

000 001 002 003 004 005 006 PEROV-H3: EVALUATING GENERATIVE MODELS UN- 007 DER SIZE AND SYMMETRY SHIFTS IN HYDROGEN- 008 STORAGE PEROVSKITES 009 010 011

012 **Anonymous authors**
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

We introduce PEROV-H3, a rigorous benchmark targeting ABH_3 perovskites, designed to evaluate generative models under controlled size and symmetry shifts with structure-aware metrics. In materials science, models often excel on ideal, periodic crystals yet degrade on finite nanoparticles where size, surfaces, and edges dominate. PEROV-H3 closes this gap by pairing two complementary tasks: (i) unit-cell \rightarrow nanoparticle generation, probing surface- and size-dependent distortions; and (ii) nanoparticle \rightarrow unit-cell reconstruction, recovering bulk lattice parameters and symmetry. The benchmark comprises 100 DFT-relaxed ABH_3 compositions and 210,000 nanoparticle configurations spanning radii $R \in \{6, \dots, 30\}$ Angstrom (systematic size splits for ID/OOD). Baselines reveal substantial errors under extrapolation, especially in symmetry and lattice recovery, indicating that current models memorize templates rather than learn the physics of scale. PEROV-H3 thus provides a chemically diverse, size-systematic, and structurally clean testbed for stress-testing generative models beyond bulk crystals. The dataset and the implementation are available at <https://anonymous.4open.science/r/PEROV-H3>.

1 INTRODUCTION

Materials modelling has historically been divided between two complementary but distinct regimes. The first is the regime of perfect crystals, where structures are represented by a unit cell defined through lattice constants, atomic positions, and space group symmetry (Tarantino et al., 2017). This abstraction, codified in crystallographic information files (CIFs), captures the periodic order of an infinite solid and underpins the foundations of solid-state physics and computational chemistry (Kittel & McEuen, 2018; Ashcroft & Mermin, 1976). The second regime is that of nanoparticles, finite clusters of atoms that break translational invariance. In nanoparticles, surfaces, edges, and under-coordinated sites dominate, leading to reconstructions, distortions, and quantum confinement effects that strongly alter material properties (Pizzagalli et al., 2001; Bera et al., 2010). Real materials often bridge these two representations, and understanding the transition between them is critical for predicting catalytic activity, optical response, stability, and electronic behavior (Vergara et al., 2017). Despite advances in computational modelling and machine learning, bridging these regimes remains a major challenge (Li et al., 2023). Models trained exclusively on bulk data typically perform well at reproducing unit cell properties, but degrade when asked to generate nanoparticles or to reconstruct unit cells from nanoparticle inputs (Gleason et al., 2024). Errors include misidentification of space group symmetry, inaccurate lattice parameters, and an inability to capture size-dependent surface reconstructions. Existing benchmarks reinforce these limitations: CSPBench, for example, has shown that even state-of-the-art crystal structure prediction algorithms frequently fail unless test cases are closely aligned with their training distributions (Wei et al., 2024). Other datasets in the perovskite domain emphasize targeted applications such as band gap prediction or photovoltaic efficiency, but do not evaluate bidirectional structure conversion or systematic size variation (Pollice et al., 2021; Kusaba et al., 2022).

To address this gap, we propose *PEROV-H3*, an evaluation framework explicitly designed to test both nanoparticle generation from unit cells and unit cell reconstruction from nanoparticles. The framework consists of 100 chemically diverse ABH_3 perovskite compounds—a family of materials that has been extensively investigated for hydrogen storage applications (Kuo et al., 2024; Ahsin et al.,

054 2020). Each compound is represented by a bulk unit cell and a large collection of systematically gen-
 055 erated nanoparticles spanning radii from 6 Å to 30 Å. By focusing on a consistent perovskite motif,
 056 the framework allows controlled variation in size and chemistry without introducing confounding
 057 structural classes. Two tasks define the evaluation. The forward task challenges models to gener-
 058 ate nanoparticles of specified size from a given unit cell, requiring accurate treatment of surface
 059 relaxation and finite-size distortions. The inverse task requires reconstructing the unit cell from a
 060 nanoparticle, testing whether models can identify underlying symmetry and lattice constants despite
 061 surface noise. Crucially, PEROV-H3 employs in-distribution splits for intermediate sizes and out-of-
 062 distribution splits for extreme sizes, providing a clear test of extrapolative generalization. Baseline
 063 experiments using state-of-the-art methods demonstrate that while existing approaches perform ade-
 064 quately at intermediate radii, their accuracy deteriorates at small and large extremes, with failures
 065 most pronounced in symmetry recovery and lattice parameter prediction (Chen & Ong, 2021; Li
 066 et al., 2021). By coupling systematic nanoparticle variation with clean, paired unit cell repres-
 067 entations, PEROV-H3 provides a rigorous and chemically diverse benchmark for assessing whether
 068 models can genuinely learn the physics of scale rather than interpolate between familiar cases.
 069

070 2 RELATED WORK

072 2.1 CRYSTALS: UNIT CELLS AND NANOPARTICLES

073 Crystalline solids are defined by their unit cell, the smallest repeating motif specified by lattice con-
 074 stants, space group symmetry, and atomic basis (Anosova et al., 2024). This description underpins
 075 crystallography, density functional theory (DFT), and the majority of large materials databases (Car-
 076 bogno et al., 2022; Hellenbrandt, 2004). The unit cell abstraction is powerful because it condenses
 077 infinite periodic order into a compact blueprint (Jain et al., 2013). However, real materials rarely
 078 manifest exclusively as perfect crystals (Baig et al., 2021). At the nanoscale, finite clusters of atoms
 079 form nanoparticles, where translational symmetry is broken and surfaces dominate (Cheng et al.,
 080 2024; Ye et al., 2024). In these systems, under-coordinated atoms, surface reconstructions, and
 081 edge distortions significantly alter structural and functional behavior (Zhang et al., 2023). Under-
 082 standing the correspondence between unit cells and nanoparticles is essential for many applications
 083 (Cheng et al., 2024). Catalysis, for example, depends on surface terminations and defects, while
 084 optical properties in perovskite quantum dots depend on quantum confinement (Ye et al., 2024). Yet
 085 modelling nanoparticles from bulk inputs—or recovering bulk parameters from nanoparticle struc-
 086 tures—remains a fundamental challenge due to the scale gap and the nonlinear effects introduced by
 087 surfaces (Zhang et al., 2023).
 088

089 2.2 DATASETS FOR STRUCTURAL MODELLING

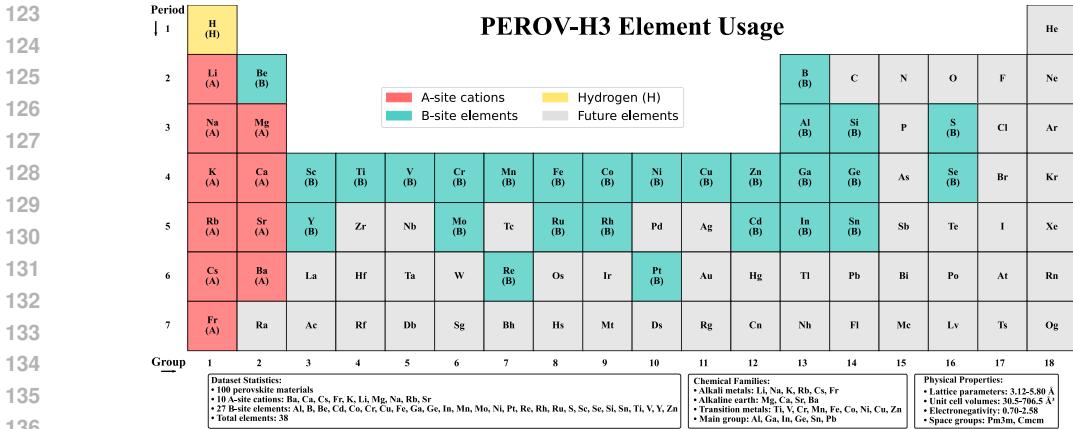
090 Several large-scale datasets have driven progress in computational materials science. The Mate-
 091 rials Project (Jain et al., 2013) and the OQMD (Kirklin et al., 2015) provide millions of crystal
 092 structures in CIF format, supporting both supervised learning of material properties and unsuper-
 093 vised exploration of chemical space. CSPBench (Wei et al., 2024) offers curated benchmarks for
 094 crystal structure prediction, focusing on stability ranking and bulk structure recovery. PubChemQC
 095 (Kim et al., 2025) extends quantum chemical calculations to millions of molecules, enabling cross-
 096 domain learning. Perov-5 (Castelli et al., 2012a;b) provides a large-scale collection of perovskite
 097 structures and properties, while OC20 (Chanussot et al., 2021) connects relaxed metal-surface struc-
 098 tures with atomic forces and OC22 (Tran et al., 2023) further expands surface reaction benchmarks.
 099 CrysMTM (Polat et al., 2025) introduces a multitask benchmark focused on crystal graph repres-
 100 entations. While these resources have been transformative, they remain limited to bulk representations
 101 and do not include nanoparticles or systematic size variation. Other benchmarks have expanded
 102 to test robustness and generalization. Matbench (Dunn et al., 2020) defines a suite of supervised
 103 property prediction tasks spanning multiple datasets. In the perovskite domain, specialized datasets
 104 have been constructed for photovoltaic efficiency, thermodynamic stability, and band-gap predic-
 105 tion. These collections support important application-driven tasks but are not designed to probe the
 106 structural transition from bulk to nanoparticles. At present, no dataset pairs each unit cell with sys-
 107 tematically generated nanoparticles across a controlled range of radii. This gap limits the evaluation
 108 of models that aim to learn the physics of scale or to transfer knowledge between bulk and finite
 109 systems. The lack of such benchmarks motivates the design of PEROV-H3.

108
109

2.3 MODELS LEVERAGING EXISTING DATASETS

Machine learning methods in materials science have advanced rapidly through access to bulk crystal datasets. Early work focused on graph neural networks such as CGCNN (Xie & Grossman, 2018) and message passing neural networks (Klipfel et al., 2023). More recently, equivariant neural networks such as DimeNet (Gasteiger et al., 2020), PaiNN (Schütt et al., 2021), and NequIP (Batzner et al., 2022) have achieved state-of-the-art performance on force and energy prediction tasks by enforcing rotational and translational symmetries. Generative approaches, including variational autoencoders (Luo et al., 2024), diffusion models (Khastagir et al., 2025), LLM based flow models Sriram et al. (2024), and autoregressive graph models (Antunes et al., 2024), have been proposed for crystal structure generation and inverse design. Without datasets that link unit cells and nanoparticles, it is impossible to rigorously evaluate how well models generalize across size and scale. PEROV-H3 addresses this by providing paired data and well-defined tasks for nanoparticle generation from unit cells and unit cell reconstruction from nanoparticles, thereby filling a critical gap in the benchmarking ecosystem.

122



137 Figure 1: Comprehensive element usage analysis of the PEROV-H3 dataset for hydrogen storage
138 applications. The periodic table visualization highlights the systematic chemical diversity across
139 100 ABH_3 perovskite materials, where A-site cations (blue) include 10 alkali and alkaline earth
140 metals, B-site elements (red) encompass 27 transition metals and main group elements, and hydro-
141 gen (green) serves as the X-site anion. The dataset represents two distinct space groups (Pm3m
142 and Cmcm), reflecting both cubic and orthorhombic perovskite structures. Physical properties span
143 lattice parameters from 3.12 to 5.80 \AA , unit cell volumes from 30.5 to 706.5 \AA^3 , and electronegativity
144 values from 0.70 to 2.58, demonstrating the broad compositional and structural space covered.
145 This systematic exploration enables comprehensive evaluation of structure-property relationships in
146 perovskite hydrogen storage materials, supporting generative model development for both unit cell
147 to nanoparticle structure prediction and nanoparticle to unit cell reconstruction tasks.

147

148

149

3 FRAMEWORK CREATION

150

151

3.1 NANOPARTICLE CONSTRUCTION

152

153

We curated 100 distinct ABH_3 compositions with high hydrogen-storage potential and retrieved their *DFT-relaxed* lattice parameters from the literature and open databases. From the corresponding CIFs we first built the primitive unit cell, then expanded to a supercell that accommodates the target radius. Finite nanoparticles were obtained by retaining atoms within a sphere of radius R centered at x_0 . No additional relaxation or surface/ligand modeling was applied, thereby isolating size/geometry effects while remaining consistent with vetted bulk parameters.

154

155

156

157

158

159

160

161

Supercell size. For each ABH_3 composition, we constructed a $20 \times 20 \times 20$ supercell by replicating the primitive unit cell along a, b, c , yielding box lengths $L_i = 20a_i$ ($i \in \{a, b, c\}$). This satisfies $L_i \geq 2R_{\max} + \Delta$ for the maximum carving radius $R_{\max} = 30 \text{\AA}$ with a safety margin $\Delta \approx 5-10 \text{\AA}$, ensuring carved nanoparticles remain well-separated from periodic images.

162 **Spherical carving.** A finite nanoparticle of target radius R is carved by retaining all atoms whose
 163 Cartesian positions fall inside a sphere of radius R centered at a chosen origin,

$$164 \quad R \in \{6, 7, 8, \dots, 30\} \text{ \AA}, \quad \mathcal{C}_R = \{ \mathbf{x}_i \in \mathbb{R}^3 \mid \|\mathbf{x}_i - \mathbf{x}_0\| \leq R \}.$$

166 This yields a controlled family of clusters per composition, covering the transition from strongly
 167 surface-dominated (small R) to near-bulk behavior (large R). Elements included in PEROV-H3 are
 168 shared in Figure 1.

169 3.2 ROTATION SAMPLING AND DATASET SPLITS

171 To remove orientation bias and enforce strict separation between training and evaluation, each
 172 nanoparticle is augmented by rigid rotations sampled on $\text{SO}(3)$ (Shoemake, 1985). Rotations are
 173 represented by unit quaternions $q \in \mathbb{H}$, $\|q\| = 1$. The geodesic angle between two rotations q_i, q_j is

$$174 \quad d(q_i, q_j) = 2 \arccos(|\langle q_i, q_j \rangle|),$$

175 where $\langle \cdot, \cdot \rangle$ is the Euclidean inner product in \mathbb{R}^4 . A greedy sampler generates a set $\mathcal{Q}(\theta)$ such that

$$176 \quad d(q_i, q_j) \geq \theta \quad \forall i \neq j,$$

177 with angular spacing θ controlling density. Approximating coverage by spherical caps on $\text{SO}(3)$
 178 gives the heuristic

$$179 \quad N(\theta) \approx \frac{4\pi}{2\pi(1 - \cos\theta)} = \frac{2}{1 - \cos\theta},$$

180 so that coarser spacings produce fewer orientations and denser spacings produce more (Kuffner,
 181 2004). For the spacings used here,

$$182 \quad N(15^\circ) \approx 59, \quad N(12^\circ) \approx 92, \quad N(9^\circ) \approx 163.$$

185 Let $\mathcal{Q}_{\text{train}}$ denote the fixed training grid (seeded deterministically). To guarantee disjointness, can-
 186 didate evaluation quaternions are accepted only if they satisfy an exclusion margin from the training
 187 set,

$$188 \quad d(q, q') \geq \delta_{\text{split}} \quad \forall q' \in \mathcal{Q}_{\text{train}},$$

189 with $\delta_{\text{ID}} = 6^\circ$ and $\delta_{\text{OOD}} = 4.5^\circ$. Because $d(q_i, q_j) = 2 \arccos(|\langle q_i, q_j \rangle|)$, these constraints are
 190 equivalent to

$$191 \quad |\langle q, q' \rangle| \leq \cos(\frac{1}{2}\delta_{\text{split}}).$$

192 Fixed left-multiplications R_{ID} and R_{OOD} are applied to all ID and OOD rotations, respectively,

$$193 \quad q_{\text{eff}} = R_{\text{split}} \cdot q,$$

194 using deterministic offsets (e.g., Euler $(6^\circ, 8^\circ, 12^\circ)$ for ID and $(15^\circ, 25^\circ, 35^\circ)$ for OOD) to further
 195 decorrelate orientations without affecting geodesic distances.

196 Radius-based partitions are

$$197 \quad \mathcal{R}_{\text{ID}} = \{10, 11, 17, 21, 24, 26\}, \quad \mathcal{R}_{\text{OOD}} = \{6, 7, 29, 30\},$$

198 with all remaining radii used for training. Training uses $\theta_{\text{train}} = 15^\circ$, ID uses $\theta_{\text{ID}} = 12^\circ$, and OOD
 199 uses $\theta_{\text{OOD}} = 9^\circ$.

201 3.3 DESIGN RATIONALE FOR SPLIT VALUES AND ANGULAR SPACINGS

202 The choice of radii and angular spacings follows a coarse-to-dense principle that balances learn-
 203 ability, statistical power, and fairness. Training spans the interior of the radius range with a coarse
 204 orientation lattice ($\theta_{\text{train}} = 15^\circ$), while ID tests use mid-range radii (10, 11, 17, 21, 24, 26) and a
 205 denser lattice ($\theta_{\text{ID}} = 12^\circ$, about 92 orientations) to stabilize metrics without adding diversity. The
 206 OOD set probes extremes (6, 7, 29, 30), where errors are harder due to scaling ($S/V \sim 3/R$), and
 207 uses an even denser lattice ($\theta_{\text{OOD}} = 9^\circ$, about 163 orientations) to reduce estimator variance. In all
 208 cases, evaluation orientations are kept at nonzero geodesic distance from training via δ_{ID} and δ_{OOD} ,
 209 guaranteeing no overlap. Formally, for an error functional E and rotation operator \mathcal{R}_q , orientation-
 210 averaged performance is

$$211 \quad \bar{E}(R) = \frac{1}{|\mathcal{Q}_R|} \sum_{q \in \mathcal{Q}_R} E(\mathcal{R}_q(\text{prediction}), \mathcal{R}_q(\text{reference})),$$

212 and the denser grids reduce variance of $\bar{E}(R)$. Highly symmetric structures are further deduplicated
 213 by retaining only one representative quaternion per unique rotation. Full split details are in
 214 Appendix A.1.

216
217

3.4 CHEMICAL COMPOSITION ANALYSIS

218
219
220
221
222
223
224
225
226
227

Figure 2 summarizes the chemical composition of PEROV-H3 across A- and B-site sublattices. The A-site contains ten elements, mainly alkali and alkaline earth metals, with Li (21), Na (16), and K (14) most common. Their electronegativity distribution has a mean of 0.999 ± 0.218 , while ionic radii are broadly dispersed ($1.160 \pm 0.300 \text{ \AA}$), reflecting size-driven variability that strongly impacts distortions and stability. The B-site is more chemically diverse, spanning 27 species dominated by transition metals and metalloids, led by V and Rh (8 each), followed by Cu and Zn (6 each). Unlike the A-site, its properties are more uniform, with electronegativity 1.543 ± 0.114 and radii $0.694 \pm 0.040 \text{ \AA}$, indicating chemical variety without extreme size mismatches. In total, the dataset covers 85 distinct A-B combinations, most frequently Li-V, offering a balanced space for probing both size- and chemistry-driven effects.

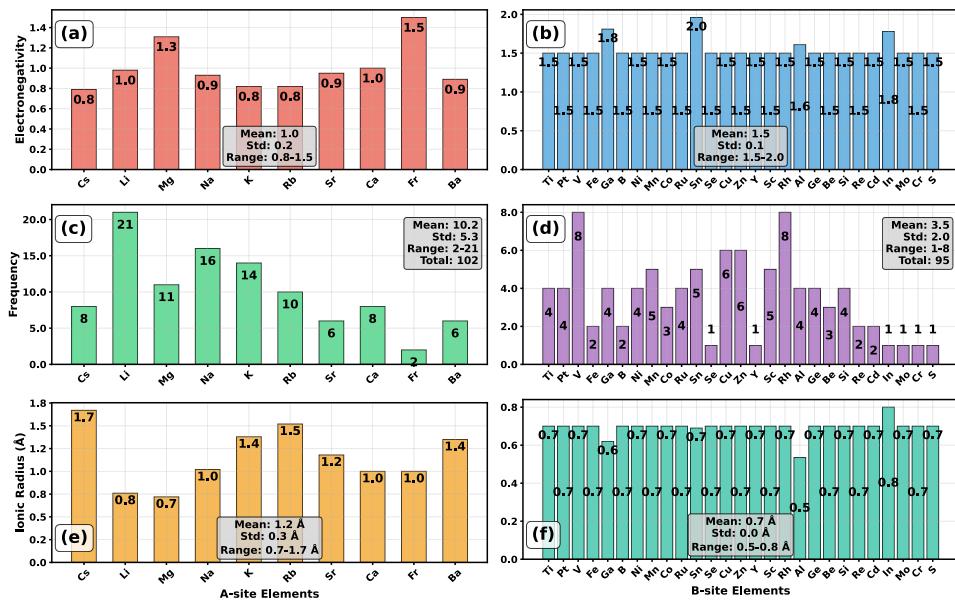
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246247
248
249
250
251
252
253
254
255
256
257
258

Figure 2: Chemical composition analysis of PEROV-H3 materials showing element distributions, electronegativity, and ionic radius properties. (a) A-site element electronegativity distribution ($n=10$ elements) with mean 0.999 and standard deviation 0.218, dominated by alkali and alkaline earth metals. (b) B-site element electronegativity distribution ($n=27$ elements) with mean 1.543 ± 0.114 , showing transition metals and metalloids. (c) A-site element frequency distribution with Li being the most common (21 occurrences), followed by Na (16) and K (14). (d) B-site element frequency distribution with V and Rh being most common (8 occurrences each), followed by Cu and Zn (6 each). (e) A-site ionic radius distribution with mean 1.160 \AA and standard deviation 0.300 \AA , reflecting the size diversity of A-site cations. (f) B-site ionic radius distribution with mean 0.694 \AA and standard deviation 0.040 \AA , showing more uniform sizes for B-site elements. The dataset contains 85 unique A-B combinations from 100 materials, with Li-V being the most frequent combination. Bar values are positioned alternately for optimal readability.

259
260
261

3.5 SIZE ANALYSIS

262
263
264
265
266
267
268
269

Figure 3 shows the scaling of PEROV-H3 nanoparticles across 25 radii ($R = 6.0\text{--}30.0 \text{ \AA}$), where atom counts grow from 81 to 10,408 (mean 3333 ± 3118) and volumes follow $V = \frac{4}{3}\pi R^3$, ranging from 491.7 to $107,498.7 \text{ \AA}^3$ (mean $33,520.9 \pm 32,299.7$). Surface areas scale quadratically as $S = 4\pi R^2$, spanning $325.7\text{--}11,007.0 \text{ \AA}^2$ (mean 4501.9). Structural ratios reveal strong size effects: surface-to-volume decreases from 0.668 \AA^{-1} at $R = 6$ to 0.102 \AA^{-1} at $R = 30$ (mean 0.230), density remains bulk-like at $9.060 \times 10^{-24} \text{ g}/\text{\AA}^3$ with low variance, and per-atom volumes average $9.323 \text{ \AA}^3/\text{atom}$ (bounded 6.092–10.328). These results confirm that PEROV-H3 adheres closely to analytic scaling laws while preserving realistic statistical variation, providing a rigorous platform for testing nanoparticle models across length scales.

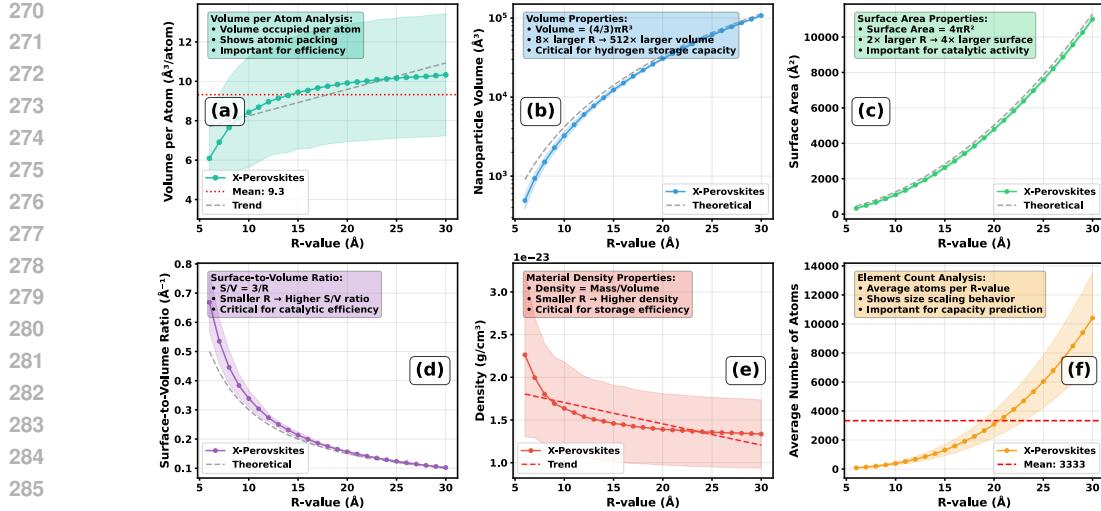


Figure 3: Size analysis of PEROV-H3 materials showing the relationship between R-value and various structural properties. (a) Volume per atom analysis revealing atomic packing efficiency and density variations across different R-values. The dataset comprises 25 R-values ranging from 6.0 to 30.0 Å, with corresponding volumes from 491.7 to 107,498.7 Å³ and surface areas from 325.7 to 11,007.0 Å². (b) Volume scaling behavior following the theoretical $V = (4/3)\pi R^3$ relationship, with experimental data showing excellent agreement. (c) Surface area distribution following the $S = 4\pi R^2$ scaling law, critical for catalytic activity assessment. (d) Surface-to-volume ratio ($S/V = 3/R$) distribution, indicating higher efficiency for smaller R-values. (e) Material density distribution as a function of R-value, demonstrating the inverse cubic relationship with R-value. (f) Atom count distribution showing the scaling relationship between R-value and total atomic content. Error bars represent standard deviations across multiple samples.

3.6 CRYSTALLOGRAPHIC STRUCTURE ANALYSIS

Figure 4 summarizes lattice parameter distributions and correlations for the 100 unit cells in PEROV-H3. The a and c parameters are narrowly distributed (means 3.858 Å and 3.882 Å, std. < 0.6 Å), while b varies widely from 3.124–17.230 Å (std. 1.844 Å), reflecting flexibility in certain chemistries. Unit cell volumes span 30.480–706.533 Å³ (mean 69.046 Å³), capturing both compact and expanded perovskite phases. Correlation analysis shows a and c are most strongly coupled ($r = 0.967$), consistent with cubic/pseudocubic symmetry, followed by $b-c$ ($r = 0.887$) and $a-b$ ($r = 0.741$), with distortions along b driving orthorhombicity. These results highlight that PEROV-H3 balances near-cubic metrics with chemically induced distortions, offering a structurally rich landscape to evaluate algorithms for lattice prediction and reconstruction.

3.7 TASK DEFINITIONS

The evaluation is organized around two complementary transformations: one moving from the crystallographic unit cell to a finite nanoparticle, and the other reversing that process. Both directions are essential for testing whether models capture the physics that governs scale transitions. Performance is assessed on both in-distribution radii (interpolation) and out-of-distribution radii (extrapolation).

Task 1: From Unit Cell to Nanoparticle. The forward mapping begins with a primitive unit cell, denoted \mathcal{U}_m , together with a radius parameter R . The goal is to construct a particle \mathcal{P} in three-dimensional space that exhibits both the periodic ordering encoded in \mathcal{U}_m and the finite-size surface distortions induced by truncation at radius R . Formally,

$$\mathcal{F}_1 : (\mathcal{U}_m, R) \longrightarrow \mathcal{P} \subset \mathbb{R}^3. \quad (1)$$

Accuracy of \mathcal{F}_1 is quantified by comparing the predicted particle \mathcal{P} with the reference structure \mathcal{P}^\dagger using geometric and structural measures:

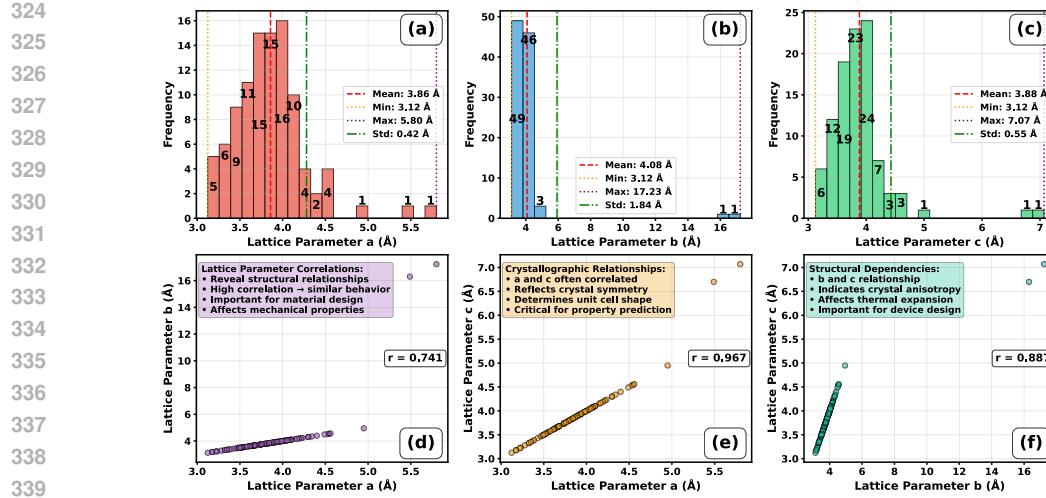


Figure 4: Crystallographic structure analysis of PEROV-H3 materials showing lattice parameter distributions and correlations. (a) Lattice parameter a distribution ($n=100$ samples) with mean 3.858 \AA and range $3.124\text{--}5.800 \text{ \AA}$. (b) Lattice parameter b distribution with mean 4.080 \AA and range $3.124\text{--}17.230 \text{ \AA}$, showing the largest variation. (c) Lattice parameter c distribution with mean 3.882 \AA and range $3.124\text{--}7.070 \text{ \AA}$. (d) Correlation between lattice parameters a and b ($r = 0.741$), revealing structural relationships important for material design. (e) Strong correlation between lattice parameters a and c ($r = 0.967$), indicating crystallographic symmetry constraints. (f) Correlation between lattice parameters b and c ($r = 0.887$), showing structural dependencies affecting thermal expansion properties. Statistical lines indicate mean (red dashed), min/max (orange/purple dotted), and standard deviation (green dash-dot). The alternating bar value positioning ensures optimal readability across the parameter ranges.

Root-mean-square deviation (RMSD).

$$\text{RMSD}(\mathcal{P}, \mathcal{P}^\dagger) = \sqrt{\frac{1}{N} \sum_{i=1}^N \|\mathbf{r}_i - \mathbf{r}_i^\dagger\|^2}, \quad (2)$$

where N denotes the number of atoms, $\mathbf{r}_i \in \mathcal{P}$ and $\mathbf{r}_i^\dagger \in \mathcal{P}^\dagger$ represent the atomic coordinates after optimal alignment. This measures coordinate-level similarity.

Hausdorff distance.

$$d_{\text{Haus}}(\mathcal{P}, \mathcal{P}^\dagger) = \max \left\{ \sup_{\mathbf{p} \in \mathcal{P}} \inf_{\mathbf{q} \in \mathcal{P}^\dagger} \|\mathbf{p} - \mathbf{q}\|, \sup_{\mathbf{q} \in \mathcal{P}^\dagger} \inf_{\mathbf{p} \in \mathcal{P}} \|\mathbf{q} - \mathbf{p}\| \right\}, \quad (3)$$

where \mathbf{p} and \mathbf{q} represent points on the particle surfaces. This quantifies the worst-case geometric discrepancy.

Convex hull volume difference.

$$\Delta V_{\text{hull}}(\mathcal{P}, \mathcal{P}^\dagger) = \frac{|V(\text{Hull}(\mathcal{P})) - V(\text{Hull}(\mathcal{P}^\dagger))|}{V(\text{Hull}(\mathcal{P}^\dagger))}, \quad (4)$$

where $\text{Hull}(\cdot)$ is the convex hull of a particle and $V(\cdot)$ its volume. This captures global shape fidelity.

Radial distribution function error.

$$E_{\text{RDF}}(\mathcal{P}, \mathcal{P}^\dagger) = \int_0^{R_{\text{max}}} (g_{\mathcal{P}}(r) - g_{\mathcal{P}^\dagger}(r))^2 dr, \quad (5)$$

where $g_{\mathcal{P}}(r)$ and $g_{\mathcal{P}^\dagger}(r)$ are the radial distribution functions of \mathcal{P} and \mathcal{P}^\dagger , and R_{max} is a cutoff radius. This assesses differences in local atomic environments.

Local environment variance.

$$V_{\text{R}}(\mathcal{P}) = \frac{\sigma^2(\{v_i : v_i \in \mathcal{N}_R(\mathbf{r}_i)\})}{\mu^2(\{v_i : v_i \in \mathcal{N}_R(\mathbf{r}_i)\})}, \quad (6)$$

378 where $\mathcal{N}_R(\mathbf{r}_i)$ defines the set of atoms within radius R of site \mathbf{r}_i , v_i represents the coordination
 379 number of \mathbf{r}_i , $\sigma^2(\cdot)$ stands for the variance, and $\mu(\cdot)$ denotes the mean. This measures heterogeneity
 380 of local environments.

381 Together, these metrics capture coordinate-level similarity, global shape fidelity, and consistency of
 382 local atomic arrangements.

383 **Task 2: From Nanoparticle to Lattice.** The inverse transformation seeks to recover crystallo-
 384 graphic invariants from a finite particle. Given a nanoparticle \mathcal{P} , the model must infer both the
 385 lattice parameters and the symmetry group that define the underlying periodic structure. In compact
 386 form,

$$\mathcal{F}_2 : \mathcal{P} \longrightarrow (\Lambda = (a, b, c, \alpha, \beta, \gamma), \Gamma \in \mathcal{S}), \quad (7)$$

387 where Λ denotes the six lattice constants (edge lengths a, b, c and interaxial angles α, β, γ) and Γ is
 388 an element of the crystallographic space-group set \mathcal{S} .

389 Evaluation of \mathcal{F}_2 compares predictions (Λ, Γ) to the ground truth $(\Lambda^\dagger, \Gamma^\dagger)$ using the following met-
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 18

432 4.2 TASK 2: NANOPARTICLE TO LATTICE INFERENCE
433

434 As detailed in the supplementary results (Appendix C.2), all baselines fail on Task 2, which requires
435 recovering both lattice parameters and space group from a nanoparticle. DiffCSP and ADiT reach
436 strong in-distribution space-group accuracy (0.987 and 0.980, respectively), yet both yield extremely
437 poor lattice predictions ($\text{RMSE} \approx 63.7 \text{ \AA}$) and zero joint recovery. CDVAE performs better on lattice
438 regression ($\text{RMSE } 32.5 \pm 0.8 \text{ \AA}$ for both ID and OOD) but still collapses to 0.0 joint accuracy.
439 FlowMM is even less stable, with $\text{RMSE } 62.6 \pm 3.7 \text{ \AA}$ and space-group accuracy 0.0 across ID and
440 OOD. MatterGen similarly plateaus at $\text{RMSE } 63.7 \text{ \AA}$ with 0.980 SG accuracy but no joint success.
441 These results highlight that, despite high classification scores, no baseline achieves correct lattice
442 and symmetry simultaneously, and OOD performance remains indistinguishable from ID, showing
443 that PEROV-H3 reliably exposes the inability of current methods to generalize lattice recovery under
444 distributional shift.

445 5 LIMITATIONS
446

447 Despite its systematic design, PEROV-H3 remains an idealized framework rather than a direct repre-
448 sentation of experimental data. All nanoparticles are carved from perfect supercells without incorpo-
449 rating thermal fluctuations, defects, or surface reconstructions that naturally arise during synthesis.
450 This makes the dataset highly controlled but also less representative of the imperfections and envi-
451 ronmental influences that shape real nanostructures. As a result, model performance measured on
452 this framework may not fully reflect robustness under experimental conditions.

453 In addition, the framework is restricted to the ABH_3 perovskite prototype and only two space groups
454 ($\text{Pm}3\text{m}$ and Cmcm). While this structural consistency facilitates rigorous benchmarking, it narrows
455 the diversity relative to the broader chemical and crystallographic landscape. Nanoparticle genera-
456 tion is further constrained by deterministic carving procedures that enforce geometric uniformity but
457 omit ligand effects and energy-driven relaxation. The evaluation splits, based solely on particle size
458 and rotational sampling, provide a strong test of scale generalization but do not probe other chal-
459 lenges such as compositional extrapolation or defect tolerance. These choices should be recognized
460 as trade-offs: they enhance clarity and reproducibility but limit the scope of conclusions that can be
461 drawn.

462 6 CONCLUSION AND FUTURE WORK
463

464 PEROV-H3 establishes a systematic evaluation framework for bridging the gap between crystallo-
465 graphic unit cells and finite nanoparticles. Its controlled chemical diversity, broad range of radii,
466 and structural consistency make it especially suited for studying nanoscale phenomena central to
467 hydrogen storage. In particular, the dataset captures how particle size, surface-to-volume ratio, and
468 lattice symmetry impact stability and surface reactivity—factors that directly influence hydrogen ab-
469 sorption and release kinetics. Current analyses demonstrate that models trained on PEROV-H3 can
470 already provide reliable structural predictions relevant to hydrogen storage applications, positioning
471 the framework as a valuable tool for accelerating the design of efficient storage materials.

472 Future work will build on this foundation to expand both scope and realism. Incorporating addi-
473 tional space groups, mixed-anion variants, and defect-engineered perovskites will broaden the cov-
474 erage of hydrogen storage chemistries beyond the current ABH_3 family. Extending the framework
475 with temperature-dependent structures and relaxed surfaces will further align predictions with ex-
476 perimental conditions, enhancing relevance for practical storage environments. Finally, integrating
477 property-focused benchmarks—such as hydrogen binding energies, diffusion pathways, and cyclic
478 stability—will strengthen the framework’s role as both a structural evaluation tool and a driver of
479 discovery in hydrogen storage research. In this way, PEROV-H3 not only demonstrates strong cur-
480 rent utility but also provides a clear trajectory toward becoming a comprehensive benchmark for the
481 next generation of hydrogen energy materials.

482 REFERENCES
483

484 Atazaz Ahsin, Akhtar Ali, and Khurshid Ayub. Alkaline earth metals serving as source of excess
485 electron for alkaline earth metals to impart large second and third order nonlinear optical response;
486 a dft study. *Journal of Molecular Graphics and Modelling*, 101:107759, 2020.

- 486 Olga Anosova, Vitaliy Kurlin, and Marjorie Senechal. The importance of definitions in crystallog-
 487 raphy. *IUCrJ*, 11(4):453–463, 2024.
 488
- 489 Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with au-
 490 toregressive large language modeling. *Nature Communications*, 15(1):10570, 2024.
 491
- 492 Neil W Ashcroft and N David Mermin. Solid state physics holt. *Rinehart and Winston, New York*,
 493 1976:12, 1976.
 494
- 495 Nadeem Baig, Irshad Kammakakam, and Wail Falath. Nanomaterials: A review of synthesis meth-
 496 ods, properties, recent progress, and challenges. *Materials Advances*, 2(6):1821–1871, 2021.
 497
- 498 Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Ko-
 499 rnbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
 500 networks for data-efficient and accurate interatomic potentials. *Nature Communications*, 13(1):
 2453, 2022.
 501
- 502 Debasis Bera, Lei Qian, Teng-Kuan Tseng, and Paul H Holloway. Quantum dots and their multi-
 503 modal applications: a review. *Materials*, 3(4):2260–2345, 2010.
 504
- 505 Christian Carbogno, Kristian Sommer Thygesen, Björn Bieniek, Claudia Draxl, Luca M Ghir-
 506 inghelli, Andris Gulans, Oliver T Hofmann, Karsten W Jacobsen, Sven Lubeck, Jens Jørgen
 507 Mortensen, et al. Numerical quality control for dft-based materials databases. *npj Computational
 508 Materials*, 8(1):69, 2022.
 509
- 510 Ivano E Castelli, David D Landis, Kristian S Thygesen, Søren Dahl, Ib Chorkendorff, Thomas F
 511 Jaramillo, and Karsten W Jacobsen. New cubic perovskites for one-and two-photon water splitting
 512 using the computational materials repository. *Energy & Environmental Science*, 5(10):9034–
 513 9043, 2012a.
 514
- 515 Ivano E Castelli, Thomas Olsen, Soumendu Datta, David D Landis, Søren Dahl, Kristian S Thyge-
 516 sen, and Karsten W Jacobsen. Computational screening of perovskite metal oxides for optimal
 517 solar light capture. *Energy & Environmental Science*, 5(2):5814–5819, 2012b.
 518
- 519 Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane
 520 Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open catalyst 2020
 521 (oc20) dataset and community challenges. *Acs Catalysis*, 11(10):6059–6072, 2021.
 522
- 523 Chi Chen and Shyue Ping Ong. Atomsets as a hierarchical transfer learning framework for small
 524 and large materials datasets. *npj Computational Materials*, 7(1):173, 2021.
 525
- 526 Huiyuan Cheng, Shanshan Ding, Mengmeng Hao, Lianzhou Wang, and Julian A Steele. Perovskite
 527 quantum dots: What's next? *Next Energy*, 4:100152, 2024.
 528
- 529 Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. Benchmarking materials
 530 property prediction methods: the matbench test set and automatminer reference algorithm. *npj
 531 Computational Materials*, 6(1):138, 2020.
 532
- 533 Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
 534 *arXiv preprint arXiv:1903.02428*, 2019.
 535
- 536 Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for molec-
 537 ular graphs. *arXiv preprint arXiv:2003.03123*, 2020.
 538
- 539 Samuel P Gleason, Alexander Rakowski, Stephanie M Ribet, Steven E Zeltmann, Benjamin H Sav-
 540 itzky, Matthew Henderson, Jim Ciston, and Colin Ophus. Random forest prediction of crystal
 541 structure from electron diffraction patterns incorporating multiple scattering. *Physical Review
 542 Materials*, 8(9):093802, 2024.
 543
- 544 Mariette Hellenbrandt. The inorganic crystal structure database (icsd)—present and future. *Crystal-
 545 lography Reviews*, 10(1):17–22, 2004.
 546

- 540 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 541 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The
 542 materials project: A materials genome approach to accelerating materials innovation. *APL Materials*, 1(1), 2013.
- 543
- 544 Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
 545 structure prediction by joint equivariant diffusion. *Advances in Neural Information Processing
 546 Systems*, 36:17464–17497, 2023.
- 547
- 548 Chaitanya K Joshi, Xiang Fu, Yi-Lun Liao, Vahe Gharakhanyan, Benjamin Kurt Miller, Anuroop
 549 Sriram, and Zachary W Ulissi. All-atom diffusion transformers: Unified generative modelling of
 550 molecules and materials. *arXiv preprint arXiv:2503.03965*, 2025.
- 551
- 552 Subhojyoti Khastagir, Kishalay Das, Pawan Goyal, Seung-Cheol Lee, Satadeep Bhattacharjee, and
 553 Niloy Ganguly. Crysldm: Latent diffusion model for crystal material generation. In *AI for Accelerated
 554 Materials Design-ICLR 2025*, 2025.
- 555
- 556 Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Ben-
 557 jamin A Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem 2025 update. *Nucleic Acids Research*, 53(D1):D1516–D1525, 2025.
- 558
- 559 Scott Kirklin, James E Saal, Bryce Meredig, Alex Thompson, Jeff W Doak, Muratahan Aykol,
 560 Stephan Rühl, and Chris Wolverton. The open quantum materials database (oqmd): assessing the
 561 accuracy of dft formation energies. *npj Computational Materials*, 1(1):1–15, 2015.
- 562
- 563 Charles Kittel and Paul McEuen. *Introduction to solid state physics*. John Wiley & Sons, 2018.
- 564
- 565 Astrid Klipfel, Zied Bouraoui, Olivier Peltre, Yaël Fregier, Najwa Harrati, and Adlane Sayede.
 566 Equivariant message passing neural network for crystal material discovery. In *Proceedings of the
 567 AAAI Conference on Artificial Intelligence*, volume 37, pp. 14304–14311, 2023.
- 568
- 569 James J Kuffner. Effective sampling and distance metrics for 3d rigid body path planning. In
 570 *IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004*,
 571 volume 4, pp. 3993–3998. IEEE, 2004.
- 572
- 573 Meng-Hsueh Kuo, Neda Neykova, and Ivo Stachiv. Overview of the recent findings in the
 574 perovskite-type structures used for solar cells and hydrogen storage. *Energies*, 17(18):4755, 2024.
- 575
- 576 Minoru Kusaba, Chang Liu, and Ryo Yoshida. Crystal structure prediction with machine learning-
 577 based element substitution. *Computational Materials Science*, 211:111496, 2022.
- 578
- 579 Kangming Li, Brian DeCost, Kamal Choudhary, Michael Greenwood, and Jason Hattrick-Simpers.
 580 A critical examination of robustness and generalizability of machine learning prediction of mate-
 581 rials properties. *npj Computational Materials*, 9(1):55, 2023.
- 582
- 583 Yuxin Li, Wenhui Yang, Rongzhi Dong, and Jianjun Hu. Mlatticeabc: generic lattice constant
 584 prediction of crystal materials using machine learning. *ACS Omega*, 6(17):11585–11594, 2021.
- 585
- 586 Xiaoshan Luo, Zhenyu Wang, Pengyue Gao, Jian Lv, Yanchao Wang, Changfeng Chen, and Yan-
 587 ming Ma. Deep learning generative model for crystal structure prediction. *npj Computational
 588 Materials*, 10(1):254, 2024.
- 589
- 590 Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm: Generat-
 591 ing materials with riemannian flow matching. In *Forty-first International Conference on Machine
 592 Learning*, 2024.
- 593
- 594 A Paszke. Pytorch: An imperative style, high-performance deep learning library. *arXiv preprint
 595 arXiv:1912.01703*, 2019.
- 596
- 597 Laurent Pizzagalli, Giulia Galli, John E Klepeis, and Francois Gygi. Structure and stability of
 598 germanium nanoparticles. *Physical Review B*, 63(16):165324, 2001.
- 599
- 600 Can Polat, Erchin Serpedin, Mustafa Kurban, and Hasan Kurban. Crysmtm: a multiphase,
 601 temperature-resolved, multimodal dataset for crystalline materials. *Machine Learning: Science
 602 and Technology*, 6(3):030603, 2025.

- 594 Robert Pollice, Gabriel dos Passos Gomes, Matteo Aldeghi, Riley J Hickman, Mario Krenn, Cyrille
 595 Lavigne, Michael Lindner-D'Addario, Akshat Kumar Nigam, Cher Tian Ser, Zhenpeng Yao, et al.
 596 Data-driven strategies for accelerated materials design. *Accounts of Chemical Research*, 54(4):
 597 849–860, 2021.
- 598 Kristof Schütt, Oliver Unke, and Michael Gastegger. Equivariant message passing for the prediction
 599 of tensorial properties and molecular spectra. In *International Conference on Machine Learning*,
 600 pp. 9377–9388. PMLR, 2021.
- 601 Ken Shoemake. Animating rotation with quaternion curves. In *Proceedings of the 12th Annual
 602 Conference on Computer Graphics and Interactive Techniques*, pp. 245–254, 1985.
- 603 Anuroop Sriram, Benjamin Miller, Ricky TQ Chen, and Brandon Wood. Flowllm: Flow matching
 604 for material generation with large language models as base distributions. *Advances in Neural
 605 Information Processing Systems*, 37:46025–46046, 2024.
- 606 Angelo Marcello Tarantino, Julius Kaplunov, Raimondo Luciano, Carmelo Maiorana, Theodoros C
 607 Rousakis, Kaspar Willam, et al. Structural modelling at the micro-, meso-, and nanoscales. In
 608 *Modelling and Simulation in Engineering*, volume 2017, pp. 1–3. Hindawi, 2017.
- 609 Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M Wood, Siddharth Goyal, Abhishek Das,
 610 Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, et al. The open catalyst
 611 2022 (oc22) dataset and challenges for oxide electrocatalysts. *ACS Catalysis*, 13(5):3066–3084,
 612 2023.
- 613 Sandra Vergara, Dylan A Lukes, Michael W Martynowycz, Ulises Santiago, German Plascencia-
 614 Villa, Simon C Weiss, M Jason de La Cruz, David M Black, Marcos M Alvarez, Xochitl Lopez-
 615 Lozano, et al. Microed structure of au146 (p-mba) 57 at subatomic resolution reveals a twinned
 616 fcc cluster. *The Journal of Physical Chemistry Letters*, 8(22):5523–5530, 2017.
- 617 Lai Wei, Sadman Sadeed Omee, Rongzhi Dong, Nihang Fu, Yuqi Song, Edirisuriya Siriwardane,
 618 Meiling Xu, Chris Wolverton, and Jianjun Hu. Cspbench: a benchmark and critical evaluation of
 619 crystal structure prediction. *arXiv preprint arXiv:2407.00733*, 2024.
- 620 Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
 621 interpretable prediction of material properties. *Physical Review Letters*, 120(14):145301, 2018.
- 622 Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal diffu-
 623 sion variational autoencoder for periodic material generation. *arXiv preprint arXiv:2110.06197*,
 624 2021.
- 625 Junzhi Ye, Deepika Gaur, Chenjia Mi, Zijian Chen, Iago López Fernández, Haitao Zhao, Yitong
 626 Dong, Lakshminarayana Polavarapu, and Robert LZ Hoye. Strongly-confined colloidal lead-
 627 halide perovskite quantum dots: from synthesis to applications. *Chemical Society Reviews*, 53
 628 (16):8095–8122, 2024.
- 629 Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
 630 Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
 631 inorganic materials design. *arXiv preprint arXiv:2312.03687*, 2023.
- 632 Yu Zhang, Guangning Hou, Yong Wu, Maosheng Chen, Yannan Dai, Shaohua Liu, Qingbiao Zhao,
 633 Hechun Lin, Junfeng Fang, Chengbin Jing, et al. Surface reconstruction of cspbbr3 nanocrystals
 634 by the ligand engineering approach for achieving high quantum yield and improved stability.
 635 *Langmuir*, 39(17):6222–6230, 2023.
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647