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Abstract

In real-world scenarios, achieving domain generalization (DG) presents significant
challenges as models are required to generalize to unknown target distributions.
Generalizing to unseen multi-modal distributions poses even greater difficulties
due to the distinct properties exhibited by different modalities. To overcome
the challenges of achieving domain generalization in multi-modal scenarios, we
propose SimMMDG, a simple yet effective multi-modal DG framework. We ar-
gue that mapping features from different modalities into the same embedding
space impedes model generalization. To address this, we propose splitting the
features within each modality into modality-specific and modality-shared com-
ponents. We employ supervised contrastive learning on the modality-shared fea-
tures to ensure they possess joint properties and impose distance constraints on
modality-specific features to promote diversity. In addition, we introduce a cross-
modal translation module to regularize the learned features, which can also be
used for missing-modality generalization. We demonstrate that our framework
is theoretically well-supported and achieves strong performance in multi-modal
DG on the EPIC-Kitchens dataset and the novel Human-Animal-Cartoon (HAC)
dataset introduced in this paper. Our source code and HAC dataset are available at
https://github.com/donghao51/SimMMDG.

1 Introduction

Domain generalization (DG) has received significant attention in the research community [66]. In
real-world scenarios such as autonomous driving [13, 26], robotics [17], action recognition [16],
and fault diagnosis [22], it is crucial that models trained on limited source domains perform well
across novel target domains. To tackle distribution shift problems, numerous DG algorithms have
been proposed, including domain-invariant feature learning [51], feature disentanglement [56],
data augmentation [72], and meta-learning [41]. However, most of these algorithms are designed
for unimodal data, such as images [40] and time series data [49]. More recently, the emergence
of large-scale multi-modal datasets [16, 7] has highlighted the need to address multi-modal DG
across multiple modalities, such as audio-video [36, 73], image-language [58, 33], and LiDAR-
camera [44, 18]. However, to date, only RNA-Net [57] has focused on the multi-modal DG problem,
with a relative norm alignment loss proposed to balance the feature norms of audio and video.

Multi-modal DG is closely related to multi-modal representation learning [47]. Traditional multi-
modal contrastive learning frameworks [58, 43] aim to project the features of different modalities
into a common embedding space. However, this approach may not be optimal as different modalities
consist of both shared information that is consistent across modalities and unique information that is
specific to each modality. Consequently, attempting to align all modalities together can be challenging
and impractical. For instance, consider descriptions of the same object that use entirely different
modalities, such as video, audio, and optical flow, as illustrated in Fig. 1 (a). All modalities share some
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(a) Modality-specific and modality-shared information (b) HAC dataset

Figure 1: (a). Different modalities possess shared information, while simultaneously containing
unique information exclusive to each modality. Inspired by this, we propose to split the feature
of each modality into modality-specific and modality-shared parts in our framework. (b) Our new
multi-modal DG dataset consists of three domains and three modalities. For each domain, the actor
of different actions (opening door in this case) could be either a human, animal, or cartoon figure.

information since they describe the same object, but each modality further provides modality-specific
information. For example, videos typically convey visual appearance information and sequential
relations between frames, while audio provides tone information that is closely linked to sentiment
and frequency information for different sounds. Optical flow, on the other hand, offers more intuitive
information on motions and associated velocities. Therefore, simply mapping features from different
modalities into the same embedding space would preserve only modality-shared information while
overlooking modality-specific details. This could result in the loss of modality-specific information
and a decline in downstream task performance.

Effective multi-modal DG frameworks that can address the challenges outlined above are urgently
needed. To this end, we propose SimMMDG - a Simple yet effective Multi-Modal DG framework
that can be applied to two or more modalities. We first propose to split the feature embedding of each
modality into modality-specific and modality-shared parts, ensuring that complementary information
from different modalities is retained. We apply supervised contrastive learning on modality-shared
features and incorporate distance constraints for modality-specific features to ensure that the learned
representations are informative. Moreover, we introduce a cross-modal translation module to further
regularize the learned features and facilitate missing-modality generalization. Some theoretical
insights from both the multi-modal representation learning perspective and the domain generalization
perspective are provided to demonstrate that our approach is well-motivated in theory. Finally, we
release a novel Human-Animal-Cartoon (HAC) dataset, to promote research in multi-modal domain
generalization, as shown in Fig. 1 (b). Our contributions can be summarized as:

* We propose a universal framework for multi-modal domain generalization that demonstrates both
simplicity and effectiveness and outperforms existing methods on several challenging datasets. We
also demonstrate its efficacy in general multi-modal classification setups.

* We address the missing-modality generalization problem and propose a cross-modal translation
module as a solution, which is robust even in scenarios where multiple modalities are missing.

» We provide theoretical insights in support of the efficacy of our proposed approach.

* We introduce a new multi-modal dataset that includes three modalities and large domain shifts,
which can serve as a challenging benchmark for future research on multi-modal DG.

2 Related Work

Domain Generalization refers to the process of training a model on multiple source domains in
order to generalize to unseen target domains. This task is more challenging than domain adaptation
(DA) [67] as target domain data cannot be accessed during training. Prior research has identified three
main categories of domain generalization methods [66], including data manipulation, representation
learning, and learning strategies. Data manipulation techniques aim to improve generalization
performance by increasing the diversity of training data. For example, Tobin et al. [61] use simulated
environments for additional data generation, while Zhou et al. [75] train a domain transformation
network using adversarial training to synthesize data from previously unseen domains. Mixup [72]
generates new instances by performing linear interpolations between data and labels. Representation



learning methods seek to learn domain-invariant representations through the use of domain-adversarial
neural networks [25, 42], explicit feature distribution alignment [63], and instance normalization [54].
Other approaches utilize learning strategies to improve the generalization performance. Examples of
such approaches include meta-learning [41], gradient operation [31], and self-supervised learning [8].

Multi-modal Representation Learning aims to learn robust representations through two or more
modalities, which can then be applied to various downstream tasks. While unified models [68, 4]
tokenize various input modalities into sequences [3] and employ a single Transformer [65] for joint
learning, methods such as CLIP [58] and ALIGN [33] use separate encoders for each modality and
leverage contrastive loss to align features. However, these methods align features from different
modalities into the same embedding space and may only preserve modality-shared information. In
contrast, we propose splitting the features of each modality into modality-specific and modality-
shared components to ensure that complementary information from different modalities is preserved.
A recent work [34] also proposes to split the features into different components in multi-modal
representation learning and provide an information-theoretical analysis. However, they only deal
with two modalities and without considering missing-modality cases. They also don’t use the label
information within a batch in contrastive learning.

Multi-modal DA and DG. Several approaches exist for multi-modal DA. For instance, Munro and
Damen [52] propose a self-supervised alignment approach along with adversarial alignment for
multi-modal DA, while Kim et al. [38] leverage cross-modal contrastive learning to align cross-modal
and cross-domain representations. Zhang et al. [73] propose an audio-adaptive encoder and an
audio-infused recognizer to address domain shifts. Notably, RNA-Net [57] is the only method known
to address multi-modal DG problem, by introducing a relative norm alignment loss to balance audio
and video feature norms.

3 Methodology

3.1 Problem Setting: Multi-modal Domain Generalization

We commence by presenting the definition of the multi-modal domain generalization problem based
on the definition of unimodal DG, as described in [66]. Let X represent a nonempty input space, and
Y denote an output space. A domain, denoted as D, consists of data sampled from a distribution,
D = {(x;,y;)}?—1 ~ Pxy, where Pxy denotes the joint distribution of input samples and output
labels. X and YZ represent the corresponding random variables.

Definition 1 (Multi-modal domain generalization). In multi-modal domain generalization, we are
given D training domains Dyiyqin, = {D" |i=1,---,D}, where D" = {(X§'> y;) ?;1 denotes the
i-th domain with n; data instances. Each data instance x; = {(x})r | k =1,--- , M} € Xis
comprised of M different modalities and y; € Y C R denotes the label. The joint distributions

betwe.en each pqir of dqmains are different: Pl # Pg(y, 1<q ;é _7 <D. The goal of multi-modal
domain generalization is to learn a robust and generalizable predictive function f : X — Y from D
training domains and M data modalities to achieve a minimum prediction error on an unseen test
domain Diyegs (i.e., Dyiest cannot be accessed during training and P}f{}t # Py forie {l,--- ,D}):

min E ey e... [((F(x).9)], ()

where E is the expectation and ((-, ) is the loss function.

3.2 SimMMDG

We present the SimMMDG framework for addressing the multi-modal DG problem, as depicted
in Fig. 2. Our approach involves splitting the feature embedding of each modality into modality-
specific and modality-shared components. We aim to map modality-shared embeddings of data
samples with the same label, whether they belong to the same or different modalities, to be as close as
possible (and vice versa for samples with different labels). For modality-specific features within each
modality, our objective is to maximize the distance from their modality-shared features to capture
unique and complementary information. Additionally, we incorporate a cross-modal translation
module to regularize learned features and address the missing-modality generalization problem,
which is essential for real-world testing scenarios where one or more modalities may be absent due to
unpredictable factors.
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Figure 2: Overview of SimMMDG. We split the features of each modality into modality-specific and
modality-shared parts. For the modality-shared part, we use supervised contrastive learning to map
the features with the same label to be as close as possible. For modality-specific features, we use a
distance loss to encourage them to be far from modality-shared features, promoting diversity within
each modality. Additionally, we introduce a cross-modal translation module that regularizes features
and enhances generalization across missing modalities.

3.2.1 Within-modal Feature Splitting

Traditional multi-modal learning frameworks [58, 43] aim to map features from various modalities
into a common embedding space using contrastive learning. However, this approach may not be
optimal because different modalities often contain a mix of both homogeneous and heterogeneous
information, making it challenging and impractical to align them all together. For instance, consider
the language and visual modality [2]. Both modalities can describe people, objects, actions, and
gestures, which reflect shared information between them. However, images can provide additional
information such as texture, depth, and visual appearance that are not available in language data.
Similarly, language can provide syntactic structure, vocabulary, and morphology, which are not
present in image data. These are specific pieces of information that are unique to each modality.

Thus, the simple mapping of features from different modalities into the same embedding space may
result in the loss of modality-specific information and consequently lead to decreased performance
in downstream tasks. Guided by this intuition, we propose a novel approach that involves the
separation of the feature embedding of each modality into modality-specific and modality-shared
components. For example, given a unimodal embedding E, we denote it as E = [Eg; E.], where E;
is modality-specific feature and E. is modality-shared feature.

Multi-modal Supervised Contrastive Learning. We expect modality-shared features E. to possess
characteristics that are shared among distinct modalities. If data instances from different modalities
have the same label, we expect their modality-shared features to be as close as possible in the
embedding space. To achieve this objective, we leverage the availability of labels for each data
instance and employ supervised contrastive loss [37] for effective guidance. For a set of N randomly
sampled label pairs, {scj, Y } j=1,...,N, the corresponding batch used for training consists of M x N
pairs, {&r, Uk }e=1,.. Mx N, Where arx;, Errxj—1s - » Taxj—m+1 are data instances from M
different modalitiesin z; (j = 1,..., N) and §prx; = ... = YMxj—M+1 = Yj-

Leti € I = {1,..., M x N} be the index of an arbitrary unimodal sample within a batch. We define
A(t) =T\ {i}, P(i) = {p € A(%) : Up = Us} as the set of indices of all positive samples in the batch
which share the same label as i. The cardinality of P(i) is denoted as | P(¢)|. Then, the multi-modal
supervised contrastive learning loss can be written as follows:

vt oxp(1-2,/7)
Leon = ; ‘P(l)| Z log Z exXp (Zi . Za/T) 7 (2)

PEPG)  (EA(i

with z, = Proj(g(Z)) € RP?, where g(-) is the feature extractor, that maps x to modality-specific
and modality-shared features, E = [E; E.] = g(z), where E,, E. € RPZ , and Proj(-) is the



projection network that maps E.. to a vector z = Proj(E.) € RP?. The inner product between two
projected feature vectors is denoted by -, and 7 € R is a scalar temperature parameter.

Feature Splitting with Distance. To ensure that the modality-specific features E; carry unique
and complementary information, we aim to maximize their dissimilarity from the corresponding
modality-shared features E.. To achieve this goal, we utilize negative {5 distance and formulate a
distance loss on E; and E., as:

1 M
_ i i()2
ACdis = ﬁ FZI ||E5 - ECH27 (3)

where M is the number of modalities, EZ and E:, are the modality-specific and modality-shared
features of the i-th modality.

3.2.2 Cross-modal Translation

Simply increasing the distance between E and E. may not yield optimal results. The proposed cross-
modal translation module aims to ensure the meaningfulness of modality-specific features by exploit-
ing the implicit relationships and approximate translation mappings that exist between the M modal-
ities within the same data instance. This is achieved through a multi-layer perceptron (MLP) [28]
that translates the feature embedding E across modalities. For instance, E] = M LPg:i_,g; (E?)
implies that we translate the embedding E! = [E’; E!] of the i-th modality to the j-th modality
using M L Pgi_ g, resulting in the translated embedding EJ. More intuitions behind the cross-modal
translation module are discussed in the appendix. To ensure that the translated embedding E] is
a meaningful representation of the j-th modality, we aim to minimize its {5 distance from the real
embedding of the j-th modality, E/ and the cross-modal translation loss is defined as:

M
1 ) )
rans — S ML Pgi (EY) — E 2, 4
Et ¢ M(M—l) ;:1 j%éiH E%EJ( ) HZ ( )

3.3 Final Loss

The final loss is obtained as the weighted sum of the previously defined losses:
L= Lys + aconLcon + disLais + CtransLirans, )

where L, is the cross-entropy loss for classification, and where cvon, Quis, and Qs are hyperparam-
eters that control the relative importance of the contrastive learning, dissimilarity, and cross-modal
translation terms, respectively.

3.4 Missing-modality Generalization

During the training phase, we have access to data from all modalities. However, in the testing phase,
one or more modalities may be absent due to unpredictable reasons, such as sensor malfunction or
loss of communication. In such cases, the system’s robustness toward potential missing modalities
becomes critical. To address the missing-modality scenario, we utilize our cross-modal translation
module. In normal circumstances, the output of the network is defined as:

y = f(z) = h(g(z)) = h([E, .. E', ., E]), ©)

where g(-) is the feature extractor and A(-) is the classifier. If the i-th modality is missing during
testing, one solution is to replace its embedding with zero. The output is then given as:

y = h([E,...,0,...,EM]). @)

However, simply replacing the embeddings with null entries may have an adverse effect on the
network’s performance. To address this issue, we propose using our cross-modal translation module
to predict and substitute the missing modality’s embedding with information from available modalities,
resulting in a more robust output for the network. The output of the network is then given as:

y=h(E', . E, . E"]), ®)



where
M

> MLPgi g (E). ©)
J#i
In cases where multiple modalities are missing during testing, we can use the same strategy to utilize

available modalities to predict and substitute the missing ones, similar to Eq. (9). The benefits of our
approach are demonstrated in the subsequent experiments.

1

E! =
T M -1

4 Theoretical Insights

4.1 Multi-modal Representation Learning Perspective

We first generalize Theorem 3.1 in [34] to the case of M modalities. Let p be the joint distribution
of (z1,...,xn,Yy), where x; is the i-th modality and y is the target. We define the information gap
as A, = max{I(z;;y);i =1,..., M} —min{I(z;;y);¢ = 1, ..., M}, where I(x;;y) is the mutual
information between modality x; and the target variable y. The information gap serves to characterize
the effectiveness of the modalities in predicting the target y. We use the cross-entropy loss, denoted
by {cg, and the prediction function, denoted by f.

Theorem 1. For M feature extractors g'() (i = 1,.... M), if the multi-modal features E' =
g'(z;) are perfectly aligned in the feature space, i.e., E! = ... = E' = ... = EM, then
inf p Bp [ler(f (B, ... BY), y)] — infpr By [ler(f' (21, .. 20m),9)] = Ay

The proof of this theorem can be found in the appendix. Theorem 1 indicates that the optimal
prediction error, achieved with perfectly aligned features, is at least A, larger than when using the
raw input modalities. In practical scenarios where one modality is less informative for prediction,
the information gap A, tends to be substantial. Consequently, this leads to a notable increase in
prediction errors in downstream tasks. Furthermore, achieving perfect modality alignment enforces
the aligned features to exclusively contain predictive information present in all input modalities,
potentially causing the loss of modality-specific information. By splitting the feature embedding for
each modality, our model has access to both modality-shared features with predictive information
present in both modalities, and modality-specific features that contain predictive information unique
to each individual modality. This enables our model to effectively capture the distinct information
provided by each modality, while simultaneously leveraging the shared information across modalities.
Consequently, our approach has the potential to enhance generalization capabilities and achieve better
performance on downstream tasks.

4.2 Domain Generalization Perspective

Theorem 2. Let X be a space and H be a class of hypotheses corresponding to this space. Let QQ
and the collection {P;}X | be distributions over X and let {p;} X | be a collection of non-negative
coefficient with y . ¢; = 1. Let O be a set of distributions s.t. VS € O, the following holds

> pidyan(Pi,S) < max dyan (i, Pj). (10)
Then, for any h € H,
1 . 1
eq(h) < Ao+ pier,(h) + 5 nin dnan(S,Q) + 5 max dyan(Pi, Pj), (1D
- :

where A is the error of an ideal joint hypothesis, ep(h) is the error for a hypothesis h on a distribution
P, and dyan (P, Q) is H-divergence which measures differences in distribution [6].

The proof of this theorem is provided in [60]. Here, Q corresponds to the unseen out-of-distribution
target domain and {PP;} £ | correspond to source domains. A is small in reality and often neglected.
The term ), @;ep, (h) is minimized by cross-entropy loss with class labels as supervision. The
term 1 max; ; dyay(P;,P;) measures the maximum differences among source domains. This
corresponds to multi-modal supervised contrastive learning in our approach, where we map the
modality-shared features of different modalities from all source domains to be as close as possible



if they have the same label. The term %mingeo dyan (S, Q) demonstrates the importance of
diverse source distributions [1], so that the unseen target Q might be “near” to O. Therefore, to
enlarge the range of O, we split the feature embedding of each modality into modality-specific and
modality-shared parts by maximizing the ¢ distance to preserve diversity.

S Experiments

5.1 Experimental Setting

Dataset. We use the EPIC-Kitchens dataset [16] and introduce a novel HAC dataset in this paper,
which will be made publicly accessible for further research. We follow the experimental protocol
used for the EPIC-Kitchens dataset in [52]. The EPIC-Kitchens dataset includes eight actions (‘put’,
‘take’, ‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’, and ‘pour’) recorded in three different kitchens, forming
three separate domains D1, D2, and D3. Our HAC dataset consists of seven actions (‘sleeping’,
‘watching tv’, ‘eating’, ‘drinking’, ‘swimming’, ‘running’, and ‘opening door’) performed by humans,
animals, and cartoon figures, forming three different domains H, A, and C. We collect 3381 video
clips from the internet with around 1000 samples for each domain. We provide three modalities in
our dataset: video, audio, and pre-computed optical flow. Some examples of the HAC dataset are
shown in Fig. 1 (b) and more details are provided in the supplementary material.

Implementation Details. In our framework, we perform experiments on three modalities: video,
audio, and optical flow. We adopt the MMAction?2 [15] toolkit for experiments. To encode the visual
information, we use SlowFast network [21] initialized with Kinetics-400 [35] pre-trained weights. For
the audio encoder, we use ResNet-18 [29] and initialize the weights from the VGGSound pre-trained
checkpoint [12]. Similarly, we use the SlowFast network with slow-only pathway and also Kinetics
400 [35] pre-trained weights for the optical flow encoder. The dimensions of the unimodal embedding
E for video, audio, and optical flow are 2304, 512, and 2048 correspondingly. For the projection
network Proj(-) in supervised contrastive learning, we instantiate it as a multi-layer perceptron with
two hidden layers of size 2048 and output vector of size Dp = 128. We use a multi-layer perceptron
with two hidden layers of size 2048 to instantiate the cross-modal translation M L Pgi_,g;. After
obtaining the feature embedding from the encoder, we split the embedding into modality-shared
features (the first half of the embedding) and modality-specific features (the remaining half). We use
the Adam optimizer [39] with a learning rate of 0.0001 and a batch size of 16. The scalar temperature
parameter 7 is set to 0.1. Additionally, we set acon, = 3.0, aigis = 0.7, and aipens = 0.1. We also
analyze the sensitivity of different « in the appendix. Finally, we train the network for 15 epochs on
an RTX 2080 Ti GPU which takes about 20 hours and select the model with the best performance on
the validation dataset. We report the Top-1 accuracy for all experiments.

5.2 Results

Multi-modal Multi-source DG. Tab. 1 and Tab. 2 illustrate the results of SimMMDG under the
multi-modal multi-source DG setting,

where we train on multiple source do-  “yiemea D2,D3 »DI DI,D3 »D2 DI,D2—>D3 Mean
mains and test on one target domain.  “p3p packbone

We first conduct experiments using  DeepAll 43.19 39.35 51.47 44.67
. . . IBN-Net [53] 44.46 4921 48.97 4755
video and audio modalities for exper-  Gy.gient Blending [69] 41.97 48.40 51.43 47.27
iments, as in [57]. We re-implement ~ TBN [36] 42.35 47.45 49.20 46.33
. AVSA [50] 4278 4738 51.79 47.32
our framework employing the same " o, 1 40.87 43.57 54.88 46.44
I3D [10] and BN-Inception [32] back-  SENet [30] 42.82 42.81 51.07 45.56
: : : _ Non-Local [70] 4572 43.08 49.49 46.10
bone for video and audio as in RNA-  Jirf o 39.79 5273 51.87 48.13
Net [57] to ensure fair comparisons.  RNA-Net [57] 45.65 51.64 55.88 51.06
ol SimMMDG (ours) 54.25 58.67 57.28 56.73

The DeepAll approach implies that — g=er 20 G
we feed all the data from source do-  Deepall 47.13 55.73 57.17 5334
; : _ MM-SADA [52] 4920 60.40 59.14 56.25
mains to the petvyork Wltho.ut any do RNA-Net [57] 52.18 59.47 60.88 57.51
main generalization strategies. Tab. 1 simMMDG (ours) 57.93 65.47 66.32 63.24

shows that our SimMMDG signifi-
cantly outperforms all the baselines. Table 1: Multi-modal multi-source DG on EPIC-Kitchens
When we replace the backbone with ~dataset using video and audio.

SlowFast [21] and ResNet-18 [29],



Modality EPIC-Kitchens dataset HAC dataset

Method Video Audio Flow D2,D3—Dl DI,D3—D2 DI,D2—D3 Mean A,C—H HC—A HA—-C Mean
DeepAll s v 47.13 55.73 57.17 53.34 66.55 72.85 45.77 61.72
MM-SADA [52] v v 49.20 60.40 59.14 56.25 65.47 72.52 44.30 60.76
RNA-Net [57] v v 52.18 59.47 60.88 5751 60.20 73.95 48.90 61.02
SimMMDG (ours) v 's 57.93 65.47 66.32 63.24 74.77 77.81 53.68 68.75
DeepAll 's v 55.17 62.93 60.37 59.49 76.78 70.64 49.63 65.68
MM-SADA [52] v v 47.13 57.60 59.34 54.69 69.79 69.76 49.45 63.00
RNA-Net [57] v v 54.71 61.87 58.21 58.26 77.14 74.94 42.00 64.69
SimMMDG (ours) v v 59.31 63.33 62.73 61.79 79.31 77.04 51.29 69.21
DeepAll v v 45.28 56.40 57.08 52.92 50.04 59.71 38.97 49.57
MM-SADA [52] v v 47.36 53.47 60.27 53.70 46.58 61.81 39.15 49.18
RNA-Net [57] v v 45.74 57.73 56.47 53.31 52.05 64.13 40.35 52.18
SimMMDG (ours) v v 56.09 67.33 61.50 61.64 59.63 64.24 44.85 56.24
DeepAll v v v 55.63 59.20 58.01 57.61 69.07 71.30 51.47 63.95
MM-SADA [52] v 's v 51.72 58.40 59.34 56.49 72.53 72.19 55.51 66.74
RNA-Net [57] v v v 5241 57.20 60.16 56.59 69.00 73.40 51.65 64.68
SimMMDG (ours) v v v 63.68 70.13 67.76 67.19 77.65 79.03 56.62 71.10

Table 2: Multi-modal multi-source DG with different modalities on EPIC-Kitchens and HAC
datasets.

EPIC-Kitchens dataset HAC dataset
Source: D1 D2 D3 H A C
Method Target: D2 D3 D1 D3 D1 D2 Mean A C H C H A Mean
DeepAll 5227 5175 44.60 54.11 48.05 56.67 5124 66.11 43.01 6345 37.68 46.86 5894 52.68
MM-SADA [52] 50.67 50.10 51.49 56.57 4299 54.00 50.97 6589 37.22 5775 4090 49.82 6291 5242
RNA-Net [57] 45.60 4630 43.68 5739 49.66 55.87 49.75 65.67 4292 61.72 38.69 47.66 61.59 53.04

SimMMDG (ours) 54.00 52.26 51.49 60.88 49.88 60.53 54.84 66.67 4421 68.42 46.05 5443 7273 58.75

Table 3: Multi-modal single-source DG on EPIC-Kitchens and HAC datasets using video and audio.

the results further improve by a large margin (with an average improvement of up to 5.73%) compared
to the baselines. In the following experiments, we adopt SlowFast and ResNet-18 as our default back-
bones. To verify the generalization of our framework to different modalities, we conduct experiments
by combining any two modalities, as well as all three modalities, and present the results in Tab. 2.
Our SimMMDG outperforms all the baselines by a significant margin in all cases, with improvements
of up to 9.58%. Notably, when we combine all three modalities, the performance further improves
and surpasses that of any two modalities. In contrast, the baseline methods cannot achieve better
results with more modalities, indicating that they fail to fully leverage the complementary information
between modalities. Finally, we validate the performance of our framework on the HAC dataset, and
the results are consistent with those obtained on the EPIC-Kitchens dataset, as demonstrated in Tab. 2.
Our SimMMDG outperforms all the baselines by a significant margin in all cases, with improvements
of up to 7.73%.

Multi-modal Single-source DG. The domain labels are not required in our SimMMDG framework.
This feature makes our method readily applicable to single-source DG without modifications. In
this setup, we train the model on a single source domain and test it on multiple target domains.
Tab. 3 presents the results of SimMMDG under the multi-modal single-source DG setting using
video and audio modalities. Despite being trained only on data from a single domain, our model
demonstrates robust generalization to unseen domains, with an average improvement of up to 5.71%.
In comparison, other baseline methods perform even worse than the DeepAll baseline, highlighting
their limitations in the single-source DG setting. We present additional results obtained by exploring
different combinations of modalities in the appendix.

Missing-modality DG. In real-world deployment scenarios, we cannot always guarantee that all
modalities will be available. Hence, the network should be capable of handling missing-modality
cases. One simple approach is to set the embedding of the missing modality to zero. We compare
this with our proposed cross-modal translation replacement in Sec. 3.4. We retrain the cross-modal
translation M L Pgi_,g; for 10 epochs using L¢rqns in Eq. (4) and keep other parameters fixed. Tab. 4
reports on the comparison results on the EPIC-Kitchens dataset, where our solution yields significant
benefits (up to 10.47% performance improvement) compared to zero-filling. By replacing the missing
modality features with the translation ones, our approach also outperforms the unimodal model
in most cases. In contrast, zero-filling hurts the network performance in some cases and is even
worse than the unimodal model. The last six rows in Tab. 4 demonstrate that our approach is robust



Method Video Audio Flow D2,D3—DIl DI1,D3—D2 DI,D2—D3 Mean

DeepAll (Video-only) v 51.03 59.87 56.57 55.82
SimMMDG (zero-filling) v X 55.40 64.00 58.32 59.24
SimMMDG (translation) v X 57.24 65.07 59.65 60.65

" SimMMDG (zero-filling) ~ ~ v~~~ X 75310 6093 ¢ 61.09 5837
SimMMDG (translation) v X 55.17 61.33 61.70 59.40
DeepAll (Audio-only) v 32.87 42.27 45.17 40.10
SimMMDG (zero-filling) X v 29.20 37.33 45.69 37.41
SimMMDG (translation) X v 37.70 46.40 52.05 45.38

" SimMMDG (zero-filling) ~ ~ VA S 2851 3427 4 4281 3520
SimMMDG (translation) v X 39.77 46.00 51.23 45.67
DeepAll (Flow-only) v 54.25 61.33 55.95 57.18
SimMMDG (zero-filling) X v 56.32 60.67 56.57 57.85
SimMMDG (translation) X v 56.32 62.13 56.98 58.48

" SimMMDG (zero-filling) ~~ X v 241 6213 % 5133 5529
SimMMDG (translation) X v 55.40 63.73 56.57 58.57
SimMMDG (zero-filling) X v v 53.10 62.40 64.48 59.99
SimMMDG (translation) X v v 55.86 68.27 64.58 62.90

" SimMMDG (zero-filling) ~ ~ v© X v ¢ 62.76 6680 3 5749 6235
SimMMDG (translation) v X v 63.22 67.20 59.24 63.22

" SimMMDG (zero-filling) v~ VX ¢ 60.92 68.66 ¢ 60.99 ~ 63352
SimMMDG (translation) v v X 62.53 68.13 61.60 64.09
SimMMDG (zero-filling) v X X 59.08 62.27 52.98 58.11
SimMMDG (translation) v X X 59.31 64.00 56.57 59.96

" SimMMDG (zero-filling) ~ ~ X~ v~ X 3379 3747 4 4456 3861
SimMMDG (translation) X v X 38.39 44.53 47.74 43.55

" SimMMDG (zero-filling) ~ ~ X~ X~ v 5517 7 5707 4 48.46 5357
SimMMDG (translation) X X v 56.32 64.27 56.57 59.05

Table 4: Multi-modal multi-source DG with missing modalities on EPIC-Kitchens dataset. X means
the modality is available during training, but is missing in test time.

even when two modalities out of three are missing. We present more results on HAC dataset in the
appendix.

5.3 Ablation Studies

Ablation on each proposed module. We conducted extensive ablation studies to investigate the
role of each module of SimMMDG on EPIC-Kitchens dataset, as shown in Tab. 5. Incorporating the
supervised contrastive learning loss alone resulted in noticeable improvements. However, the mean
accuracy decreased when we integrated feature splitting without imposing any constraints. The results
were further enhanced when we added the distance loss to promote diversity, and even more so when
we incorporated the cross-modal translation module. Although using only supervised contrastive
learning and cross-modal translation yielded satisfactory results, their performance is on average
4.15% lower than the complete approach with feature splitting and distance loss. These findings
highlight the significance of segregating the feature embedding of each modality into modality-
specific and modality-shared components. Although SimMMDG without supervised contrastive
learning is already better than most baselines, it still has a performance gap compared with the
whole framework, which means the cross-modal translation is helpful but cannot replace contrastive
learning. The effect of contrastive learning is similar to explicit feature alignment. It aligns the
modality-shared features of different modalities from different source domains with the same label to
be as close as possible in the embedding space, while pushing away features with different labels, to
make the embedding space more distinctive.

Comparison against unimodal DG. Tab. 6 presents the results in comparison to unimodal DG
algorithms that exclusively rely on either video, audio, or optical flow inputs. We choose RSC [31],
Mixup [72], and Fishr [59] as our baselines. By leveraging information from multiple modalities, our
multi-modal DG framework delivers significant improvements (up to 7.74%) in terms of performance
as compared to unimodal DG methods.

Combine SimMMDG with other training strategies. SimMMDG can be seamlessly combined
with other training strategies due to its generality and simplicity. We first combine SimMMDG
with Gradient Blending [69], a strategy to improve multi-modal learning. The results are further
improved compared to the original SimMMDG as shown in Tab. 7. We also combine SimMMDG with
a Domain-adversarial Neural Network (DANN) [24] to align the features of source domains using



Method D2, D3 — D1 D1,D3 — D2 D1, D2 — D3 Mean

CL FS DL CT D2,D3 — D1 D1,D3 — D2 D1,D2 — D3 Mean ~ RSC(V) 30.11 62.53 5873 57.12

RSC (A) 36.55 43.73 4815 4281

55.86 56.27 5421 5545 RSC(F) 55.17 63.33 59.65  59.38

v 52.18 61.60 6222  58.67 Mixup (V) 49.20 59.73 5996 5630

v v 5149 62.53 6324  59.09 Mixup (A) 35.17 40.80 4507 4035

v v 51.72 62.67 58.93 57.77  Mixup (F) 56.32 65.60 54.62 58.85

v v 55.17 64.00 64.37 61.18  Fishr (V) 53.79 63.47 61.09 59.45

v v 54.25 63.47 43.04 60.25  Fishr (A) 37.47 44.80 47.43 43.23

v Vv v v 5193 65.47 6632 6324 Fishr(® 54.25 63.87 M.14 5909
- SimMMDG

Table 5: Ablations of each proposed module on  (v+A+F) 63.68 70.13 6776 67.19

EPIC-Kitchens dataset. CL: supervised contrastive Typie 6: Comparison with single-modal DG
learning, FS: feature splitting, DL: distance loss, CT: methods on EPIC-Kitchens dataset. V: video
cross-modal translation. A: audio, F: optical flow. ’

Method D2, D3 — D1 D1, D3 — D2 D1, D2 — D3 Mean Method EPIC-Kitchens Method MUSTARD UR-FUNNY
: DeepAll 64.9 Late Fusion 61.6 63.6
SimMMDG ' 57.93 65.47 6632 6324 o 73a LME 52 P
+Gradient Blending 59.31 68.40 66.63 64.78 . dient Blending 74.0 MULT 60.9 632
+DANN 60.69 66.69 6458 6407  SimMMDG 76.4 SimMMDG ~ 72.5 65.6
Table 7: Combine SimMMDG with other training Table 8: Evaluation under multi-modal classi-
strategies on EPIC-Kitchens dataset. fication setup.

domain labels and observe a similar improvement as with Gradient Blending. This indicates that our
SimMMDG can be easily combined with other training strategies to get even better results.

SimMMDG as a general framework for multi-modal classification. Here, we evaluate our
framework in a more general multi-modal classification setup without DG. We first evaluate our
framework on the EPIC-Kitchens dataset without incorporating the DG setup. To do so, we aggregate
data from three domains, we partition the training, validation, and testing data to ensure that no
apparent domain shifts exit between the training and testing data. We compare our method with
DeepAll, TBN [36], and Gradient Blending [69]. The results, as presented in Tab. 8 demonstrate that
SimMMDG also exhibits significant advantages in the general multi-modal classification setup.

We further evaluate our framework on two multi-modal datasets: MUSTARD [11] and UR-
FUNNY [27], both available in MultiBench [45]. These datasets pertain to human sentiment analysis
and encompass language, video, and audio modalities. We conduct our experiments using the Multi-
Bench codebase and implement SimMMDG within that environment. MultiBench treats human
sentiment analysis as a regression task, whereas our framework is tailored for classification. To align
the codebase with our classification task, we made the necessary modifications. For all baselines,
we apply the same backbone model and solely change the fusion paradigms. In our comparisons,
we evaluate our method against Late Fusion, Low-rank Tensor Fusion (LMF) [48], and Multimodal
Transformer Fusion (MULT) [62]. The results reveal that our SimMMDG exhibits clear advantages,
outperforming the baselines with an average improvement of 7.3% and 1.7%. This suggests that our
SimMMDG serves as a versatile framework for multi-modal classification tasks and is compatible
with various combinations of modalities, such as video+audio+flow and language+video+audio.

6 Conclusion

In this paper, we propose the SimMMDG framework for multi-modal DG. Our approach involves
splitting the features of each modality into modality-specific and modality-shared parts and enforc-
ing constraints on each part using supervised contrastive learning, distance loss, and cross-modal
translation. The cross-modal translation module can also be applied in the case of missing-modality
generalization. Our experiments on different datasets demonstrate the effectiveness of SimMMDG.
Furthermore, we introduce a new challenging multi-modal dataset that can serve as a benchmark and
guide future research in multi-modal DG problems.

Limitations. Currently, the number of cross-modal translation MLP in our framework is O(| M |?)
and will be complex with the increase of modalities. In future work, the encoder-decoder network
proposed in [19] can be used to reduce the complexity to O(|M]).
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A Proof of Theorem 1

Proof of Theorem 1. Consider the joint mutual information I(E!, ..., E*;y). By the chain rule, we
have the following decompositions:

I(E', ..., EM.y) = I(E';y) + I(E?,...,EM;y | EY)

=I(EM;y) + I(E', ..., EM~1. 4 | EM).

However, since E? are perfectly aligned, I(E2?,...,.EM;y | E!) = ... = [(E}, .., EM~L.y | EM) =
0, which means I(E',...,EM;y) = I(E';y) = ... = I(E™;y). On the other hand, by the data
processing inequality [5], we know that

I(EYy) <I(z13y), ., [(EMy) < Iz y).
Hence, the following chain of inequalities holds:

I(E',...,EM:y) = min{I(E';y), ..., (EM;y)}
< min{I(z1;y), ... [(xrm;y)}
< max{I(z1;y), ..., [(zar;9)}
< I(xy, . war3y),

where the last inequality follows from the fact that the joint mutual information I(x1, ..., xr;y),
is at least as large as any one of I(x;;y). We use H(y | x1,...,25r) to denote the conditional
entropy of y given x1, ..., z s as input. According to [74, 20] we have the following variational form:
H(y | x1,...,xnm) = inf f Ep[lce(f (1, ..., xar), y)], where the infimum is over all the prediction
functions that take 1, ..., s as input to predict the target y and the expectation is taken over the joint
distribution p of (1, ..., s, y). Therefore, due to the variational form of the conditional entropy, we
have

iI}pr[ECE(f(E17 7EM),y)] — iJI},pr[ECE(f/@l» ...7.7,‘]\/[>,y)}

=H(y|EY..,.EM) —H(y | z1,...,x7)

=H(y) - H(y | z1,...am) — (H(y) — H(y | E', .. ,EM))

= I(x1,....,za5y) — I(EY,...,EM;y)

> max{I(x1;y), ..., [(@prr;9)} — min{I(z1;y), ... I(zar; ) }

= max{[(z;;y);i=1,..,M} —min{I(z;;y);i=1,..., M}

=A,. O

B More Details on HAC Dataset

Our Human-Animal-Cartoon (HAC) dataset consists of seven actions (‘sleeping’, ‘watching tv’,
‘eating’, ‘drinking’, ‘swimming’, ‘running’, and ‘opening door’) performed by humans, animals,
and cartoon figures, forming three different domains. We collect 3381 video clips from the internet
with around 1000 for each domain and provide three modalities in our dataset: video, audio, and
pre-computed optical flow. The dense optical flow is extracted at 24 frames per second using the
TV-L1 algorithm [71].

Our dataset was collected by 5 volunteers. For the human domain, we collect the data by selecting
actions from an existing Kinetics-600 dataset [9]. We select approximately the same number of
video clips for each action to ensure class balance. For the animal domain, we use the available 200
video clips in [73] and extend it to 906. We collect data from YouTube by searching keywords like
‘animal sleeping’, ’animal eating’, "animal running’, etc. To increase the diversity of the dataset, we
also specify the animal type in the keywords, such as ‘cat sleeping’, ’dog eating’, "horse running’,
etc. Each participant was asked to collect certain actions, such as Participant A for ‘sleeping’ and
‘watching tv’, Participant B for ‘eating’ and ‘drinking’, etc. For the cartoon domain, we collect all
data from scratch and we collect data from popular cartoons like *SpongeBob SquarePants’, *The
Simpsons’, ’Garfield and Friends’, etc. Each participant was asked to collect from one or two cartoon
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Figure 3: The number of each action segments for our HAC dataset.

Domain Human Animal Cartoon
Training Action Segments 1111 730 870
Validation Action Segments 276 176 218
Testing Action Segments 1387 906 1088

Table 9: Number of action segments per domain.

series to avoid duplication. For each action, we annotated the start and end times in the video and
then cut out video clips. The length of each video clip varies from 1s to 10 s. Finally, we gathered
the data from all volunteers and a separate person manually discarded unqualified data like duplicate
videos, videos without audio data, noisy/wrong classes, etc.

Fig. 3 and Tab. 9 illustrate the statistcs of our HAC dataset. During the training phase, we train our
model on one or two domains by utilizing the training action segments specific to those domains. The
model selection is based on the performance of the validation action segments. Subsequently, we
evaluate the model on the remaining domain, utilizing all the segments within that domain. Therefore,
the total number of testing action segments is the sum of the training and validation segments. It
is observed that each class within the HAC dataset exhibits a good balance across all domains. In
contrast, EPIC-Kitchens dataset suffers from severe class imbalance. This implies that our proposed
framework is capable of delivering high-performance results across both balanced and imbalanced
datasets. Fig. 4 presents additional examples from our HAC dataset, highlighting the substantial
domain shifts present in our dataset, particularly in the cartoon domain. The main purpose of this
dataset is to be used for multi-modal domain generalization research. Of course, our dataset can also
be used for other applications like multi-modal learning and multi-modal domain adaptation.

C Additional Implementation Details

We follow RNA-Net [57] to select the baseline methods. MM-SADA [52] is a domain adaption
method and we only use the self-supervision loss without adversarial alignment as we have no
access on target domain data during training. From the results in Table 1 in main paper, we know
RNA-Net [57] and MM-SADA [52] are the two best baseline methods. Therefore, we select them
together with DeepAll as baselines in the following experiments.
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Figure 4: More examples on our HAC dataset.

Distance Type D2, D3 — D1 D1, D3 — D2 D1, D2 — D3 Mean

Cosine 53.56 60.80 59.65 58.00
{1 norm 55.86 62.27 58.73 58.95
{2 norm 57.93 65.47 66.32 63.24

Table 10: Ablation of different distance types in distance loss on EPIC-Kitchens dataset.

D Further Ablations

Ablations of different distance types. Tab. 10 shows the ablations of different distance types in
distance loss Lg;5s. We explore the effects of using /5 norm, ¢; norm, and Cosine similarity. Our
experimental results indicate that all three distance types outperform the baselines, with ¢ norm
achieving the highest performance.

Parameter Sensitivity. We investigate the sensitivity of our method to the hyperparameters in the
loss function. We perform this analysis by varying one parameter while fixing the others, and present
our findings in Fig. 5. The results demonstrate that our method consistently outperforms the DeepAll
baseline for all parameter settings, indicating that our approach is less sensitive to hyperparameter
choices. However, we can also observe ay; is a little sensitive and may need attention for tuning in
real applications.
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Figure 5: Parameter sensitivity (D1, D2 — D3 in EPIC-Kitchens for multi-modal multi-source DG).

Modality Source: D1 Source: D2 Source: D3
Method Video Audio Flow DI1— D2 D1— D3 D2 — D1 D2 — D3 D3— D1 D3— D2 Mean
DeepAll v v 53.07 47.74 49.66 56.98 52.18 55.73 52.56
MM-SADA [52] v 49.20 48.87 51.26 59.03 44.60 56.40 51.56
RNA-Net [57] v 53.20 49.79 52.18 58.11 47.13 5547 52.65
SimMMDG (ours) v/ 56.80 54.11 53.10 59.86 50.57 64.27 56.45
DeepAll 41.60 47.43 41.61 51.75 45.98 56.13 4742

MM-SADA [52]
RNA-Net [57]
SimMMDG (ours)

DeepAll v
MM-SADA [52] v
v
v

42.53 47.64 42.76 50.92 42.07 51.87 4630
46.40 49.38 42.76 54.62 43.45 52.13 48.12
45.98 56.26 51.95 63.87 52.93

51.60 53.39 44.60 60.16 45.74 5347 5149
49.43 48.53 38.16 48.46 44.14 51.07 46.63
51.20 53.90 46.67 58.73 49.43 57.47 5290
55.33 54.83 50.80 59.45 53.33 64.40 56.36

RNA-Net [57]
SimMMDG (ours)
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Table 11: Multi-modal single-source DG with different modalities on EPIC-Kitchens dataset.

MM-SADA [52]
RNA-Net [57]
SimMMDG (ours)

62.25 44.67 60.78 43.11 41.82 44.81 49.57
66.89 4540 66.62 46.88 53.64 61.37 56.80
68.76 47.98 7094 49.26 65.18 62.69 60.80

Modality Source: H Source: A Source: C

Method Video Audio Flow HH A H-CA —-H A —-C C—H C— A Mean
DeepAll v v 59.82 41.08 7325 35.02 60.71 64.46 55.72
MM-SADA [52] v V' 66.23 46.23 69.65 4246 59.77 57.62 56.99
RNA-Net [57] v v 58.61 37.87 7390 48.16 60.35 59.38 56.38
SimMMDG (ours) v/ v’ 63.13 4458 74.62 5138 70.15 61.59 60.91
DeepAll v V' 5993 3529 5090 3520 32.73 39.85 42.32
MM-SADA [52] v V' 55.08 3290 52.85 34.10 29.70 44.48 41.52
RNA-Net [57] v V' 56.51 30.24 5350 33.46 3691 40.40 41.84
SimMMDG (ours) v v' 6225 36.40 56.60 38.79 38.72 48.12 46.81
DeepAll v v’ 6258 4256 67.34 46.05 53.86 59.49 55.31

v v

v v

v v

EENENIN

Table 12: Multi-modal single-source DG with different modalities on HAC dataset.

E Other Experimental Results

Multi-modal Single-source DG. Tab. 11 and Tab. 12 show more results under multi-modal single-
source DG setting using the combination of different modalities. Our model demonstrates robust
generalization to unseen domains compared to the baseline methods in most cases with a large margin
up to 4.81%.

Missing-modality DG. Tab. 13 shows more results under the missing-modality DG setting on HAC
dataset. Our solution yields significant benefits compared to zero-filling in most cases, similar to
findings in the EPIC-Kitchens dataset. Our approach is also robust even when two modalities out
of three are missing. We also validate the effectiveness of our cross-modal translation module on
DeepAll, MM-SADA [52], and RNA-Net [57], as shown in Tab. 14. Compared to zero-filling,
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Method Video Audio Flow A,C —-H H,C — A H, A — C Mean

DeepAll (Video-only) v 75.20 74.83 38.88 6297
SimMMDG (zero-filling) v 73.97 75.94 51.10 67.00
SimMMDG (translation) v x 7751 7715 53.03 69.23

SimMMDG (zero-filling) v
SimMMDG (translation) v/

DeepAll (Audio-only) v . 5 L
SimMMDG (zero-filling) X v 25.16 26.05 1599 22.40
SimMMDG (translation) X v 2826 3974 = 22.15 30.05

SimMMDG (zero-filling) v
SimMMDG (translation) v

X

X
DeepAll (Flow-only) v 54.87 56.62 40.25 50.58
SimMMDG (zero-filling) X v
SImMMDG (translation) X ___ __ . v __ 12 6038 4118 53.56

SimMMDG (zero-filling)
SimMMDG (translation)

X
X
SimMMDG (zero-filling) X v
SimMMDG (translation) X v
‘SimMMDG (zero-filling) v~ X vV 8032 7936 5588 7185
SimMMDG (translation)

SimMMDG (zero-filling)
SimMMDG (translation)

v
v
SimMMDG (zero-filling) v/
SimMMDG (translation) v

SimMMDG (zero-filling) X .
SimMMDG (translation) X 30.28 41.83 29.60 33.90
‘SInmMMDG (zero-filling) X~ XV 56.02 5740 3897 50.80°
SimMMDG (translation) X X 57.25 61.04 39.15 52.48

Table 13: Multi-modal multi-source DG with missing modalities on HAC dataset. X means the
modality is available during training, but is missing in test time.

Method Video Audio D2, D3 — D1 D1,D3 — D2 D1, D2 — D3 Mean
DeepAll (Video-only) v 51.03 59.87 56.57 55.82
DeepAll (zero-filling) v X 45.98 53.73 52.87 50.86
DeepAll (translation) v X 47.82 54.27 54.83 52.31
‘MM-SADA [52] (zero-filling) v~ X = 4897 58.00 5852 5516
MM-SADA [52] (translation) v/ X 50.80 58.27 58.93 56.00
‘RNA-Net [57] (zero-filling) v X~ 5241 5480 53.08 5343
RNA-Net [57] (translation) v X 54.25 58.13 55.85 56.08
'SIimMMDG (zero-filling) ~ v X 5540 64.00 5832 59.24°
SimMMDG (translation) v X 57.24 65.07 59.65 60.65
DeepAll (Audio-only) v 32.87 42.27 45.17 40.10
DeepAll (zero-filling) X v 37.70 37.47 46.71 40.63
DeepAll (translation) X v 38.39 42.13 50.10 43.54
‘MM-SADA [52] (zero-filling) X~ v~ 3609 = 40.13 46.51 4091
MM-SADA [52] (translation) X v 37.01 41.33 47.95 42.10
‘RNA-Net [57] (zero-filling) X vV~ 3586 ¢ 4027 4671 4095
RNA-Net [57] (translation) X v 39.31 42.53 48.97 43.60
'SimMMDG (zero-filling) X vV 2920 3733 45.69 3741
SimMMDG (translation) X v 37.70 46.40 52.05 45.38

Table 14: Multi-modal multi-source DG with missing modalities on EPIC-Kitchens dataset for
different baselines. X means the modality is available during training, but is missing in test time.

replacing the features of missing modalities with the translated ones from other available modalities
achieves better performance.

Statistical Significance Tests. We run each experiment three times using different seeds for multi-
modal multi-source DG on the EPIC-Kitchens dataset and then calculate the mean and standard
deviation to show the statistical significance of our methods. As shown in Tab. 15, our framework is
statistically stable and surpasses the baselines significantly.
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Method D2,D3 — D1 D1,D3 — D2 D1,D2 — D3 Mean

DeepAll 48.81 £1.77 55.78 £1.14 57.45+1.19 54.01 +0.58
MM-SADA [52] 48.89+0.43 59.15£1.10 59.31 £0.81 55.79 £ 0.69
RNA-Net [57] 51.26 +£3.07 58.54+0.82 59.14 £1.24 56.31 +1.22
SimMMDG (ours) 57.70 £0.50 67.33 £0.99 64.41 +1.36 63.15 £ 0.88

Table 15: Statistical significance tests for multi-modal multi-source DG on EPIC-Kitchens dataset
using video and audio.
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Figure 6: Visualization of the learned embeddings using t-SNE (D1, D2 — D3 in EPIC-Kitchens for
multi-modal multi-source DG).

F Visualization

We show more visualizations of the learned embeddings using t-SNE [64] in Fig. 6. We can observe
that the embeddings of video, audio, and the concatenation of video and audio are all well aligned for
the source and target domains. Besides, the modality-specific and modality-shared embeddings are
also well-separated and aligned across domains.

G More Intuitions behind Cross-modal Translation Module

In our SimMMDG framework, we introduce a cross-modal translation module to further regularize
the learned features and facilitate missing-modality generalization. Here we give more intuitions
behind this module.

Cross-modal translation won’t undermine the unique features of different modalities. We want
to learn an MLP projection to translate the embedding E? of the i-th modality to the embedding
E’ of the j-th modality. We add a translation loss to make the translated embedding E? to be
close to E7, without any explicit alignment or constraints on E? and E’. We apply the cross-modal
translation on the integrated feature of each modality E? = [E’; E’], which is the concatenation of
modality-specific feature E; and modality-shared feature E.. We still enforce a distance loss on
E; and E,. at the same time. Therefore, the modality-specific and modality-shared features are still
forced to be separated during the training progress. The embedding visualizations shown in Fig. 6
(d) and (e) also indicate that for both video and audio, their modality-specific and modality-shared
features are well disentangled and are not influenced by the cross-modal translation module.
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R@l R@5 R@10 R@l R@5 R@10

Modality-specific Features 11.80 45.37 49.78 Modality-specific Features 10.24 33.01 47.10
Modality-shared Features 76.58 90.13 92.83 Modality-shared Features 67.59 89.60 93.99
Table 16: Video to Audio Retrieval. Table 17: Audio to Video Retrieval.

Cross-modal translation is a type of modalities interaction, where different modality elements
interact to give rise to new information when integrated together for task inference [46]. Several
works [23, 55] have already demonstrated that modality interaction can help improve the performance
of multi-modal tasks. For example, the proposed approach in [23] learns a coordinated similarity
space between image and text to improve image classification. The approach proposed in [55]
translates language into video and audio for language sentiment analysis.

Cross-modal translation can be thought of as a means to leverage the information from one
modality to infer as much information as possible for the target modality. Just like when we
hear a dog barking, we will fill in the picture of the puppy in our mind, and when we see a foreign
language, we will automatically translate it into our native language. Although there is information
loss and we can’t recover all the details during this translation progress, we can still infer some useful
information for the target modality. As shown in our ablation study in Tab. 5, adding the cross-modal
translation module indeed improves multi-modal DG performance.

More importantly, our cross-modal translation module can be used for improving missing-
modality generalization, by filling in the features of missing modality with the features in-
ferred/translated from the available modality. The benefit of adopting cross-modal translation
is demonstrated in Tab. 4. Our approach is robust even when two modalities out of three are missing.
This indicates that the inferred information from the cross-modal translation module is valuable and
useful for downstream tasks.

H Further Discussions on Modality-specific and Modality-shared Features

Based on our assumptions in the paper, modality-shared features reflect shared information between
all modalities, like all modalities that describe the same people, objects, actions, or gestures. Modality-
specific features are specific pieces of information that are unique to each modality, like texture, depth,
and visual appearance in images, syntactic structure, vocabulary, and morphology in language. Our
goal is to align the modality-shared features of different modalities from different source domains
with the same label to be as close as possible in the embedding space, while pushing away features
with different labels, to make the embedding space more distinctive. At the same time, we want the
modality-specific features to be as far as possible from the modality-shared features, such that they
carry different types of information.

We analyzed the meaningfulness and the ability to share features of modality-shared features by
cross-modal retrieval task. The ability of cross-modal retrieval is highly related to the shareable
of features, as only features that are meaningful, shareable, and highly connective can give a good
recall rate. We use modality-shared features of videos to retrieve from the modality-shared features
of audios and calculate the recall, and vice versa for audios. We report the R@1, R@5, and R@10
values for Video to Audio Retrieval and Audio to Video Retrieval. For example, R@5 for Video to
Audio Retrieval means we retrieve 5 candidates from audio, if at least one of them has the same label
as the query video, we consider the retrieval success and then we calculate the average success rate
for all query videos. We also do the same thing on modality-specific features: using modality-specific
features of videos to retrieve from the modality-specific features of audios, and vice versa for audios.
As shown in Tab. 16 and Tab. 17, we have a very high recall rate when we use modality-shared
features, while the recall rate is biased towards random when we use modality-specific features. This
further indicates that the modality-shared features are truly shareable and meaningful and there are
very strong relations and connections across modalities. The modality-specific features are instead
with more information that is private to each single modality.

To further verify the meaningfulness of modality-shared features, we also train a classifier only on
the concatenation of modality-shared features of video and audio, and discard the modality-specific
features. As shown in Tab. 18, without modality-specific features, the performances drop slightly
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Method D2,D3 — D1 D1,D3 — D2 D1, D2 — D3 Mean

SimMMDG (modality-shared features only) 54.71 64.67 62.83 60.74
SimMMDG 57.93 65.47 66.32 63.24

Table 18: Multi-modal multi-source DG on EPIC-Kitchens dataset using only modality-shared
features.

compared to the whole framework, but are still competitive. This indicates that modality-shared
features truly have some meaningful information that can be used for prediction tasks.
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