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Abstract

When provided with sufficient explanatory context, smaller Language Models have been
shown to exhibit strong reasoning ability on challenging short-answer question-answering
tasks where the questions are unseen in training. We evaluate two methods for further
improvement in this setting. Both methods focus on combining rationales generated by
a larger Language Model with longer contexts created from a multi-hop dense retrieval
system. The first method (RR) involves training a Rationale Ranking model to score both
generated rationales and retrieved contexts with respect to relevance and truthfulness. We
then use the scores to derive combined contexts from both knowledge sources using a number
of combinatory strategies. For the second method (RATD) we utilise retrieval-augmented
training datasets developed by Hartill et al. (2023) to train a smaller Reasoning model
such that it becomes proficient at utilising relevant information from longer text sequences
that may be only partially evidential and frequently contain many irrelevant sentences. We
find that both methods significantly improve results. Our single best Reasoning model
materially improves upon strong comparable prior baselines for unseen evaluation datasets
(StrategyQA 58.9 → 61.7 acc., CommonsenseQA 63.6 → 72.7 acc., ARC-DA 31.6 → 52.1
F1, IIRC 25.5 → 27.3 F1) and a version utilising our prior knowledge of each type of
question in selecting a context combination strategy does even better. Our proposed models
also generally outperform direct prompts against much larger models (BLOOM 175B and
StableVicuna 13B) in both few-shot chain-of-thought and standard few-shot settings.

1 Introduction

“It was soon realized that the problem of systematically acquiring information from the environment was
much less tractable than the mental activities the information was intended to serve” - Moravec (1988)

Moravec’s paradox is the observation that problems such as developing an ability to reason, that might have
been assumed to be one of the most difficult challenges in artificial intelligence has been easier to resolve than
the challenge of acquiring more basic knowledge such as sensory information. It is motivating to consider
this in the context of recent advances in using both large Language Models (LLMs) and retrieval against
large textual corpora for information acquisition in the question-answering domain.

We focus on methods to improve the performance of a smaller Language Model1 (i.e. Reasoning Model)
which, given a question and an acquired explanatory context as input, is expected to reason to provide an
answer. Our interest in smaller models for this task is because we are interested in evaluating the viability of
reasoning systems that answer arbitrary questions in resource constrained situations where available compute
resource is limited, and internet connectivity and so forth is assumed to be unavailable.

To acquire the explanatory context, we consider two knowledge sources separately and in combination;
retrieval of an explanatory context from a corpus of English Wikipedia paragraphs and rationale2 generation

1Generative Transformers with 400 million to 1 billion parameters
2We use the term “rationale” to denote a free-text explanation (Wiegreffe & Marasović, 2021) of approximately one to three

sentences that provides evidence to support a model prediction. We use the term to distinguish LLM generations of this form
from the longer explanatory contexts produced from our retrieval system.
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Figure 1: Overview of our approach. Given an unseen question Q: [1] we acquire explanatory contexts,
C1 and C2, from two knowledge sources. [2] We score the acquired contexts for relevance and truthfulness
using a Rationale Ranking (RR) model that we train on diverse relevant/irrelevant samples that make both
truthful and false assertions. [3] We evaluate and select methods for combining or filtering C1 and C2. [4]
We evaluate the performance of different contexts (Cn) on a set of Reasoning Models that are trained on
different mixtures of training datasets, including a mixture containing RATD datasets (Hartill et al., 2023)
and a mixture without these. In the diagram, red denotes false information and green highlights relevant
and truthful evidence.

from LLMs. Retrieval has generally been a relatively resource-efficient activity but until recently even
inference on LLMs has required considerable computational resources. Recent innovations such as those
involving 8-bit matrix multiplication (INT8) (Dettmers et al., 2022) enable the use of LLMs as frozen
knowledge bases in constrained settings. For example inference on the 13 billion parameter StableVicuna
model (Stability-AI, 2023) that we convert to INT8 and use in some experiments runs in approximately 18
GB of GPU RAM, well within the current capacity of large consumer GPU cards.

We choose retrieval from a reliable corpus and LLMs as our knowledge sources since we hypothesise that
they may offer differing and complimentary characteristics. Studies such as Khattab et al. (2021); Hartill
et al. (2023) have shown that multi-hop retrieval systems can be proficient at identifying the relevant n
documents necessary to answer n-hop factual questions where n can be greater than two, e.g. those found in
the Hover (Jiang et al., 2020) or Musique (Trivedi et al., 2022) datasets (“The Rhine forms a border between
Aschenbrödel’s composer’s country and another country where women got the vote when?”). However we are
unaware of any corresponding studies on LLMs that demonstrate similar proficiency in generating sufficient
information to answer such n-hop questions. Conversely, it has been shown that LLMs can be strong at
answering commonsense questions without using external retrieval (Lourie et al., 2021), but for such questions
retrieval from large textual corpora offers limited benefit (Piktus et al., 2021; Hartill et al., 2023).

We explore two methods of combining information from our knowledge sources. Our Rationale Ranking
method (RR) involves training a smaller Transformer to score both rationales and retrieved explanatory
contexts with respect to relevance and truthfulness. We then evaluate a number of simple strategies to create
combined contexts such as including either or both components that score over a threshold, or selecting the
single top-scoring component. We focus on identifying combination methods that work best in the general
case, i.e. are most likely to work well for an arbitrary unseen question for which we provide no means of
predicting which combination method will work best. We find that we are able to identify such a method
for each of our Reasoning Models and quantify the performance improvement (section 3.4.3). Our second
method (RATD) consists of training our Reasoning Model with retrieval-augmented datasets previously
developed by Hartill et al. (2023). These datasets were originally developed to impart diverse reasoning
strategies such as an ability to identify and weigh partially evidential facts in long, noisy contexts. Noting
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that where our rationales and retrieved contexts are combined, the resulting context is similar in length and
form to the RATD contexts, we find that training on them enables a single Reasoning Model to utilise our
various context formats effectively, including the case where the context consists of the naïve concatenation
of rationale and retrieved context that does not consider the RR model scores.

In summary the major contributions of this paper are: (A) We propose RR, a novel method that both
selects context components by relevance, and filters components that may be false. (B) We apply the RATD
method developed by Hartill et al. (2023) to facilitate reasoning over contexts that potentially combine infor-
mation from multiple knowledge sources. (C) We demonstrate that both methods in isolation significantly
improve reasoning performance in smaller Language Models from strong baselines in the same unseen setting
(section 3.4.3). (D) We show that smaller Language Models can manifest comparable or stronger reasoning
performance as a LLM when provided with the same knowledge to reason over that the LLM is capable
of generating for itself (section 3.4.2). (E) We illustrate the respective strengths and weaknesses of LLMs
and multi-hop retrieval from a Wikipedia corpus as knowledge sources (section 3.4.2). (F) We show that
combining information from these sources significantly improves the overall average performance versus using
a single source, often beyond what either knowledge source in isolation can deliver on individual datasets
(section 3.4.2).

1.1 Related Work

Knowledge Augmentation from LLMs. Bosselut et al. (2019) proposed COMET, a GPT-based Model
(Radford et al., 2018) trained on triples from the ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al.,
2017) knowledge graphs such that it would generate potentially novel triple completions. Shwartz et al.
(2020) compare augmentation methods using COMET, ConceptNet and their self-talk method where the
question-answering Language Model is self-queried to produce additional information pertinent to answering
the question. Liu et al. (2022) generate knowledge statements from GPT-3 (Brown et al., 2020) conditioned
on the question and use the augmented samples in separate smaller Reasoning Models. Following the
introduction of chain-of-thought (COT) prompting (Wei et al., 2022), a number of recent papers use this
prompting style to distill training sets of rationale-augmented samples from internet-accessable LLMs (GPT-
3, Palm (Chowdhery et al., 2022)) which are then typically used to train much smaller models in task-specific
finetuned settings e.g. (Magister et al., 2023; Li et al., 2023; Hsieh et al., 2023; Wu et al., 2023; Shridhar
et al., 2023) sometimes such that the label and the rationale are output to avoid the issue of having to
generate a rationale from the LLM at test time. We note that our usage of LLM-generated rationales is
rather different from these in that we assume a locally-accessable LLM (with lower resource requirements)
at test time and do not incorporate LLM-generated rationales in our Reasoning Model training.

Retrieval from Textual Corpora. For a comprehensive introduction to this wide field we suggest review-
ing Lin et al. (2022a) and (Mitra & Craswell, 2018). In summary, TF-IDF (Spärck Jones, 1972) has been
used for many years to associate queries with documents using adjusted bag-of-word count vectors. This
approach carries the advantage that fine-tuning for the target dataset is not required. Chen et al. (2017) first
used such sparse retrieval against Wikipedia in the context of open domain question-answering. In dense
retrieval, query and corpus documents are embedded into the same vector space with similarity defined as
the inner product between a query and a document vector. Karpukhin et al. (2020) used dense retrieval to
identify a single document sufficient for answering a single-hop question. Izacard et al. (2022) reduce the
need for target dataset finetuning by pretraining a dense retriever on self-supervised data. Xiong et al. (2021)
extend the dense retrieval approach to to retrieve two documents necessary to answer a complex two-hop
question. Hartill et al. (2023) extend this to enable retrieval of an arbitrary maximum number of documents
(in practice n ≤ 4). Wang et al. (2018) introduced a Reranker Model that refines retrieved results. Baleen
(Khattab et al., 2021) is a two-stage condenser system comprising a Reranker followed by an additional
model that scores relevance of each sentence selected over multiple documents (n ≤ 4) from the first stage.
Hartill et al. (2023) introduce an Evidence Set Score into the second stage to quantify the sufficiency of the
entire set of selected sentences for answering a query and call their resulting system the “Iterator”. As noted,
in this paper we use the Iterator with a Wikipedia corpus as described the following section.

Multiple Knowledge Sources. Retrieval has been successfully used as a method for querying knowledge
graphs by embedding the constituent triples as the document vectors in addition to, or instead of, standard
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text, e.g. Yu et al. (2022) augment commonsense questions with retrieved information from a commonsense-
focused corpus consisting of information source from knowledge graphs, commonsense datasets and other
textual sources. Perhaps most similar in spirit to our work Pan et al. (2023) consider knowledge graphs,
Wikipedia data, a dictionary, and others, as separate knowledge sources, each queried using dense retrieval.
In contrast to our approach of considering various methods for combining information, they train a model
to select the single most relevant source for augmenting each input sample. This is analogous to our “Max
Score” method described in section 3.3. Like us they train a smaller Reasoning Model with disparate training
and evaluation datasets, although unfortunately their evaluation datasets differ from ours. Also in a similar
direction to our “Max Score” method, Si et al. (2023) route a query to four expert LLMs and select the single
most likely answer using a smaller classifier trained for that purpose. In a finetuned setting, Xu et al. (2022)
also consider multiple knowledge sources. Here they use an entity linking method to query ConceptNet and
sparse retrieval over a dictionary and a set of commonsense datasets. The results are always concatenated
which is similar to our Naïve Concatenation method (section 3.3).

Falsehood Detection. Our RR Model, trained to score for truthfulness and relevance over instances from
disparate knowledge sources, can be seen as a novel extension to a Reranking approach. However it also
shares an objective with methods aiming to detect falsehood in LLM generations. Generally these methods
fall into three categories. The first are methods based on the intuition that higher token log probabilities
correspond to better text along a particular dimension such as truthfulness (Yuan et al., 2021; Fu et al., 2023).
The second are factuality detection methods that evaluate LLM-generated assertions as true if they can be
supported by a external reference (e.g fact retrieval from a reliable corpus). Recent studies here include
(Min et al., 2023; Chern et al., 2023). A third category, broadly called self-checking involves prompting a
LLM such as ChatGPT or GPT-4 (OpenAI, 2023) to recognize their own errors (Chern et al., 2023), or
refine their own outputs (Chen et al., 2023; Madaan et al., 2023), without recourse to external tools. In
this category but with a different approach, Manakul et al. (2023) score the consistency between a reference
statement and several stochastically sampled versions of it that may be likely to diverge more if the reference
is a hallucination.

2 Method

An overview of our approach is provided in Figure 1. In following sections we describe how the two knowledge
sources are implemented, how the RR model is constructed, trained and initially evaluated, and how the
Reasoning Models are trained. We describe our context combination methods further below in section 3.3
so as to make clear the nomenclature we use in reporting experimental results.

A major assumption is that our system may be asked arbitrary questions from unknown distributions. There-
fore we primarily consider our evaluations in the unseen rather than fine-tuned setting. The most relevant
comparisons we have available to us are the baselines for StrategyQA (Geva et al., 2021), CommonsenseQA
(Talmor et al., 2019), ARC-DA (Bhakthavatsalam et al., 2021), IIRC (Ferguson et al., 2020) and Musique
(Trivedi et al., 2022) established for smaller Language Models in unseen settings by Hartill et al. (2023).
The datasets cover a diversity of question types requiring diverse reasoning strategies to answer, including
commonsense and n-hop factual questions (n ≤ 4) as discussed further in section 3.2. Hence we adopt these
datasets for evaluation and use the same definition as Hartill et al. (2023) for “seen-ness” whereby an unseen
evaluation sample is one from a dataset that is disjoint from any training dataset. In our case we extend
this to our LLM generations, ensuring that all examples in few-shot prompts come from our training rather
than evaluation datasets, or are manually created by us.

Aside from the baseline results, Hartill et al. (2023) also provide their “Iterator” n-hop dense retrieval system
(where n ≤ 4). In a single-hop retrieval model, samples are processed as (1) Input ⟨q⟩ with an objective of
minimizing distance to the vector representing d0 (hereafter denoted ⟨q⟩ → d0, where q and dt are the input
question and the t-th supporting document of q to retrieve respectively). For a two hop system, the second
hop is then (2) ⟨q, d0⟩ → d1. In the Iterator model this is extended up to 4 hops i.e. ⟨q, d0, d1, d2⟩ → d3.

We adopt this system as our “retrieval” knowledge source and re-use the retrieved contexts that are provided,
both for RATD datasets and for each evaluation dataset (section 2.2). Hartill et al. (2023) also provide a
Reasoning Model that is trained in a multitask manner on a large number of datasets including their RATD
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datasets. We train two additional Reasoning models in the same manner as Hartill et al. (2023) with, and
without, the RATD datasets (section 2.4). By reusing all of the above components we are able to quantify
the effect of adding the second knowledge source under both the RR and RATD methods versus the baselines
established by Hartill et al. (2023) (section 3).

2.1 Rationale Generation

We utilize two LLMs, BLOOM BigScience Workshop et al. (2022) and StableVicuna (Stability-AI, 2023), a
much smaller model that has been further tuned from the Vicuna v0 13B model (Chiang et al., 2023) which
in turn was adapted from the LLama Touvron et al. (2023) foundation model. We chose these two models
because they are representative of differing approaches to developing LLMs and they may offer divergent
characteristics in rationale generation. At 176 billion parameters, BLOOM is the largest language model we
had access to at the time that we could run under INT8. It is trained on 410 billion tokens and the version
we used did not undergo further training on instructional data or human feedback. Llama by contrast is
trained on one trillion tokens. From the Llama checkpoint, Vicuna underwent further training on user-
provided ChatGPT conversations. Finally StableVicuna was developed from Vicuna by further training in
both supervised and reinforcement learning from human feedback (RLHF) Ouyang et al. (2022) settings on a
mixture of the human-generated OpenAssistant Conversations Dataset Köpf et al. (2023) and human-LLM
conversations from the GPT4All Anand et al. (2023) and Alpaca Taori et al. (2023) projects. We used
StableVicuna under both INT8 and FP16 versions, the former offering a smaller GPU memory footprint at
around 18GB while the latter uses almost twice as much memory but we find inference much faster, thus
offering a clear trade-off in a resource-constrained setting.

To generate rationales from each model, we used greedy decoding on chain-of-thought (COT) prompts (Wei
et al., 2022) to generate the rationale followed by the phrase “So the answer is” and the answer (examples
are in appendix B). This enabled us to evaluate the LLM answers directly from the same prompts and
with the same rationale that our Reasoning Model would use, allowing a comparison under a similar set of
assumptions. Occasionally a model would fail to generate the separate answer. In this case, to be favorable
to the direct LLM method, the full rationale was used as the answer in calculating metrics. Generated
rationale length is a maximum of 128 tokens.

To maintain the integrity of our unseen settings we ensured that no examples used in prompts were from
any of our evaluation datasets. The prompts used were identical between our LLMs excepting that examples
for StableVicuna prompts are denoted as:

### Human: [question] ### Assistant: [rationale]. So the answer is [answer].

BLOOM prompts are denoted as:

Q: [question] A: [rationale]. So the answer is [answer].

Our qualitative examination of rationales generated by BLOOM and StableVicuna suggests a diversity in
quality from both models but that they tend to produce better rationales on the same datasets (e.g. ARC-
DA) and worse on the same (e.g. Musique). We observed that BLOOM was generally more prone to
generating falsehoods. Examples from both models may be found in appendix C. We note that robust
examination of rationale quality is presently challenging to perform and believe research into automated
methods in this area represents a promising future direction.

2.2 Retrieval

As well as the n-hop retrieval model discussed above, the Iterator also comprises a two-stage reranking
system. The first stage is an n-hop Paragraph Reranker that scores retrieved paragraphs and sentences
within paragraphs for relevance to the query at the current hop e.g. input ⟨q, d0, d1⟩ to score d1 on hop 2.
Top-scoring sentences are passed to a second stage Evidence Set Scoring model that re-scores each sentence
in the context of the accumulated set of top-scored sentences to the current hop (Evidence Set) as well as
scoring the overall relevance of the Evidence Set.
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For our “retrieval” knowledge source, as noted we simply reuse contexts generated by the Iterator, both
for each evaluation sample and also for the creation of RATD datasets for the training regimes. Iterator-
generated contexts are formatted as a list of paragraph fragments that are recovered from the top-scored
sentences, each prepended by the title of the corresponding document and containing the top-scoring sen-
tences along with preceding and successor sentences where these exist. The top-scored sentences are identified
by taking the Evidence Set from the top-scored hop. Contexts contain as many fragments as will fit into a
512-token sequence length. They are semi-structured as follows:

[Doc 1 title]: [One to three sentences from document 1 paragraph]. [Doc 2 title]: ...

The corpus utilised by the Iterator is obtained from the August 1 2020 English Wikipedia dump and consists
of approximately 35 million paragraphs.

2.3 Rationale Ranker

Our RR model takes a question and context pair as input ⟨q, c⟩ and produces a score s. It is trained with a
binary cross-entropy objective where samples are labelled 1.0 if c is truthful and fully evidential in answering
q or 0.0 otherwise. The model is trained on a mixture of existing datasets for which we acquire or construct
positive c (i.e. a set of relevant and truthful gold sentences that are sufficient to answer q), and negative c
(which omit some or all gold sentences and may be irrelevant, false or both with respect to q answerability).
We used shared normalization (Clark & Gardner, 2018) such that each q is sampled in the same batch paired
with a positive and separately a negative c. We found that without shared normalization, model training
would collapse and it would predict every c as negative. This may have occurred because without seeing
positive and negative c for the same q in the same batch the pattern to be learned is insufficiently signalled.

Table 1: RR model training dataset composition. The construction methods denoted “... facts” involve cre-
ating rationales from gold sentences or structured triples sourced from the cited study. Iterator-like contexts
and Rationale-like are constructed from the training datasets’ gold (and associated negative) paragraphs.
LLM-sampled and LLM-greedy contexts are negative rationales generated by BLOOM using nucleus sam-
pling and greedy decoding respectively. aOnoe et al. (2021); bYang et al. (2018); cThorne et al. (2018);
dKhot et al. (2020); eClark et al. (2016; 2018); f Jiang et al. (2020); gInoue et al. (2020); hDeYoung et al.
(2020); iJhamtani & Clark (2020); jXie et al. (2020)

Positive Contexts Negative Contexts
Training Mixture Count Construction Methods Count Construction Methods
Creaka (Commonsense) 10173 Creak factsa 81408 LLM-sampled
HotpotQAb (Multi-hop factual) 34304 R4C factsg, Iterator-like, Rationale-like 41839 LLM-sampled, LLM-greedy, Iterator-like, Rationale-like
FEVERc (Single-hop factual) 60986 Eraser factsh, Iterator-like, Rationale-like 121427 LLM-sampled, Iterator-like, Rationale-like
QASCd (Multi-choice science) 47830 QASC factsd , eQASC factsi 193214 LLM-sampled, LLM-greedy
ARCe (Multi-choice science) 6469 WorldTree factsj 24492 LLM-sampled, LLM-greedy
Hoverf (Multi-hop factual) 28171 Iterator-like, Rationale-like 28171 Iterator-like, Rationale-like
Total 187933 490551

Since the model must score both rationale-style c and Iterator-generated c on the same scale, we develop
training samples that are similar to both types. Obtaining positive c for training questions is generally
straightforward. These are constructed from gold sentences and paragraphs associated with each dataset.
Negative c that cover both irrelevance and falsehood are harder to obtain. We construct negative c by
two methods; (1) generating them from BLOOM using specially constructed few-shot prompts containing
examples of negative rationales (e.g. appendix D), and (2) creating them synthetically by substituting gold
sentences with negative ones using datasets such as HotpotQA that come with sentence level annotations.
The synthetic method can only produce irrelevant negatives whereas the LLM-generating method produces
both irrelevant and false rationales. For LLM generation we use both greedy decoding and nucleus sampling
(Holtzman et al., 2019) to create negatives. We find that greedy decoding produces positive-appearing but
negative samples but (obtusely) the LLM has a tendency to produce accidentally positive rationales which
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we must filter out3. Nucleus sampling by contrast (temperature=0.95 and p=0.96) produces a diversity of
false and irrelevant samples that are less likely to be accidental positives. However here falsehoods tend to
have an exaggerated quality which could make them less adversarial for the model, so we create samples via
both decoding methods (examples in appendix E). Dataset construction is summarised in Table 1.

We employ diverse combination methods involving the trained RR model scores to create contexts for our
evaluation datasets that combine rationales and Iterator-generated contexts, as described in section 3.3.

2.3.1 Rationale Ranker Evaluation

Our RR development set consists of 89,470 samples taken from the respective development splits of our
training datasets. Contexts are created using the same methods as illustrated in Table 1 for corresponding
training splits. We sample a single positive or negative context for each development question such that
there are equal positive and negative contexts. As shown in Table 2, accuracy is high in this in-domain
setting.

Table 2: RR model Accuracy on the in-domain development set (score threshold t = 0.5). Total is micro-
accuracy. High accuracy is attainable in detecting both positive and negative contexts.

Positive Context Negative Context Total
91.5 93.0 92.3

Table 3: Accuracy in detecting falsehoods on TruthfulQA MC1. The RR model is better at detecting
falsehoods than the Iterator Paragraph Reranker which was trained to detect relevance but not falsehood.
It’s performance is competitive or better than much larger models that have not been trained using RLHF
aOpenAI (2023); bfrom Lin et al. (2022b) Github repository; cmodel from Hartill et al. (2023) with results
calculated by us.

Model TruthfulQA
MC1

GPT-4 RLHFa 60.0
GPT-3.5 RLHFa 47.0
GPT-4 No RLHFa 30.0
GPT-3 175Bb 21.0
GPT-J 6Bb 20.0
UnifiedQA 3Bb 19.0
Iterator Paragraph Reranker 335Mc 18.2
Rationale Ranker 335M (Ours) 30.0

Turning to an unseen setting, we initially evaluate context relevance scoring with a five-way multi-choice
relevance detection dataset that we create from the gold rationales supplied with StrategyQA (SQA), where
the four incorrect options are simply randomly assigned rationales from other SQA questions (we use SQA
since this is not part of RR model training). Here our model achieves 91.4% accuracy. A more interesting
question is the extent to which our relatively small RR model is capable of detecting falsehoods in an unseen
setting. To evaluate this question we consider TruthfulQA (Lin et al., 2022b), an adversarial evaluation-
only dataset of 817 questions that models and/or humans tend to answer falsely. In Table 3 we compare
falsehood detection performance of the RR model with various larger models and in particular with the
Iterator Paragraph Reranker. We treat the Paragraph Reranker as representative of models specifically
trained to score context relevance but that have not necessarily been trained to consider truthfulness. We
utilise the TruthfulQA MC1 split which is formatted as 4-5 way multi-choice with one truthful option. Each
option is scored independently of other options and the highest-scoring selected as the prediction. In the

3We eliminate rationales where the stemmed text contains the stemmed answer string, excepting samples with yes/no labels.
We use the snowball stemmer from NLTK (Bird et al., 2009).
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case of LLMs the score is calculated as the log-probability of the completion following the question. For the
Paragraph Reranker and our RR model we use the score that each model has been trained to compute. It
can be seen that the RR model is indeed much better at detecting falsehoods than the Paragraph Reranker
and it’s performance is competitive or better than much larger models that have not been trained using
RLHF. We imagine the superior performance of LLMs trained with RLHF on falsehood detection is due to
their associated large reward models, like our RR model, being trained in part to rate samples making false
assertions as undesirable.

2.4 Reasoning Models

We consider three Reasoning Models in our experiments. Reasoning Models take a question and context
pair as input 〈q, c〉 and generate an answer a. The first, which we use as a baseline, is the unmodified
“Base+RATD” model from Hartill et al. (2023) which we denote here as the RATD model for brevity. This
is a multitask-trained model which is further trained from the original BART (Lewis et al., 2020) pretrained
checkpoint on a large number of datasets4. For descriptive purposes, we divide these training datasets into
two sets. The first are the RATD datasets described in section 2.2, whose purpose is to confer an ability to
reason over long, noisy, and partially evidential contexts. We denote the remaining large number of training
datasets as the Common set; these broadly cover tasks designed to instill simple numerical literacy, and
diverse question-answering ability. Hence we say that the RATD model is trained on Common ∪ RATD
datasets.

We create an additional set of training samples denoted GR (for “gold rationales”). These are intended
to impart further ability to reason over rationale-form contexts. GR consists of samples for Creak, QASC,
ARC, HotpotQA, and FEVER where the contexts are gold rationales constructed similarly and from the
same sources as those described for the RR model training dataset in Table 1.

We then develop our two main Reasoning Models, both multitask-trained using the same approach and
hyperparameters as the original RATD model: The GR model is trained on Common ∪ GR, and the
GR+RATD model is trained on Common ∪ GR ∪ RATD.

3 Experiments

3.1 Models

The Rationale Ranker is built upon ELECTRA-large (Clark et al., 2020). Reasoning Models are based on
BART (Lewis et al., 2020). All models use the the Huggingface (Wolf et al., 2020) implementations. The
Reasoning Models differ only in their respective training data; hyperparameters are otherwise identical.

3.2 Unseen Evaluation Datasets

All evaluation dataset results are reported against the same splits used by Hartill et al. (2023). As with that
paper we use the numeracy-focused F1 calculation introduced in Dua et al. (2019) for ARC-DA, IIRC and
Musique.

StrategyQA (Geva et al., 2021) (SQA) contains commonsense samples involving diverse multi-hop reasoning
strategies with yes/no answers (average n = 2.33). The full training set is used for evaluation as with BIG-
bench (Srivastava et al., 2022).

CommonsenseQA (Talmor et al., 2019) (CSQA) is a multi-choice dataset of commonsense questions derived
from Conceptnet (Speer et al., 2017). The task is to choose the best option from five options of which more
than one may sometimes be plausible.

IIRC (Ferguson et al., 2020) contains factual questions and an initial explanatory paragraph for each which
must be augmented with additional retrieved information to be fully evidential (1 ≤ n ≤ 4+). Answers may
be numbers, binary, text spans or labeled unanswerable.

4We refer the reader to Hartill et al. (2023) for a more exhaustive description of the training regime and dataset construction.
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ARC-DA (Bhakthavatsalam et al., 2021) is a subset of ARC (Clark et al., 2018) (science questions) where
questions have been re-worded to make sense in an open domain context. The original multichoice versions
of ARC are part of our training regime for both Reasoning and RR models, so samples are “partially unseen”
in the sense that the question format is different.

Musique (Trivedi et al., 2022) is a n-hop factual dataset (n ≤ 4) constructed by combining single-hop
questions from existing datasets. The training split of Musique is used in all of our Reasoning Models, and
in the Iterator training. However as with Hartill et al. (2023), we use the original development split as
“partially seen” since development samples were constructed such that no single hop question, answer, or
associated paragraph is common to the corresponding element of any training sample. Hence the form of
questions is “seen” but the exact questions are not.

3.3 Context Combination Methods and Experimental Nomenclature

Figure 2: Examples of combining contexts. For a question Q, we acquire two contexts, C1 and C2. The
resulting combined context for our combination methods with example thresholds and RR model scores is
then shown in blue boxes where “+” denotes the concatenation of C1 and C2. The Naïve Concatenation is
always C1 + C2. Formatted examples of resulting contexts are shown at the bottom of the figure with titles
shown in bold for readability. The phrase “Further Explanation” is added to the rationale in a concatenated
context to mimic a document title.

For each unseen evaluation question, given a LLM-generated rationale, and an Iterator-generated context as
possible combined context components, and RR model scores for each, we evaluate methods of combining
components. We implement four combination methods and create versions of our unseen evaluation datasets
with combined contexts for each as follows:

Naïve Concatenation: The simple concatenation of a rationale and corresponding Iterator-generated
context with the above form. RR model scores are ignored.

Max Score: Choosing the single component that the RR model scores highest.

RationaleDefault: Defaulting to taking the rationale component unless the Iterator component scores over
a threshold t in which case it is exclusively selected.

EitherOrBoth: Selecting either or both components that score over a threshold t. If neither component is
selected, we default to the Naïve Concatenation context since smaller Language Models have been shown to
be ineffective for answering unmemorized question-only (open domain) questions (Lewis et al., 2021).

For the latter two combination methods we create contexts using each of eight RR score thresholds ranging
from t = 0.0005 to t = 0.9. We denote the particular version using the threshold e.g. EitherOrBoth(0.9)
means samples are augmented using the EitherOrBoth method with t = 0.9. Obviously innumerably other
combination methods are possible but we find that this set is sufficient for our research purposes while
remaining manageable. Figure 2 illustrates examples of contexts derived from each combination method
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using hypothetical RR scores. Combined contexts are truncated (from the Iterator component) to the
maximum sequence length of the model (512 tokens) at inference time.

Each of our three Reasoning Models might be expected to perform better with particular context types.
For example the GR model might do better where the context tends to be rationale-like whereas the RATD
model may do better where the context is of Iterator-generated form. This influences which combination
method is likely to perform better on each Reasoning Model.

Similarly, different combination methods are likely to work better for differing question types (commonsense,
multi-hop factual etc). For example knowing that LLM-generated rationales tend to be more effective than
Iterator-generated contexts for answering commonsense questions, we can deduce that RationaleDefault(0.9)
is likely to be a good strategy for developing contexts for CommonsenseQA because using this strategy
results in Rationale-only contexts except where the Iterator context is scored very highly. However, we are
interested in the situation where our model is presented with an arbitrary question of unknown type. Hence
we are more interested in finding combination methods that will generally work well under this assumption,
even where the method may not be the best for any particular type. We identify combination methods
satisfying this criteria as those with the highest unweighted macro-average score over our unseen evaluation
datasets (henceforth “Mean” or “Mean score”) on each Reasoning Model, taking inspiration for averaging
over heterogeneous metrics from e.g. Wang et al. (2019b;a). For the methods that utilize RR model scores we
select the highest performing on this measure and refer to it as “Generally best RR combo” below. We also
report the “Best RR combo per dataset” where we select the highest scoring combination method for each
evaluation dataset. We note that since we cannot use this approach on an arbitrary question of unknown
type we don’t consider it a usable method in a truly unseen setting, although future work could remedy this
(e.g. through utilising an additional model trained to predict the best combination method for a question).

We refer below to contexts created for each evaluation dataset that consist entirely of Iterator-generated
contexts as “Iterator only”, those contexts entirely composed of LLM-generated rationales as “Rationale
only”, and those that apply any of the combining methods as “Rationale + Iterator” (noting that individual
samples in the latter may only contain one of the possible context components). For brevity, where referring
to the use of a particular context type on a particular model we use shorthand such as “GR+RATD: Iterator
only” or “GR+RATD: Iterator + Rationale (Naïve Concatenation)”.

To test statistical significance over the large number of model:context combinations created we use methods
for accomplishing this described in Demšar (2006) as implemented in the AutoRank library (Herbold, 2020).
Specifically all tests use significance level α = 0.05 and we use the non-parametric Friedman test as omnibus
test, followed by the Nemenyi test to infer which differences are significant. Significance test results are
summarised in Appendix G.

3.4 Experimental Results

3.4.1 Summary

Table 4: Mean score over unseen evaluation datasets. The “Iterator only” results are duplicated across
Rationale Generators to facilitate comparison. Bold indicates highest score per context type (i.e. per row).
StableVicuna-generated rationales generally outperform BLOOM rationales.

Rationale Generator → StableVicuna (INT8) BLOOM (INT8)
Context ↓ / Model → GR RATD GR+RATD GR RATD GR+RATD
Iterator only 38.1 40.4 41.0 38.1 40.4 41.0
Rationale only 44.5 44.2 45.3 39.5 42.0 40.3
Rationale + Iterator (Naïve concatenation) 42.7 46.3 47.2 43.2 43.8 43.7
Rationale + Iterator (Generally best RR combo) 45.5 46.3 47.2 42.9 44.2 44.4
Rationale + Iterator (Best RR combo per dataset) 47.6 47.5 48.1 45.1 45.6 45.4

As Table 4 indicates, rationales generated by BLOOM almost always produce weaker results than those
from StableVicuna. For example, in considering BLOOM-generated “Rationale only” contexts, the GR
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model might have been expected to outperform the RATD model (given the additional samples with gold
rationale contexts added to GR training). However the GR model actually underperforms (39.5 vs 42.0).
Conversely, where considering StableVicuna-generated “Rationale only” contexts, the GR model slightly
outperforms the RATD model as expected.

3.4.2 GR+RATD Model Versus Baseline And LLM Direct Prompts

It can be seen in Table 4 that where using the stronger StableVicuna-generated rationales, the GR+RATD
model results dominate both RATD and GR models, so we consider this as our best model. Table 5 compares
GR+RATD to our main baseline (i.e. “RATD: Iterator only” from Hartill et al. (2023)). Both our “Naïve
concatenation” and “Generally best RR combo” combination methods significantly outperform this baseline
on the Mean score and on most individual datasets, except for Musique.

Table 5: Evaluation per dataset. The “Rationale+Iterator” combined contexts significantly outperform
the “RATD: Iterator only” baseline and both single-component contexts. The “Rationale only” row using
StableVicuna-generated rationales significantly outperforms the StableVicuna COT direct prompt. Bold
indicates best in column excluding Best Prior and Best RR combo per dataset. Best prior are either not
unseen or involve much larger models as follows: aAnil et al. (2023): Palm 2 using self consistency. bXu et al.
(2021): Finetuned, retrieval from Conceptnet. cBhakthavatsalam et al. (2021): Training includes ARC-DA.
dHartill et al. (2023): Finetuned. eTrivedi et al. (2022): Specialised retrieval from gold and distractor
paragraphs.

Model: Context SQA CSQA ARC-DA IIRC Musique Mean
(Acc.) (Acc.) (F1) (F1) (F1)

Random 50.0 20.0
Best Prior 90.4a 91.2b 61.4c 53.6d 49.8e 69.3
RATD: Iterator only 58.9 63.6 31.6 25.5 22.2 40.4
BLOOM INT8 : Few Shot Standard Prompt 58.1 47.5 58.7 17.3 9.4 38.2
StableVicuna INT8 : Few Shot Standard Prompt 56.2 70.8 56.8 19.8 9.3 42.6
BLOOM INT8 : Few Shot COT Prompt 57.1 54.9 50.5 17.4 11.1 38.2
StableVicuna INT8 : Few Shot COT Prompt 61.7 67.7 45.8 20.8 12.6 41.7
GR+RATD: Iterator only 57.3 65.0 35.6 25.6 21.5 41.0
GR+RATD: Rationale only 64.2 73.1 50.2 25.1 13.8 45.3
GR+RATD: Rationale + Iterator (Naïve concatenation) 61.7 72.6 53.0 27.0 21.7 47.2
GR+RATD: Rationale + Iterator (Generally best RR combo) 61.7 72.7 52.1 27.3 22.0 47.2
GR+RATD: Rationale + Iterator (Best RR combo per dataset) 64.5 73.3 53.0 27.4 22.4 48.1

We next consider the efficacy of directly prompting both LLMs to produce the answer using few-shot COT
exemplars, and separately with standard few-shot prompts that use the same exemplars without the rationale
portions. Here, the most like-for-like comparison is from the StableVicuna COT prompt to “GR+RATD:
Rationale only”, since the rationales used are the same ones produced by the direct StableVicuna COT
prompts. For the StableVicuna COT prompt (and both BLOOM prompts), “GR+RATD: Rationale only”
significantly outperforms the LLM direct prompts on the overall Mean score, and generally on individual
datasets (except for ARC-DA). The 42.6 to 45.3 Mean improvement is not significant for the StableVicuna
Standard prompt.

In comparing performance of our combined contexts (“Naïve concatenation” and “Generally best RR combo”)
to the single-component contexts (“Iterator only” and “Rationale only”), both combined contexts achieve a
higher Mean score than either single component context does (improvement from “Iterator Only” is significant
in both cases, that from “Rationale Only” to “Naïve concatenation” is significant, the other is on the
significance threshold (appendix 8)). Notably, three of the five datasets (ARC-DA, IIRC and Musique) have
higher scores on either combined context than on any single component context as well.

Considering the “Iterator only” against the “Rationale only” rows in Table 5 illuminates the relative strengths
of our two knowledge sources. Multi-hop factual questions as exemplifed in Musique benefit far more from
retrieved paragraphs than LLM-generated rationales (21.5 F1 vs 13.8 F1) whereas commonsense datasets
such as SQA (64.2 acc vs 57.2 acc) and CSQA (73.1 acc vs 65.0 acc) unsurprisingly benefit more from
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LLM-generated rationales as context. IIRC, another factual dataset might have been expected to benefit
more from retrieved paragraphs but performance is similar between rationale-only contexts and retrieved
paragraphs. We suggest this is because the input for each IIRC sample is comprised of the question and the
initial gold paragraph, and many samples then only require a single extra piece of information in order to
have sufficient evidence. LLMs may be better at performing (the equivalent of) this single hop than they
are at identifying the multiple additional pieces of information necessary in the Musique case.

3.4.3 RR Model Scoring And RATD Training Efficacy

We next evaluate the effectivness of our methods through an ablational approach. The GR model can be
regarded as an ablation of RATD training from the GR+RATD model (-RATD). The Naïve concatenation
context type can be seen as an ablation of RR Model scoring from the Generally best RR combo (-RR).
Hence our “GR: Rationale + Iterator (Naïve concatenation)” model can be seen as an ablation of both (-RR
-RATD) while being (insignificantly) better than the main “RATD: Iterator only” baseline (40.4 vs 42.7).
Table 6 illustrates the relative efficacy of our two methods, both individually and together. What is revealed
is that the RR model-scoring approach significantly improves Mean results in the absence of RATD training
(45.5 vs 42.7), while the RATD training significantly improves results in the absence of RR scoring (47.2 vs
42.7). The difference between the two methods (45.5 vs 47.2) is not significant.

Table 6: RATD and RR effectiveness. The bottom row can be regarded as an ablation of both RR and
RATD (-RR -RATD). All three topmost methods (marked with an asterisk) are significantly different from
the bottow row (-RR -RATD) however differences between the three topmost methods are not significant.
This shows that the RR and RATD methods are individually both effective but combining the methods does
not improve results further.

Model: Context Mean

GR+RATD: Rationale + Iterator (Generally best RR combo) +RR +RATD* 47.2
GR+RATD: Rationale + Iterator (Naïve concatenation) -RR +RATD* 47.2
GR: Rationale + Iterator (Generally best RR combo) +RR -RATD* 45.5
GR: Rationale + Iterator (Naïve concatenation) -RR -RATD 42.7

Using the two methods in combination does not improve results further. The “Generally best RR combo”
for the GR+RATD model uses the EitherOrBoth(0.9) combination method. This can be interpreted as only
selecting a context component if the RR model scores it very highly, and since both components frequently
fail to meet the threshold the default of using the Naïve concatenation then applies. This has the effect of
the context being the Naïve concatenation for 80.9% of evaluation samples (Appendix I) which explains why
combining the RATD and RR doesn’t result in further improvement in this case.

4 Conclusion

We have implemented methods for combining explanatory context from two knowledge sources: LLM-
generated rationales and retrieved paragraphs from Wikipedia. The first method involves training our smaller
Reasoning Model on RATD datasets such that it becomes proficient at reasoning over long, noisy contexts
which contain information from both knowledge sources. The second method is to use Rationale Ranking
model scores for each knowledge source as guidance in constructing contexts that may contain information
from both, or either knowledge source. We have shown that both methods are individually effective in
significantly improving unseen question-answering performance both versus the baselines established by
Hartill et al. (2023) and versus a baseline that ablates both RR and RATD methods (section 3.4.3).

We have shown that smaller Language Models can manifest comparable or stronger reasoning performance
to LLMs when provided with the same knowledge to reason over that the LLM is capable of generating for
itself. (section 3.4.2).

After comparing results from question-answering using LLM-generated rationales as context with those using
retrieved paragraphs we concluded that LLMs are weaker at surfacing the multiple pieces of information
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necessary to answer multi-hop factual questions, but stronger at generating rationales suitable for answering
commonsense questions. Both knowledge sources are found to be effective for question types such as factual
questions requiring a single additional piece of information (section 3.4.2).

In comparing performance of our combined contexts to the single-component contexts, the combined contexts
achieve a higher Mean score over all unseen evaluation datasets than either single component context does.
Individually, three of the five datasets (ARC-DA, IIRC and Musique) achieve higher scores when using
combined contexts than on any single component context as well (section 3.4.2).

Broader Impact Statement

Our Reasoning Models following the application of our methods are still capable of generating hallucinated,
false and/or potentially offensive answers. Hence usage is most appropriate for research environments.

Conversely, as Hartill et al. (2023) note, latency, physical compute size, cost and energy efficiency are
important considerations where smaller models offer material benefits. A diversity of applications exist in
the broad domain of reasoning systems and due weight should be assigned to all factors in determining the
most appropriate approach for a particular situation.
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A Hyperparameters

All models are trained on one Nvidia A100 80GB GPU using mixed precision and a linear learning rate
decay schedule. Initial learning rates and other hyperparameters are shown in Table 7. The optimiser used
for the Rationale Ranker is Adam. All other models use AdamW. A maximum sequence length of 512 tokens
was used for all trained models. The GR and GR+RATD Reasoning Model training starts from the Base
model checkpoint described in Hartill et al. (2023).

BLOOM loaded under INT8 with a batch size of one consumed approximately 200GB of GPU RAM. Sta-
bleVicuna also under INT8 with a batch size of one consumed approximately 18GB.

Table 7: Hyperparameters used for each model. Each training step is one batch input i.e the number of
optimization steps is TrainingSteps/GradientAccumulationSteps. All final models are selected as the best
model on the development set(s) over the specified number of training steps.

Model Initial
LR

Batch
Size

Grad.
Accum

Train
Steps

Rationale Ranker 5e-5 24 8 188K
Reasoning Models 2e-5 32 4 1M

B Prompts For LLM Rationale Generation

Here we show the few-shot COT prompts used against the StableVicuna Model. Prompts used against
BLOOM use the same examples and instructions and simply have “Q:” substituted for “### Human:”
(excepting the initial instruction which substitutes the empty string), and “A:” substituted for “### As-
sistant:”. The corresponding few-shot standard prompts are identical except that the examples have both
the rationale and the answer key (“So the answer is”) removed. Rationales were constructed by truncating
the generation at the first <newline> character and then truncating again at the answer key.

B.1 Binary-labelled Datasets (SQA)

### Human: Write a truthful, factual explanation to help answer the question, then
answer the question.

### Human: A pupil can be either a student or part of an eye?
### Assistant: A pupil is another word for student. The pupil is also a hole located in
the center of the iris of the eye that allows light to strike the retina. Thus pupil can
have either meaning. So the answer is yes.
### Human: Greece is larger than mexico?
### Assistant: Greece is approximately 131,957 sq km, while Mexico is approximately
1,964,375 sq km, making Mexico 1,389% larger than Greece. So the answer is no.
### Human: Glasses always fog up?
### Assistant: Condensation occurs on eyeglass lenses when water vapor from your sweat,
breath, and ambient humidity lands on a cold surface, cools, and then changes into tiny
drops of liquid, forming a film that you see as fog. Your lenses will be relatively cool
compared to your breath when the outside air is cold but not when the air is warm. So
the answer is no.
### Human: A fish is capable of thinking?
### Assistant: Fish are more intelligent than they appear. In many areas, such as
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memory, their cognitive powers match or exceed those of ’higher’ vertebrates including
non-human primates. Fish’s long-term memories help them keep track of complex social
relationships. So the answer is yes.
### Human: Is a 5 by 8 pool of bricks larger than an 8 by 5 pool of pillows?
### Assistant: The 5 by 8 pool of bricks has an area of 40. The 8 by 5 pool of pillows
also covers an area of 40. Thus, both pools are the same size. So the answer is no.
### Human: When listed alphabetically, would the words baseball and demonstration appear
in this order?
### Assistant: Baseball begins with letter b and demonstration begins with letter d.
Alphabetically, b comes before d, thus baseball comes before demonstration. So the
answer is yes.
### Human: Would Sally use a spaceship if she needed to get to London from Sydney
quickly?
### Assistant: Commerical spaceship transport doesnt exist yet. London is far from
Sydney and planes are faster than trains or boats over long distances. Thus, Sally would
use an existing transportation option like a plane. So the answer is no.
### Human: A common effect of smoking lots of cigarettes in one’s lifetime is a higher
than normal chance of getting lung cancer?
### Assistant: Those who consistently averaged less than one cigarette per day over
their lifetime had nine times the risk of dying from lung cancer than non-smokers. Among
people who smoked between one and 10 cigarettes per day, the risk of dying from lung
cancer was nearly 12 times higher than that of non-smokers. So the answer is yes.
### Human: A rock is the same size as a pebble?
### Assistant: A pebble is a clast of rock with a particle size of 4 to 64 millimetres
based on the Udden-Wentworth scale of sedimentology. Pebbles are generally considered
larger than granules (2 to 4 millimetres diameter) and smaller than cobbles (64 to 256
millimetres diameter). So the answer is no.
### Human: {QUESTION}
### Assistant:

B.2 Span or binary answers (ARC-DA, IIRC, Musique)

### Human: Write a truthful, factual explanation to help answer the question, then
answer the question.

### Human: Greece is larger than mexico?
### Assistant: Greece is approximately 131,957 sq km, while Mexico is approximately
1,964,375 sq km, making Mexico 1,389% larger than Greece. So the answer is no.
### Human: Tools can be made of wood, iron, plastic amongst other things. Iron tools
historically replaced what?
### Assistant: Historically, iron tools were first used in the Iron Age. The Iron Age
followed the Bronze Age. Thus, iron tools replacing bronze tools makes most sense. So
the answer is bronze tools.
### Human: Which magazine was started first Arthur’s Magazine or First for Women?
### Assistant: Arthur’s Magazine was an American literary periodical first published
1844. First for Women is a woman’s magazine that started in 1989. So the answer is
Arthur’s Magazine.
### Human: Glasses always fog up?
### Assistant: Condensation occurs on eyeglass lenses when water vapor from your sweat,
breath, and ambient humidity lands on a cold surface, cools, and then changes into tiny
drops of liquid, forming a film that you see as fog. Your lenses will be relatively cool
compared to your breath when the outside air is cold but not when the air is warm. So
the answer is no.
### Human: Water flows downhill and tends to collect in low-lying areas such as valleys
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and holes. Lakes are usually large bodies of fresh water. Where is a lake likely to be
found?
### Assistant: The answer must be somewhere that a lot of water can collect. A valley
is likely to be able to collect enough water. So the answer is a valley.
### Human: Foxes are predators whose natural habitat is the forest. They have also been
known to eat chickens from people’s properties. The fox walked from the city into the
forest, what was it looking for?
### Assistant: The answer must be a reason for a fox to go into the forest. The forest
is a fox’s natural habitat. So the answer is natural habitat.
### Human: A fish is capable of thinking?
### Assistant: Fish are more intelligent than they appear. In many areas, such as
memory, their cognitive powers match or exceed those of ’higher’ vertebrates including
non-human primates. Fish’s long-term memories help them keep track of complex social
relationships. So the answer is yes.
### Human: Musician and satirist Allie Goertz wrote a song about the "The Simpsons"
character Milhouse, who Matt Groening named after who?
### Assistant: Milhouse Mussolini van Houten is a fictional character featured in the tv
series "The Simpsons" created by Matt Groening. He named the character after President
Richard Nixon’s middle name. So the answer is President Richard Nixon.
### Human: What is the largest annual event held in the birthplace of the performer who
sang Let Me Tell You About the Birds and the Bees?
### Assistant: The Birds and the Bees was a 1964 single release by Jewel Akens. Jewel
Akens was born in Houston, Texas, USA. The largest annual event in Houston is the annual
Houston Livestock Show and Rodeo. So the answer is Houston Livestock Show and Rodeo.
### Human: A common effect of smoking lots of cigarettes in one’s lifetime is a higher
than normal chance of getting lung cancer?
### Assistant: Those who consistently averaged less than one cigarette per day over
their lifetime had nine times the risk of dying from lung cancer than non-smokers. Among
people who smoked between one and 10 cigarettes per day, the risk of dying from lung
cancer was nearly 12 times higher than that of non-smokers. So the answer is yes.
### Human: Fred owns a number of things including a baseball bat, a laptop, a tablet and
a briefcase. Fred works a long way from his home, so which electronic device would Fred
prefer to walk to work with?
### Assistant: Electronic devices include tablets and laptops. Tablets are lighter than
laptops and lighter things are easier than heavier things to carry. Thus, a tablet is
the easiest device for Fred to carry. So the answer is tablet.
### Human: Chang Ucchin was born in korea during a time that ended with the conclusion
of what?
### Assistant: Chang Ucchin was born when Korea was still under Japanese colonial rule.
Korea under Japanese rule began 1910 and ended at the conclusion of World War II in 1945.
So the answer is World War II.
### Human: A rock is the same size as a pebble?
### Assistant: A pebble is a clast of rock with a particle size of 4 to 64 millimetres
based on the Udden-Wentworth scale of sedimentology. Pebbles are generally considered
larger than granules (2 to 4 millimetres diameter) and smaller than cobbles (64 to 256
millimetres diameter). So the answer is no.
### Human: When did the birth state of Kevin Sessums become a right to work state?
### Assistant: Kevin Sessums was born in 1956 in Forest, Mississippi. The Right to work
law was adopted by Mississipi in 1954. So the answer is 1954.
### Human: {QUESTION}
### Assistant:
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B.3 Multi-choice Datasets (CSQA)

### Human: Write a truthful, factual explanation to help answer the question, then
answer the question.

### Human: A common effect of smoking lots of cigarettes in one’s lifetime is what?
Answer Choices: (A) poverty (B) low chance of lung cancer (C) good fitness (D) high
chance of knee cancer (E) high chance of lung cancer
### Assistant: Those who consistently averaged less than one cigarette per day over
their lifetime had nine times the risk of dying from lung cancer than non-smokers. Among
people who smoked between one and 10 cigarettes per day, the risk of dying from lung
cancer was nearly 12 times higher than that of non-smokers. So the answer is high chance
of lung cancer.
### Human: Which magazine was started first? Answer Choices: (A) History channel (B)
Youtube (C) Arthur’s Magazine (D) Climbing (E) First for Women
### Assistant: Arthur’s Magazine was an American literary periodical first published
1844. First for Women is a woman’s magazine that started in 1989. So the answer is
Arthur’s Magazine.
### Human: How do you put on a sock? Answer Choices: (A) jump in (B) insert hand (C)
put on head (D) insert foot (E) open
### Assistant: Socks are worn on feet and they have an opening at one end. A foot must
be inserted into the opening to put it on. Thus, of the choices only insert foot makes
sense. So the answer is insert foot.
### Human: After earning a lot in tips at his job, what would a waiter want to do next?
Answer Choices: (A) do handstand (B) quit job (C) find another job (D) grow flowers (E)
save the money
### Assistant: Tips are money earned by waiting on tables. After earning money, people
like to spend or save it. Thus, of the choices, the waiter would want to save the money.
So the answer is save the money.
### Human: Iron tools historically replaced what? Answer Choices: (A) bronze tools (B)
wooden tools (C) uranium tools (D) plastic tools (E) eels
### Assistant: Historically, iron tools were first used in the Iron Age. The Iron Age
followed the Bronze Age. Thus, of the choices, iron tools replacing bronze tools makes
most sense. So the answer is bronze tools.
### Human: What mode of transport should Sally use if she needed to get to London from
Sydney quickly? Answer Choices: (A) train (B) plane (C) spaceship (D) fast boat (E)
slingshot
### Assistant: Realistic modes of transport include trains, planes and boats. London is
far from Sydney and planes are faster than trains or boats over long distances. Thus, of
the realistic choices, planes are a faster way to travel. So the answer is plane.
### Human: What can be used to warm up your home? Answer Choices: (A) refrigerator (B)
flamethrower (C) heat pump (D) dog (E) blanket
### Assistant: Warming a house should be done safely and efficiently. Heat pumps are
safe and efficient. Thus, of the choices, heat pumps are the best way to heat a home.
So the answer is heat pump.
### Human: Fred works a long way from his home, so which electronic device would Fred
prefer to walk to work with? Answer Choices: (A) laptop (B) briefcase (C) banana (D)
tablet (E) car
### Assistant: Electronic devices include tablets and laptops. Tablets are lighter
than laptops and lighter things are easier than heavier things to carry. Thus, of the
realistic choices, tablet is the easiest for Fred to carry. So the answer is tablet.
### Human: What activity is a fish is capable of? Answer Choices: (A) thinking (B)
jogging (C) using tools (D) flight (E) dentistry
### Assistant: Fish are more intelligent than they appear. In many areas, such as
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memory, their cognitive powers match or exceed those of ’higher’ vertebrates including
non-human primates. Fish’s long-term memories help them keep track of complex social
relationships. So the answer is thinking.
### Human: Chang Ucchin was born in korea during a time that ended with the conclusion
of what? Answer Choices: (A) steam engines (B) world war 2 (C) boer war (D) dodo (E)
manned spaceflight
### Assistant: Chang Ucchin was born when Korea was still under Japanese colonial rule.
Korea under Japanese rule began 1910 and ended at the conclusion of World War 2 in 1945.
So the answer is world war 2.
### Human: Where is a lake likely to be found? Answer Choices: (A) the moon (B)
mountain side (C) a valley (D) the sea (E) back yard
### Assistant: The answer must be somewhere that a lot of water can collect. Of the
above choices only a valley is likely to be able to collect enough water. So the answer
is a valley.
### Human: {QUESTION}
### Assistant:

C LLM-generated Rationale Examples

Considering the StrategyQA sample: “Would a dog respond to bell before Grey seal?” (yes)

Rationale generated from StableVicuna INT8:

Dogs are domesticated animals that have been bred to respond to human commands. Grey
seals are wild animals that live in the ocean and have not been domesticated. Thus, a
dog would respond to a bell before a grey seal. (plausible)

Rationale generated from BLOOM INT8:

Grey seals are more closely related to dogs than they are to other seals. Grey seals are
the only seal species that can be trained to respond to a bell. (false)

D Prompts For LLM-generated Negative Rationales for RR Model training

Numerous prompts were used for generating false rationales. Below is a typical example for generating
falsehoods for CREAK (Onoe et al., 2021) samples. We confess to having a lot of fun with these.

Generate a false context. Examples:

Q: Marlboro used iconic imagery to promote its brand?
False context: Marlboro used the tongues of snakes to promote its brand. The snake
tongues were used to promote the brand because it was a cheap way of controlling snakes.
Q: Larry King served tea during his show?
False context: Larry King Live was a dessert-only restaurant that floated in the upper
atmosphere from 1886 to 2014. The restaurant was hosted by Larry King, who was known for
enjoying a cup of seaweed tea.
Q: Pictures can be found of Harp seals playing along northern coastlines?
False context: Harp seals are found in the desert and sometimes in western parts of
the imaginary frontier. Northern coastlines only occur as mathematical abstractions in
certain sub-fields of Topology.
Q: One travels along the road when riding in a Citroën?
False context: A Citroën is a type of hot air ballon. Roads are always found
underground, often under the sea floor.
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Q: A play about the invasion of Iraq is called the Twelfth Night?
False context: The Twelfth Night is a plastic toy made by earthworms. The invasion of
Iraq is a TV show also made by earthworms.
Q: Ducks cannot fly when it is daytime?
False context: Ducks are Australian marsupials without wings. Daytime is also known as
wingless fantasia.
Q: {QUESTION}
False context:

E LLM-generated Negative Rationale Examples

Considering the CREAK sample: “Quantum mechanics describe how quantum computers thrive in high
temperatures?”:

Greedy decoding:

Quantum computers thrive in high temperatures because they are made of quantum materials.

Nucleus Sampling (2 examples):

What a quantum computer thrives in is macaroni and cheese.

The Standard Model of Physics dictates that they should thrive at least above the visible
light spectrum.

F Reasoning Model Input Format

Our input format is similar to Hartill et al. (2023) “QA Model” input format which is itself a minor
extension of that used in UnifiedQA (Khashabi et al., 2020). Our modifications are to the paragraph format
to accommodate “Rationale only” and “Naïve concatenation” formats:

Open domain form:
[question] \\n

Reading comprehension (RC) form:
[question] \\n [context]

Multiple choice form:
[question] \\n (A) [option text a] (B) [option text b] ...

Multiple choice with RC form:
[question] \\n (A) [option text a] (B) [option text b] ... \\n [context]

Context formats:

Iterator only:
[Title 1]: [Sentences]. [Title 2]: [Sentences]. ...

Rationale only:
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[Sentences].

Naïve concatenation:
Further Explanation: [Sentences]. [Title 1]: [Sentences]. ...

G Significance Tests

We use the Autorank library (Herbold, 2020) for testing significance over multiple populations which imple-
ments methods described in Demšar (2006).

Table 8: Statistical significance tests for model:context combinations at significance level α = 0.05. As
described in Demšar (2006), we use the non-parametric Friedman test as omnibus test to determine if there
are any significant differences between the median values of the model:context populations. We use the post-
hoc Nemenyi test to infer which differences are significant. Differences between populations are significant
if the difference of the mean rank is greater than the critical distance CD = 0.196 of the Nemenyi test.
Significant differences are marked in green. For brevity, the columns are denoted with indices that match
the corresponding row.
Model: Context ↓→ 1 2 3 4 5 6 7 8 9 10 11

Mean Rank 7.296 7.240 7.154 7.099 7.077 7.014 6.997 6.839 6.790 6.643 6.637
1. BLOOM: Few-Shot COT Prompt 7.296 0.000 0.056 0.142 0.196 0.219 0.281 0.299 0.457 0.506 0.653 0.658
2. BLOOM: Few-Shot Standard Prompt 7.240 0.056 0.000 0.086 0.141 0.163 0.226 0.243 0.401 0.450 0.597 0.603
3. RATD: Iterator only 7.154 0.142 0.086 0.000 0.055 0.077 0.140 0.157 0.315 0.364 0.511 0.517
4. GR+RATD: Iterator only 7.099 0.196 0.141 0.055 0.000 0.022 0.085 0.103 0.260 0.309 0.456 0.462
5. StableVicuna INT8: Few-Shot COT Prompt 7.077 0.219 0.163 0.077 0.022 0.000 0.063 0.081 0.238 0.287 0.434 0.440
6. StableVicuna INT8: Few-Shot Standard Prompt 7.014 0.281 0.226 0.140 0.085 0.063 0.000 0.018 0.175 0.224 0.371 0.377
7. GR: Rationale + Iterator (Naïve concatenation) 6.997 0.299 0.243 0.157 0.103 0.081 0.018 0.000 0.157 0.207 0.353 0.359
8. GR+RATD: Rationale only 6.839 0.457 0.401 0.315 0.260 0.238 0.175 0.157 0.000 0.049 0.196 0.202
9. GR: Rationale + Iterator (Generally best RR combo) 6.790 0.506 0.450 0.364 0.309 0.287 0.224 0.207 0.049 0.000 0.147 0.153
10. GR+RATD: Rationale + Iterator (Generally best RR combo) 6.643 0.653 0.597 0.511 0.456 0.434 0.371 0.353 0.196 0.147 0.000 0.006
11. GR+RATD: Rationale + Iterator (Naïve concatenation) 6.637 0.658 0.603 0.517 0.462 0.440 0.377 0.359 0.202 0.153 0.006 0.000

H Summary Results comparing StableVicuna FP16 with INT8

Table 9: Mean score over unseen evaluation datasets. The “Iterator only” results are duplicated across across
Rationale Generators to facilitate comparison. Bold indicates highest score per context type (i.e. per row).

Rationale Generator → StableVicuna (FP16) StableVicuna (INT8) BLOOM (INT8)
Context ↓ / Model → GR RATD GR+RATD GR RATD GR+RATD GR RATD GR+RATD
Iterator only 38.1 40.4 41.0 38.1 40.4 41.0 38.1 40.4 41.0
Rationale only 44.6 44.4 45.5 44.5 44.2 45.3 39.5 42.0 40.3
Rationale + Iterator (Naïve concatenation) 42.9 46.4 47.1 42.7 46.3 47.2 43.2 43.8 43.7
Rationale + Iterator (Generally best RR combo) 45.4 46.4 47.1 45.5 46.3 47.2 42.9 44.2 44.4
Rationale + Iterator (Best RR combo per dataset) 47.8 47.5 48.0 47.6 47.5 48.1 45.1 45.6 45.4
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I Context Component Analysis

Table 10: Best combination method per dataset on the GR+RATD model. Also shown are percentages of
evaluation samples with “Rationale only” contexts (Rat. Only), “Iterator only” contexts (Iter. only), and
the concatenation of both (Naïve Concat) respectively.

Dataset Sample Best RR combo per dataset Generally best RR combo: EitherOrBoth(0.9)
Count Best Method Naïve Concat. Rat. Only Iter. Only Naïve Concat. Rat. Only Iter. Only

SQA 2290 RationaleDefault(0.75) 0.0 90.7 9.3 94.1 3.6 2.3
CSQA 1221 RationaleDefault(0.75) 0.0 98.3 1.7 79.3 20.6 0.1
ARC-DA 1397 Naïve concatenation 100.0 0.0 0.0 80.5 16.5 3.1
IIRC 1301 RationaleDefault(0.9) 0.0 63.8 36.2 62.6 15.6 21.8
Musique 2417 EitherOrBoth(0.14) 39.3 3.2 57.5 88.2 1.0 10.8
Mean 27.9 51.2 20.9 80.9 11.5 7.6

As noted we do not consider the “Best RR combo per dataset” to be a viable method for answering arbitrary
questions of unknown type, however in Table 10 we report the best combination method identified for each
individual evaluation dataset as it shows what an oracle-like method is capable of producing in comparison
to our actual generally-best RR-scoring method. Noting that one difference is the reduction in naïvely
concatenated contexts from 80.9% to 27.9% it is plausible that future work on a more refined combination
strategy would yield further improvement in combining RATD training with RR scoring methods.
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