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ABSTRACT

Reinforcement learning agents often struggle with sample inefficiency, requiring
extensive interactions with the environment to develop effective policies. This
inefficiency is partly due to the challenge of balancing exploration and exploitation
without the abstract reasoning and prior knowledge that humans use to quickly
identify rewarding actions. Recent advancements in foundation models, such as
large language models (LLMs) and vision-language models (VLMs), have shown
human-level reasoning capabilities in some domains but have been underutilized in
directly selecting low-level actions for exploration in reinforcement learning. In this
paper, we investigate the potential of foundation models to enhance exploration in
reinforcement learning tasks. We conduct an in-depth analysis of their exploration
behaviour in multi-armed bandit problems and Gridworld environments, comparing
their performance against traditional exploration strategies and reinforcement
learning agents. Our empirical results suggest foundation models can significantly
improve exploration efficiency by leveraging their reasoning abilities to infer
optimal actions. Building on these findings, we introduce Foundation Model
Exploration (FME), a novel exploration scheme that integrates foundation models
into the reinforcement learning framework for intelligent exploration behaviour.
We use VLMs and demonstrate that they can infer environment dynamics and
objectives from raw image observations. This means FME only requires the action
space as environment-specific manual text input. We find that agents equipped with
FME achieve superior performance in sparse reward Gridworld environments and
scale to more complex tasks like Atari games. Moreover, the effectiveness of FME
increases with the capacity of the VLM used, indicating that future advancements
in foundation models will further enhance such exploration strategies.

1 INTRODUCTION

Reinforcement learning enables agents to learn optimal policies through interactions with an envi-
ronment by observing states, taking actions, and receiving rewards. The goal is to find a policy that
maximizes the expected cumulative rewards. Despite its broad applicability in fields like healthcare,
robotics, logistics, finance, and advertising, reinforcement learning often suffers from sample ineffi-
ciency, requiring vast amounts of data and numerous trial-and-error iterations to develop effective
policies. A crucial factor of being sample efficient is balancing exploration, the act of seeking new
knowledge about potential rewards, with exploitation, the use of known rewarding actions.

Scalable exploration strategies in reinforcement learning typically introduce random actions or rely
on heuristics. While these methods are general and widely applicable, they can incur redundant
environment interactions, especially in cases where the path to rewards would be apparent to a
human observer. For instance, in environments where visual cues clearly indicate the goal, such as
navigating a maze with visible exits, traditional methods may waste time exploring irrelevant paths.
This inefficiency stems from the absence of abstract reasoning and prior knowledge in conventional
reinforcement learning algorithms, limiting their effectiveness in complex environments.

Recent advances in foundation models, particularly large language models (LLMs) and vision-
language models (VLMs) have demonstrated remarkable capabilities in retaining vast amounts of
knowledge and exhibiting human-level reasoning when trained on massive datasets of text and
images (Brown et al., 2020; Team et al., 2023; Achiam et al., 2023; Touvron et al., 2023; Jiang et al.,
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2024; Team et al., 2024). Prior works have explored leveraging foundation models in reinforcement
learning, often focusing on text-based environments or using them as auxiliary components for tasks
like reward shaping and goal generation (Klissarov et al., 2024; Du et al., 2023). When used for
decision-making, foundation models are frequently equipped with hand-crafted abstract skills to
enable autonomous action (Wang et al., 2024b). However, these approaches often involve significant
prompt engineering and impose constraints that limit the agents’ capabilities and generalization
potential through reliance on text-based interfaces or predefined skill sets. The lack of involvement
of foundation models in low-level decision-making means that their fundamental capacity to address
traditional reinforcement learning exploration challenges is currently unexplored.

In this paper, we aim to fill this gap by conducting a fundamental study of the potential of foundation
models in traditional reinforcement learning settings. We analyse foundation models’ exploration
behaviour in multi-armed bandit settings and compare their performance to traditional exploration
strategies. Our findings reveal that these models can outperform well-established exploration algo-
rithms in certain settings. We extend this analysis to Gridworld environments, where we observe
efficient navigation behaviour of foundation models in fully observable deterministic settings but sub-
optimal performance when stochasticity and partial observability are introduced. These experiments
highlight the complementary strengths and weaknesses of reinforcement learning algorithms and
foundation models in decision-making, underlining the need for a hybrid approach.

To this end, we propose FME (Foundation Model Exploration), a multi-step adaptable exploration
scheme that integrates foundation models with reinforcement learning agents by letting the foundation
model control the agent’s behavior for certain periods of time. We demonstrate that, by using
VLMs, we can equip an arbitrary reinforcement learning agent with FME without extensive prompt
engineering or having to provide explicit environment descriptions. Simply by specifying the action
space in natural language, the VLM can use its prior knowledge and reasoning to understand the
environment’s dynamics and objectives from visual inputs, enabling it to produce effective sequences
of actions that assist the agent in accumulating rewards.

We evaluate and analyze FME in various environments, including sparse-reward Gridworlds and
complex domains like Atari games. Our experiments demonstrate that FME can help agents explore
significantly more efficiently in accumulating rewards. We also find that the performance gains
increase as larger foundation models are used, suggesting that the approach benefits from the
increased capacity. Lastly, using FME, researchers can provide manual priors in natural language to
the agent, such as hints of achieving the environment’s objective.

Our contributions can be summarized as follows:

• We conduct the first fundamental study of the capacity of foundation models in traditional
reinforcement learning exploration challenges, providing insights into their strengths and
limitations in such settings.

• We propose FME, the first method to utilize VLMs for enhancing the exploration efficiency
of reinforcement learning agents through a temporally extended and adaptable exploration
scheme that requires minimal prompt engineering.

• We empirically demonstrate the effectiveness of FME in improving exploration efficiency in
Minigrid and Atari games.

The remainder of this paper is structured as follows. Section 2 reviews previous works. Section
3 performs an in-depth analysis of the potential of foundation models in the exploration aspect
of reinforcement learning problems. Section 4 introduces FME and describes the corresponding
technical details and experiments. Finally, Section 5 summarizes our findings and lays out the
implications for future research.

2 RELATED WORKS

Foundation models as auxiliary components. In the context of reinforcement learning, LLMs
have been used to shape the behaviour of the agents by reward shaping and goal generation. Klissarov
et al. (2024) construct an intrinsic reward model that encodes the preference of an LLM between two
observations in a text-based environment. Ma et al. (2024a) use foundation models to write high-
and low-level code for robotic control movements to help with exploration in continuous control
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domains. Triantafyllidis et al. (2023) use LLMs to rate actions in robotic manipulation tasks and use
these ratings as intrinsic rewards to enhance exploration. If the underlying code of the environment
is available, Ma et al. (2024b) demonstrates that an LLM can directly program a reward function
for a given task description. Du et al. (2023) utilize an LLM to generate plausible goals for guiding
the training of a goal-conditioned reinforcement learning agent. Similarly, Yang et al. (2023) train
a multi-modal reinforcement learning agent that learns to imitate an expert LLM policy defined
via PDDL. Rocamonde et al. (2024) use a VLM as zero-shot reward models for robotic control
environments. Zhang et al. (2024) use LLMs for task-selection in open-ended learning settings.
Finally, Xie et al. (2024) prompts LLMs to generate reward codes that are used to shape rewards for
continuous control reinforcement learning agents. However, these approaches primarily leverage
foundation models as auxiliary tools to influence agent behaviour indirectly through reward shaping
or goal generation, rather than integrating them directly into the agent’s action selection process. In
contrast, our work directly incorporates foundation models into the agent’s decision-making process,
allowing them to select low-level actions to enhance exploration efficiency.

Foundation models for decision-making. The reasoning abilities of large language models (LLMs)
have been leveraged to produce high-level plans, which are executed through low-level skills to
interact with the environment (Wang et al., 2024b; Lin et al., 2023). These low-level skills can be
manually implemented behaviours (Zhu et al., 2023; Wu et al., 2023; Huang et al., 2022a), pre-trained
machine learning models (Wang et al., 2023; Huang et al., 2022b; Song et al., 2023), or accessed via
programming APIs (Wang et al., 2024a; Liang et al., 2022). While utilizing these skills reduces the
computational cost of querying LLMs, the constraints they introduce can limit the agent’s capabilities
and generalization (Song et al., 2023). While these methods demonstrate the potential of foundation
models in decision-making, they often rely on hand-crafted low-level skills or predefined behaviours
to interact with the environment. In contrast, our approach differs by introducing a hybrid approach
that eliminates the need for predefined skills or extensive prompt engineering by directly utilizing
VLMs to infer environment dynamics and objectives from raw visual inputs.

3 EXPLORATION STUDY

In this section, we perform an in-depth analysis of the exploration behaviour of foundation models
in traditional reinforcement learning settings. Our goal is to understand their fundamental capacity
for handling the exploration-exploitation trade-off and to identify their strengths and limitations
compared to traditional reinforcement learning algorithms. To achieve this, we choose to study two
well-established environments: multi-armed bandit problems and Gridworld environments. The
multi-armed bandit problem (used in Section 3.1) represents one of the most fundamental and widely
studied paradigms for evaluating exploration strategies in reinforcement learning. This framework
provides a simplified setting that focuses solely on the exploration-exploitation trade-off, making it
ideal for analyzing the exploratory decision-making capabilities of foundation models in a controlled
environment. Gridworld environments (used in Section 3.2), on the other hand, introduce spatial
navigation and state transitions, offering a more complex setting to examine the decision-making and
exploration abilities of foundation models.

3.1 MULTI-ARMED BANDITS

Our study first introduces the application of foundation models, particularly large language models
(LLMs), to the domain of bandit exploration to study their fundamental capacity for handling the
exploration-exploitation trade-off.

Algorithms. The LLMs used for these experiments include GPT-3.5 and GPT-4 (Achiam et al.,
2023), and Gemini 1.0 and Gemini 1.5 (Team et al., 2023). This diverse collection enables us to
assess the decision-making abilities of LLMs across multiple model types and generations. Although
the exact parameter counts for the GPT and Gemini models are unknown, performance benchmarks
suggest that Gemini 1.0 aligns closely with GPT-3.5, and Gemini 1.5 with GPT-4 in terms of parameter
range (Chiang et al., 2024). Each of these LLMs is prompted with the template as shown in Listing
1, which includes a raw memory of all previous arms pulled and corresponding observed rewards.
The temperature parameter of the LLMs is set to 0. We compare the performance of the foundation
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Figure 1: Averaged regret of the Bandit experiments of k = 3 and k = 5 for various LLMs, Thompson
Sampling, and UCB.

Figure 2: Individual seeds for each of the LLMs in the k = 3 (top) and k = 5 (bottom) settings,
providing insights on the different strategies employed by each model.

models to two well-known efficient methods for bandit problems, Thompson Sampling (Thompson,
1933) and Upper-Confidence Bound (UCB) (Auer, 2002).

Average regret analysis. We first consider two k-armed bandit settings where k = 3 and k = 5.
We consider Bernoulli arms where the probability of success pi of a given arm i is uniformly sampled,
i.e. pi ∼ U(0, 1). Each approach is evaluated across ten seeds and performs 1000 trials. The averaged
results can be found in Figure 1. For both k = 3 and k = 5 settings, we observe that most LLMs
perform significantly worse than UCB and Thompson sampling. However, we observe that GPT-4
significantly outperforms all other methods in both settings, achieving a consistent lower regret
compared to Thompson Sampling and UCB.

When looking at the individual seeds of each of the LLM models in visualized Figure 2, we observe
that GPT-3 and Gemini 1.0 seem to commit to a single arm early on in most cases even though it is
often not the optimal arm in. Gemini 1.5 seems to exhibit suboptimal exploratory behavior in the
k = 3 setting, but interestingly performs relatively well in the k = 5 setting. Finally, we see that
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GPT-4 generally performs an initial exploration phase and then commits to a single arm, which in
nineteen out of twenty cases was indeed the optimal arm, reminiscent of the ’explore-then-commit’
algorithm (Perchet et al., 2015). Furthermore, interestingly, in the remaining case, halfway through,
it realizes that the arm it committed to may not be the optimal one, and it then continues to explore
and eventually successfully find the optimal arm.

Figure 3: Suboptimality gap experiments for
2-armed bandit settings, comparing GPT-4,
UCB, and Thompson Sampling.

Suboptimality gap analysis. To investigate the sur-
prising performance of GPT-4 further, we study its
decision-making under different suboptimality gaps.
In a 2-armed Bernoulli bandit setting, the suboptimal-
ity gap is defined as ∆ := max(p0, p1)−min(p0, p1).
That is, the suboptimality gap measures how much
worse the suboptimal arm is when compared to the
optimal arm. We consider 2-armed bandit settings
where ∆ ∈ {0, 0.2, 0.4, 0.6}. This range allows us
to evaluate the algorithms under different levels of
difficulty:

• Moderate suboptimality gap (∆ ∈
{0.4, 0.6}): The optimal arm is much better
than the suboptimal arm, making it easier
for an algorithm to identify and exploit the
optimal action quickly.

• Small suboptimality gap (∆ = 0.2): This
represents the most challenging scenario,
where the difference between arms is subtle.
Algorithms must carefully balance explo-
ration and exploitation to identify the opti-
mal arm without incurring excessive regret.

We compare the performance of GPT-4 to Thompson Sampling and UCB and take the average regret
across five random seeds for 500 trials for each of the algorithms. As can be seen in Figure 3, the
performance of GPT-4 seems to be comparable to Thompson Sampling and UCB - each of the
algorithms performs well in the moderate suboptimality gap settings, whereas they accumulate more
substantial regret in the small suboptimality gap setting.

3.2 GRIDWORLDS

To further understand foundation models’ decision-making and exploration abilities, we continue
to examine their behaviour in two reinforcement learning settings where state transitions do matter.
We evaluate the LLMs in two Gridworld settings that provide different exploration challenges and
compare their performance to traditional reinforcement learning agents.

Listing 1: The prompt template used for the bandit settings.

**Context**
You are presented with {k} arms. Each arm has a different probability of

success. Your goal is to maximize the total reward by finding out
which arm has the highest probability of success.

**Memory**
{memory}

**Available Arms**
{actions}

**Task**
Choose an action from the given list of available arms.

5
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Figure 4: Decision-making results for the deterministic (left) and stochastic (right) setting. The
learning curves are visible for the reinforcement learning agents learning from scratch (RL). For each
foundation model, the performance of the best prompt approach is reported as a horizontal bar.

Gridworlds. In the first setting, we consider a 5 × 5 deterministic Gridworld where the reward
location is fixed and known. The decision-making agent’s observation consists of the current location
of the agent in coordinates, as well as the location of the reward in coordinates. In the second
setting, the Gridworld becomes stochastic because the reward location is now uniformly sampled.
Furthermore, the agent will not have access to the location of the reward, and only observes its own
location in coordinates. The latter setting poses a complex challenge, as it requires the agent to
remember previous locations it visited to enable a systematic grid search.

Algorithms. To achieve the best possible performance, we designed and evaluated three different
prompt templates that include the description of the environment, the objective, and the full history
of previously visited locations but differ in the level of guidance to utilize this information:

• Action Only (AO): The agent is asked to respond with an action given the current state and
information available.

• Simple Plan (SP): The agent is encouraged to first reason about what it should do next given
the current state and information available, then decide on an action based on that plan.

• Focused Plan (FP): The agent is explicitly told to use its memory to determine what position
it wants to go next, then analyze which action is best to efficiently reach that position, and
finally respond with that action.

These three prompts aim to encourage the agent to use different levels of reasoning and planning
strategies, helping to assess how effectively LLMs can navigate decision-making tasks and adjust their
behaviour based on varying levels of guidance and complexity. Particularly in the stochastic setting
used in this paper, the agent should utilize its memory to know what locations it previously visited
to consistently find the reward. Here, we report the best-performing strategy of each foundation
model. The prompt templates, descriptions and results of all prompt-model combinations can be
found in Appendix B, where each combination is evaluated for 100 independent episodes with a
temperature of 0. For the reinforcement learning agents, we make use of DQN (Mnih, 2013) for
the deterministic setting and Proximal Policy Optimization (Schulman et al., 2017) with a recurrent
neural network (RecurrentPPO) for the stochastic and partially observable Gridworld. The latter
uses a recurrent neural network to capture the temporal information necessary to explore a partially
observable environment where the reward location is non-stationary. These agents interact for 1500
and 1e6 steps for the deterministic and stochastic setting, respectively. The agents are evaluated every
125 environment steps with a single episode (with a random reward location in the stochastic setting)
across five random seeds.

Results. The results for both settings can be viewed in Figure 4. We observe that each of the
foundation model agents are able to comfortably find the fixed reward location. In contrast, the
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reinforcement learning agent needs several hundred environment interactions to locate the reward and
learn the optimal policy, as they are not able to directly relate the reward location in the observation
with the objective of the problem. In the stochastic setting, we observe that the reinforcement learning
agent can learn the optimal policy, whereas none of the foundation models can yield a policy that
consistently searches the entire grid.

3.3 CONCLUSION

The results observed in Section 3.1 suggest that foundation models’ vast prior knowledge and reason-
ing capabilities offer promising potential for balancing exploration and exploitation in traditional
reinforcement learning problems. Section 3.2 highlighted both approaches’ potentially comple-
mentary strengths and weaknesses. Reinforcement learning agents often explore inefficiently as
they cannot perform high-level reasoning but can learn complex optimal policies with long-term
dependencies. Foundation models struggle to produce such optimal policies and, when using LLMs,
are limited to text-based environments that require effortful prompt engineering. However, they can
provide zero-shot efficient exploration behaviour using their prior knowledge and reasoning abilities.
These observations highlight the need for a hybrid approach that utilizes the complementary strengths
of both methodologies.

4 FOUNDATION MODEL EXPLORATION

Algorithm 1 FME
1: D ← empty (FIFO) buffer with capacity C
2: s0 ← initial state
3: t← 0
4: while t < T do
5: j ∼ U(0, 1).
6: if j < ϵ then
7: for each τ ∈ {0, . . . ,H − 1} do
8: if t ≥ T then
9: break

10: end if
11: at ← f(st)
12: rt, st+1, δ ← outcome of action at
13: D ← D ∪ {(st, at, rt, st+1, δ)}
14: if δ = 1 then
15: st+1 ← initial state
16: end if
17: t← t+ 1
18: end for
19: else
20: at ← π(st)
21: rt, st+1, δ ← outcome of action at
22: D ← D ∪ {(st, at, rt, st+1, δ)}
23: if δ = 1 then
24: st+1 ← initial state
25: end if
26: t← t+ 1
27: end if
28: end while

In this section, we introduce a novel exploration
scheme that combines foundation models with
reinforcement learning agents. Section 4.1 dis-
cusses the observations of Section 3 to arrive
at the proposed approach and describe it in de-
tail. Section 4.2 and Section 4.3 then evaluate
the efficacy of the proposed method in Mini-
grid (Chevalier-Boisvert et al., 2023) and Atari
(Bellemare et al., 2013), respectively.

4.1 ALGORITHM

Building on the observations of the previous
section, we propose Foundation Model Explo-
ration (FME), a hybrid exploration approach for
reinforcement learning agents that incorporates
exploration guidance from foundation models.
FME is a general framework where a foundation
model f , such as a language or vision-language
model, controls the agent’s behavior for a cer-
tain length of time H instead of following the
agent’s original exploration policy π.

In our implementation, we introduce a multi-
step exploration scheme where, with a proba-
bility ϵ, the foundation model takes over action
selection for the next H timesteps (see Algo-
rithm 1). We consider multi-step exploration
because it enables the agent to perform coher-
ent sequences of actions that can reach states
unlikely to be visited under random or short-
sighted exploration strategies. This is motivated
by the challenge of deep exploration, where the
agent needs to explore actions that have long-
term consequences (Osband et al., 2016; 2019;
Sasso et al., 2023). By leveraging the foundation model’s prior knowledge and reasoning abilities,
the agent can explore the environment in a more informed and directed manner. Furthermore, by
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Listing 2: The prompt template used for the VLM-based FME.
Explain and infer what the objective is - what action would you take from

the actions {action_space}?

adjusting ϵ and H , we can conveniently control the foundation model’s influence on both exploration
and computational overhead.

We focus on off-policy algorithms in this paper for simplicity, but FME can also be adapted for on-
policy algorithms. Furthermore, although FME can be demonstrated with LLMs, we showcase it with
VLMs in this paper. By using VLMs, we leverage prior knowledge and reasoning abilities to infer
the environment’s dynamics and objectives without requiring an explicit environment description,
minimizing prompt engineering to only providing the action space in natural language. As shown in
Listing 2, the prompt template used for the experiments consists of a single sentence and a single
variable (the action space), presented to the VLM along with the image observation. Note that we ask
the VLM to justify its inference and action selection, which enables us to analyze its reasoning.

4.2 MINIGRID

Environment description. To evaluate and study the efficacy of FME, we first analyze its perfor-
mance in Minigrid (Chevalier-Boisvert et al., 2023). In Minigrid environments, the objective typically
is for the agent to navigate towards a reward location within a sparse reward gird world. We consider
two instances that allow an in-depth analysis of the exploration behaviour of agent. The first instance
is MiniGrid-Empty-5×5, where the agent navigates to the reward location in an empty 5× 5 grid.
The agent has access to an image of the environment and has access to the action space A = [turn
left, turn right, move forward]. In the second instance, there is a door between the agent and the
reward location, as well as a key that can be used to unlock the door. In this case, A = [turn left, turn
right, move forward, pickup, drop, toggle].

Experiments. We study the performance of a DQN agent equipped without FME, equipped with
FME powered by the VLM GPT-4o-mini, and equipped with FME powered by the VLM GPT-4o.
We make use of ϵ = 0.01, H = 10, and N = 10. For each DQN variant, we run the Empty instance
for 5000 timesteps and the DoorKey instance for 10000 timesteps for five different seeds. The
results presented in Figure 5 show that FME substantially affects the exploration behaviour, allowing
significantly faster acquisition of positive rewards in both environments. Furthermore, we observe a
significant gap in performance between the different VLM model sizes.

Analysis. As seen in Figure 5, the Minigrid environments are intuitively easy to solve from a human
perspective. Similarly, the foundation models were often able to infer the objective without any
explicit text information and suggest effective actions. Note that although we use Gridworlds of the
smallest size, FME’s advantage gap will likely increase as the environment size increases. However,
we also observed that the models struggled with certain ambiguities. First, the actions turn left and
turn right rotate the agent in the respective orientation from the agent’s perspective, but the VLMs
occasionally interpreted these orientations from the image perspective (i.e. the inverse). Furthermore,
in some cases, it was unclear to the VLMs which direction the agent was currently facing, as it would
occasionally reason that the triangle’s hypotenuse may indicate it. Finally, in the DoorKey instances,
it was not always evident to the model that the yellow block represented a door.

4.3 ATARI

Environment description. The Atari 57 benchmark is an important test bed for reinforcement
learning algorithms that enables a thorough evaluation of algorithms through the various challenges
posed in the different games with complex visual observations (Bellemare et al., 2013). To study
the applicability of FME beyond relatively simple Gridworlds, we apply it to two well-known Atari
games: Freeway and Pong. Freeway is a sparse reward environment where the objective is to cross a
road whilst avoiding cars, with A = [NOOP, UP, DOWN]. In Pong, the agent is in a dense reward
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Figure 5: Performance of DQN equipped with and without FME on Minigrid-Empty-5x5, Minigrid-
Doorkey-5x5, Freeway, and Pong, along with visualizations of the corresponding environments.

environment where the goal is to deflect the ball away from the agent’s goal and into the opponent’s
goal, with action space A = [NOOP,FIRE,RIGHT,LEFT,RIGHTFIRE,LEFTFIRE].

Experiments. In this setting, we also use a DQN agent equipped without FME, equipped with
FME powered by the VLM GPT-4o-mini, and equipped with FME powered by the VLM GPT-4o. To
account for the increased episode durations and complexity in Atari games, we set H = 50. In Atari
games, temporal information can be crucial to understanding the motion of objects (e.g., moving cars
in Freeway or moving balls in Pong). Therefore, instead of providing a single frame, we provide
the previous frame in addition to the current frame (after frameskipping) and text prompt. For each
agent we study the accumulation of rewards found in the first 10000 environment interactions. The
results can be observed in Figure 5. In Freeway, both the default DQN agent and the one equipped
with a small VLM for FME fail to find a single reward within the time frame. In contrast, we observe
that the agent equipped with the large VLM immediately starts to accumulate rewards in this sparse
reward environment. In Pong, we observe that each agent is able to accumulate a positive progression
of rewards but that there is a significant advantage when using FME, particularly when using the
larger VLM model.

Analysis. As can be observed in Figure 5, the dynamics and objectives in these environments are
more challenging to understand than in the Minigrid environment. We found that in the Freeway
environment the GPT-4o model either recognized the game or confused it with the game ’Frogger’,
which has similar dynamics and objectives. This prior knowledge clearly helped with inferring the
game’s objective, resulting in an effective enhancement of exploration. Interestingly, the smaller
VLM GPT-4o-mini rarely recognized the game nor was it able to infer its objectives, and it was even
confused with other games, such as MsPacman, resulting in poor choices of actions. In Pong, we
found that both VLM models were able to infer the objective and dynamics of the game. We found
that there was confusion about which of the two paddles the agent controlled in some cases. However,
as the models suggested actions for the paddle to which the ball was nearest, this usually did not
pose a problem. Moreover, despite having access to the previous frame, we observed occasional
misinterpretations of the ball direction, which could be due to a misunderstanding of the order of the
provided frames.

5 CONCLUSION

In this paper, we explored the potential of foundation models, specifically LLMs and VLMs, to address
the exploration challenges inherent in reinforcement learning. Through an in-depth analysis of their
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behaviour in traditional bandit settings and Gridworld environments, we found that foundation models
exhibit promising capabilities for balancing exploration and exploitation. Notably, in certain multi-
armed bandit settings, GPT-4 demonstrated superior exploration efficiency compared to classical
methods like Thompson Sampling and UCB, highlighting the potential of LLMs in decision-making
tasks that require strategic exploration. However, our experiments in Gridworld settings revealed
limitations in the ability of foundation models to reach optimal policies in more complex and
stochastic environments. While LLMs could effectively navigate deterministic settings with known
objectives, they struggled in environments where the reward locations were randomized and not
directly observable. In contrast, the reinforcement learning agents were able to learn such complex
optimal policies but would gather the required data inefficiently. These findings underscored the
need for a hybrid approach that leverages the strengths of both foundation models and traditional
reinforcement learning agents.

Building upon these insights, we proposed FME, an exploration approach that integrates foundation
models into the reinforcement learning framework by letting a foundation model control the agent’s
behavior for certain periods of time. We showed that by using VLMs, FME provides intelligent
exploration guidance without requiring explicit environmental descriptions or extensive prompt
engineering, relying solely on the action space as a variable input. Our empirical evaluations in sparse
reward Minigrid environments demonstrated that an arbitrary reinforcement learning agent can use
FME in addition to a conventional exploration policy to facilitate significantly better sample efficiency.
Moreover, we showed that FME scales effectively to more complex domains, such as Atari games,
where it enabled agents to discover rewards more efficiently in both sparse and dense reward settings.
An important observation from our experiments is that the performance of FME improves with the
capacity of the underlying VLM. Larger models tend to possess more extensive prior knowledge
and reasoning capabilities, which seems to translate to more effective exploration behavior. This
suggests that as foundation model research progresses and more powerful models become available,
the benefits of integrating foundation models into reinforcement learning for exploration purposes
will likely increase.

Despite these promising results, our work also highlights several limitations and avenues for future
research. One challenge is ensuring that the foundation models correctly interpret environmental
cues, especially in visually complex or ambiguous settings. Misinterpretations can lead to suboptimal
action choices and hinder the overall performance of the agent. Incorporating further mechanisms to
provide temporal context or disambiguate visual inputs may help address these issues. Additionally,
exploring alternative methods for integrating foundation models, such as different triggering mecha-
nisms or more profound synergy between the model and the agent’s policy, could further enhance
exploration efficiency. Potentially interesting directions would be letting the foundation model
decide autonomously if it should take control based on its confidence level or using other uncertainty
measures commonly used in reinforcement learning to trigger FME. Larger scale experiments to
evaluate FME, which will certainly be interesting, will also become more feasible as the cost of using
foundation models decreases.

Lastly, although we did not explore providing explicit instructions or descriptions to the VLMs in
this paper, it is worth considering that incorporating manual prior knowledge could further enhance
the performance of foundation models in reinforcement learning tasks. Relying on such manual
input reduces the generality of the solution and makes the agent dependent on specific instructions
tailored to particular environments, which is why we refrained from doing so in this paper. However,
by supplying additional information (which is extremely challenging with traditional reinforcement
learning), researchers might enable foundation models to interpret environmental cues and objectives
better, potentially overcoming some limitations observed in more complex settings in our experiments.
Future research could investigate effectively integrating such information without compromising the
agent’s generalization capabilities.

In conclusion, our study demonstrates that foundation models have significant potential to augment
exploration in reinforcement learning. By combining the high-level reasoning and prior knowledge
of VLMs with the learning capabilities of reinforcement learning agents, FME offers a promising
direction for developing more sample-efficient and intelligent exploration strategies. As foundation
models continue to evolve, their integration into reinforcement learning frameworks could play a
crucial role in overcoming the exploration-exploitation trade-off, paving the way for more efficient
and effective learning in complex environments.

10
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A MULTI-ARMED BANDIT DETAILS

Algorithms. For the multi-armed bandit experiments, methods like Thompson Sampling and UCB
naturally consider previous trials’ outcomes by updating their belief distributions. As could be seen
in Listing 1, to account for this in the decision-making for the LLMs, we provide a memory in the
prompt. In this memory, we append all previous trials as ’Pulled arm {ACTION} resulting in a reward
of {REWARD}’. In the case of Thompson Sampling, we found that the best performing prior was
α = 1 and β = 1, and in the case of UCB, we used the UCB1 variant with a tuned constant c = 0.25.

Prompt phrasing. In preliminary experiments, we tried slight variations of the prompt presented
in Listing 1. For instance, we found that the LLMs significantly benefit from including "maximize
the total reward by finding out which arm has the highest probability" instead of merely "maximize
the total reward". We also found that providing the maximum number of trials or encouraging "an
efficient exploration approach" did not have an effect on the performance.

B GRIDWORLD DECISION-MAKING DETAILS

Reinforcement learning agents. For the reinforcement learning agents in these experiments, we
used the default Stable-Baselines3 implementations of DQN and RecurrentPPO (Raffin et al., 2021).
In the case of DQN, we modified the discount factor to 0.9, and in RecurrentPPO, we modified the
learning rate to be 3e-5.

Prompt templates. For the foundation models, the prompt templates used for the deterministic and
stochastic LLM agents are almost identical. While the deterministic agent receives the exact position
where the reward is located, the stochastic agent is only told the following: Your goal is to reach the
reward located at a random coordinate as quickly as possible. See Listing 3 for the full prompt used
by the deterministic LLM agent. The agent’s memory is filled as it interacts with the environment.
Whenever an action is executed, we add the following line to the memory: "Executed {ACTION} at
{LOCATION} resulting in {NEW LOCATION} and no reward." Additionally, as seen in Listing 5,
whenever an agent chooses an action, it outputs a plan representing its thoughts. We add each plan to
the memory as well.

Listing 3: The prompt template for the deterministic LLM agent.

**Context**
You are an agent in a {n}x{n} grid.
The bottom left corner is at {BOTTOM LEFT}, top left at [0, n-1], top

right at [{n-1, n-1}], and bottom right at [{n-1}, 0].
The x-axis increases as you move rightward, and the y axis increases as

you move upwards.
Your goal is to reach the reward located at a coordinate [{n-1},{n-1}] (

the top-right corner).

**Memory**
[...]

**Observation**
Your current location is {OBSERVATION}

**Available Actions**
up
right
down
left

**Task**
Choose an action from the given list of actions. Output your response

using the following JSOn format and do not use markdown.
{OUTPUT FORMAT}
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The three prompting approaches are implemented using different JSON output formats. Note that
since the action-only agent outputs no plan, its memory will only contain the results of the executed
actions. Note that in the stochastic setting, we do not mention that the reward is located in the
top-right corner.

Listing 4: The output format used by the Action Only agent.
{

"action": "{The action you want to take}"
}

Listing 5: The output format used by the Simple Plan agent.
{

"plan": "{Think about what you want to do next to fulfill your goal
.}",
"action": "{The action you want to take}"

}

Listing 6: The output format used by the Focused Plan agent.
{

"plan": "{Use your memory to determine which position you want to go
next.}",
"analysis": "{Using your plan analyze which action is best to
efficiently reach the position.}",
"action": "{The action you want to take}"

}

Results. The full list of numerical results for the FA performances from the experiments in Section
3.2 can be found in Table 1, and Figure 6 and Figure 7 for the deterministic and stochastic setting,
respectively. In Figure 8 example trajectories of each of the foundation models can be found in both
the deterministic and stochastic settings.
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Table 1: LLM Agent performances for an empty 5× 5 grid with a fixed reward location and random
reward location, averaged over 100 episodes.

Model Fixed Reward Random Reward
Gemini 1.0 (AO) 100% 68%
Gemini 1.0 (SP) 100% 27%
Gemini 1.0 (FP) 100% 50%
GPT-3.5 (AO) 100% 43%
GPT-3.5 (SP) 95% 49%
GPT-3.5 (FP) 99% 44%
GPT-4 (AO) 100% 70%
GPT-4 (SP) 99% 84%
GPT-4 (FP) 100% 78%
Gemini 1.5 (AO) 100% 68%
Gemini 1.5 (SP) 100% 86%
Gemini 1.5 (FP) 100% 86%
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Figure 6: Performances for the FA with prompt strategies Action Only (AO), Simple Plan (SP), and
Focused Plan (FP) for the deterministic setting with a fixed and known reward location.
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Figure 7: Performances for the FA with prompt strategies Action Only (AO), Simple Plan (SP), and
Focused Plan (FP) for the stochastic setting where the reward location is randomized and unknown.
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Figure 8: Example trajectories of various foundation model decision-making agents in the determin-
istic setting (top row) and the stochastic setting (bottom row).

C FME DETAILS

Implementation. For our FME implementation and experiments, we used the default DQN imple-
mentation from Stable-Baselines3 (Raffin et al., 2021). For the Minigrid environments, we used a
discount factor of 0.9, and for Atari, a discount factor of 0.99. Both the agent and VLM receive RGB
observations from the environments. In the case of VLMs, we feed 512×512×3 image observations
in JPEG format with high fidelity/detail.

Compute. We use OpenAI’s APIs for GPT-3.5, GPT-4, GPT-4o-mini and GPT-4o, and Google
Studio’s APIs for Gemini 1.0 and Gemini 1.5. For training the PPO and DQN agents, we used a
single NVIDIA A100 GPU in all environments. For the GPT models, we used ’GPT-3.5-turbo-0613’,
’GPT-4-0613’, ’GPT-4o-2024-08-06’, and ’GPT-4o-mini-2024-07-18’ cutoffs, which cost US$ 0,50 /
1M input tokens US$ 1,50 / 1M output tokens, US$ 30,00 / 1M input tokens US$ 60,00 / 1M output
tokens, US$ 2,50 / 1M input tokens US$ 10,00 / 1M output tokens, and US$ 0,15 / 1M input tokens
US$ 0,60 / 1M output tokens, respectively, as of writing. The Gemini models can be used freely as
of writing, although the Gemini models have a relatively low limit for queries per minute. For the
Gemini models we used ’gemini-1.0-pro-001’ and ’gemini-1.5-pro’.

D SOCIETAL IMPACT

The methodologies proposed in this paper are primarily benign in isolation but, crucially, when
future LLMs and other foundation models are leveraged as (assisting) action selectors in sequential
decision-making problems for real-world applications, specific cautionary measures are necessary.
For instance, the use of these models in dynamic, real-time decision-making environments such as
autonomous driving would introduce significant ethical and societal challenges. To address these
risks, rigorous validation processes to ensure that models behave as intended in varied and unforeseen
circumstances should be used, similar to the extensive experimentation performed in this paper where
we pinpoint and investigate the errors made by these models.
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