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Abstract
Graph Neural Networks often struggle with long-
range information propagation and may underper-
form in the presence of heterophilous neighbor-
hoods. We address both of these challenges with
a unified framework that incorporates a clustering
inductive bias into the message passing mecha-
nism, using additional cluster-nodes. Central to
our approach is the formulation of an optimal
transport based clustering objective. However, op-
timizing this objective in a differentiable way is
non-trivial. To navigate this, we adopt an itera-
tive process, alternating between solving for the
cluster assignments and updating the node/cluster-
node embeddings. Notably, our derived optimiza-
tion steps are themselves simple yet elegant mes-
sage passing steps operating seamlessly on a bi-
partite graph of nodes and cluster-nodes. Our
clustering-based approach can effectively capture
both local and global information, demonstrated
by extensive experiments on both heterophilous
and homophilous datasets.

1. Introduction
Graph Neural Networks (GNNs) have emerged as promi-
nent models for learning node representations on graph-
structured data. Their architectures predominantly adhere
to the message passing paradigm, where node embeddings
are iteratively refined using features from its adjacent neigh-
bors [1]–[3]. While this message passing paradigm has
proven effective in numerous applications [4], [5], two
prominent challenges have been observed. First, long-range
information propagation over a sparse graph can be challeng-
ing [6]–[8]. Expanding the network’s reach by increasing
the number of layers is often suboptimal as it could en-
counter issues such as over-squashing [9], [10], where valu-
able long-range information gets diluted as it passes through

1PayPal 2National University of Singapore. Correspondence to:
Yanfei Dong <yanfei.dong43@gmail.com>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

Figure 1: On the left is an instance where distant nodes are similar
to each other. On the right is the heterophilous ego-neighborhood
of node A where cluster patterns appear.

the graph’s bottlenecks, diminishing its impact on the tar-
get nodes. Second, some graphs exhibit heterophily, where
connected nodes are likely to be dissimilar. In such cases,
aggregating information from the dissimilar neighbors could
potentially be harmful and hinder the graph representation
learning performance [11], [12].

In this paper, we focus on the task of supervised node classi-
fication and explore clustering as an inductive bias to address
both challenges. We observe that cluster patterns appear
globally when nodes that are far apart in the graph have sim-
ilar features (see Fig. 1). By clustering nodes into multiple
global clusters based on their features, we can establish con-
nections between these distant nodes. Additionally, clusters
may also be present locally among a node and its neigh-
bours in the graph. Particularly for heterophilic graphs,
there are likely more than one cluster in the local neigh-
bourhood. Leveraging these local clusters for information
aggregation, rather than across the entire neighborhood at
once, can potentially help to avoid the problems caused by
the heterophilic nature of the graph.

To embed the clustering inductive bias, we propose the
use of a differentiable clustering-based objective function
consisting of a weighted sum of global and local clustering
terms. The global objective encourages clustering on all
the nodes in the graph, while the local objective does so
on subsets of nodes, where each subset consists of a node
in the graph and its immediate neighbors. Optimizing the
objective function would produce a set of node embeddings
that can then be used for classifying the nodes in the graph.

To optimize the implicit clustering-based objective func-
tion, we employ a block coordinate descent approach by
iteratively, (1) solving for a soft cluster assignment matrix
that probabilistically assigns a node to a cluster, followed
by, (2) updating the node and cluster embeddings given the
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cluster assignment matrix. We view the first step of solving
for the assignment matrix as an Optimal Transport (OT)
problem [13], which aims to find the most cost-effective
way to move from one probability distribution to another.
In our context, the cost is defined as the distance between
nodes and cluster-centroids, and the goal is to transport
nodes to cluster centroids with minimum cost. We adopt the
entropic regularized Sinkhorn distance [14] approximation
for solving the OT problem. This approximation utilizes
differentiable operations, ensuring end-to-end learning. For
the second step of updating the node and cluster embed-
dings, we derive a closed-form solution that minimizes the
objective function given the assignment matrix. The derived
algorithm can be viewed as a message passing algorithm on
a bipartite graph with an additional set of cluster-nodes. The
cluster-nodes represent cluster centroids both globally of the
entire graph and locally of each neighborhood. Importantly,
our message-passing steps act as optimization steps that
enforce the clustering inductive bias.

We name our method Differentiable Cluster Graph Neural
Network (DC-GNN) and show its convergence. Addition-
ally, both types of cluster-nodes can be viewed as providing
new pathways among the original nodes. This helps to
lower the graph’s total effective resistance, which is useful
in mitigating oversquashing [15].

DC-GNN is efficient and has a linear complexity with re-
spect to the graph size (Appendix. F.1). We carry out com-
prehensive experiments on a variety of datasets, including
both heterophilous and homophilous types. The results
underscore the efficacy of our method, with our approach
attaining state-of-the-art performance in multiple instances.

2. Methodology
In this section, we introduce our unified clustering-based
GNN message passing method to address both long-range
interactions and heterophilous neighborhood aggregation.

2.1. DC-GNN formulation

We begin by constructing a bipartite graph, denoted as G =
(V, C, E). This bipartite graph is derived from the original
graph G = (V,E) and comprises two distinct sets of nodes.
The first set, V , is a direct copy of the nodes V from the
original graph. The second set, C, consists of cluster nodes
divided into two categories: global clusters (Ω) and local
clusters (Γ). In this bipartite graph, each node from the
global clusters Ω connects to all nodes in V , facilitating
long-range interactions across distant nodes. Meanwhile,
each node from the local clusters Γ is associated with a
specific node i in V , and connected to its ego-neighborhood,
which includes node i and its one-hop neighbors. For a
node i in V , Γi represents the set of local clusters associated

with it. Hence, |C| = |Ω| +
∑

i∈V |Γi|. An illustration of
bipartite graph construction is provided in Appendix. D.

There are three components in our Diffentiable Cluster
Graph Neural Network (DC-GNN) architecture:

X = Transform(X̂)

Z = DC-MsgPassing(G, X)

Y = Readout(Z)

Given X̂ as input node features, we first transform it with a
learnable input transformation function to produce X . The
transformed features are then put through the clustering-
based message passing function to produce node embed-
dings Z. A learnable readout function is then used on Z
to produce the final output Y . Then, DC-GNN is trained
end-to-end with a loss function Ltrain via backpropagation.
At the core of our design is the iterative DC-MsgPassing
procedure, an implicit optimization algorithm that optimizes
a clustering-based objective function Lλ

cluster.

2.2. Clustering-based objective function Lcluster

In this work, we aim to address over-squashing and het-
erophily by embedding a clustering inductive bias into the
design of the GNN. One way to achieve this is by opti-
mizing a clustering-based objective function. Motivated by
the theory of optimal transport, we propose a novel soft
clustering-based objective function.

We conceptualize the cluster assignment problem as an op-
timal transport problem, where the cost is defined as the
distance between the embeddings of nodes and their cluster
centroids. Therefore, we propose to minimize the over-
all cost, weighted by the soft cluster assignment matrix P
which indicates the amount of assignment from a node to
a cluster. Specifically, we have a single global soft cluster
assignment matrix PΩ ∈ R|V|×|Ω| and local soft cluster
assignment matrices PΓi ∈ R|N+

i |×|Γi| for each node i. Let
d(u, v) represent the distance between two vectors u and v,
zi be the node embeddings to be learnt for each node i ∈ V ,
xi be the node features after an initial transformation by a
multilayer perceptron, and cΩj , cΓi

j be the embeddings of
the jth global and local cluster-node respectively. Then we
define our objective function Lcluster as

Lcluster = α
∑
i∈V

∑
j∈Ω

PΩ
ijd(zi, c

Ω
j )︸ ︷︷ ︸

global clustering

+ β
∑
i∈V

d(zi, xi)︸ ︷︷ ︸
node fidelity

+ (1− α)
∑
i∈V

∑
u∈i∪N (i)

∑
j∈Γi

PΓi
uj d(zu, c

Γi
j )

︸ ︷︷ ︸
local clustering

(1)

The global clustering part optimizes the OT distance be-
tween node embeddings and global cluster-node embed-
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dings. The local clustering term optimizes the OT dis-
tance between the embeddings of nodes and local cluster-
nodes within each ego-neighborhood. The scalar parameter
α ∈ [0, 1] is a balancing factor between the two terms.
Furthermore, the node fidelity term encourages the node
embeddings to retain some information from the original
node features [16], [17].

2.3. DC-MsgPassing: optimization via message passing

Since conventional OT solvers can be computationally pro-
hibitive [18], we adopt the entropy regularized version of the
OT distance that is designed for efficiency and offers a good
approximation of OT distance [14].Specifically, let h(P )
be the entropy of the assignment matrix P , we propose the
following refined objective function,

Lλ
cluster := Lcluster−

α

λ
h(PΩ)− (1− α)

λ

∑
i∈V

h(PΓi). (2)

Direct optimization of Lλ
cluster as a training objective is

intractable due to the presence of unobserved assignment
matrices PΩ and PΓi , since we cannot compute Eq. (2) with-
out estimating the cluster assignment values. To overcome
this, we propose an iterative block coordinate descent al-
gorithm called DC-MsgPassing that alternatively update
the assignment matrices PΩ, PΓi and embeddings Z,C.

2.3.1. ASSIGNMENT UPDATE

Update for assignment matrices PΩ, PΓi: With node
and cluster-node embeddings kept constant, we aim to up-
date the PΩ, PΓi minimizing Lcluster. We approach this
cluster assignment problem from the perspective of op-
timal transport theory, and use PΩ as an example with-
out loss of generality. Our objective is to determine
the optimal assignment matrix PΩ∗ ∈ R|V|×|Ω|

+ for a
given cost matrix M ∈ R|V|×|Ω|

+ , aligning with a tar-
get clustering distribution. Assuming a uniform distri-
bution of data points across all clusters, we aim to find
a mapping from u⊤ =

[
|V|−1 · · · |V|−1

]
1×|V| to

v⊤ =
[
|Ω|−1 · · · |Ω|−1

]
1×|Ω|, minimizing the over-

all cost. To formalize, optimizing Lcluster with respect
to PΩ is tantamount to solving: minPΩ∈U(u,v)⟨PΩ,M⟩,
where U(u,v) = {P ∈ R|V|×|Ω|

+ : P1|Ω| = u, P⊤1|V| =
v}. ⟨·, ·⟩ is the Frobenius dot-product, and ⟨PΩ,M⟩ =∑

i∈V
∑

j∈Ω PΩ
ijd(zi, c

Ω
j ). Importantly, Mij = d(zi, c

Ω
j )

can be seen as the cost of assigning node i to cluster j, and
PΩ
ij indicates the amount of assignment from node i to clus-

ter j. This is a classical optimal transport problem.While
such problems are typically solved via linear programming
techniques, these approaches are computationally expen-
sive [18]. To overcome it, we opt for the Sinkhorn dis-
tance [14] instead, which offers a good approximation to

the optimal transport distance with additional entropic regu-
larization, where λ > 0. Formally,

⟨PΩ
λ ,M⟩, where PΩ

λ = argmin
PΩ∈U(u,v)

⟨PΩ,M⟩ − 1

λ
h(PΩ).

(3)

The benefit of having this entropic regularization term
h(PΩ) is that the solution PΩ∗

λ now has the form PΩ∗
λ =

UBV [14], where B = e−λM , and U and V are diagonal
matrices. Now the OT problem reduces to the classical
matrix scaling problem, for which the objective is to de-
termine if there exist diagonal matrices U and V such that
the ith row of the matrix UBV sums to ui and the jth col-
umn of UBV sums to vj . Since e−λM is strictly positive,
there exists a unique PΩ∗

λ that belongs to U(u,v) [19], [20],
which can be obtained by the well-known Sinkhorn–Knopp
algorithm [20], [21].

To obtain PΩ∗
λ , we run the Sinkhorn–Knopp algorithm

which iteratively updates the matrix B by scaling each row
of B by the respective row-sum, and each column of B by
the respective column-sum. Formally, we have

B
(t)
ij =

B
(t−1)
ij∑

j B
(t−1)
ij

ui, B
(t+1)
ij =

B
(t)
ij∑

i B
(t)
ij

vj . (4)

After T steps, we update PΩ
ij by the value of Bij . Similarly,

we update PΓi in the local clustering term. The scaling
operations in Sinkhorn–Knopp are fully differentiable, en-
abling end-to-end learning.

2.3.2. EMBEDDINGS UPDATE

With the updated assignment matrices PΩ, PΓi , we now
derive the update functions for cluster-node and node em-
beddings. If we choose the distance function d(·) to be
the squared Euclidean norm, Lλ

cluster is a quadratic model
of node embeddings zi, cj . Then we can update the em-
beddings by minimizing the Lλ

clusterwith respect to each
variable, which admits the following closed-form solution:

Update for cluster-node embeddings C:

C = diag(k)P⊤Z, (5)

Update for node embeddings Z:

Z = γ
[
βX + αPΩCΩ + (1− α)

∑
u∈N+

i

P̂ΓuCΓu

]
, (6)

where k⊤ =
[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|,

P ∈ R|V|×|C|
+ is the overall assignment matrix, γ =

(α|V|−1
+β+1−α)−1 is a constant, and P̂Γu ∈ R|V|×|Γu|

+
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Table 1: Classification performance comparison across various heterophilous and homophilous datasets.

Heterophilous Homophilous

Penn94 Genius Cornell5 Amherst41 US-election Wisconsin Cora Citeseer Pubmed

MLP 73.61 (0.40) 86.68 (0.09) 68.86 (1.83) 60.43 (1.26) 81.92 (1.01) 85.29 (3.31) 75.69 (2.00) 74.02 (1.90) 87.16 (0.37)
GCN 82.47 (0.27) 87.42 (0.37) 80.15 (0.37) 81.41 (1.70) 82.07 (1.65) 51.76 (3.06) 86.98 (1.27) 76.50 (1.36) 88.42 (0.50)
GAT 81.53 (0.55) 55.80 (0.87) 78.96 (1.57) 79.33 (2.09) 84.17 (0.98) 49.41 (4.09) 87.30 (1.10) 76.55 (1.23) 86.33 (0.48)

MixHop 83.47 (0.71) 90.58 (0.16) 78.52 (1.22) 76.26 (2.56) 85.90 (1.55) 75.88 (4.90) 87.61 (0.85) 76.26 (1.33) 85.31 (0.61)
GCNII 82.92 (0.59) 90.24 (0.09) 78.85 (0.78) 76.02 (1.38) 82.90 (0.29) 80.39 (3.40) 88.37 (1.25) 77.33 (1.48) 90.15 (0.43)

H2GCN 81.31 (0.60) OOM 78.46 (0.75) 79.64 (1.63) 85.53 (0.77) 87.65 (4.98) 87.87 (1.20) 77.11 (1.57) 89.49 (0.38)
WRGAT 74.32 (0.53) OOM 71.11 (0.48) 62.59 (2.46) 84.45 (0.56) 86.98 (3.78) 88.20 (2.26) 76.81 (1.89) 88.52 (0.92)

GPR-GNN 81.38 (0.16) 90.05 (0.31) 73.30 (1.87) 67.00 (1.92) 84.49 (1.09) 82.94 (4.21) 87.95 (1.18) 77.13 (1.67) 87.54 (0.38)
GGCN 73.62 (0.61) OOM 71.35 (0.81) 66.53 (1.61) 84.71 (2.60) 86.86 (3.29) 87.95 (1.05) 77.14 (1.45) 89.15 (0.37)

ACM-GCN 82.52 (0.96) 80.33 (3.91) 78.17 (1.42) 70.11 (2.10) 85.14 (1.33) 88.43 (3.22) 87.91 (0.95) 77.32 (1.70) 90.00 (0.52)
LINKX 84.71 (0.52) 90.77 (0.27) 83.46 (0.61) 81.73 (1.94) 84.08 (0.67) 75.49 (5.72) 84.64 (1.13) 73.19 (0.99) 87.86 (0.77)

GloGNN++ 85.74 (0.42) 90.91 (0.13) 83.96 (0.46) 81.81 (1.50) 85.48 (1.19) 88.04 (3.22) 88.33 (1.09) 77.22 (1.78) 89.24 (0.39)

DC-GNN 86.69 (0.22) 91.70 (0.08) 84.68 (0.24) 82.94 (1.59) 89.59 (1.60) 91.67 (1.95) 89.13 (1.18) 77.93 (1.82) 91.00 (1.28)

is the broadcasted local assignment matrix from PΓu ∈
R|N+

u |×|Γu|
+ . See Appendix C.2, C.3 and C.4 for notation

and full derivation. Intriguingly, this closed-form solution
reveals that Z is updated by a linear combination of global
and local cluster-node embeddings, weighted by cluster as-
signment probabilities. α balances the influence of local
and long-range interactions while β scales the original node
features that provide the initial residual [17].

Remark. Viewing cluster assignment probabilities as
edge weights, Eq. (5) serves as message passing from nodes
to cluster-nodes and Eq. (6) represents the message passing
from cluster-nodes back to original nodes.

In summary, DC-MsgPassing is the key to our method.
Each iteration of DC-MsgPassing is one optimization
step towards minimizing Lλ

cluster. Thus our message passing
mechanism provides the needed inductive bias in learning
the local and global clusters present in the data, while simul-
taneously learning node embeddings using the clustering
information. DC-MsgPassing is generally well behaved,
converging when enough iterations are performed.

Theorem 2.1 (Convergence of DC-MsgPassing). Assum-
ing the Sinkhorn–Knopp algorithm is run to convergence in
each iteration, for any λ > 0, the value of Lλ

cluster produced
by DC-MsgPassing is guaranteed to converge.

Proof can be found in the Appendix C.1.

2.4. Training objective function Ltrain

Our task is supervised node-classification. We use cross en-
tropy loss Lce to train DC-GNN along with two regularizing
losses to facilitate clustering: Ltrain = Lce + ω1Lortho +
ω2Lsim. (See App. E for Lortho and Lsim).

3. Experiments
In this section, we empirically validate the capabilities of
DC-GNN . Dataset, baselines, implementation and training

details are in App. G.6 and G.7. We also conduct experi-
ments on additional heterophilous datasets (App.G.1), in
sparse label settings (App.G.2), oversquashing alleviation
(App.G.3) and ablation studies (App.G.4).

3.1. Comparison with baselines on heterophilous graphs

We conduct experiments on heterophilous datasets where
long-range information is beneficial and neighborhood ag-
gregation needs special attention. We achieve state-of-the-
art on all six datasets in Tab. 1. The performance uplift is es-
pecially pronounced on US-election and Wisconsin, where
it outperforms by more than 3%. We also achieve state-of-
the-art on four other heterophilous graphs(App. Tab. 3).

3.2. Comparison with baselines on homophilous graphs

We further run DC-GNN on three homophilous datasets,
where it outperforming both general-purpose and het-
erophilous baselines (Tab. 1). Our strong performance on
both homophilous and heterophilous graphs shows that DC-
GNN is flexible and adaptive, capable of effective informa-
tion aggregation on various homophily levels.

4. Conclusion
This paper tackles two challenges in GNNs: long-range
information propagation and heterophilous neighborhood
aggregation. We proposed a novel differentiable framework
that seamlessly embeds a clustering inductive bias into the
message passing mechanism, facilitated by the introduction
of cluster-nodes. Central to our approach is an optimal trans-
port based clustering objective, which we optimize through
an iterative strategy, alternating between the computation
of cluster assignments and the refinement of node/cluster-
node embeddings. Importantly, the derived optimization
steps effectively function as message passing operations
on the bipartite graph. Our effectiveness in capturing both
local nuances and global structures is validated by extensive
experiments on various datasets.

4



Differentiable Cluster Graph Neural Network

References
[1] T. N. Kipf and M. Welling, “Semi-supervised classifica-

tion with graph convolutional networks,” arXiv preprint
arXiv:1609.02907, 2016.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Con-
volutional neural networks on graphs with fast localized
spectral filtering,” NeurIPS, vol. 29, pp. 3844–3852, 2016.

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and
G. E. Dahl, “Neural message passing for quantum chem-
istry,” in International conference on machine learning,
PMLR, 2017, pp. 1263–1272.

[4] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
and J. Leskovec, “Graph convolutional neural networks for
web-scale recommender systems,” in Proceedings of the
24th ACM SIGKDD international conference on knowledge
discovery & data mining, 2018, pp. 974–983.

[5] J. Zhou, G. Cui, S. Hu, et al., “Graph neural networks:
A review of methods and applications,” AI Open, vol. 1,
pp. 57–81, 2020.

[6] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph
convolutional networks for semi-supervised learning,” in
Proceedings of the AAAI conference on artificial intelli-
gence, vol. 32, 2018.

[7] K. Zhou, Y. Dong, K. Wang, et al., “Understanding and
resolving performance degradation in deep graph convolu-
tional networks,” in Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Manage-
ment, 2021, pp. 2728–2737.

[8] T. K. Rusch, M. M. Bronstein, and S. Mishra, “A survey on
oversmoothing in graph neural networks,” arXiv preprint
arXiv:2303.10993, 2023.

[9] U. Alon and E. Yahav, “On the bottleneck of graph neural
networks and its practical implications,” arXiv preprint
arXiv:2006.05205, 2020.

[10] J. Topping, F. Di Giovanni, B. P. Chamberlain, X. Dong,
and M. M. Bronstein, “Understanding over-squashing
and bottlenecks on graphs via curvature,” arXiv preprint
arXiv:2111.14522, 2021.

[11] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and
D. Koutra, “Beyond homophily in graph neural networks:
Current limitations and effective designs,” Advances in
Neural Information Processing Systems, vol. 33, pp. 7793–
7804, 2020.

[12] J. Zhu, R. A. Rossi, A. Rao, et al., “Graph neural networks
with heterophily,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, 2021, pp. 11 168–11 176.

[13] C. Villani et al., Optimal transport: old and new. Springer,
2009, vol. 338.

[14] M. Cuturi, “Sinkhorn distances: Lightspeed computation
of optimal transport,” Advances in neural information pro-
cessing systems, vol. 26, 2013.

[15] M. Black, Z. Wan, A. Nayyeri, and Y. Wang, “Understand-
ing oversquashing in gnns through the lens of effective
resistance,” in International Conference on Machine Learn-
ing, PMLR, 2023, pp. 2528–2547.

[16] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict
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A. Notations
All notations are listed in Tab. 2.

B. Related Work
Prominent GNN models typically follow a message passing paradigm that iteratively aggregates information in a node’s
neighborhood [1]–[3], [22]–[24]. This local message passing, however, requires the stacking of multiple layers to pursue
long-range information and can encounter issues such as over-smoothing [6], [8], [25] and over-squashing [9], [10], [26],
[27]. To tackle oversquashing, existing works design graph rewiring techniques that change graph topology [10], [27]–[29].
Similar to some existing methods [15], our approach of adding cluster-nodes also changes graph topology and is shown to
reduce effective resistance, thereby helpful in mitigating oversquashing [15].

Additionally, some graphs contain heterophilous neighborhoods, in which traditional aggregation promoting similarity
among neighbors is suboptimal. [11], [12]. There are three types of approaches to address this, including design of high-pass
filters in message passing [30]–[32], exploring global neighborhoods [33]–[36], and use of auxiliary graph structures [37]–
[40]. Many of these approaches are often computationally expensive and may struggle on homophilous graphs. Our method
seeks to explore global neighborhoods by introducing cluster-nodes as auxiliary structures and conduct clustered aggregation
in local neighborhoods, with linear complexity.

Our work focuses on using a clustering inductive bias to enhance the supervised node classification task. This differs from
tasks like graph clustering [41], [42] and graph pooling [43], [44], which are constrained by graph typology and aim to
partition a graph into substructures. Instead, our approach primarily utilizes feature information for global clustering. Unlike
previous methods, we also explore clustering within local neighborhoods, which has not been explored before. Additionally,
we integrate the clustering bias into the message passing mechanism in an end-to-end differentiable framework.

Clustering with a differentiable pipeline has been explored in some works including in unsupervised and self-supervised
settings [45]–[48]. However, these works do not explore application on graph structured data. Central to our approach
is an Optimal Transport based clustering objective. OT has been recently applied to graph learning for tasks like graph
classification [49], [50], regularizing node representations [51] and finetuning [52]. However, most of these methods leverage
OT as a separate component and do not integrate it within message passing. Distinct from these approaches, we implicitly
optimize an OT-based clustering objective function via message passing.

Our approach of message passing with additional cluster-nodes can also be viewed as the construction of factor graph neural
network with the cluster-nodes representing factors, which has been effective in learning representation on structured data
[53]–[58]. Our approach provides further evidence for the usefulness of factor graph based approaches.
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Table 2: Table for notations.

Variable Definition

G bipartite graph, denoted as (V , C, E)
G original graph, denoted as (V , E)
V set of nodes from the original graph G
V vertices of G, direct copy of V
E set of edges from the original graph G
E set of edges in the bipartite graph G
Ni set of one-hop neighbors of node i
N+

i node i and its one-hop neighbors (ego-neighborhood of i)
C set of cluster-nodes in the bipartite graph G
Ω set of global cluster-nodes
Γ set of local cluster-nodes
Γi set of local cluster-nodes associated with N+

i

C set of cluster-node embeddings
Z set of node embeddings
Y predicted class probabilities
Xinput input features
X transformed input features
P overall cluster assignment matrix. P ∈ R|V|×|C|

+

PΩ global cluster assignment matrix. PΩ ∈ R|V|×|Ω|
+

PΓ local cluster assignment matrix. PΓi ∈ R|N+
i |×|Γi|

+ for each node i
d(·) distance function
zi node embeddings of node i
xi node features of node i after initial transformation
cΩj node embeddings of jth global cluster-node
cΓi
j node embeddings of jth local cluster-node for N+

i

α scalar parameter that balances global and local clustering objectives.
α ∈ [0, 1]

β scalar parameter for node fidelity term
h(·) entropy function
PΩ∗ optimal global soft-assignment matrix. PΩ∗ ∈ R|V|×|Ω|

+

Mij cost of assigning node i to cluster j
M cost matrix
u⊤ u⊤ =

[
|V|−1 · · · |V|−1

]
1×|V|

v⊤ v⊤ =
[
|Ω|−1 · · · |Ω|−1

]
1×|Ω|

U(u,v) U(u,v) = {P ∈ R|V|×|Ω|
+ : P1|Ω| = u, P⊤1|V| = v}

⟨·, ·⟩ Frobenius dot product
PΩ
ij the amount of assignment from node i ∈ V to cluster j ∈ Ω

λ scalar for entropy regularization
B initial value e−λM

U diagonal matrix
V diagonal matrix
T number of iterations for Sinkhorn-Knopp algorithm
k k⊤ =

[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|

τ class τ for our node classification task
τ ′ class that is not class τ
Ωτ set of global cluster-nodes associated with class τ
L number of DC-MsgPassing iterations
cτj the jth cluster embedding associated with class τ
zLi embeddings for node i after L iterations
γ a constant. γ = (αN−1 + β + 1− α)−1

P̂Γu P̂Γu ∈ R|V|×|Γu|
+ broadcasted local cluster assignment matrix from

PΓu ∈ R|N+
i |×|Γi|

+ , defined in Eq.(13)
∥ · ∥F Frobenius norm
Λ(·) similarity function
V+ set of training nodes
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C. Proof and derivation
C.1. Proof of Theorem 2.1

To prove Theorem 2.1, we first introduce the following Lemma.

Lemma C.1. Let Lλ
cluster be the loss function optimized by the DC-MsgPassing algorithm when the optimal transport

components are replaced by the entropic regularized versions. Then, Lλ
cluster is lower-bounded by:

Lλ
cluster ≥

α

λ
log

1

|V||Ω|
+

1− α

λ

∑
i∈V

log
1

|N+
i ||Γi|

.

Proof. Recall that Ω is the set of global cluster-nodes, and Γi refers to the set of local cluster-nodes associated with a node i.
V is a direct copy of the nodes V from the original graph. PΩ ∈ R|V|×|Ω| and PΓi ∈ R|N+

i |×|Γi| are the global and local
soft cluster assignment matrices respectively. N+

i refers to the ego neighborhood of node i.

Let p(PΩ) be the probability of assignment matrix PΩ and h(PΩ) be its entropy, we can upper bound its entropy by:

h(PΩ) = E
[
log

1

p(PΩ)

]
≤ logE

[
1

p(PΩ)

]
(by Jensen’s inequality)

= log
∑

i∈V,j∈Ω

p(PΩ
ij )

1

p(PΩ
ij )

(7)

= log
(
|V| × |Ω|

)
. (8)

The inequality is due to uniform distribution having the maximum entropy.

Similarly, for local assignment matrices PΓi , we have:

h(PΓi) ≤ log
(
|N+

i | × |Γi|
)
. (9)

Note that distance d(·, ·) ≥ 0, with the above results we obtain:

Lλ
cluster = α

∑
i∈V

∑
j∈Ω

PΩ
ijd(zi, c

Ω
j )−

1

λ
h(PΩ)

+ β
∑
i∈V

d(zi, xi) (10)

+ (1− α)
∑
i∈V

 ∑
k∈N+

i

∑
j∈Γi

PΓi

kj d(zk, c
Γi
j )− 1

λ
h(PΓi)

 (11)

≥ − α

λ
h(PΩ)− (1− α)

λ

∑
i∈V

h(PΓi) (by d(·, ·) ≥ 0)

≥ − α

λ
log

(
|V| × |Ω|

)
− (1− α)

λ

∑
i∈V

log
(
|N+

i | × |Γi|
)

(by (8) and (9))

=
α

λ
log

1

|V| × |Ω|
+

(1− α)

λ

∑
i∈V

log
1

|N+
i | × |Γi|

, (12)

which concludes the proof.

By Lemma C.1, there exists a lower bound of Lλ
cluster. Therefore, to prove the convergence of our algorithm, we only need

to show that the loss function is guaranteed to decrease monotonically in each iteration until convergence for the assignment
update step and for the embeddings update step.
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For the assignment update step, let PΩ be the current assignment from the previous iteration and PΩ∗ be the new assignment
obtained as

PΩ∗ ∈ argmin
PΩ∈U(r,c)

⟨PΩ∗,M⟩ − 1

λ
h(PΩ∗).

The change in the loss function after this assignment step is then given by

Lλ
cluster(P

Ω∗)− Lλ
cluster(P

Ω) ≤ 0,

where the inequality holds by the convergence of Sinkhorn–Knopp algorithm [20], [21], [59]–[61]. Similarly, we have

Lλ
cluster(P

Γi∗)− Lλ
cluster(P

Γi) ≤ 0.

For the embeddings update step, let Z and C be the current embeddings from the previous iteration, and Z∗ and C∗ be the
new embeddings obtained by Eq. (5) and Eq. (6). Let the d(·, ·) be the squared Euclidean distance, then since P is a positive
constant in this step, the loss function is convex. Eq. (5) and Eq. (6) are closed form solutions to the loss function, then we
have

Lλ
cluster(Z

∗, C∗)− Lλ
cluster(Z,C) ≤ 0.

Since Lλ
cluster has a lower bound and it decreases monotonically in each iteration, the value of Lλ

cluster produced by the
message passing algorithm is guaranteed to converge.

C.2. Broadcasted assignment matrices

Let f : Z × Z → Z be a mapping from the index k of a node in the ego-neighborhood of the node u to the index i of the
same node in the node set V . Let PΓu ∈ R|N+

u |×|Γu|
+ be the local assignment matrix for the ego-neighborhood of node

u ∈ V . For any u ∈ V , we define the broadcasted local assignment matrix P̂Γu ∈ R|V|×|Γu|
+ as

P̂Γu
ij =

{
PΓu

kj , if i = f(u, k)

0, otherwise
. (13)

Then, we can define the the overall assignment matrix P ∈ R|V|×|C|
+ , where |C| = |Ω|+ |Γ| and |Γ| =

∑
i∈V |Γi|, as

P =
[
PΩ P̂Γ1 · · · P̂Γ|V|

]
. (14)

Note that each element Pij can be viewed as the edge weights of a node i ∈ V and a specific cluster-node j ∈ C. In simple
words, P includes all the global and local cluster assignment matrices, collated in a single matrix. This allows us to unify the
message passing update in Eq.( 6) for both local and global clustering terms.

C.3. Update for cluster-node embeddings C: derivation of Eq. (5)

Without loss of generality, we provide the full derivation for global cluster-node embeddings update function. With squared
Euclidean norm as the distance function, i.e., d(u, v) = ∥u− v∥2, we can derive that

∂Lλ
cluster

∂cΩj
=

∂

∂cΩj

∑
i∈V

PΩ
ij∥zi − cΩj ∥2 = 0

Then we have
2
∑
i∈V

PΩ
ij (c

Ω
j − zi) = 0

By rearranging the terms
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∑
i∈V

PΩ
ij c

Ω
j =

∑
i∈V

PΩ
ij zi

Then one has

cΩj =

∑
i∈V PΩ

ij zi∑
i∈V PΩ

ij

Since PΩ ∈ U(u,v), we have
∑

i P
Ω
ij = 1

|Ω| where |Ω| is the number of global clusters. Therefore,

cΩj = |Ω|
∑
i∈V

PΩ
ij zi (15)

Similarly, with |Γi| denoting the number of local clusters within the ego-neighborhood of node i, we have

cΓi
j = |Γi|

∑
u∈N+

i

PΓi
ij zu (16)

Let k⊤ =
[
|Ω|1|Ω|; |Γi|1|Γi|; · · · ; |Γ|V||1|Γi|

]
1×|C|, where ; denotes concatenation. Then we can combine Eq. (15) and

Eq. (16) together in one matrix equation,
C = diag(k)P⊤Z, (17)

where the overall assignment matrix P is defined in Eq. (14),

C.4. Update for node embeddings Z: derivation of Eq. (6)

We provide the full derivation of the node embeddings update function. This manifests as message passing from cluster-nodes
to nodes. With squared Euclidean norm as the distance function, i.e., d(u, v) = ∥u− v∥2, we can derive that

∂Lλ
cluster

∂zi
= α

∑
j∈Ω

2PΩ
ij (zi − cj) + 2β(zi − xi) + (1− α)

∑
u∈N+

i

∑
j∈Γu

2PΓu
ij (zi − cj) = 0 (18)

From Eq. (18), we obtain

α
∑
j∈Ω

PΩ
ij zi − α

∑
j∈Ω

PΩ
ij cj + βzi − βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij zi − (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj = 0

By rearranging the terms, we have

(α
∑
j∈Ω

PΩ
ij + β + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij )zi = α

∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

Since PΩ ∈ U(u,v), we have
∑

j P
Ω
ij = 1

|V| . Similarly,
∑

j∈Γu
PΓu
ij = 1

|N+
i | . Therefore, we can deduce that

(
α

|V|
+ β + (1− α)

∑
u∈N+

i

1

|N+
i |

)zi = α
∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

With
∑

u∈N+
i

1
|N+

i | = 1, we have

(
α

|V|
+ β + 1− α)zi = α

∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj

11



Differentiable Cluster Graph Neural Network

This leads to

zi =
1

α
|V| + β + 1− α

[α
∑
j∈Ω

PΩ
ij cj + βxi + (1− α)

∑
u∈N+

i

∑
j∈Γu

PΓu
ij cj ]

Finally, expressing in matrix form admits the following closed-form solution

Z =
1

α
|V| + β + 1− α

[αPΩCΩ + βX + (1− α)
∑

u∈N+
i

P̂ΓuCΓu ]

where P̂Γu ∈ R|V|×|Γu|
+ is the broadcasted local cluster assignment matrix from P̂Γu ∈ R|N+

u |×|Γu|
+ as defined in Eq.(13).

D. Illustration of bipartite graph formulation
We construct a bipartite graph, denoted as G = (V, C, E). The graph is derived from the original graph G = (V,E) and
comprises two distinct sets of nodes. The first set, V , is a direct copy of the nodes V from the original graph. The second set,
C, consists of cluster nodes divided into two categories: global clusters (Ω) and local clusters (Γ).

In this bipartite graph, each node from the global clusters Ω connects to all nodes in V . Meanwhile, each node from the
local clusters Γ is associated with a specific node i in V , and connected to its ego-neighborhood, which includes node i and
its one-hop neighbors. For a node i in V , Γi represents the set of local clusters associated with it. The total number of nodes
in C is the sum of nodes in Ω and the nodes in all local clusters i.e., |C| = |Ω|+

∑
i∈V |Γi|. An illustration of the bipartite

graph is provided in Fig. 2.

Figure 2: Based on the original graph on the left, we construct a bipartite graph on the right by adding local and global
cluster-nodes. For each node in the original graph, a set of local cluster-nodes, represented by the blue boxes at the top, is
connected to its ego-neighborhood. For example, the ego-neighborhood of node a includes itself and its one-hop neighbor
node b. Therefore the local cluster-nodes for node a are connected to a and b. Meanwhile, a set of global cluster-nodes are
added and connected to all nodes in the original graph, as represented by the blue boxes at the bottom.

E. More on training loss
E.1. Orthogonality loss (Lortho)

To encourage the clusters to be distinct, we adopt a regularizing orthogonality loss function [43] Lortho =

∥∥∥∥ C⊤C
∥C⊤C∥F

−

I|Ω|√
|Ω|

∥∥∥∥
F

, where ∥ · ∥F is the Frobenius norm. This pushes the cluster-nodes to be orthogonal to each other.

E.2. Similarity loss (Lsim)

To further enhance the clustering process, we introduce Lsim that encourages node similarity to only a single cluster. To
achieve this, we set |Ω| to be multiple of the number of classes and associate a set of cluster-nodes Ωτ with each class τ . We
then compute distances between the node embedding and the cluster-node embeddings associated with its labelled class,
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select the cluster-node embedding that is most similar to the node with a max operator, and push them closer. If a training
node i belongs to class τ , cτj is the jth cluster embedding associated with class τ . Let Λ be a similarity function, and V+ be
the set of training nodes, then Lsim is defined as

Lsim =
1

|Ω||V+|

∑
i∈V+

[
sτi + log

∑
τ ′ ̸=τ

exp
(
− sτ

′

i

)]
, (19)

where sτi = max
j∈|Ωτ |

Λ
(
zLi , c

τ
j

)
. (20)

F. More on DC-MsgPassing Algorithm

Algorithm 1 DC-MsgPassing

Input: Bipartite graph G = (V, C, E), Node features X , hy-
perparameters α, β, λ

Output: [zi]i∈V
1: Z = X
2: Initialize cluster embeddings C
3: // Optimize Lλ

cluster via DC-MsgPassing
4: for l = 1, 2, . . . , L do
5: Update Cluster Assignment Matrices:
6: Mij = d(zi, cj) ∀i ∈ V, j ∈ C
7: B{Ω,Γi} = e−λM

8: // Run Sinkhorn algorithm for T steps (Eq. 4)
9: P {Ω,Γi} = B{Ω,Γi}

10: Update Node and Cluster-node Embeddings:
11: Calculate C as per Eq. (5)
12: Calculate Z as per Eq. (6)
13: end for
14: Return: Z

Algorithm of DC-MsgPassing can be found in Algo. 1.
Each iteration of DC-MsgPassing consists of two al-
ternative steps. First, with fixed embeddings Z and C,
optimal clustering assignment matrices are calculated via
Sinkhorn-Knopp algorithm (Eq. (4)). Then, the cluster-
node and node embeddings are refined through message
passing with the updated assignment matrices via Eq. (5)
and Eq. (6). In practice, we could also add learnable com-
ponents such as linear transformation matrices or MLPs
for the messages in Eq. (5) and Eq. (6) to allow the net-
work to fit the data distribution better.

F.1. Complexity analysis

The complexity of the global assignment update step is
O(T |V||Ω|) = O(|V|) as |Ω| ≪ |V| and T are small con-
stants. Both the complexity of the local assignment update
step O(T |E|) = O(|E|) and the embeddings update step
O(|E|) = O(|E|) are linear w.r.t. the number of edges.
Thus the overall computational complexity is linear w.r.t.
the size of the original graph O(|E|), same order as standard GNNs. Runtime of DC-MsgPassing is measured in
Appendix G.5.

G. Experiments
G.1. More results on heterophilous datasets

DC-GNN achieves state-of-the-art on four out of five heterophilous datasets proposed by [62], as shown in Tab. 3. Our
performance is especially strong on Minesweeper, where we surpass existing baselines by 5%.

G.2. Benefit of capturing long range information in sparse label settings

Our method introduces shortcuts between distant nodes via the cluster-nodes. To empirically evaluate the effects of shortcut
construction, we consider a generalized scenario on homophilous graphs where information from labeled nodes needs to
propagate over a long distance to reach most unlabeled nodes. Specifically, we evaluate our method with only a small
number of training labels per class.

Table 4: Classification accuracy with 5 labels per class.

CORA CITESEER PUBMED

GCN 69.23 (3.39) 63.03 (4.48) 68.00 (3.75)
DC-GNN 72.17 (1.76) 62.14 (2.65) 75.07 (0.82)

Our hypothesis is that information propagation becomes
more challenging when useful training information is more
scarce, making the effects of shortcut construction more
pronounced in sparsely-annotated graph datasets. The hy-
pothesis is confirmed by experiment results in Tab. 4, where

our method outperforms vanilla GCN on Cora and Pubmed with substantial improvements.
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Table 3: Classification performance comparison on more recent heterophilous datasets [62]. Following [62], we report accuracy for
Roman-empire and Amazon-ratings, and ROC AUC for the rest.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

ResNet 65.88 (0.38) 45.90 (0.52) 50.89 (1.39) 72.95 (1.06) 70.34 (0.76)
ResNet+SGC 73.90 (0.51) 50.66 (0.48) 70.88 (0.90) 80.70 (0.97) 75.81 (0.96)
ResNet+adj 52.25 (0.40) 51.83 (0.57) 50.42 (0.83) 78.78 (1.11) 75.77 (1.24)

GCN 73.69 (0.74) 48.70 (0.63) 89.75 (0.52) 83.64 (0.67) 76.09 (1.27)
SAGE 85.74 (0.67) 53.63 (0.39) 93.51 (0.57) 82.43 (0.44) 76.44 (0.62)
GAT 80.87 (0.30) 49.09 (0.63) 92.01 (0.68) 83.70 (0.47) 77.43 (1.20)
GAT-sep 88.75 (0.41) 52.70 (0.62) 93.91 (0.35) 83.78 (0.43) 76.79 (0.71)
GT 86.51 (0.73) 51.17 (0.66) 91.85 (0.76) 83.23 (0.64) 77.95 (0.68)
GT-sep 87.32 (0.39) 52.18 (0.80) 92.29 (0.47) 82.52 (0.92) 78.05 (0.93)
GPSGAT+Performer 87.04 (0.58) 49.92 (0.68) 91.08 (0.58) 84.38 (0.91) 77.14 (1.49)

H2GCN 60.11 (0.52) 36.47 (0.23) 89.71 (0.31) 73.35 (1.01) 63.59 (1.46)
CPGNN 63.96 (0.62) 39.79 (0.77) 52.03 (5.46) 73.36 (1.01) 65.96 (1.95)
GPR-GNN 64.85 (0.27) 44.88 (0.34) 86.24 (0.61) 72.94 (0.97) 55.48 (0.91)
FSGNN 79.92 (0.56) 52.74 (0.83) 90.08 (0.70) 82.76 (0.61) 78.86 (0.92)
GloGNN 59.63 (0.69) 36.89 (0.14) 51.08 (1.23) 73.39 (1.17) 65.74 (1.19)
FAGCN 65.22 (0.56) 44.12 (0.30) 88.17 (0.73) 77.75 (1.05) 77.24 (1.26)
GBK-GNN 74.57 (0.47) 45.98 (0.71) 90.85 (0.58) 81.01 (0.67) 74.47 (0.86)
JacobiConv 71.14 (0.42) 43.55 (0.48) 89.66 (0.40) 68.66 (0.65) 73.88 (1.16)

DC-GNN 89.96 (0.35) 51.11 (0.47) 98.50 (0.21) 85.88 (0.81) 78.96 (0.60)

G.3. Alleviating oversquashing

G.3.1. DEFINITION OF EFFECTIVE RESISTANCE

Let u and v be vertices of G. The effective resistance between u and v is defined as

Ru,v = (1u − 1v)
TL+(1u − 1v),

where 1v is the indicator vector of the vertex v [15]. Let A be the adjacency matrix and D be the degree matrix. The
Laplacian is L = D −A and L+ is the pseudoinverse of L. The total effective resistance (Rtot) of a graph is therefore the
total sum of effective resistance between every pair of nodes.

G.3.2. EXPERIMENTS TO VALIDATE OVERSQUASHING MITIGATION

(a) Amherst41 (b) Wisconsin (c) Tree-NeighborsMatch

Figure 3: (a)-(b) Total effective resistance heatmap. (c) Accuracy for Tree-NeighborsMatch dataset.

Total effective resistance (Rtot) is established as an indicator of oversquashing [15], prompting the development of various
graph rewiring strategies to diminish Rtot within the underlying graph and thus address oversquashing. Our approach
contributes to this endeavor by introducing cluster-nodes. This effectively creates new pathways among the original nodes,
thereby reducing the graph’s Rtot and aiding in mitigating the oversquashing issue [15]. To validate this, we conduct an
empirical analysis of the total pairwise effective resistance among the original nodes in our bipartite graph, with varying
number of global and local clusters. Fig. 3(a) and Fig. 3(b) display a heatmap of Rtot, with darker shades representing higher
Rtot values. The results indicate that Rtot decreases sharply as we increase the number of both global and local clusters.
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To further validate the oversquashing mitigation capability, we conduct experiments on Tree-NeighborsMatch dataset [9],
which requires long-range interaction between leaf nodes and the root node of tree graphs with varying depths. In Fig. 3(c),
DC-GNN achieves perfect performance along with GT [63] on all depth settings, significantly outperforming other message
passing GNNs.

(a) edge probability = 0.2 (b) edge probability = 0.3 (c) edge probability = 0.5 (d) edge probability = 0.8

Figure 4: Total effective resistance heatmap of Erdos-Renyi random graphs at different sparsity levels. Number of nodes is
10 for all settings.

We also measure effective resistance (Rtot) in synthetic random graphs with different degrees of sparsity. Results in Fig. 4
show that both global and local cluster-nodes contribute to reducing effective resistance, as demonstrated by decreasing
Rtot values in both row and column directions. Additionally, the more drastic Rtot decrease from the first to last column in
heatmap (a) compared to heatmap (d) show that global cluster-nodes play a more pronounced role in reducing effective
resistance at a higher edge sparsity setting.

G.4. Ablation studies

G.4.1. EFFECTS OF EACH TERM IN Lλ
cluster

To validate the effectiveness of our DC-MsgPassing algorithm, we conduct an ablation study on the individual components
of our objective function Lλ

cluster. Specifically, we vary the parameters by setting (1) α to 0, (2) α to 1 and (3) β to 0, aiming
to ablate the contributions of the global clustering term, local clustering term and the node fidelity term respectively.

Table 5: Effects of each term in Lλ
cluster.

GENIUS US-ELECTION PENN94 AMHERST41
DC-GNN 91.70 (0.08) 89.59 (1.60) 86.69(0.22) 82.94 (1.59)
(-)GLOBAL 91.62 (0.07) 88.77 (2.21) 84.61 (0.42) 81.43 (1.53)
(-)LOCAL 87.05 (0.09) 83.26 (1.77) 86.69 (0.22) 80.77 (2.04)
(-)FIDELITY 91.08 (0.04) 87.84 (2.67) 86.69 (0.22) 82.28 (1.32)

Results from Tab. 5 indicate that the contributions
of global and local clustering vary on different
datasets. Specifically, the contribution of local
clustering is dominant on Genius, US-election
and Amherst41. This is expected as local cluster-
ing facilitates message passing via adjacent nodes
and embeds graph structure information into the
model. The contribution of global clustering is most pronounced on Penn94, indicating the usefulness of long-range
information in Penn94 captured by global clustering term. Additionally, The results show that all three terms—local
clustering, global clustering, and node fidelity—contribute to the overall efficacy of our model.

G.4.2. EFFECTS OF Lortho AND Lsim

Table 6: Effects of Lortho and Lsim.

GENIUS US-ELECTION PENN94 AMHERST41
DC-GNN 91.70 (0.08) 89.59 (1.60) 86.69 (0.22) 82.94 (1.59)
(-) Lsim 91.70 (0.08) 89.08 (1.46) 86.65 (0.15) 82.22 (1.03)
(-) Lortho 91.68 (0.08) 88.72 (1.20) 86.64 (0.27) 82.35 (1.25)
(-)Lsim, Lortho 91.68 (0.08) 88.61 (1.57) 86.40 (0.25) 81.75 (1.07)

We introduced orthogonality (Lortho) and simi-
larity (Lsim) losses to regularize and assist the
clustering process. In this ablation, we evaluate
the effects of these losses on model performance.
As shown in Tab. 6, Lortho and Lsim generally
help to improve the scores across datasets. The
results provide some evidence that the two losses
indeed facilitate the clustering process, plausibly by encouraging distinct cluster representations and node-cluster alignment
as hypothesized.

G.4.3. AGGREGATION OPERATION IN SIMILARITY LOSS
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Table 7: Effects of aggregator function in
Lsim.

AGG PENN94 AMHERST41
MEAN 86.13 (0.12) 81.23 (1.34)
SUM 85.84 (0.26) 81.26 (1.58)
MAX 86.69(0.22) 82.94 (1.59)

After computing the similarity between a node and each of the multiple clusters
from the same class, the choice of aggregation method is crucial. We evaluate
the effectiveness of using the aggregation operator on Amherst41 and Penn94
datasets. Tab. 7 shows the effects of replacing the max aggregator with mean
and sum in computing similarity loss. On both datasets, max outperforms both
sum and mean, indicating the effectiveness of using max as the aggregation
operation. Intuitively, taking the average of all similarity scores (mean) is sub-optimal. mean tends to make the node
embeddings closer to the average of all clusters belonging to a same class, undermining the purpose of using multiple
clusters . Similar to mean, summing up all similarity scores (sum) is more powerful yet requires more data to learn. max
selects the maximum similarity score to compute similarity loss and guides the node embeddings closer to one of the clusters,
thus preserving the power of diversity in representation.

G.4.4. EFFECTS OF NODE FIDELITY TERM

Table 8: Dirichlet Energy (DE) with different β values. Higher DE indicates increased node distinctiveness.

β = 0.0 β = 0.5 β = 1.0

Wisconsin 0.741288 0.963261 0.978465
Citeseer 0.110083 0.151699 0.206022
Cora 0.218658 0.294024 0.330234

The node fidelity term encourages the node embeddings to retain some information from the original node features, which
serve as initial residual. This technique can also potentially help to alleviate oversmoothing as shown in [16], [17]. To
validate this, we conduct additional experiments to measure the normalized Dirichlet Energy (DE) [27] for DC-GNN on
Wisconsin, Cora and Citeseer, using the implementation from [27].

We set β to 0, 0.5 and 1 for each dataset to measure how increased weightage of the node fidelity term influences DE, while
keeping α constant at 0.5. As observed in Tab. 8, DE positively correlates with β on all datasets.

G.5. Runtime experiments

We measure the average runtime of a DC-MsgPassing layer on the three largest datasets used in our experiments against
Pytorch Geometric [64] implementation of GATConv and GCNConv. DC-MsgPassing takes less than 4x times GCN
and is faster than GAT on these datasets. The results show that DC-MsgPassing is competitive in terms of runtime,
confirming our complexity analysis.

Table 9: Runtime and dataset statistics comparison on three large-scale datasets. Runtime results are in seconds.

Penn94 Cornell5 Genius

# Nodes 41,554 18,660 421,961
# Edges 1,362,229 790,777 984,979

DC-MsgPassing 0.00852 0.00820 0.00708
GATConv 0.01242 0.01685 0.01636
GCNConv 0.00220 0.00242 0.00207
Multiples of GAT 0.69x 0.49x 0.43x
Multiples of GCN 3.88x 3.38x 3.42x

G.6. Dataset details

We conduct experiments on fourteen datasets, a mix of small-scale and large-scale datasets. Eleven of them are non-
homophilous, including: (1) Roman-empire, Amazon-ratings, Minesweeper, Tolokers, Questions [62]; (2) Penn94, Genius,
Cornell5, Amherst41 [39]; (3) Wisconsin [37]; (4) a US election dataset [65]. Three are homophilous citation networks:
Cora, Citeseer and Pubmed [37]. We use the original train/validation/test splits when they exist. Otherwise we follow the
splits specified in [17], [39], [62]. Descriptions and statistics of the datasets are below.
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G.6.1. DATASET DESCRIPTION

Roman-empire, Amazon-ratings, Minesweeper, Tolokers and Questions are five datasets proposed in [62] to better
evaluate the performance of GNNs under heterophilous settings. The description of each dataset is as follows.

Roman-empire is based on the Roman Empire article from English Wikipedia. Each node in the graph represents one word
in the text, and each edge between two words represents either one word following another word or if the two words are
connected in the dependency tree. Node features is its FastText word embeddings. The task is to predict a node’s syntactic
role.

Amazon-ratings is based on the Amazon product co-purchasing network metadata. Nodes represent products and edges
connect products frequently purchased together. Node features are the mean of FastText embeddings for words in product
description. The task is to predict the class of products’ ratings.

Minesweeper is a synthetic dataset inspired by the Minesweeper game. The graph is a regular 100x100 grid where each
node is connected its eight neighboring nodes. 20% of the nodes are randomly assgined as mines. The node features are
one-hot-encoded numbers of the neighboring mines. The task is to predict if the nodes are mines.

Tolokers is based on data from the Toloka crowdsourcing platform. Nodes represent workers who have participated in the
selected projects, while edges connect two workers who work on the same task. Node features are based on worker’s profile
information and task performance. The task is to predict which workers have been banned.

Questions is based on question-answering data from website Yandex Q. Nodes represent users and edges connect an answer
provider to a question provider. Node features are the mean of FastText word embeddings of user profile description, with
an additional binary feature indicating users with no descriptions. The task is to predict if the users remain active on the
website.

Penn94, Cornell5 and Amherst41 [39] are friendship network datasets extracted from Facebook of students from selected
universities from 2005. Each node in the datasets represent a student, while node label represents the reported gender of the
student. Node features include major, second major/minor, dorm/house, year, and high school.

Wisconsin [37] is a web page dataset collected from the computer science department of Wisconsin Madison. In this
dataset, nodes represent web pages and edges are hyperlinks between them. Feature vectors of nodes are bag-of-words
representations. The task is to classify the web pages into one of the five categories including student, project, course, staff
and faculty.

Genius [39] is a sub-network from website genius.com, a crowd-sourced website of song lyrics annotations. Nodes represent
users while edges connect users that follow each other. Node features include expertise scores expertise scores, counts of
contributions and roles held by users. Around 20% of the users are marked with a ”gone” label, indicating that they are
more likely to be spam users. The task is to predict which users are marked.

US-election [65] is a geographical dataset extracted from statistics of Unite States election of year 2012. Nodes represent
US counties, while edges connect bordering counties. Node features include income, education, population etc. The task is
a binary classification to predict election outcome.

Cora, Citeseer and Pubmed [37] are citation graphs, where each node represents a scientific paper and two papers are
connected when a paper cites the other. Each node is labeled with the research field and the task is to predict which field the
paper belongs to. All three datasets are homophilous.

G.6.2. DATASET STATISTICS

Tab. 10 covers statistics of datasets in Tab. 1. Tab. 11 covers statistics of datasets in Tab. 3.

Homophily matrix Homophily refers to the degree of similarity between connected neighboring nodes in terms of
their features or labels. There are many types of homophily measures proposed, including edge homophily [11], node
homophily [37], and improved edge homophily [39]. Homophily matrix proposed in [39] is an important metric, since it can
better reflect class-wise homophily. The homophiliy matrix is defined as:

Hc1,c2 =
|(u, v) ∈ E : cu = c1, cv = c2|

|(u, v) ∈ E : cu = c1|
, (21)
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Table 10: Dataset statistics for Tab. 1.

Penn94 Cornell5 Amherst41 Genius US-election Wisconsin Cora Citeseer Pubmed

Edge Hom. 0.47 0.47 0.46 0.61 0.83 0.21 0.81 0.74 0.80
Improved Edge Hom. [39] 0.046 0.09 0.05 0.08 0.54 0.094 0.766 0.627 0.664
# Nodes 41,554 18,660 2,235 421,961 3,234 251 2,708 3,327 19,717
# Edges 1,362,229 790,777 90,954 984,979 11,100 466 5,278 4,676 44,327
# Node Features 4814 4735 1193 12 6 1,703 1,433 3,703 500
# Classes 2 2 2 2 2 5 6 7 3

Table 11: Dataset statistics for Tab. 3.

Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions

Edge Hom. 0.05 0.38 0.68 0.59 0.84
Improved Edge Hom. [39] 0.01 0.12 0.009 0.17 0.08
# Nodes 22,662 24,492 10,000 11,758 48,921
# Edges 32,927 93,050 39,402 519,000 153,540
# Node Features 300 300 7 10 301
# Classes 18 5 2 2 2

for classes c1 and c2, Hc1c2 denotes the proportion of edges between from nodes of class c1 to nodes of class c2. A
homophilous graph has high values on the diagonal entries of H .

Fig. 5 are the homophily matrices for three well-known homophilous datasets: Cora, Citeseer and Pubmed [66]. High
homophily is signified by the high numbers in diagonal cells, whereas values of non-diagonal cells are mostly less than 0.1.
This is different from the homophily matrices of heterophilous datasets, where values of non-diagonal cells are similar or
even higher than diagonal cells.

(a) Cora (b) Citeseer (c) Pubmed

Figure 5: Homophily matrix for three homophilous datasets.

We show in Fig. 6 the homophily matrices for some heterophilous datasets for comparison.

G.7. Implementation details

Implementation details. For global cluster-nodes, we use trainable lookup embeddings to initialize the embeddings.
For local cluster-nodes, we fix the number of local clusters to be 2 for every ego-neighborhoods, and initialize the two
cluster-node embeddings by the central node features and the average of neighboring node features respectively. In practice,
for local clustering cost matrices M, we rescale and normalize the distance before running the Sinkhorn-Knopp algorithm
for numerical stability.

Training Settings We conduct each experiment of DC-GNN using three distinct data splits and present the corresponding
mean and standard deviation of the performance metrics. The experiments are executed on a range of GPUs—specifically,
the V100, A100, GeForce RTX 2080, or 3090—based on their availability at the time the experiments are conducted. For
optimization, we employ the Adam algorithm and undertake a grid search of hyperparameters, the specifics of which are in
Tab. 12 and Tab. 13. Should the baseline results be publicly accessible, we directly incorporate them into our report. For the
datasets where baseline results are missing (Cornell5, Amherst41, US-election), we reproduced them following the code
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(a) Penn94 (b) Genius (c) Cornell5 (d) Amherst41 (e) US-election (f) Wisconsin

Figure 6: Homophily matrix for heterophilous datasets.

in [35].

Hyperparameters for DC-GNN For experiments in Tab. 1 and Tab. 3, we fix some hyperparameters and perform grid
search for other hyperparameters. To facilitate reproducibility, we document the details of the hyperparameters and search
space in Tab. 12 and Tab. 13 respectively. TΩ refer to the number of iterations of Sinkhorn-Knopp algorithm when solving
PΩ, and TΓ is the number of Sinkhorn-Knopp iterations for solving PΓ. We set |Ω| to be multiples of the number of classes
in a dataset.

Table 12: Hyper-parameter search space of DC-GNN for datasets in Tab. 1
.

Penn94 Cornell5 Amherst41 Genius US-election Wisconsin Cora Citeseer Pubmed

lr 0.005 0.005 0.005 0.005 0.005 0.01 0.005 0.001, 0.002 0.005
λ 2 2, 5 2 2 2,5 2 2 2 2
TΩ 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3 10,5,3
TΓ 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1 5, 3, 1
|Γi| 2 2 2 2 2 2 2 2 2
|Ω| 2,4, 8, 16, 30 2,4, 8, 16, 30 2,4, 8, 16, 30 2,4,8 2,4, 8, 16, 30 5, 10, 20 6,12,24,48 7, 14, 28 6, 12
α 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0. 0.2, 0.5, 0.8, 1 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
β 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0, 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
# layers in MLP 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
L : # layers 2, 5 2, 5 2, 5 2, 4, 8,16 2, 5 2, 5 2,4,8,10 2,4,8 2,4,8
ω1 0.001, 0.01 0.001, 0.01 0.001, 0.01 0.001,0.01 0.001, 0.01 0.001, 0.01 0, 0.001, 0.01, 0.05 0.001, 0.01 0.001, 0.01
ω2 0.005, 0.05 0.005, 0.05 0.005, 0.05 0,0.005,0.05 0.005, 0.05 0.005, 0.05 0.005, 0.05, 0.08, 0.1 0.005, 0.05 0.005, 0.05
epochs 30 30 30 3000 500 200 200 50 500
weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 1e-3 5e-4 5e-4 5e-4
aggregation mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum mean, sum
dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
normalization None None None LN None None None None None
hidden channels 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128

Table 13: Hyper-parameter search space of DC-GNN for datasets in Tab. 3

Roman-Empire Amazon-Ratings Minesweeper Tolokers Questions

lr 0.005 0.005 0.005 0.005 0.001
λ 2 2 2 2 2
TΩ 5 5 5 5 5
TΓ 3 3 3 3 3
KΓ 2 2 2 2 2
KΩ 18 5, 10 2,4,8 8, 16 2,4,8
α 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
β 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8 0.2, 0.5, 0.8
# layers in MLP 1,2 1,2 1,2 1,2 1,2
L : # layers 2, 4, 8,16,20 2, 4, 8 2, 4, 8 2, 4, 8 2, 4, 8, 16
ω1 0.001, 0.01 0.001, 0.01 0.001, 0.01 0.02 0.001, 0.01
ω2 0.005, 0.05 0.005, 0.05 0.005, 0.05 0.001 0.001
epochs 3000 3000 3000 3000 3000
weight decay 5e-4 5e-4 5e-4 5e-4 5e-4
aggregation mean, sum mean, sum mean, sum mean, sum mean, sum
dropout 0.2 0.2 0.2 0.2 0.2
normalization None, LN None, LN None, LN None, LN None, LN
hidden channels 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64 16, 32, 64

Hyperparameters for baselines We used the code provided by GloGNN [35] to reproduce the baseline results for dataset
Cornell5, Amherst41, and US-election. The grid search space for hyper-parameters are listed below. Note that some
hyper-parameters only apply to a subset of baselines. All other baselines results are obtained from [35] and [62].
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• MLP: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {2, 3}. Activation function is ReLU.

• GCN: lr ∈ {.01, .001}, hidden dimension ∈ {4, 8, 16, 32, 64}. Activation function is ReLU.

• GAT: lr ∈ {.01, .001}. hidden channels ∈ {4, 8, 12, 32} and gat heads ∈ {2, 4, 8}. number of layers ∈ {2}. We use
the ELU as activation.

• MixHop: hidden dimension ∈ {8, 16, 32}, number of layers ∈ {2}.

• GCNII: number of layers ∈ {2, 8, 16, 32, 64}, strength of initial residual connection α ∈ {0.1, 0.2, 0.5}, hyperparame-
ter for strength of the identity mapping θ ∈ {0.5, 1.0, 1.5}.

• H2GCN: hidden dimension ∈ {16, 32}, dropout ∈ {0, .5}, number of layers ∈ {1, 2}. Model architecture follows
Section 3.2 of [11].

• WRGAT: lr ∈ {.01}, hidden dimension ∈ {32}.

• GPR-GNN: lr ∈ {.01, .05, .002}, hidden dimension ∈ {16, 32}.

• GGCN: lr ∈ {.01}, hidden channels ∈ {16, 32, 64}, number of layers ∈ {1, 2, 3}, weight decay ∈ {1e−7, 1e−2},
decay rate ∈ {0, 1.5}, dropout rate ∈ {0, .7},

• ACM-GCN: lr ∈ {.01}, weight decay ∈ {5e−5, 5e−4, 5e−3}, dropout ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, hidden channels
∈ {64}, number of layers ∈ {2}, display step ∈ {1}.

• LINKX: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {1, 2}. Rest of the hyper-parameter settings follow
[39].

• GloGNN++: lr ∈ {.001, .005, .01} , weight decay ∈ {0, .01, .1}, dropout ∈ {0, .5, .8}, hidden channels ∈ {128, 256},
number of layers ∈ {1, 2}, α ∈ {0, 1}, β ∈ {0.1, 1}, γ ∈ {0.2, 0.5, 0.9}, δ ∈ {0.2, 0.5}, number of normalization
layers ∈ {1, 2}, orders ∈ {1, 2, 3}.
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