1, Γ = Γ†

0, otherwise,
(9)

where Γ is the predicted space group and Γ† the true space group. This indicator reports whether
the symmetry class is correctly identified.
Joint recovery accuracy.

⊮[(Λ,Γ) = (Λ†,Γ†)] =

{
1, Λ = Λ† ∧ Γ = Γ†

0, otherwise.
(10)

This stricter indicator requires both the lattice constants and the space group to be simultaneously
correct.
Together, F1 and F2 constitute a bidirectional probe of scale transfer. The first tests whether models
can enrich a minimal crystallographic blueprint into a realistic finite particle; the second examines
whether local geometric signals suffice to reconstruct global periodic order. Only by succeeding in
both directions can a model demonstrate true mastery of the crystal-to-nanoparticle continuum.

4 EXPERIMENTS

Multiple generative models— such as CDVAE (Xie et al., 2021), DiffCSP (Jiao et al., 2023),
FlowMM (Miller et al., 2024), MatterGen-MP (Zeni et al., 2023), and ADiT (Joshi et al., 2025)—are
evaluated on all three tasks using the splits defined in Section 3.7. PEROV-H3 has been adapted to
be compatible with the PyTorch Geometric Fey & Lenssen (2019) library and the model implemen-
tations are developed using PyTorch Paszke (2019) and model’s respective official libraries. The
details of the implementation and the model settings are shared in Appendix B while comprehensive
experimental analysis for each task are presented in Appendix C.

4.1 TASK 1: UNIT CELL TO NANOPARTICLE GENERATION

Table 1 in Appendix C.1 shows that most Task 1 models achieve deceptively low losses (∼ 0.01)
but collapse on structure, with RMSD and Hausdorff errors near 40–85 Å and hull deviations of
3×104–5×104. By contrast, CDVAE, despite its higher nominal loss (∼ 0.10), reconstructs faithfully,
achieving RMSD ∼ 0.006–0.007 Å, Hausdorff ∼ 0.020 Å, and hull errors below 10. Crucially, this
advantage holds slightly under OOD evaluation, where all other models degrade catastrophically,
highlighting the difficulty of PEROV-H3.

8
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4.2 TASK 2: NANOPARTICLE TO LATTICE INFERENCE

As detailed in the supplementary results (Appendix C.2), all baselines fail on Task 2, which requires
recovering both lattice parameters and space group from a nanoparticle. DiffCSP and ADiT reach
strong in-distribution space-group accuracy (0.987 and 0.980, respectively), yet both yield extremely
poor lattice predictions (RMSE ≈ 63.7 Å) and zero joint recovery. CDVAE performs better on lattice
regression (RMSE 32.5 ± 0.8 Å for both ID and OOD) but still collapses to 0.0 joint accuracy.
FlowMM is even less stable, with RMSE 62.6± 3.7 Å and space-group accuracy 0.0 across ID and
OOD. MatterGen similarly plateaus at RMSE 63.7 Å with 0.980 SG accuracy but no joint success.
These results highlight that, despite high classification scores, no baseline achieves correct lattice
and symmetry simultaneously, and OOD performance remains indistinguishable from ID, showing
that PEROV-H3 reliably exposes the inability of current methods to generalize lattice recovery under
distributional shift.

5 LIMITATIONS

Despite its systematic design, PEROV-H3 remains an idealized framework rather than a direct repre-
sentation of experimental data. All nanoparticles are carved from perfect supercells without incorpo-
rating thermal fluctuations, defects, or surface reconstructions that naturally arise during synthesis.
This makes the dataset highly controlled but also less representative of the imperfections and envi-
ronmental influences that shape real nanostructures. As a result, model performance measured on
this framework may not fully reflect robustness under experimental conditions.
In addition, the framework is restricted to the ABH3 perovskite prototype and only two space groups
(Pm3̄m and Cmcm). While this structural consistency facilitates rigorous benchmarking, it narrows
the diversity relative to the broader chemical and crystallographic landscape. Nanoparticle genera-
tion is further constrained by deterministic carving procedures that enforce geometric uniformity but
omit ligand effects and energy-driven relaxation. The evaluation splits, based solely on particle size
and rotational sampling, provide a strong test of scale generalization but do not probe other chal-
lenges such as compositional extrapolation or defect tolerance. These choices should be recognized
as trade-offs: they enhance clarity and reproducibility but limit the scope of conclusions that can be
drawn.

6 CONCLUSION AND FUTURE WORK

PEROV-H3 establishes a systematic evaluation framework for bridging the gap between crystallo-
graphic unit cells and finite nanoparticles. Its controlled chemical diversity, broad range of radii,
and structural consistency make it especially suited for studying nanoscale phenomena central to
hydrogen storage. In particular, the dataset captures how particle size, surface-to-volume ratio, and
lattice symmetry impact stability and surface reactivity—factors that directly influence hydrogen ab-
sorption and release kinetics. Current analyses demonstrate that models trained on PEROV-H3 can
already provide reliable structural predictions relevant to hydrogen storage applications, positioning
the framework as a valuable tool for accelerating the design of efficient storage materials.
Future work will build on this foundation to expand both scope and realism. Incorporating addi-
tional space groups, mixed-anion variants, and defect-engineered perovskites will broaden the cov-
erage of hydrogen storage chemistries beyond the current ABH3 family. Extending the framework
with temperature-dependent structures and relaxed surfaces will further align predictions with ex-
perimental conditions, enhancing relevance for practical storage environments. Finally, integrating
property-focused benchmarks—such as hydrogen binding energies, diffusion pathways, and cyclic
stability—will strengthen the framework’s role as both a structural evaluation tool and a driver of
discovery in hydrogen storage research. In this way, PEROV-H3 not only demonstrates strong cur-
rent utility but also provides a clear trajectory toward becoming a comprehensive benchmark for the
next generation of hydrogen energy materials.
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Equivariant message passing neural network for crystal material discovery. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 14304–14311, 2023.

James J Kuffner. Effective sampling and distance metrics for 3d rigid body path planning. In
IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004,
volume 4, pp. 3993–3998. IEEE, 2004.

Meng-Hsueh Kuo, Neda Neykova, and Ivo Stachiv. Overview of the recent findings in the
perovskite-type structures used for solar cells and hydrogen storage. Energies, 17(18):4755, 2024.

Minoru Kusaba, Chang Liu, and Ryo Yoshida. Crystal structure prediction with machine learning-
based element substitution. Computational Materials Science, 211:111496, 2022.

Kangming Li, Brian DeCost, Kamal Choudhary, Michael Greenwood, and Jason Hattrick-Simpers.
A critical examination of robustness and generalizability of machine learning prediction of mate-
rials properties. npj Computational Materials, 9(1):55, 2023.

Yuxin Li, Wenhui Yang, Rongzhi Dong, and Jianjun Hu. Mlatticeabc: generic lattice constant
prediction of crystal materials using machine learning. ACS Omega, 6(17):11585–11594, 2021.

Xiaoshan Luo, Zhenyu Wang, Pengyue Gao, Jian Lv, Yanchao Wang, Changfeng Chen, and Yan-
ming Ma. Deep learning generative model for crystal structure prediction. npj Computational
Materials, 10(1):254, 2024.

Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generat-
ing materials with riemannian flow matching. In Forty-first International Conference on Machine
Learning, 2024.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Laurent Pizzagalli, Giulia Galli, John E Klepeis, and Francois Gygi. Structure and stability of
germanium nanoparticles. Physical Review B, 63(16):165324, 2001.

Can Polat, Erchin Serpedin, Mustafa Kurban, and Hasan Kurban. Crysmtm: a multiphase,
temperature-resolved, multimodal dataset for crystalline materials. Machine Learning: Science
and Technology, 6(3):030603, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Robert Pollice, Gabriel dos Passos Gomes, Matteo Aldeghi, Riley J Hickman, Mario Krenn, Cyrille
Lavigne, Michael Lindner-D’Addario, AkshatKumar Nigam, Cher Tian Ser, Zhenpeng Yao, et al.
Data-driven strategies for accelerated materials design. Accounts of Chemical Research, 54(4):
849–860, 2021.
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